
SUBTYPING À LA CHURCH

ADRIANA COMPAGNONI AND HEALFDENE GOGUEN

Stevens Institute of Technology

e-mail address: abc@cs.stevens.edu

Google

e-mail address: hhg@google.com

Abstract. Type theories with higher-order subtyping or singleton types are examples of

systems where the computational behavior of variables is determined by type information

in the context. A complication for these systems is that bounds declared in the context

do not interact well with the logical relation proof of completeness or termination.

This paper proposes a simple modification to the type syntax for F
ω

≤ , adding a variable’s

bound to the variable type constructor, thereby separating the computational behavior of

the variable from the context. The algorithm for subtyping in F
ω

≤ can then be given on

types without context or kind information. As a consequence, the metatheory follows

the general approach for type systems without computational information in the context,

including a simple logical relation definition without Kripke-style indexing by context.

Completeness and correctness, anti-symmetry, transitivity elimination and termination of

the algorithm are all proved.

In Honor of Henk Barendregt on the Occasion of his 60th Birthday

1. Introduction

Logical relations are a powerful technique for proving metatheoretic properties of type
theories. The traditional approach to the metatheory of type theories, for example that
of PTS’s [Bar92], studies properties of untyped reduction and conversion, and then com-
pletes the study of type-checking by proving strong normalization with a logical relation
construction.

This approach has been difficult to adapt to systems where the computational behavior
of variables can change according to context information. The key difficulty is that strong
normalization of a term depends on information in the context, but that normalization
also needs to be closed under replacement by equal contexts, in order to model the term
constructors that introduce the computational information into the context.

For example, in Fω
≤ , consider a putative proof of strong normalization in the case of

a derivation of X ≤ A : ⋆ → ⋆ ⊢ X(C) : ⋆. Such a proof would have a hypothesis that
A(C) is strongly normalizing, since the model must allow uses of promotion, or replacing a

2000 ACM Subject Classification: F.3.2, F.3.3, F.4.1.

Key words and phrases: Lambda Calculus, Subtyping, Kripke Model.

REFLECTIONS ON TYPE THEORY,
λ-CALCULUS, AND THE MIND

Essays Dedicated to Henk Barendregt
on the Occasion of his 60th Birthday

Copyright c© 2007 by
Adriana Compagnoni and Healfdene Goguen

63

64 ADRIANA COMPAGNONI AND HEALFDENE GOGUEN

variable by its bound. However, to model the rule that ⊢ ∀X ≤ A : ⋆ → ⋆.X(C) = ∀X ≤
B : ⋆→ ⋆.X(C) : ⋆, we would need that B(C) is strongly normalizing for arbitrary B such
that ⊢ A = B : ⋆→ ⋆ before constructing the model; the behavior of X(C) varies according
to its context.

Several papers have addressed systems of this type, but each of these approaches dif-
fers from the usual approach to metatheory of type theories. Compagnoni and Goguen
[CG03, CG97] use an algorithm where a variable’s bound is normalized before promoting
the variable. This allows context replacement to be proved before the completeness proof,
but it seems to be an odd requirement and was only introduced to get the proof to work.
Furthermore, the algorithm is less efficient than an algorithm that postpones normalization
of the bound. Stone and Harper [SH06] prove termination for an algorithm for singletons
using the unnormalized singleton rather than normalizing it first. Their Kripke-style proof
indexes the model with sets of possible contexts in which a term is well-typed. In the
example above, the possible B are limited by considering contexts that arise from bounds
introduced by the ∀ constructor. This differs from the standard Kripke-style proof of strong
normalization, which is relative to a single context.

In this paper we propose separating the computational behavior of variables from the
context. We introduce a modified type structure for Fω

≤ [Car90, CL91, Mit90], where the
type constructor for variables is XA with the variable’s bound A explicitly mentioned.
This presentation allows us to give a kind- and context-free definition of the algorithm for
subtyping, since the only use of the context in the traditional algorithm is when a variable
is replaced with its bound. This in turn leads to an approach to the metatheory consistent
with the usual approach for type theories, since it is never necessary to promote a variable
to a type convertible with its bound, the cause of the difficulties in the system without
bounded variables. In our example above, the terms would be ∀X ≤ A : ⋆ → ⋆.XA(C) =
∀X ≤ B : ⋆→ ⋆.XB(C): the behavior of XA(C) and XB(C) is fixed regardless of context.

The idea of introducing additional information in the term structure is not new. We call
this presentation “à la Church” for its obvious similarity to type labels on λ-abstractions.
Streicher [Str91] adds type labels to applications and abstractions in the Calculus of Con-
structions in order to define a partial interpretation function, which is subsequently proved
total. Barbanera and Berardi [BB95] use type labels, including on variables, to guarantee
well-typedness of terms under classical reduction. The second author [Gog05] used type la-
bels on variables in order to define a syntactic translation on terms to show the decidability
of βη-equality based on strong normalization for β-reduction.

There are several complications resulting from the bounded variable constructor. First,
in order to show correctness of the traditional system without explicitly bounded variables,
we would need to show the equivalence of the two presentations. This is left as future work.
Secondly, because variables mention their bound explicitly, we need to distinguish between
renaming [X ← Y], which changes variable names but does not change the bound, and
substitution of a variable, [YB/X], which replaces the bound of X. Finally, the subtyping
judgement is needed in the formulation of the inference rules for the kinding judgement: this
is not necessary in the traditional presentation, for example in the rule TVar for kinding a
type variable.

