
TERMS FOR NATURAL DEDUCTION, SEQUENT CALCULUS AND

CUT ELIMINATION IN CLASSICAL LOGIC

SILVIA GHILEZAN

Faculty of Engineering, University of Novi Sad, Novi Sad, Serbia
e-mail address: gsilvia@uns.ns.ac.yu

Abstract. This paper revisits the results of Barendregt and Ghilezan [3] and generalizes
them for classical logic. Instead of λ-calculus, we use here λµ-calculus as the basic term cal-
culus. We consider two extensionally equivalent type assignment systems for λµ-calculus,
one corresponding to classical natural deduction, and the other to classical sequent cal-
culus. Their relations and normalisation properties are investigated. As a consequence a
short proof of Cut elimination theorem is obtained.

Introduction

The Curry-Howard correspondence provides a fundamental connection between logic
and computation. Under the traditional Curry-Howard correspondence formulae provable
in intuitionistic logic coincide with types inhabited in simply typed λ-calculus. This was
observed already by Curry, first formulated by Howard [12], used intensively by de Brujin
in the Authomath project and by Lambek in category theory. Parigot [14] extended this
correspondence to classical logic based on natural deduction and λµ-calculus. Griffin [9]
embodied a Curry-Howard correspondence for classical logic, by observing that classical
tautologies provide typings for certain control operators. This initiated an active line of
research both in natural deduction and sequent calculus formulations of classical logic. For
an overview see Sorensen and Urzyczyn [17].

The λµv-calculus, a call-by-value variant of λµ, was proposed by Ong and Stewart [13].
The Symmetric lambda calculus of Barbanera and Berardi [2] is a calculus designed with the
goal of extracting constructive content from classical proofs (Peano arithmetic). Curien and
Herbelin [4] defined the system λµµ̃, which represents derivations in classical logic based on
sequent calculus and reductions reflect cut-elimination. Cut-elimination in classical logic
is known to be non-confluent, correspondingly λµµ̃-calculus is not confluent. However,
restrictions to call-by-name or call-by-value discipline provide confluence. Urban and Bier-
man [18, 19] designed a calculus whose derivations correspond exactly to cut elimination.
Wadler’s Dual calculus, [20, 21], is a system closely related to λµµ̃.

2000 ACM Subject Classification: F.4.1 [Mathematical logic]: Computational logic, Lambda calculus and
related systems, Proof theory.

Key words and phrases: classical logic, natural deduction, sequent calculus, normalisation, cut
elimination.

REFLECTIONS ON TYPE THEORY,
λ-CALCULUS, AND THE MIND

Essays Dedicated to Henk Barendregt
on the Occasion of his 60th Birthday

Copyright c© 2007 by
Silvia Ghilezan

115

116 SILVIA GHILEZAN

This paper revisits the results of Barendregt and Ghilezan [3] and generalizes them to
classical logic, as suggested in the conclusion. We use here λµ-calculus as the basic term
calculus instead of λ calculus. We consider two extensionally equivalent type assignment
systems for λµ-calculus, one corresponding to classical natural deduction (λµN), and the
other to classical sequent calculus (λµL). Moreover, a cut-free variant of λµL is introduced
(λµLcf). The relations between these three systems and their normalisation properties are
investigated. As a consequence a short proof of Cut elimination theorem for classical logic
(Hauptsatz) is obtained.

The paper is organised as follows. Section 1 gives an overview of three classical logical
systems. In Section 2 the corresponding three term calculi are considered. Their relations
are investigated in Section 3. Final remarks and some future work are discussed in Section 4.

1. The systems of classical logic NK, LK, LKcf

We consider the natural deduction and sequent calculus formulation of the implicational
fragment of classical logic. For further reading in this field we refer the reader to Prawitz[16],
Ariola and Herbelin [1] and to the original work of Gentzen [8].

