BARENDREGT’S LEMMA

ROEL DE VRIJER

Vrije Universiteit Amsterdam

ABSTRACT. Barendregt’s Lemma in its original form is a statement on Combinatory Logic
that holds also for the lambda calculus and gives important insight into the syntactic
interplay between substitution and reduction. Its origin lies in undefinablity proofs, but
there are other applications as well. It is connected to the so-called Square Brackets
Lemma, introduced by van Daalen in proofs of strong normalization of typed lambda
calculi and of the Hyland—Wadsworth labelled lambda calculus. In the generalization of
the latter result to higher-order rewriting systems, finite family developments, van Oostrom
introduced the property “Invert”, which is also related.

In this short note we state the lemma, try to put it in perspective, and discuss the
mentioned connections. We also present a yet unpublished alternative proof of SN of the
Hyland—Wadsworth labelled lambda calculus, using a computability argument.

Dedicated to Henk Barendregt, in celebration of his 60th anniversary

INTRODUCTION

There is a nice little story to be told about a beautiful lemma that Henk conjectured,
that has interesting applications and inspired a line of further discovery, but that never
got properly published and is probably known by just a few insiders. Although the lemma
appears in some form in Henk’s book on the lambda calculus, it is not traced back there to
its source.

At the end of [Bar72], a handwritten note of Henk on the undefinability of Church’s §
in CL, he scribbled as an afterthought an interesting theorem. The ink shows that it was
added at a later moment, after the rest of the paper had been completed. We quote:

Theorem 12. I[f CL+ FM — N, then there are subterm occurrences A;
of N such that CL = Fx — N’ where N’ is the result of substituting xN;
for the subterm occurrence A; and such that CL & [x/M]N" — N.

Proof. Same method as the proof of 9.]

2000 ACM Subject Classification: F.4.1 [Mathematical logic and formal languages|: Lambda calculus and
related systems.

Key words and phrases: combinatory logic, strong normalization, computability, surjective pairing,
Hyland-Wadsworth, Church’s delta.

REFLECTIONS ON TYPE THEORY, Essays Dedicated to Henk Barendregt Copyright © 2007 by
A-CALCULUS, AND THE MIND on the Occasion of his 60th Birthday Roel de Vrijer

275

276 ROEL DE VRIJER

It is a statement that needs careful reading in order to grasp it. Jokingly, and with
some exaggeration, we would sometimes refer to it as that lemma that is almost as difficult
to formulate as it is to prove. As to the quoted proof, “Same method as the proof of 9”7 says
so much as: by the method used earlier in the paper, which used a variant of underlining.

I am not sure, but I think the note dates from 1972. A few years later, I was working
in Eindhoven at that time, I studied the note and I was also looking for a project assigment
for a student, S. de Boer. I then asked him to transfer the results of the note from the
original setting of CL to the lambda calculus and to complete the proof of the conjectured
result at the end of the note. This resulted in the report [dB75].

In the same period Diederik van Daalen, who was also in Eindhoven, working on the
theory of the type systems used in the Automath project, found a new and original method
to give proofs of strong normalization (SN). A crucial lemma in that method was the so-
called Square Brackets Lemma. Diederik already had a proof for that lemma, but it turned
out that Barendregt’s Lemma, which was the name we had adopted for Henk’s conjecture,
could also be used to give a quick proof of the SqBL. This inspired Diederik to look into the
proof of BL, which was still quite involved and used an ad hoc method of underlining. He
found an elegant proof of what is actually a slightly stronger variant of BL, which he called
the Reduction-under-Substitution Lemma. We will refer to it as the substitution variant of
Barendregt’s Lemma, but there would be good reasons to just call it van Daalen’s Lemma.