The focus of this paper is on the properties of the subtyping relation, including com-
pleteness and correctness, anti-symmetry, transitivity elimination and decidability. We
ignore completely the term language, since its metatheory is standard once decidability of

SUBTYPING À LA CHURCH 65

subtyping has been proved. As such, we do not treat substitution for bounded variables as
occur in ∀, since this substitution only occurs in the reduction relation for terms.

The structure of the rest of the paper is as follows. In Section 2 we introduce the term
syntax and the judgements and rules of inference for Fω

≤ . In Section 3 we introduce the
algorithm, and in Section 4 we study basic properties of the algorithm such as decidability
and its being a partial order. In Section 5 we show completeness of the algorithm, and in
Section 6 we show correctness. Finally, in Section 7 we discuss related and future work,
and in Section 8 we conclude.

2. Syntax

We now present the term constructors, judgements and rules of inference for kinding
and subtyping in Fω

≤ .

2.1. Syntactic Categories. The kinds of Fω
≤ are the kind ⋆ of proper types and the kinds

K → K ′ of functions on types and type operators. We assume an infinite collection of type
variable names X,Y,Z, The types include variables with explicit bounds XA; the top
type T⋆; function types A→ B; and polymorphic types ∀X ≤ A : K.B, in which the bound
type variable X ranges over all subtypes of the upper bound A. Moreover, like Fω, we
allow types to be abstracted on types, of the form ΛX : K.A, and we can apply types to
argument types A(B). Contexts Γ,∆ are either the empty context () or extended contexts
Γ,X ≤ A : K. We use X : K as an abbreviation for X ≤ TK : K in contexts; in this case
we say X is a variable without a bound.

We identify types that differ only in the names of bound variables. We write A(B1, ..., Bn)
for (A(B1))...(Bn). If A ≡ XC(B1, ..., Bn) then A has head variable XC ; we write HV(−)
for the partial function returning the head variable of a type. We also extend the top type
T⋆ to any kind K by defining inductively TK→K ′ = ΛX : K.TK ′ .

Because type variables are decorated with their bounds, we need to be careful with
our definition of substitution: specifically, a renaming should be restricted to renaming
the variables in the bound A of a variable XA, as opposed to changing the bound as may
occur in a substitution of YB for X in XA. We therefore define parallel substitutions γ, δ as
either the empty substitution (); the extension of a parallel substitution γ with a renaming
of a variable X by another variable Y , written γ[X ← Y]; or the extension of a parallel
substitution γ with a substitution of a variable X by a type A, written γ[A/X]. We say
γ is a renaming if γ = () or if γ = γ0[X ← Y] with γ0 a renaming. We write idΓ for the
identity renaming of the type variables declared in Γ.

We write B[γ] for the capture-avoiding simultaneous replacement of each of the variables
by its corresponding value, defined as follows on variables and lifted in the usual way to
arbitrary types:

• XA[()] = XA.
• XA[γ[X ← Y]] = YA[γ[X←Y]].
• XA[γ[Y ← Z]] = XA[γ[Y←Z]], if X 6= Y .
• XA[γ[B/X]] = B.
• XA[γ[B/Y]] = XA[γ[B/Y]], if X 6= Y .

Observe that B cannot be a variable Y or Z in the last two equations, but must instead be
a bounded type variable YC or ZD.

66 ADRIANA COMPAGNONI AND HEALFDENE GOGUEN

We also write B[A/X] for the parallel substitution that is the identity renaming on
the free variables in B other than X, and the substitution of X by A. We have standard
properties of parallel substitution, for example that A[γ][δ] ≡ A[γ ◦ δ] and (γ[A/X]) ◦ δ =
(γ ◦ δ)[Aδ/X]. We also write A � B for the standard notion of β-reduction. We have the
standard property of Church–Rosser for reduction.

2.2. Judgements and Rules of Inference. The judgement forms are Γ ⊢ A : K for
well-kinded types and Γ ⊢ A ≤ B : K for subtyping. We sometimes write Γ ⊢ ok for
Γ ⊢ T⋆ : ⋆, and Γ ⊢ A = B : K for Γ ⊢ A ≤ B : K and Γ ⊢ B ≤ A : K. We may also
use the metavariable J to range over statements (right-hand sides of judgements) of any of
these judgement forms.

The rules of inference are presented as simultaneously defined inductive relations over
the judgements. We start with several admissible structural rules, and follow with the
kinding and subtyping rules.

2.2.1. Admissible Rules. The following rules can be shown admissible by induction on
derivations.

Γ, X ≤ B : K, Γ′ ⊢ J Γ ⊢ A ≤ B : K Γ ⊢ A : K

Γ, X ≤ A : K, Γ′ ⊢ J
(Repl)

Γ, Γ′ ⊢ J Γ ⊢ A : K X 6∈ dom(Γ, Γ′)

Γ, X ≤ A : K, Γ′ ⊢ J
(Thin)

Γ, X : K, Γ′ ⊢ J Γ ⊢ A : K

Γ, Γ′[A/X] ⊢ J [A/X]
(Subst)

2.2.2. Kinding Rules. The following rules formalize the judgement Γ ⊢ A : K, stating that
the type A is well-formed and of kind K in context Γ.