Definition 1.1. The set form of formulae (of minimal implicational propositional logic) is
defined by the following abstract syntax.

form = atom | form → form

atom = p | atom′

We write p, q, r, . . . for arbitrary atoms and A,B,C, . . . for arbitrary formulae. Sets of
formulae are denoted by Γ,∆, The set Γ, A stands for Γ ∪ {A} and Γ\A stands for
Γ\{A}.

Definition 1.2. A statement A is derivable from the set Γ in the system NK, notation
Γ ⊢NK A, if Γ ⊢ A can be generated by the axiom and rules given in Figure 1.

(axiom)
Γ, A ⊢ A,∆

Γ ⊢ A → B,∆ Γ ⊢ A,∆
(→ elim)

Γ ⊢ B,∆

Γ, A ⊢ B,∆
(→ intro)

Γ ⊢ A → B,∆

Figure 1: NK- classical natural deduction

Definition 1.3. A statement A is derivable from assumptions Γ in the system LK, notation
Γ ⊢LK A, if Γ ⊢ A can be generated by the axiom and rules given in Figure 2.

Definition 1.4. The system LKcf, given in Figure 3, is obtained from the system LK by
omitting the rule (cut). Derivability in this system is denoted by Γ ⊢LKcf A.

Lemma 1.5 (Weakening lemma). Suppose Γ ⊆ Γ′ and ∆ ⊆ ∆′. Then, in all logical systems

Γ ⊢ A,∆ =⇒ Γ′ ⊢ A,∆′.

Proof. By an easy induction on derivations.

TERMS FOR CLASSICAL LOGIC 117

(axiom)
Γ, A ⊢ A,∆

Γ ⊢ A,∆ Γ, B ⊢ ∆
(→ left)

Γ, A → B ⊢ ∆

Γ, A ⊢ B,∆
(→ right)

Γ ⊢ A → B,∆

Γ ⊢ A,∆ Γ, A ⊢ ∆
(cut)

Γ ⊢ ∆

Figure 2: LK- classical sequent calculus

(axiom)
Γ, A ⊢ A,∆

Γ ⊢ A,∆ Γ, B ⊢ ∆
(→ left)

Γ, A → B ⊢ ∆

Γ, A ⊢ B,∆
(→ right)

Γ ⊢ A → B,∆

Figure 3: LKcf- classical sequent calculus without cut

Proposition 1.6. For all Γ and A we have

Γ ⊢NK A,∆ ⇐⇒ Γ ⊢LK A,∆.

Proof. (=⇒) By induction on derivations in NK. For the rule (→ elim) we need the rule
(cut). By the induction hypothesis Γ ⊢LK A → B,∆ and Γ ⊢LK A,∆. Then by Lemma 1.5
Γ ⊢LK A,B,∆ and Γ ⊢LK A → B,B,∆.

Γ ⊢LK A → B,B,∆

Γ ⊢LK A,B,∆ Γ, B ⊢LK B,∆
(→ left)

Γ, A → B ⊢LK B,∆
(cut)

Γ ⊢LK B,∆

(⇐=) By induction on derivations in LK. The rule (→ left) is treated as follows. By the
induction hypothesis Γ ⊢NK A,∆ and Γ, B ⊢NK C,∆. On the one hand from the first
premise by the Weakening lemma 1.5 we get Γ, A → B ⊢NK A,∆. By axiom Γ, A →
B ⊢NK A → B,∆, therefore by (→ elim), Γ, A → B ⊢NK B,∆. On the other hand from
the second premise using (→ intro) we obtain Γ ⊢NK B → C,∆ and then by Weakening
lemma 1.5, Γ, A → B ⊢NK B → C,∆. Then

Γ, A → B ⊢NK B → C,∆ Γ, A → B ⊢NK B,∆
(→ elim)

Γ, A → B ⊢NK C,∆

Admissibility of the (cut) rule in NK is treated as follows.