In 1975, at a lambda calculus workshop that Roger Hindley had organized in Swansea
and that Diederik, Henk and I attended, J.-J. Lévy told us that he needed SN for the
Hyland-Wadsworth labelled lambda calculus (HW), but had trouble finding a proof. Diederik
and I immediately tried and both of us came up with a proof, Diederik using his new method
and I using a computability argument. Diederik’s proof was adopted by J.-J. in his paper
[Lév75] and later it also found its way into Henk’s book [Bar84]. Henk gives two proofs
of the SqBL there, one direct, based on the original proof of Diederik, the other one us-
ing Diederik’s substitution variant of BL, which ended up as Exercise 15.4.8 in the book.
Both J.-J. and Henk also mention my alternative proof of SN for HW, and sometimes I
get questions about it, as it was never published, except as a “Stelling” accompanying my
PhD-thesis [dV87].

The origin of Barendregt’s Lemma lies in undefinability. In accordance, in [Bar74]
Exercise 15.4.8 is also employed as one of two methods to obtain the undefinability of
Church’s §, the other method using a Béhm-out technique. However, in the book there is
no direct reference to BL, neither to the proof method, with underlining, that was used in
the unpublished [Bar72]. In my thesis [dV87] I used Barendregt’s Lemma for a quick proof
of the undefinability of surjective pairing in the lambda calculus, which is one of the early
results of Henk in [Bar74].

Van Oostrom [vO97] generalizes SN for HW to higher order rewriting sytems and calls
the result Finite Family Developments, stressing the obvious relation with the Finite De-
velopments Theorem. His proof method is a generalization of van Daalen’s method and a
key lemma, “Invert”, is directly related to BL and the SqBL (only SqBL is mentioned).

In sum, Barendregt’s Lemma has many traces, but there are not many visible tracks
left of BL in the literature: two Ph.D.-theses mention it, [vD80]' and [dV87] and there is
the report [dB75]. Barendregt’s Lemma influenced several parts of Henk’s book, but no
direct mention is made of it. This seems a good opportunity to put Barendregt’s Lemma
on the record.

1Large parts of Daalen’s thesis, including the treatment of BL, have been reproduced in [NGV94].

BARENDREGT’S LEMMA 277

Outline. We start out by presenting BL and connecting it to van Daalen’s substitution
variant. In subsequent sections we pay attention to the use of BL in proofs of undefinability
and to the use in proofs of strong normalization, via the SqBL. We show the undefin-
ability of surjective pairing in the lambda calculus and we briefly present the SN proof
for Hyland—Wadsworth labelled lambda calculus. The final section contains the above-
mentioned alternative proof of SN for HW, using a computability argument.

Preliminaries. We are concerned with Combinatory Logic and the pure lambda calculus
and we assume familiarity with these systems. We adopt the notations and conventions of
the standard text [Bar84|, which we will sometimes refer to as “Henk’s book”, or shorter
“the book”.

1. BARENDREGT’S LEMMA

Look once again at Theorem 12 above, the original form of Barendregt’s Lemma. We will
give a rendering of BL that, in several aspects, is somewhat more explicit. We start with
brief comments upon each of these aspects separately.

First, the prefix that remains invariant in passing from N’ to N can be specified as
a multi-hole context C' (with 0 or more holes!) So we have N = C[Ay,...,A,] and N’ =
C[m]_fl, ... ,:C]_fn], with n > 0.

Secondly, the notation 2N; should be elucidated. If we for the moment define an -
vector as a term of the form 2P, ... P, (k > 0), then what is meant is that each 2Nj is an
z-vector, that is, a term :v]\ﬁ =aN;1...Niy,.

Thirdly, we can be more specific about the reduction N'[z := M] — N. It takes place
below the prefix C, so it can be divided into reductions (zN;)[z := M] — A;. Making this
explicit rules out syntactic accidents.

Lastly, as BL has been established for both CL and for the lambda calculus, in our new
rendering we leave out the explicit reference to CL.

Lemma 1.1 (Barendregt’s Lemma). Let FM — N and let x be a variable not occurring
win F.