() ⊢ T⋆ : ⋆ (TopEmp)

Γ ⊢ A : K X 6∈ dom(Γ)

Γ, X ≤ A : K ⊢ T⋆ : ⋆
(TopExt)

Γ ⊢ B : K Γ ⊢ A ≤ B : K X ≤ A : K ∈ Γ

Γ ⊢ XB : K
(TVar)

Γ, X : K ⊢ A : K ′

Γ ⊢ ΛX : K.A : K → K ′
(TAbs)

Γ ⊢ A : K → K ′ Γ ⊢ B : K

Γ ⊢ A(B) : K ′
(TApp)

Γ ⊢ A : ⋆ Γ ⊢ B : ⋆

Γ ⊢ A→ B : ⋆
(Arrow)

Γ, X ≤ A : K ⊢ B : ⋆

Γ ⊢ ∀X ≤ A : K.B : ⋆
(All)

Notice that in rule TVar it is possible that X ∈ B when Γ ⊢ XB : K.

SUBTYPING À LA CHURCH 67

2.2.3. Subtyping Rules. Finally, the following rules formalize the judgement Γ ⊢ A ≤ B : K,
stating that type A is a subtype of type B and both are well-formed of kind K in context
Γ.

Γ ⊢ A : K

Γ ⊢ A ≤ A : K
(S-Refl)

Γ ⊢ A ≤ B : K Γ ⊢ B ≤ C : K

Γ ⊢ A ≤ C : K
(S-Trans)

Γ ⊢ A : K

Γ ⊢ A ≤ TK : K
(S-Top)

Γ ⊢ A ≤ B : K Γ ⊢ B = C : K X ≤ A : K ∈ Γ

Γ ⊢ XB ≤ XC : K
(S-TVar)

Γ ⊢ A ≤ B : K Γ ⊢ B : K X ≤ A : K ∈ Γ

Γ ⊢ XB ≤ B : K
(S-Promote)

Γ, X : K ⊢ A ≤ B : K ′

Γ ⊢ ΛX : K.A ≤ ΛX : K.B : K → K ′
(S-TAbs)

Γ ⊢ A ≤ C : K → K ′ Γ ⊢ B = D : K

Γ ⊢ A(B) ≤ C(D) : K ′
(S-TApp)

Γ ⊢ B1 ≤ A1 : ⋆ Γ ⊢ A2 ≤ B2 : ⋆

Γ ⊢ A1 → A2 ≤ B1 → B2 : ⋆
(S-Arrow)

Γ ⊢ A = C : K Γ, X ≤ A : K ⊢ B ≤ D : ⋆

Γ ⊢ ∀X ≤ A : K.B ≤ ∀X ≤ C : K.D : ⋆
(S-All)

Γ, X : K ⊢ A : K ′ Γ ⊢ B : K

Γ ⊢ (ΛX : K.A)(B) ≤ A[B/X] : K ′
(S-BetaL)

Γ, X : K ⊢ A : K ′ Γ ⊢ B : K

Γ ⊢ A[B/X] ≤ (ΛX : K.A)(B) : K ′
(S-BetaR)

3. The Algorithm

In this section we define the algorithm for kinding and subtyping.
First, we define the relations →w for weak-head reduction and ։n for reduction to

normal form.

Definition 3.1. • (ΛX : K.A)(B)→w A[B/X].
• A(B)→w C(B) if A→w C.
• XA(B1, ..., Bn) ։n XC(D1, ...,Dn) if A ։n C and Bi ։n Di for 1 ≤ i ≤ n.
• ΛX : K.A ։s ΛX : K.B if A ։n B.
• A→ B ։n C → D if A ։n C and B ։n D.
• ∀X ≤ A : K.B ։n ∀X ≤ C : K.D if A ։n C and B ։n D.
• A ։n C if A→w B and B ։n C.

We also write A ↓n B iff there is a C such that A ։n C and B ։n C.

Lemma 3.2. If A ։n C and A � B then B ։n C.

68 ADRIANA COMPAGNONI AND HEALFDENE GOGUEN

The algorithm has a judgement for kinding, Γ ⊢A A : K, and two judgements for
subtyping, ⊢A A ≤W B for subtyping weak-head normal forms, and ⊢A A ≤ B for subtyping
arbitrary types. The algorithm for subtyping is analogous to untyped conversion in the
λ-calculus: it is purely a computational relation, without reference to kind information.
Furthermore, the algorithm for kinding does not refer to subtyping, because subtyping is
used for the term language of Fω

≤ and not for types.
The algorithm is defined by the following rules of inference. It is syntax-directed, and

it will be shown to be terminating on well-formed types. Since it incorporates weak-head
reduction, it is clearly not terminating in general.

Γ ⊢A T⋆ : ⋆ (AT-Top)

X ≤ A : K ∈ Γ

Γ ⊢A XA : K
(AT-TVar)

Γ,X : K ⊢A A : K ′ X 6∈ dom(Γ)

Γ ⊢A ΛX : K.A : K → K ′
(AT-TAbs)

Γ ⊢A A : K → K ′ Γ ⊢A B : K

Γ ⊢A A(B) : K ′
(AT-TApp)

Γ ⊢A A : ⋆ Γ ⊢A B : ⋆

Γ ⊢A A→ B : ⋆
(AT-Arrow)

Γ ⊢A A1 : K Γ,X ≤ A1 : K ⊢A A2 : ⋆ X 6∈ dom(Γ)

Γ ⊢A ∀X ≤ A1 : K.A2 : ⋆
(AT-All)