Γ ⊢NK A,∆

Γ, A ⊢NK B,∆
(→ intr)

Γ ⊢NK A → B,∆
(→ elim)

Γ ⊢NK B,∆

118 SILVIA GHILEZAN

2. The type assignment systems λµN , λµL and λµLcf

We use λµ-calculus, introduced by Parigot [14, 15], as the basic term calculus. We
consider two extensionally equivalent type assignment systems for λµ-calculus, one corre-
sponding to classical natural deduction (λµN), and the other to classical sequent calculus
(λµL). Moreover, a cut-free variant of λµL will be introduced (λµLcf).

Definition 2.1. The set term of type–free λµ-terms is defined in Figure 4.

term = var | term term | λvar.term | µmvar.term | [mvar]term
var = x | var′

mvar = α | mvar′

Figure 4: λµ terms

We write x, y, z, . . . for arbitrary variables in terms, α, β, γ, . . . for arbitrary co-variables
in terms and M,N,P,Q,R, . . . for arbitrary terms. Equality of terms (up to renaming of
bound variables) is denoted by ≡.

The reduction relation of the λµ-calculus is induced by three different notions of reduc-
tion: usual notion of reduction β, structural reduction µapp, and renaming reduction µvar:
The sets of free variables and co-variables of a term, denoted by FV (−) and FVµ(−), are
defined as usual.

β : (λx.M)N → M [x := N]
µapp : (µα.M)N → µβ.M [[α]P := [β]PN] β fresh
µvar : [β]µα.c → c[α := β]

Figure 5: Reductions

We write → for one-step reduction relation induced by the three notions of reduction
given above. We write →→ for the reflexive, transitive closure of the one-step reduction
relation. A βµ normal form (βµ-nf) is a term that cannot be reduced. If P →→ Q and Q

is a βµ-nf, then Q is called the βµ-nf of P (one can show it is unique). A collection A of
terms is said to be strongly normalising if for no P ∈ A there is an infinite reduction path

P →→ P1 →→ P2

Definition 2.2.

(i) A type assignment is an expression of the form P : A, where P is a term and A is
a formula.

(ii) A variable declaration is a type assignment of the form x : A. A co-variable decla-
ration is a type assignment of the form α : A.

(iii) A variable context Γ~x = {x1 : A1, x2 : A2, . . . , xn : An} is a set of variable declara-
tions such that for every variable xi there is at most one declaration xi : Ai in Γ~x.
A co-variable context ∆~α = {α1 : B1, α2 : B2, . . . , αk : Bk} is a set of co-variable
declarations such that for every variable αl there is at most one declaration αl : Bl

in ∆~α.

TERMS FOR CLASSICAL LOGIC 119

Notation.

Let Γ~x = {x1 : A1, . . . , xn : An} be a variable context. We then say that

Γ = {A1, . . . , An}, ~x = {x1, . . . , xn} and Λ◦(~x) = {P ∈ term | FV (P) ⊆ ~x},

where FV (P) is the set of free variables of P .
Similarly, let ∆~α = {α1 : B1, . . . , αn : Bn} be a co-variable context. We then say that

∆ = {B1, . . . , Bn}, ~α = {α1, . . . , αn} and Λ◦

µ(~α) = {P ∈ term | FVµ(P) ⊆ ~α},

where FVµ(P) is the set of free co-variables of P .

Definition 2.3. A type assignment P : A is derivable from the contexts Γ~x and ∆~α in the
system λµN (also known as simply typed λµ-calculus), notation

Γ~x ⊢λµN P : A,∆~α

if Γ~x ⊢ P : A,∆~α can be generated by the following axiom and rules given in Figure 6.