Then there are a term N', an n-hole context C' (with n > 0), z-vectors By,..., By,
and terms Ai,...,An, such that Fxt — N' = C[By,...,B,], N = C[Ay,...,A,] and

Heuristics. Barendregt’s Lemma can be understood as providing an answer to the ques-
tion:
If FM — N, then what can we say about the contribution of the argument
M to the result N?
Answer: N can be decomposed in two parts.
(1) A prefix C of N that is independent of M.
(2) Subterm occurrences A;, immediately below C', that depend on M in an essential
way, namely as reducts of x-vectors in which M has been substituted for x.

278 ROEL DE VRIJER

The substitution variant. Barendregt’s Lemma can be cast in a different way, in terms of
substitution instead of function application. This is the form that originates with Diederik
van Daalen [vD80] and that found its way into Henk’s book, as Exercise 15.4.8. It is slightly
stronger than BL: and easier to prove.

Lemma 1.2 (van Daalen). Let L{x := M| — N. Then there are a term N’, an n-hole
context C' (with n > 0), x-vectors By,...,B, and terms Ay,..., Ay, such that L — N' =
C[Bi,...,By], N=C[A1,...,Ay] and Bilx := M] — A; (1 <i<n). U]

For the proof we refer to Exercise 15.4.8 in [Bar84]. Here we only point out that Lemma 1.1
immediately follows from Lemma 1.2 by taking F'z for L.

2. UNDEFINABILITY OF CHURCH’S §

The manuscript [Bar72] is about the undefinability in CL of Church’s discriminator §,
satisfying the conversion equations:

oMM =T if M is a closed normal form
OMM' =F if M, M’ are closed normal forms and M # M’

This result is obtained there as a corollary of the undefinability of an operator F' that
discriminates 0 from the other numerals, with the encoding 0 = I, n + 1 = Kn. In [Bar72]
the undefinability of F' is proved using an underlining technique.

Exercise 15.4.9 in the book uses van Daalen’s substitution variant of Barendregt’s
Lemma (Exercise 15.4.8) for showing that F', called there the signum function sg, is not
definable in the lambda calculus. In the lambda calculus we prefer the equivalent encoding
0 = \z.xz, n+ 1 = Az.n, by which the numerals remain distinct normal forms. We prove
the undefinability of F' directly from BL.

First note that with the given numeral encoding we have

(n4+m)P,... P, > m ()

Theorem 2.1. There is no lambda term F such that FO =0 and F(n+ 1) =1 for all n.

Proof. Suppose such an F' exists. Then by CR we have F'O — 0 = \y.y, since A\y.y is a
normal form. Apply BL to this reduction. There are three possibilities for N’, it is either
0 itself, or A\y.B or B, with B an z-vector zP; ... Pj.

Case 1. N/ =0. Then Fz — 0 and by substitutivity of reduction also F'1 — 0. Since also
F1 — 1 this contradicts CR.

Case 2. N' = \y.xP; ... P,. We have Fzz — N’ and substituting the numeral k + 1 for x
throughout this reduction we get
Fk+1)— AyaP...P)z:=k+1]=\y.(k+1)P ... P,

By (*) we have (k+1)P]... P, — 1 and hence F(k +1) — Ay.1 = 2. Since we also have
F(k + 1) — 1, this contradicts CR.

BARENDREGT’S LEMMA 279

Case 3. N' = xP; ... P,. Now substituting k + 2 for x we get by similar reasoning as in the
previous case

F(k+2) —» (k+2)P1/...P]2 —» 2
Since we also have F'(k + 2) — 1, this again contradicts CR. U]

An alternative proof of Theorem 2.1 is given in the book in Section 20.3, where the
undefinability of F' is proved using the Bohm-out technique.
Recall that in the lambda calculus we have T = K = Azy.z and F = Azy.y.

Corollary 2.2. Church’s § is not definable in the lambda calculus.