HV (A) undefined and A is not an abstraction

⊢A A ≤W T⋆
(AWS-Top)

A ↓n C Bi ↓n Di (1 ≤ i ≤ n)

⊢A XA(B1, ..., Bn) ≤W XC(D1, ...,Dn)
(AWS-TVar)

⊢A A(B1, ..., Bn) ≤ C C 6↓n XA(B1, ..., Bn)

⊢A XA(B1, ..., Bn) ≤W C
(AWS-Promote)

⊢A A ≤ B

⊢A ΛX : K.A ≤W ΛX : K.B
(AWS-TAbs)

⊢A B1 ≤ A1 ⊢A A2 ≤ B2

⊢A A1 → A2 ≤W B1 → B2
(AWS-Arrow)

A1 ↓n B1 ⊢A A2 ≤ B2

⊢A ∀X ≤ A1 : K.A2 ≤W ∀X ≤ B1 : K.B2
(AWS-All)

A ։w C B ։w D ⊢A C ≤W D

⊢A A ≤ B
(AS-Inc)

The rule for subtyping of bounded variables, S-TVar, states that XA is less than XB if
A and B are equal. It is tempting to instead allow A to be a subtype of B, but it appears
that the algorithm cannot be defined for this system. For completeness, we would require
a promotion rule, in the base case for bounded variables, that XA be a subtype of B if A
is a subtype of B and the weak-head normal form of B is not XC with A a subtype of C.
This last condition has the subtyping statement in a negative position, and therefore is not
a valid inductive definition.

SUBTYPING À LA CHURCH 69

4. Metatheory

In this section we develop the basic metatheory for the algorithm.
We begin with the relations A >P B, formalizing a use of promotion, and A >S B,

formalizing B a subterm of A, both for A weak-head normal.

Definition 4.1. • XA(B1, ..., Bn) >P A(B1, ..., Bn).
• – ΛX : K.A >S A.

– A1 → A2 >S A1 and A1 → A2 >S A2.
– ∀X ≤ A1 : K.A2 >S A2.

Definition 4.2 (Strong Normalization and Termination). We define the following predi-
cates inductively:

• SN(A) iff SN(B) for all B such that A � B.
• T (A) iff T (B) for all B such that A � B, A >P B or A >S B.

The predicate T (A), or A is terminating, formalizes the possible types that the algo-
rithm may encounter when invoked on a judgement containing A.

Lemma 4.3. We have the following properties of T (−) and SN(−):

(1) T (A) implies SN(A).
(2) T (A) implies A ↓n.
(3) If T (A) and A � B then T (B).
(4) T (T⋆).
(5) T (A) iff T (ΛX : K.A).
(6) T (TK).
(7) T (A) and T (B) iff T (A→ B).
(8) SN(A) and T (B) iff T (∀X ≤ A : K.B).
(9) If A >P B then T (A) iff T (B).

(10) SN(Ai) for 1 ≤ i ≤ n iff T (XTK
(A1, ..., An)).

(11) If T (A), T (B), A(B)→w C and T (C) then T (A(B)).

Proof. The only case that is difficult is Case 11, which follows by standard λ-calculus prop-
erties.

Lemma 4.4 (Reflexivity). If T (A) then ⊢A A ≤ A.

Proof. By induction on T (A), we show that if A is weak-head normal then ⊢A A ≤W A and
otherwise ⊢A A ≤ A.

If A is not weak-head normal then A ։w B and ⊢A B ≤W B by induction hypothesis.
Otherwise, the proof proceeds by case analysis. For example, suppose A ≡ XB(C1, ..., Cn).

Then SN(B) and SN(Ci) for 1 ≤ i ≤ n, so B ↓n B and Ci ↓n Ci, so ⊢A XB(C1, ..., Cn) ≤W

XB(C1, ..., Cn).

Lemma 4.5 (Subject Conversion). If ⊢A A ≤ B, A ↓n A′, and B ↓n B′ then ⊢A A′ ≤ B′.

Proof. By induction on derivations of ⊢A A ≤ B, using Church–Rosser for AWS-Promote.

Lemma 4.6 (Normalization). If ⊢A A ≤ B then there are A′ and B′ such that A ։n A′

and B ։n B′.

70 ADRIANA COMPAGNONI AND HEALFDENE GOGUEN

The following lemma simply states that promotion is always valid, even if the side
condition of AWS-Promote is not satisfied. This is true because if the side condition is not
satisfied then AWS-TVar can be applied.

Lemma 4.7 (Promotion). If ⊢A B ≤ C, A >P B and there is a D such that A ։n D then
⊢A A ≤ C.

Proof. By Normalization there is a D such that C ։n D. If C ↓n A then ⊢A A ≤ C by
AWS-TVar, and otherwise ⊢A A ≤ C by AWS-Promote.

Lemma 4.8 (Transitivity). If ⊢A A ≤ B and ⊢A B ≤ C then ⊢A A ≤ C.

Proof. By induction on derivations, using Normalization and Subject Conversion in AWS-

TVar and Promotion in AWS-Promote.

The length of a derivation T (A) includes uses of reduction. To prove Anti-Symmetry,
we need a measure that is invariant under reduction but respects >P .

Definition 4.9. We define the length |T (A)| of a derivation of T (A) inductively as the
maximum of |T (B)| for A � B and |T (B)|+ 1 for A >P B.

Observe that |T (A)| does not depend on >S .