(axiom)
Γ~x, y : A ⊢ y : A,∆~α

Γ~x ⊢ M : A → B,∆~α Γ~x ⊢ N : A,∆~α
(→ elim)

Γ~x ⊢ MN : B,∆~α

Γ~x, y : A ⊢ M : B,∆~α
(→ intro)

Γ~x ⊢ λy.M : A → B,∆~α

Γ~x ⊢ M : A,∆~α, β : A,α : B
(µ)

Γ~x ⊢ µα.[β]M : B,∆~α, β : A

Figure 6: λµN -calculus

Definition 2.4. A type assignment P : A is derivable from the contexts Γ~x and ∆~α in the
system λµL, notation

Γ~x ⊢λµL P : A,∆~α

if Γ~x ⊢ P : A,∆~α can be generated by the following axiom and rules given in Figure 7.

(axiom)
Γ~x, y : A ⊢ y : A,∆~α

Γ~x ⊢ N : A,∆~α Γ~x, x : B ⊢ M : C,∆~α
(→ left)

Γ~x, y : A → B ⊢ M [x := yN] : C,∆~α

Γ~x, y : A ⊢ M : B,∆~α
(→ right)

Γ~x ⊢ λy.M : A → B,∆~α

Γ~x ⊢ M : A,∆~α, β : A,α : B
(µ)

Γ~x ⊢ µα.[β]M : B,∆~α, β : A

Γ~x ⊢ N : B,∆~α Γ~x, x : B ⊢ M : A,∆~α
(cut)

Γ~x ⊢ M [x := N] : A,∆~α

Figure 7: λµL-calculus

120 SILVIA GHILEZAN

(axiom)
Γ~x, y : A ⊢ y : A,∆~α

Γ~x ⊢ N : A,∆~α Γ~x, x : B ⊢ M : C,∆~α
(→ left)

Γ~x, y : A → B ⊢ M [x := yN] : C,∆~α

Γ~x, y : A ⊢ M : B,∆~α
(→ right)

Γ~x ⊢ λy.M : A → B,∆~α

Γ~x ⊢ M : A,∆~α, β : A,α : B
(µ)

Γ~x ⊢ µα.[β]M : B,∆~α, β : A

Figure 8: λµLcf-calculus

Definition 2.5. The system λµLcf, given in Figure 8, is obtained from the system λµL by
omitting the rule (cut).

The following result is the propositions-as-types interpretation of classical logic given
by Parigot [14]. This is an extension of the well-known propositions-as-types interpretation
of intuitionistic logic that was observed by Curry, Howard, de Bruijn and Lambek.

Proposition 2.6 (Propositions–as–types interpretation). Let SK be one of the logical sys-
tems NK LKor LKcfand let λµS be the corresponding type assignment system. Then

Γ ⊢SK A,∆ ⇐⇒ ∃~x. ∃~α. ∃P ∈ Λ◦(~x) ∪ Λ◦

µ(~α). Γ~x ⊢λµS P : A,∆~α.

Proof. (⇒) By an easy induction on derivations, just observing how the right lambda term
can be constructed. (⇐) By omitting the terms and the (µ) rule.

Since λµN is the first order restriction of Parigot’s λµ-calculus, we know the following
results. From Proposition 3.1 it follows that these results also hold for λµL.

Proposition 2.7. (i) (Normalisation theorem for λµN)

Γ~x ⊢λµN P : A,∆~α =⇒ P has a βµ-nf P nf.

(ii) (Subject reduction theorem for λµN)

Γ~x ⊢λµN P : A,∆~α and P →→ P ′ =⇒ Γ~x ⊢λµN P ′ : A,∆~α.

(iii) (Generation lemma for λµN) Type assignment for terms of a certain syntactic form
is caused in the obvious way.

(1) Γ~x ⊢λµN x : A, ∆~α =⇒ (x : A) ∈ Γ~x.

(2) Γ~x ⊢λµN PQ : B, ∆~α =⇒ Γ~x ⊢λµN P : (A → B),∆~α and Γ~x ⊢λµN Q : A,

for some type A.
(3) Γ~x ⊢λµN λx.P : C, ∆~α =⇒ Γ~x, x : A ⊢λµN P : B,∆~α and C ≡ A → B,

for some types A,B.
(4) Γ~x ⊢λµN µα[β].P : A, ∆~α, β : B =⇒ Γ~x ⊢λµN P : B,∆~α, β : B,α : A.