Proof. If we would have such a term §, then defining F' = A\z.0x001 would yield an F' that
contradicts Theorem 2.1.]

3. UNDEFINABILITY OF SURJECTIVE PAIRING

A surjective pairing would consist of a triple of lambda terms D, Dy, Dy, such that for
arbitrary M, N we have:

Dy(DMN) = M
Dy(DMN) = N
D(Dy1M)(DyM) = M

The undefinability of surjective pairing in the lambda calculus is the central result of [Bar74].
The proof is by underlining. Here we present the short proof from [dV87] using BL.

We use the fact that the term Q = (Az.zz)A\zx.zx has order 0, that is, if QM; ... M, —
N, then N = QMj ... M}, and M; — M]. See [Bar84], 17.3.2-3.

Theorem 3.1. In the lambda calculus a surjective pairing does not exist.

Proof. Assume there were D, D1, Dy satisfying the equations for surjective pairing. Define
F = Ax.D(D19Q)(Dax). Then FQ = D(D;Q)(D2Q) = and hence by the Church-Rosser
Theorem the terms F) and €2 have a common reduct, which can only be Q itself. So
FQ — Q and BL can be applied to yield an N’ with the ascribed properties (taking
M = N = Q). Because €2 has order 0 one easily verifies that there are but two possibilities
for N/, namely either N’ = Q or N’ = 2. We investigate both cases.

Case 1. N' = Q. Then Fz — Q and so Fxz = Q and by substitutivity of conversion F'M =
for an arbitrary term M. So for any M we have DoM = Dy(D(D1Q)(D2M)) = Do(FM) =
D5 and hence for arbitrary N we have N = Dy(DNN) = D5). Tt follows that all terms
are equal, contradicting consistency of the lambda calculus.

Case 2. N/ = z. Then Fx — z and so Fx = x and we have FM = M for an arbitrary
term M. Hence D1M = D1 (FM) = D1(D(D1Q)(D2M)) = D12 for any M. From this a
contradiction is derived in the same way as in Case 1. []

280 ROEL DE VRIJER

4. THE SQUARE BRACKETS LEMMA

The interest of van Diederik van Daalen in the substitution variant of BL, his Reduction-
under-Substitution Lemma, was because of the Square Brackets Lemma, which he used in
his new proof of strong normalization.

Lemma 4.1 (Square Brackets Lemma, [vD80]). Let Ljx := M] — A\y.P. Then we have
one of the following two cases.

(1) L — M\y.P’ for a P' such that P'lx := M] — P

(2) L — 2@ and (#Q)[z := M] — \y.P

Proof. The prefix C' found by Lemma 1.2 can either be of the form A\y.C’ or it must be the
empty context. If C'= Ay.C’ then N’ = \y.P’ for some P’ and we are in Case 1. If C' =[]
then N’ is an z-vector and we are in Case 2. []

Why “square brackets”? The lemma analyses the contribution of the substitution to an
abstraction term. In the notation of Automath square brackets were used to denote lambda
abstraction.

It is noted in [vD80] that the lemma can be generalized to situations where the outer
shape of the reduct is not an abstraction. In [vO97] a similar lemma is stated for arbitrary
patterns, the generalization is called there “Invert”. Contribution to a pattern is formalized
in [vO97] via labels in the style of Hyland—-Wadsworth, see the next section.

5. SN oF HYLAND—WADSWORTH LABELLED LAMBDA CALCULUS

We will briefly sketch van Daalen’s SN-method in the setting of Hyland—Wadsworth labelled
lambda calculus (HW). The method has been applied to this system in [Lév75, Lév78] and a
similar proof can be found in Section 14.1 of Henk’s book. Although the proof was originally
pointed out by van Daalen, there is no written score of him available.?