Lemma 4.10. We have the following properties of the predicate T (A) and the length |T (A)|
of derivations of T (−):

(1) If T (A) and A ։n B then |T (A)| = |T (B)|.
(2) If T (A), T (B) and A ↓n B then |T (A)| = |T (B)|.
(3) If T (A) and A � B then |T (A)| = |T (B)|.
(4) |T (T⋆)| = 0.
(5) If T (ΛX : K.A) then |T (ΛX : K.A)| = 0.
(6) If T (A1 → A2) then |T (A1 → A2)| = 0.
(7) If T (∀X ≤ A1 : K.A2) then |T (∀X ≤ A1 : K.A2)| = 0.

Lemma 4.11 (Key Lemma). If T (A), T (B) and ⊢A A ≤ B then |T (A)|≥|T (B)|.

Proof. By induction on ⊢A A ≤ B, using Lemma 4.10.

Specifically, notice that the Key Lemma allows us to prove directly that ⊢A A(B1, ..., Bn) ≤
XA(B1, ..., Bn) is impossible, since |T (XA(B1, ..., Bn))| > |T (A(B1, ..., Bn))| by definition.
We use this fact in the proof of Anti-Symmetry.

Lemma 4.12 (Anti-Symmetry). If ⊢A A ≤ B, ⊢A B ≤ A, T (A) and T (B), then A ↓n B.

Proof. By induction on derivations ⊢A A ≤ B and ⊢A B ≤ A.
We consider two cases:

• AWS-Promote is used in deriving ⊢A A ≤ B. By the Key Lemma |T (A(B1, ..., Bn))|≥|T (C)|,
and |T (C)|≥|T (XA(B1, ..., Bn))|, so |T (A(B1, ..., Bn))|≥|T (XA(B1, ..., Bn))|. How-
ever, |T (XA(B1, ..., Bn))| > |T (A(B1, ..., Bn))| by definition, which is a contradic-
tion.
• AWS-TAbs is used in deriving ⊢A A ≤ B and ⊢A B ≤ A. Then A ≡ ΛX : K.A1

and B ≡ ΛX : K.B1 for some A1 and B1, with ⊢A A1 ≤ B1 and ⊢A B1 ≤ A1. By
definition ΛX : K.A1 >S A1 implies T (A1) and similarly T (B1), so by induction
hypothesis A1 ↓n B1, and so ΛX : K.A1 ↓n ΛX : K.B1.

SUBTYPING À LA CHURCH 71

Proposition 4.13 (Decidability). If T (A) and T (B) then ⊢A A ≤ B and ⊢A A ≤W B
terminate.

Proof. By induction on the sum of the length of the derivations of T (A) and T (B).
There are two cases: either A or B has a weak-head reduct or they are both weak-

head normal. In the first case the result follows by induction hypothesis. Otherwise, by
inspection:

• A ≡ T⋆. If B ≡ T⋆ then ⊢A A ≤ B succeeds, otherwise it fails.
• A ≡ XC(D1, ...,Dn). If B ≡ XE(F1, ..., Fn) then C ↓n E and Di ↓n Fi terminate,

since T (A) implies A ↓n and T (B) implies B ↓n, so if these conditions hold then
⊢A A ≤ B succeeds.

Otherwise, XC(D1, ...,Dn) >P C(D1, ...,Dn), so ⊢A C(D1, ...,Dn) ≤ B termi-
nates by induction hypothesis, so ⊢A A ≤ B succeeds or fails as ⊢A C(D1, ...,Dn) ≤
B does.
• A ≡ A1 → A2. If B ≡ T⋆ then ⊢A A ≤ B succeeds. If B ≡ B1 → B2 then ⊢A B1 ≤

A1 and ⊢A A2 ≤ B2 terminate by induction hypothesis, since A1 → A2 >S Ai for
i ∈ {1, 2} and similarly for B, so ⊢A A1 → A2 ≤ B1 → B2 terminates.

Otherwise, ⊢A A ≤ B fails.
• A ≡ ∀X ≤ A1 : K.A2. If B ≡ T⋆ then ⊢A A ≤ T⋆ succeeds. If B ≡ ∀X ≤ B1 : K.B2

then A1 ↓n B1 terminates because T (A1) and T (B1) imply A1 ↓n and B1 ↓n.
Furthermore, ∀X ≤ A1 : K.A2 >S A2 and ∀X ≤ B1 : K.B2 >S B2, so ⊢A A2 ≤ B2

terminates by induction hypothesis, and ⊢A ∀X ≤ A1 : K.A2 ≤ ∀X ≤ B1 : K.B2

succeeds or fails as ⊢A A2 ≤ B2 does.
Otherwise, ⊢A A ≤ B fails.

• A ≡ ΛX : K.A1. If B ≡ ΛX : K.B1 then ΛX : K.A0 >S A0 and ΛX : K.B0 >S B0,
so ⊢A A1 ≤ B1 terminates by induction hypothesis, and ⊢A ∀X : K.A0 ≤ ∀X : K.B0

succeeds or fails as ⊢A A1 ≤ B1 does.
Otherwise, ⊢A A ≤ B fails.

5. Completeness of the Algorithm

We now perform the logical relation proof to show completeness and decidability of the
algorithm.

Definition 5.1 (Semantic Object). A type A is a semantic object at kind K, written
SOK(A), iff T (A) and ⊢A A ≤ TK .