Proof. (i) Normalisation, even strong normalisation, for terms typeable in λµN was proved
by Parigot [15]. (ii) See Parigot [14]. (iii) Generation lemma is straightforward since λµN

is syntax directed.

TERMS FOR CLASSICAL LOGIC 121

3. Relating λµN , λµL and λµLcf

Now the proof of the equivalence between systems NK and LK will be ‘lifted’ to that
of λµN and λµL.

Proposition 3.1. For all Γ~x, ∆~α and A we have

Γ~x ⊢λµN P : A,∆~α =⇒ Γ~x ⊢λµL P : A,∆~α.

Proof. By induction on derivations in λµN . The rule (→ elim), Modus ponens, is treated
as follows.

Γ~x ⊢λµL P : A → B,∆~α

Γ~x ⊢λµL Q : A,∆~α Γ~x, x : B ⊢λµL x : B,∆~α
(→ left)

Γ~x, y : A → B ⊢λµL yQ : B,∆~α
(cut)

Γ~x ⊢λµL PQ : B,∆~α

Proposition 3.2.

(i) Γ~x ⊢λµL M : C,∆~α =⇒ Γ~x ⊢λµN M ′ : C,∆~α, for some M ′ →→ M .

(ii) Γ~x ⊢λµL M : C,∆~α =⇒ Γ~x ⊢λµN M : C,∆~α.

Proof. (i) By induction on derivations in λµL. The rule (→ left) is treated as follows.
By the induction hypothesis Γ~x ⊢λµN Q : A,∆~α and Γ~x, x : B ⊢λµN P : C,∆~α. On
the one hand from the first premise by the context Weakening lemma 1.5 we get Γ~x, y :
A → B ⊢λµN Q : A,∆~α. By axiom Γ~x, y : A → B ⊢λµN y : A → B,∆~α, therefore
by (→ elim), Γ~x, y : A → B ⊢λµN yQ : B,∆~α. On the other hand from the second
premise (→ intro), Γ~x ⊢λµN λx.P : B → C,∆ and then by context Weakening lemma 1.5,
Γ~x, y : A → B ⊢λµN λx.P : B → C,∆~α. Then

Γ~x, y : A → B ⊢λµN λx.P : B → C,∆~α Γ~x, y : A → B ⊢λµN yQ : B,∆~α
(→ elim)

Γ~x, y : A → B ⊢λµN (λx.P)(yQ) : C,∆~α

and (λx.P)(yQ) → P [x := yQ], as required.
Admissibility of the (cut) rule in λµN is treated as follows.

Γ~x, x : A ⊢λµN P : B,∆~α
(→ intro)

Γ~x ⊢λµN λx.P : A → B,∆~α Γ~x ⊢λµN Q : A,∆~α
(→ elim)

Γ ⊢λµN (λx.P)Q : B,∆~α

(ii) By (i) and the Subject reduction theorem for λµN (Proposition 2.7(ii)).

Corollary 3.3. Γ~x ⊢λµL M : C,∆~α ⇐⇒ Γ~x ⊢λµN M : C,∆~α.

Proof. By Propositions 3.1 and 3.2(ii).

In the following we will investigate the role of λµLcf.

Proposition 3.4.

Γ~x ⊢λµLcf P : A,∆~α =⇒ P is in βµ-nf.

Proof. By an easy induction on derivations.

122 SILVIA GHILEZAN

Lemma 3.5. Suppose Γ~x ⊢λµLcf P1 : A1,∆~α , . . . , Γ~x ⊢λµLcf Pn : An,∆~α. Then

Γ~x, x : A1 → . . . → An → B ⊢λµLcf xP1 . . . Pn : B,∆~α

for those variables x such that Γ, x : A1 → . . . → An → B is a term context.