We just give a short introduction to HW. For more technical details we refer to [Bar84],
Section 14.1. The terms of HW are lambda terms of which subterms carry natural numbers
as labels. Actually, we require any subterm to be labelled.® Labels behave as unary function
symbols in the sense that reduction is supposed to be compatible with labelling: M —
N = M! — N!'. Multiple labels like in (M")*, also written M"* are allowed, but there
is a reduction rule label by which they can be contracted.

The only other reduction rule of HW is the g-rule. It is restricted to redexes where the
A-abstraction has a (single) positive label and involves a label decrease. We specify the two
reduction rules.

label : (MYF — ppmindk)
beta. : (e MFIN - (Mfzi= NH)F

2Diederik communicated the proof for HW to J.-J. Lévy, as acknowledged in [Lév75]. However, although
the reference in [Bar84] (and later also in [vO97]) suggests that the proof for HW can be found in [vD80],
the proof method is in fact applied there to a class of typed lambda calculi which does not include HW.

3This requirement is not made in [Bar84], but it makes life much easier, without affecting the applicability
of HW. Moreover, SN can easily be seen to carry over from HW with to HW without the requirement.

BARENDREGT’S LEMMA 281

The label k + 1 of the A-abstraction is called the degree of the redex. So the degree of the
contracted redex in the following example is 4.

(()\a:.(:c4y6)2)4z5)7—>((z5’3’4y6)2’3’7—»(z3y6)2

We note that in [Lév75, Lév78] a f-reduction step induces a label increase, just the
opposite of the -rule we just defined. SN is then proved for bounded reduction, i.e. reduc-
tion with contraction of only redexes with degree smaller than some fixed natural number
N. The decreasing variant is the original one of Hyland and Wadsworth [Hyl76], [Wad76],
who used it as a syntactic tool to analyze Scott’s Ds,-models, and also the one that one
finds in [Bar84|. Increasing labels are natural if they are used to trace the creation history
of redexes. From the perspective of SN it is more convenient to have decreasing labels.

SN of HW will be proved by induction on the length of labelled terms, which is straight-
forward if we know that SN is preserved under substitution with SN terms. Note that label
reduction (only the rule beta) is itself SN and moreover that SN is preserved under adding
labels: one easily verifies that if M is SN, then so is M™ (cf. Lemma 6.2(4)).

So proving the following lemma is the hard part. In our presentation we highlight the
application of the SqBL, which is only natural anyhow, as it forms the heart of the proof.

Lemma 5.1. If M, N are both SN, then so is M[x := N]

Proof. The proof is by induction on the triple (I[(N),d(M),||M]|), where [takes the label,
d the depth of the reduction tree, and || || the length of a term.

Distinguishing cases according to the form of M, the critical case is when M = (M Ms)™
and Mj[z := N] reduces to an abstraction (Ay.P)**!. SN has then to be established for
(Ply := Q*))*, given that My[x := N] — Q. Apply the SqBL to the reduction M|z :=
N] — (\y.P)F+1,

Case 1. My — (Ay.P")**! and P'[z := N] — P. Then the substitution can be postponed:
M — (\y.PY*My — (P'ly := (M2)*])* = M’ and M'[z := N] — (Ply := Q*])¥. The
induction hypothesis can be used on M’ since it has smaller d.

Case 2. M; — xP and (zP)[z := N] — (Ay.P)**! We know that Q is SN because it is a
reduct of Ms[z := N] and the induction hypothesis can be used on My, similarly P is SN.
Now an analysis of the labels learns that & must be smaller than I(/V), and hence SN of
(P[y := Q*])¥ follows by the induction hypothesis due to a decrease in the first component.

[

Theorem 5.2. FEvery term M is strongly normalizable.

Proof. Easy induction on ||[M || using Lemma 5.1 for the case M = (M;Ms)"™. U]

Van Daalen’s proof of SN for HW has been generalized to prove Finite Family Developments
in the setting of higher-order pattern rewriting in [vO97].