Definition 5.2 (Interpretation). The interpretations of a kind K, |= A ∈ K and |= A ≤
B ∈ K, are defined by induction on K:

• |= A ∈ ⋆ iff SO⋆(A).
• |= A ≤ B ∈ ⋆ iff SO⋆(A), SO⋆(B) and ⊢A A ≤ B.
• |= A ∈ K → K ′ iff SOK→K ′(A) and |= A(B) ∈ K ′ for all B such that |= B ∈ K.
• |= A ≤ B ∈ K → K ′ iff SOK→K ′(A), SOK→K ′(B), ⊢A A ≤ B and |= A(C) ≤

B(C) ∈ K ′ for all C such that |= C ∈ K.

The interpretation extends to parallel substitutions |= γ ∈ Γ as follows:

• |= () ∈ ().

72 ADRIANA COMPAGNONI AND HEALFDENE GOGUEN

• |= γ[X ← Y] ∈ Γ,X ≤ A : K iff |= γ ∈ Γ.
• |= γ[A/X] ∈ Γ,X : K iff |= γ ∈ Γ and |= A ∈ K.

Observe that variables in the context of the form X ≤ A : K where A 6≡ TK can only
take renamings [X ← Y]. These variables are never subject to substitution, since they
cannot become the bound variable of an abstraction.

Lemma 5.3 (Saturated Sets). The following properties hold for |= A ∈ K and |= A ≤ B ∈
K:

(1) If |= A ≤ B ∈ K then |= A ∈ K and |= B ∈ K.
(2) If |= A ∈ K then SOK(A).
(3) If |= A ≤ B ∈ K then ⊢A A ≤ B.
(4) If |= A ∈ K then |= A ≤ A ∈ K.
(5) |= TK ∈ K.
(6) If |= A ∈ K then |= A ≤ TK ∈ K.
(7) If |= B ∈ K and A >P B then |= A ∈ K, and similarly for the left- and right-hand

sides of |= A ≤ B ∈ K.
(8) If |= B ∈ K, T (A) and A →w B then |= A ∈ K, and similarly for the left- and

right-hand sides of |= A ≤ B ∈ K.
(9) If |= A′ ≤ B′ ∈ K, A ↓n A′, B ↓n B′, T (A) and T (B) then |= A ≤ B ∈ K.

(10) If |= A ≤ B ∈ K and |= B ≤ C ∈ K then |= A ≤ C ∈ K.

Proof. By induction on K, using for example Reflexivity for Case 4, Cases 2 and 4 for
Case 6, Lemma 4.3 Case 9 and Promotion for Case 7, and Transitivity for Case 10.

Theorem 5.4 (Completeness). If Γ ⊢ A ≤ B : K and |= γ ∈ Γ then |= A[γ] ≤ B[γ] ∈ K.

Proof. By induction on derivations. We consider several cases.

• TopEmp. By Lemma 5.3 Case 5.
• TVar. If γ = γ0[X ← Y] then by induction hypothesis |= B[γ] ∈ K, and XB[γ] >P

B[γ], so |= XB[γ] ∈ K by Lemma 5.3 Case 7.
If γ = γ0[A/X] then |= A ∈ K by definition.

• TApp. By induction hypothesis |= A[γ] ∈ K → K ′ and |= B[γ] ∈ K, so |=
(A(B))[γ] ≡ (A[γ])(B[γ]) ∈ K ′ by definition.
• TAbs. By definition |= γ[X ← Y] ∈ Γ,X : K, so by induction hypothesis |=

A[γ[X ← Y]] ∈ K ′, so T (A[γ[X ← Y]]) implies T ((ΛX : K.A)[γ] ≡ ΛY :
K.A[γ[X ← Y]]).

Furthermore, if |= B ∈ K then |= γ[B/X] ∈ Γ,X : K by definition. We
have |= A[γ[B/X]] ∈ K ′ by induction hypothesis and T (A[γ[B/X]]) by defini-
tion. Then T ((ΛX : K.A)[γ]) by Lemma 4.3 and T (B) by Lemma 5.3, and (ΛX :
K.A)[γ](B)→w A[γ[B/X]], so T ((ΛX : K.A)[γ](B)) by Lemma 4.3 Case 11. There-
fore, |= (ΛX : K.A)[γ](B) ∈ K ′, and so |= (ΛX : K.A)[γ] ∈ K → K ′.
• Arrow. By induction hypothesis |= A[γ], B[γ] ∈ ⋆, so |= (A → B)[γ] ≡ A[γ] →

B[γ] ∈ ⋆ by Lemma 4.3 and definition.
• ∀. By induction hypothesis |= A[γ] ∈ K, and |= γ[X ← Y] ∈ Γ,X ≤ A : K implies
|= B[γ[X ← Y]] ∈ ⋆ by induction hypothesis, so T (A[γ]) and T (B[γ[X ← Y]])
by Lemma 5.3. Then T ((∀X ≤ A : K.B)[γ] ≡ ∀X ≤ A[γ] : K.B[γ[X←Y]]) by
Lemma 4.3, so |= (∀X ≤ A : K.B)[γ] ∈ ⋆ by definition.
• S-Refl. By induction hypothesis |= A ∈ K, so by Lemma 5.3 Case 4 |= A ≤ A ∈ K.