Proof. Without loss of generality we may assume n = 2. The following derivation proves
the statement

Γ~x ⊢ P1 : A1,∆~α

Γ~x ⊢ P2 : A2,∆~α Γ~x, z B ⊢ z : B,∆~α
(→ L)

Γ~x, y : A2 → B ⊢ yP2 : B,∆~α
(→ L)

Γ~x, x : A1 → A2 → B ⊢ xP1P2 : B,∆~α

where yP2 ≡ z[z := yP2] and xP1P2 ≡ yP2[y := xP1].

Proposition 3.6. Suppose that P is a βµ-nf. Then

Γ~x ⊢λµN P : A,∆~α =⇒ Γ~x ⊢λµLcf P : A,∆~α.

Proof. By induction on the following generation of normal forms.

nft = var | var nf+ | λvar.nf
nf = nft | µβ.[α] nft

The easy cases are P ≡ x, P ≡ λx.P1 and P ≡ µβ.[α]P2, where P2 is not a µ abstraction.
The case P ≡ xP1 . . . Pn follows from the previous lemma, using the Generation lemma for
λN (2.7(iii)(3)).

As bonus, we now get the cut elimination property, Hauptsatz, of Gentzen [8] for
classical implicational sequent calculus.

Theorem 3.7 (Cut elimination).

Γ ⊢LK A =⇒ Γ ⊢LKcf A.

Proof.

Γ ⊢LK A,∆ ⇐⇒ Γ~x ⊢λµL P : A,∆~α by Proposition 2.6
=⇒ Γ~x ⊢λµN P : A,∆~α, by Proposition 3.2(ii)
=⇒ Γ~x ⊢λµN P nf : A,∆~α, by Proposition 2.7(i)and(ii)
=⇒ Γ~x ⊢λµLcf P nf : A,∆~α, by Proposition 3.6
=⇒ Γ ⊢LKcf A,∆, by Proposition 2.6.

4. Discussion

There are several calculi for encoding proofs in classical sequent calculus: Symmetric
lambda calculus of Barbanera and Berardi [2], Curien and Herbelin’s λµµ̃-calculus [4, 11],
the calculus of Urban and Bierman [18, 19], Dual calculus of Wadler [20, 21], the symmetric
extension of λµ by David and Nour [5]. We did not consider whether a direct encoding
of derivations in some of the symmetric lambda calculi and their (strong) normalisation
properties (Dougherty et al. [7, 6], David and Nour [5]) can lead to similar results.

The main technical tool in this paper is the type assignment system λµL based on
λµ-terms which corresponds to classical sequent logic. This system is not any of the known
systems for encoding proofs in classical sequent logic. The emphasis here is on λµ-terms
rather than on derivations. The aim was to revisit the cut-elimination theorem for classical

TERMS FOR CLASSICAL LOGIC 123

logic via normalisation of λµ-terms, in the style of [3]. In λµL formulae provable in LK

and λµ-terms are first class citizens, whereas in the systems mentioned above derivations in
LK are in the focus. There is an analogy with different approaches in [3] and Herbelin [10].
The former paper considers formulae provable in intuitionistic sequent logic and λ-terms
as first class citizens, whereas in the latter one the encoding of derivations of intuitionistic
sequent logic is in the focus.

Acknowledgement

I wish to thank Henk Barendregt with whom we developed the ideas on which this
paper is based. I am grateful to Pierre Lescanne, Daniel Dougherty and Hugo Herbelin for
research and discussions we have had during several years on the computational content of
logic.

References

[1] Z. M. Ariola and H. Herbelin. Minimal classical logic and control operators. In ICALP: Annual Inter-
national Colloquium on Automata, Languages and Programming, volume 2719 of LNCS, pages 871–885.
Springer-Verlag, 2003.

[2] F. Barbanera and S. Berardi. A symmetric lambda calculus for classical program extraction. Information
and Computation, 125(2):103–117, 1996.