282 ROEL DE VRIJER

6. A COMPUTABILITY PROOF OF SN FOR HW

The proof using a computability argument is referred to in [Lév75] and [Bar84| and it is
indicated in [dV87] Stelling 1, but details have never been published. Here we will present
the proof.

For technical reasons we add one extra rule to HW.

decrease: MP — M? ifg<p

Note that conversely we have that if M — N, then {(N) < I(M). Of course, if we prove
SN for HW with the extra rule, this immediately transfers to HW without it.

Definition 6.1. Define by induction on I(M) that M is computable if the following two
conditions are satisfied.

(1) M is SN.

(2) If M — (Az.Mp)**! and N* is computable, then also (Mp[z := N¥])¥ is computable.

Lemma 6.2.

(1) Computability is closed under reduction.

(2) If M is not of the form (Ax.My)**1, and all M' such that M — M’ are computable,
then M 1is computable.

(3) Labelled variables x™ are computable.

(4) If M is computable, then so is M™.

(5) If M, N are computable, then so is (MN)™.

Proof. (1) and (2) are immediate by the definition of computability, and then (3) follows
by induction on n, using (2).

(4) Strong normalization of M is preserved under adding a label since reduction of the
labels at the outside of M using the rules label and decrease is SN and, moreover,
commutes stepwise with other reduction steps. Further observe that if M™ reduces
to (Az.Mp)* 1, then so does M. Here the rule decrease may be needed.

(5) Assume M, N are computable. We prove computability of (M N)" by induction on
d(M) + d(N) +n. By (2) it is sufficient to prove computability for an arbitrary P
such that (M N)™ — P. Distinguish three cases.

Case 1. The reduction to P is internal, that is, P = (M'N’)" and either M — M’
and N =N’ or M = M’ and N — N’. Apply the induction hypothesis.

Case 2. The reduction to P is an outer label decrease, that is, P = (MN)' with
I < n. Apply the induction hypothesis.

Case 3. M = (\z.My)*! and P = (My[z := N¥])¥". By (4) also N¥ is computable,
so computability of (Mo[z := N*])* is assured by the second clause of Definition 6.1.
Then computability of P follows by again (4).]

BARENDREGT’S LEMMA 283

Definition 6.3. M is computable under substitution if M[Z := N] is computable for all
substitutions with computable terms Ny, ... N,.

Theorem 6.4. Fvery term M is computable under substitution.

Proof. Induction on ||[M||. The only case that is not immediate by the induction hypothesis
and the previous lemma is that M is an abstraction term M = (Az.M’)". We check (1)
and (2) of Definition 6.1 to prove computability of M[Z := N]. (We may assume that
x ¢ FV(N).)
(1) M[Z := N] is SN since the induction hypothesis for M’ implies that M'[Z := N] is
SN.
(2) Suppose M[Z := N] — (Az.My)**! and N* is computable. We have M'[Z :=
N] — My and hence also M'[Z,z := N,N¥| — My[z := N¥]. We must check
computability of (Mo[z := N¥])*.
As N , N are computable by assumption, the induction hypothesis for M’ yields
that M'[Z,z := N,Nk] is also computable, and hence also Mgz := N¥|, by
Lemma 6.2(1). For the last k apply Lemma 6.2(4). O

Corollary 6.5. Hyland—Wadsworth-labelled lambda calculus is strongly normalizing.
Proof. Immediate from Theorem 6.4 []

7. CONCLUDING REMARKS

We mention two more proofs of SN for HW-labelled §-reduction. First there is the proof in
the Ph.D.-thesis of J.W. Klop [Klo80]. It uses the method of passing from WN to SN via
an interpretation in A\I-calculus, where there is no erasure and WN and SN are equivalent.
Yet another proof is by J. Terlouw [Ter98|.

In the setting of first-order term rewriting systems [Mar92] gives a strong-normalization
proof using recursive path orders (RPO). As already mentioned [vO97] has a proof in the
quite general setting of higher-order rewriting (PRSs).