SUBTYPING À LA CHURCH 73

• S-Trans. By induction hypothesis and Lemma 5.3 Case 10.
• S-Top. By induction hypothesis and Lemma 5.3 Case 6.
• S-TApp. By induction hypothesis |= A[γ] ≤ C[γ] ∈ K → K ′ and |= B[γ] ≤

D[γ] ∈ K and |= D[γ] ≤ B[γ] ∈ K. Then B[γ] ↓n D[γ] by Lemma 5.3 Case 2 and
Anti-Symmetry, and by definition |= (A(B))[γ] ≡ (A[γ])(B[γ]) ≤ (C[γ])(B[γ]) ≡
(C(B))[γ] ∈ K ′. We also know |= C[γ] ∈ K → K ′ by Lemma 5.3 and |= D[γ] ∈
K, so |= (C(D))[γ] ≡ (C[γ])(D[γ]) ∈ K ′ by definition and SOK ′((C(D))[γ]) by
Lemma 5.3 Case 2. Therefore (C[γ])(B[γ]) ↓n (C[γ])(D[γ]) implies |= (A(B))[γ] ≤
(C(D))[γ] ∈ K ′ by Lemma 5.3 Case 9.
• S-Arrow. By induction hypothesis |= B1[γ] ≤ A1[γ] ∈ ⋆ and |= A2[γ] ≤ B2[γ] ∈

⋆. By Lemma 5.3 Case 2 and Lemma 4.3 Case 7 we have T ((A1 → A2)[γ]) and
T ((B1 → B2)[γ]), and so |= (A1 → A2)[γ], (B1 → B2)[γ] ∈ ⋆. Furthermore, by
Lemma 5.3 Case 2 ⊢A B1[γ] ≤ A1[γ] and ⊢A A2[γ] ≤ B2[γ], and so ⊢A (A1 →
A2)[γ] ≤ (B1 → B2)[γ] by AWS-Arrow, and |= (A1 → A2)[γ] ≤ (B1 → B2)[γ] ∈ ⋆
by definition.

Lemma 5.5. |= idΓ ∈ Γ.

Proof. By induction on Γ.

Corollary 5.6 (Termination). If Γ ⊢ A ≤ B : K then T (A) and SN(A), T (B) and SN(B),
and ⊢A A ≤ B.

Corollary 5.7 (Anti-Symmetry). If Γ ⊢ A ≤ B : K and Γ ⊢ B ≤ A : K then A ↓n B.

Corollary 5.8. If Γ ⊢ TK ≤ A : K then A ↓n TK .

6. Correctness

So far we have not needed any properties of the judgements Γ ⊢ J . We now develop
some metatheory for those judgements and use the results to prove the correctness of the
algorithm.

Lemma 6.1 (Context). (1) If Γ ⊢ J then FV(J) ⊆ dom(Γ).
(2) If X ≤ A : K ∈ Γ and Γ ⊢ ok then X 6∈ FV(A).
(3) If Γ ⊢ J then Γ ⊢ ok as a sub-derivation.
(4) If Γ,Γ′ ⊢ ok then Γ ⊢ ok.

Definition 6.2 (Renaming). γ is a renaming for Γ in ∆ if ∆ ⊢ ok, γ is a renaming, and
γ(X) ≤ A[γ] : K ∈ Γ for each X ≤ A : K ∈ Γ.

Lemma 6.3 (Renaming). If Γ ⊢ J and γ is a renaming for Γ in ∆ then ∆ ⊢ J [γ].

Lemma 6.4. If Γ,Γ′ ⊢ ok, Γ ⊢ A : K and X 6∈ dom(Γ,Γ′) then Γ,X ≤ A : K,Γ′ ⊢ ok.

Proposition 6.5 (Thinning). If Γ,Γ′ ⊢ J , Γ ⊢ A : K and X 6∈ dom(Γ,Γ′) then Γ,X ≤ A :
K,Γ′ ⊢ J .

Proof. By Lemmas 6.1 and 6.4 Γ,X ≤ A : K,Γ′ ⊢ ok. Observe that idΓ is a renaming for
Γ,Γ′ in Γ,X ≤ A : K,Γ′. Then Γ,X ≤ A : K,Γ′ ⊢ J by Renaming.

74 ADRIANA COMPAGNONI AND HEALFDENE GOGUEN

Proposition 6.6 (Substitution). If Γ,X : K,Γ′ ⊢ J and Γ ⊢ A : K then Γ,Γ′[A/X] ⊢
J [A/X].

Lemma 6.7 (Subject Reduction). If Γ ⊢ A : K and A � B then Γ ⊢ A = B : K.

Proof. By induction on derivations.

Proposition 6.8 (Correctness). The algorithm is correct for the kinding judgement:

• If Γ ⊢ ok and Γ ⊢A A : K then Γ ⊢ A : K.
• If Γ ⊢ A,B : K and ⊢A A ≤W B then Γ ⊢ A ≤ B : K.
• If Γ ⊢ A,B : K and ⊢A A ≤ B then Γ ⊢ A ≤ B : K.

Proof. By induction on derivations, using Context and Renaming in AT-TVar; the genera-
tion property and Subject Reduction for AWS-TVar; the generation property for AWS-Top

and AWS-Promote; Subject Reduction and Context Replacement in AWS-All, and Sub-
ject Reduction for AS-Inc.

Corollary 6.9 (Decidability of Subtyping). Subtyping is decidable.

Proof. Suppose Γ ⊢ A,B : K. By Corollary 5.6 T (A) and T (B), and so ⊢A A ≤ B is
decidable by Proposition 4.13, and so by Correctness, Γ ⊢ A ≤ B : K is also decidable.