[3] H. P. Barendregt and S. Ghilezan. Lambda terms for natural deduction, sequent calculus and cut-
elimination. J. of Functional Programming, 10(1):121–134, 2000.

[4] P.-L. Curien and H. Herbelin. The duality of computation. In Proc. of the 5th ACM SIGPLAN Int.
Conference on Functional Programming, ICFP’00, Montreal, Canada, 2000. ACM Press.

[5] R. David and K. Nour. Arithmetical proofs of strong normalization results for symmetric λ-calculi.
Fundamenta Informaticae, 77(4):489–510, 2007.

[6] D. Dougherty, S. Ghilezan, and P. Lescanne. Characterizing strong normalization in the Curien-Herbelin
symmetric lambda calculus: extending the Coppo-Dezani heritage. Theoretical Computer Science, to
appear in Festschrift Coppo, Dezani, Ronchi, 2007.

[7] D. Dougherty, S. Ghilezan, P. Lescanne, and S. Likavec. Strong normalization of the dual classical
sequent calculus. In G. Sutcliffe and A. Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning, 12th International Conference, LPAR 2005, volume 3835 of LNCS, pages 169–183.
Springer, 2005.

[8] G. Gentzen. Unterschungen über das logische Schliessen, Math Z. 39 (1935), 176–210. In M.E. Szabo,
editor, Collected papers of Gerhard Gentzen, pages 68–131. North-Holland, 1969.

[9] T. Griffin. A formulae-as-types notion of control. In Proc. of the 19th Annual ACM Symp. on Principles
Of Programming Languages, (POPL’90), pages 47–58, San Fransisco (Ca., USA), 1990. ACM Press.

[10] H. Herbelin. A lambda calculus structure isomorphic to Gentzen-style sequent calculus structure. In
Computer Science Logic, CSL 1994, volume 933 of LNCS, pages 61–75. Springer-Verlag, 1995.

[11] H. Herbelin. C’est maintenant qu’on calcule, au cœur de la dualité. Mémoire d’habiliation, Université
de Paris-Orsay, December 2005.

[12] W. A. Howard. The formulas-as-types notion of construction. In J. P. Seldin and J. R. Hindley, editors,
To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 479–490, New
York, 1980. Academic Press.

[13] C.-H. L. Ong and C. A. Stewart. A Curry-Howard foundation for functional computation with control.
In POPL 24, pages 215–227, 1997.

[14] M. Parigot. An algorithmic interpretation of classical natural deduction. In Proc. of Int. Conf. on Logic
Programming and Automated Reasoning, LPAR’92, volume 624 of LNCS, pages 190–201. Springer-
Verlag, 1992.

[15] M. Parigot. Proofs of strong normalisation for second order classical natural deduction. The J. of
Symbolic Logic, 62(4):1461–1479, December 1997.

[16] D Prawitz. Natural Deduction. Almqvist and Wiksell, 1965.

124 SILVIA GHILEZAN

[17] M. H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard isomorphism. Studies in Logic and the
Foundations of Mathematics, 149.

[18] C. Urban and G. M. Bierman. Strong normalisation of cut-elimination in classical logic. In Typed Lambda
Calculus and Applications, TLCA’99, volume 1581 of LNCS, pages 365–380. Springer-Verlag, 1999.

[19] C. Urban and G. M. Bierman. Strong normalisation of cut-elimination in classical logic. Fundamenta
Informaticae, 45(1-2):123–155, 2001.

[20] Ph. Wadler. Call-by-value is dual to call-by-name. In Proc. of the 8th ACM SIGPLAN Int. Conference
on Functional Programming, ICFP’03, pages 189–201, 2003.

[21] Ph. Wadler. Call-by-value is dual to call-by-name, reloaded. In Rewriting Technics and Application,
RTA’05, volume 3467 of LNCS, pages 185–203, 2005.