On intuitive grounds it seems plausible that there is an “inverse” correspondence of
Barendregt’s Lemma with the notions of tracing and origin tracking, and especially with the
prefix property, see [BKAV00]. This relation was already indicated in [BKdV00] and, with
the SqBL in the place of BL, also in [vO97] and [Ter03], Section 8.6. It would be interesting
to investigate this correspondence in more detail and to compare the techniques of dynamic
labelling used in tracing and origin tracking with the special underlining techniques that
were employed in [Bar72] and [Bar74].

ACKNOWLEDGEMENTS

I would like to thank Henk Barendregt for introducing me to the lambda calculus and Jan
Willem Klop, Vincent van Oostrom and Femke van Raamsdonk for stimulating conversa-
tions on the subject matter of this paper and helpful comments.

284

[Bar72]
[Bar74]

[Bars4]
[BKAVO00]
[dB75]
[dV87]
[Hyl76]
[K1o80]

[LévTs)

[LévTs]

[Mar92]
INGV94]

[Ter98]

[Ter03]
[vD80]

[vO97]

[Wad76]

ROEL DE VRIJER

REFERENCES

H.P. Barendregt. Non-definability of 6. Handwritten manuscript, unpublished, 1972.

H.P. Barendregt. Pairing without conventional restraints. Zeitschrift fir mathematische Logik
und Grundlagen der Mathematik, 20:289-306, 1974.

H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in Logic
and the Foundations of Mathematics. North-Holland, Amsterdam, 2nd revised edition, 1984.

I. Bethke, J.W. Klop, and R. de Vrijer. Descendants and origins in term rewriting. Information
and Computation, 159:59-124, 2000.

S. de Boer. De ondefinieerbaarheid van Church’s -funktie in de A-calculus en Barendregts lemma.
Stageverslag, unpublished, 1975.

R.C. de Vrijer. Surjective Pairing and Strong Normalization: Two Themes in Lambda Calculus.
PhD thesis, Universiteit van Amsterdam, January 1987.

J.M.E. Hyland. A syntactic characterization of the equality in some models of the A-calculus. J.
London Math. Soc. (2), 12:361-370, 1976.

J.W. Klop. Combinatory Reduction Systems, volume 127 of Mathematical Centre Tracts. Mathe-
matisch Centrum, Amsterdam, 1980.

J.-J. Lévy. An algebraic interpretation of the AGK-calculus and a labelled A-calculus. In C. B6hm,
editor, A-calculus and Computer Science Theory, Proceedings of the Symposium held in Rome,
volume 37 of Lecture Notes in Computer Science, pages 147-165. Springer-Verlag, 1975.

J.-J. Lévy. Réductions correctes et optimales dans le A-calcul. These de doctorat d’état, Université
Paris VII, 1978.

L. Maranget. La stratégie paresseuse. These de doctorat, Université Paris VII, 6 juilliet 1992.
R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer. Selected Papers on Automath, volume 133 of
Studies in Logic and the Foundations of Mathematics. North-Holland, 1994.

J. Terlouw. A proof of strong normalization for generalized labelled -reduction by means of the
successor relation method. Unpublished, 1998.

Terese. Term Rewriting Systems. Cambridge University Press, 2003.

D.T. van Daalen. The Language Theory of Automath. PhD thesis, Technische Universiteit Eind-
hoven, 1980.

V. van Oostrom. Finite family developments. In H. Comon, editor, Proceedings of the FEighth
International Conference on Rewriting Techniques and Applications (RTA ’97), volume 1232 of
Lecture Notes in Computer Science, pages 308-322. Springer-Verlag, June 1997.

C.P. Wadsworth. The relation between computational and denotational properties for Scott’s
Doo-models of the A-calculus. STAM Journal of Computing, 5:488-521, 1976.