7. Related and Future Work

In an earlier paper [CG03], we considered an algorithm that reduces types to normal
form before invoking the promotion rule in the algorithm. This makes context replacement
trivial for equal types, since they have the same normal form and so altering the context
does not alter the path of types considered by the algorithm. However, this algorithm is
not optimal, since it normalizes the head earlier than necessary.

That earlier paper also used a typed operational semantics to show termination of the
algorithm. This gave a more extensive treatment of the metatheory, and the admissibility
of thinning, substitution and context replacement were consequences of the model. Further-
more, Subject Reduction was straightforward in the typed operational semantics. In the
current paper, finding the exact formulation necessary to show these results in the declar-
ative system Γ ⊢ J turned out to be somewhat subtle, since the kinding judgement uses
the subtyping judgement for the bounded variable rule. However, the approach using typed
operational semantics was also longer and less approachable, and involved Kripke models
for the proof of completeness. We hope that the current paper is clearer by not defining an
intermediate system.

In separate work [CG06], we also proved anti-symmetry of higher-order subtyping using
the typed operational semantics. The basic idea of that paper was to include the sub-
derivation of replacing the variable in a bounded head variable expression XA(B1, ..., Bn)
with its bound, A(B1, ..., Bn). This idea is captured in the current paper by the T (−)
predicate. The T (−) predicate is also similar to Compagnoni’s approach with +-reduction
[Com95], but we do not need to develop the metatheory of a new reduction relation.

As mentioned in the introduction, Stone and Harper [SH06] use a logical relation defined
over sets of contexts, instead of the standard logical relations over single contexts, to show
termination of an algorithm for a type theory with singleton types, Σ and Π types, and
all of the η rules. Their work does not normalize the singleton types. This is an elegant

SUBTYPING À LA CHURCH 75

solution to the problem of varying contexts, but it raises the question of why singletons or
Fω
≤ should have different requirements on the Kripke-style relation than other type systems.

There are several directions for future work. We intend to relate the system to the
traditional system without explicit bounds on type variables. We would also like to show
that a Harper-Pfenning-style algorithm [HP05] is correct and complete for the type system.
Finally, it would be nice to be able to prove context conversion and Church–Rosser in the
model, as can be done for logical relations for equality, rather than proving them for the
algorithm and lifting to the model. However, properties that follow straightforwardly for
equality, such as that |= A = B ∈ K implies |= A = A ∈ K, cannot be shown so easily for
subtyping.

8. Conclusions

We have introduced a simple but powerful extension of the syntax of Fω
≤ and showed

that the development of the metatheory is similar to the standard metatheory for type
theories, specifically without a Kripke-style model and with a simple inductive definition
capturing termination of the algorithm. We have shown all of the important results for the
system, including anti-symmetry, transitivity elimination and decidability of subtyping.

Acknowledgments

We thank the organizers of Henk Barendregt’s Festschrift for inviting Adriana to submit
an article.

References

[Bar92] Henk Barendregt. Lambda calculi with types. In Handbook of Logic in Computer
Science, Volumes 1 (Background: Mathematical Structures) and 2 (Background:
Computational Structures), Abramsky & Gabbay & Maibaum (Eds.), Clarendon,
volume 2. Oxford University Press, 1992.

[BB95] Franco Barbanera and Stefano Berardi. A strong normalization result for classical
logic. Annals of Pure and Applied Logic, 76(2):99–116, 1995.

[Car90] Luca Cardelli. Notes about Fω
<:. Unpublished manuscript, October 1990.

[CG97] Adriana Compagnoni and Healfdene Goguen. Decidability of higher-order subtyp-
ing via logical relations, December 1997. A later version is published as [CG03].

[CG03] Adriana Compagnoni and Healfdene Goguen. Typed operational semantics for
higher-order subtyping. Information and Computation, 184(2):242–297, August
2003.

[CG06] Adriana Compagnoni and Healfdene Goguen. Anti-symmetry of higher-order sub-
typing. Mathematical Structures in Computer Science, 16(1):41–65, February
2006.

[CL91] Luca Cardelli and Giuseppe Longo. A semantic basis for Quest. Journal of Func-
tional Programming, 1(4):417–458, October 1991.

[Com95] Adriana Compagnoni. Higher-Order Subtyping with Intersection Types. PhD the-
sis, University of Nijmegen, 1995.

76 ADRIANA COMPAGNONI AND HEALFDENE GOGUEN

[Gog05] Healfdene Goguen. A syntactic approach to eta equality in type theory. In ACM
SIGPLAN/SIGACT Symposium on Principles of Programming Languages, pages
75–84, January 2005.

[HP05] Robert Harper and Frank Pfenning. On equivalence and canonical forms in the
LF type theory. ACM Trans. Comput. Logic, 6(1):61–101, 2005.

[Mit90] John C. Mitchell. Toward a typed foundation for method specialization and inher-
itance. In Proceedings of the 17th ACM Symposium on Principles of Programming
Languages, pages 109–124, January 1990.

[SH06] Christopher A. Stone and Robert Harper. Extensional equivalence and singleton
types. ACM Trans. Comput. Log., 7(4):676–722, 2006.

[Str91] Thomas Streicher. Semantics of Type Theory: Correctness, Completeness and
Independence Results. Birkhäuser, 1991.

