PERMISSION SPECIFICATIONS FOR
COMMON MULTITHREADED PROGRAMMING PATTERNS

MARIEKE HUISMAN AND CL EMENT HURLIN

INRIA Sophia Antipolis, France
e-mail addressMarieke.Huisman@inria.fr

INRIA Sophia Antipolis, France
e-mail addressClement.Hurlin@inria.fr

ABSTRACT. Multithreading is the next challenge for program verifioat To support modular veri-
fication of multithreaded programs, one should know when daght be accessed or updated by the
different threads in the system. We propose a permissisaebannotation system that is designed
to do exactly thisj.e. it specifies when a thread can read or write a variable. Thetatian system
ensures that threads have exclusive access to a variablewdreghey have the possibility to write it,
thus avoiding data races. Moreover, the annotation systemsato change permissions dynamically
throughout the execution. The information from the periissnnotations can be used for further
verification of the program. This paper shows how the animrtagdystem can be used to specify
variable access in several typical multithreaded prograngipatterns.

1. INTRODUCTION

Because of increasing requirements on performance antivisaenultithreading nowadays is
unavoidable for programmers. However, multithreaded anmg are notoriously difficult to write
correctly. Therefore, it is important to have the means tat#ish a formal correctness statement for
the application (it behaves as specified, does not containrisebugs etc.). However, just as writing
multithreaded applications is more difficult than writinggsiential ones, verifying multithreaded
applications is also more complicated than verifying setjaeones.

A promising approach to verify multithreaded programs ialietract the behaviour of threads
by specifying what thegannotdo. This can be considered as the worst-case behaviour céadth
Then, to verify a particular thread, one can reduce all othezads to their abstractions, which
makes it unnecessary to know the precise state each thréad @ur annotation system for per-
missions does exactly this: it specifiehethera thread can potentially change or read a variable,
without specifyingwhat it reads or writes. In addition, our system also ensures(théta thread
can write to a location no other thread may write or read t® lihtation simultaneously, ar{d) if
a thread can read to a location no other thread can write $ddhation simultaneously. The an-
notation system has been designed to be as general as ppssill to handle a large class of

This work is funded in part by the IST programme of the EC, uritle IST-FET-2005-01590B810bius project and
the French national research organisation (ANR), undeAtiR-06-SETIN-010ParSec project.

REFLECTIONS ON TYPE THEORY, Essays Dedicated to Henk Barendregt Copyright © 2007 by
A-CALCULUS, AND THE MIND on the Occasion of his 60th Birthday Marieke Huisman and Clément Hurlin

147

148 MARIEKE HUISMAN AND CLEMENT HURLIN

Permission ::= per ni ssi on (PermNamé= PermDect);)*
LockClause ::= | ock {LockNamé& = PermDect

PermDecl ::= PrimPermDec| ObjPermDec| LockPermDecl
PrimPermDecl ::= FieldName BasePerm
ObjPermDecl ::= FieldName BasePerfiEncapsPermLi¥t
LockPermDecl ::= {LockNameg
BasePerm ::= \split(Na) |W| R

EncapsPermList :: EncapsPerm EncapsPermEncapsPermList
EncapsPerm::= \spl it (PermNameNal) | PermName

Figure 1: Grammar for permission declarations

programming patterns. It can be used to show the correctifdesk-free algorithms, algorithms
based on locking, and mixtures of both.

The annotation system declares for each object one or moneigston states, listing all per-
missions on an object that may exist at a particular poininiret If a thread can be shown to hold
all permissions on a particular objecg. it has the exclusive access to the object, then the object’s
permission state can be changed. Method’s preconditioasifgpvhich permissions are needed
to call a method, while postconditions specify which pesitiss are given back to the caller. As
mentioned above, the annotations should ensure that atpe@chin time (i) there exists at most
one permission to write a variable, afijl if a thread has the permission to write a variable, then no
other thread has the permission to read this variable.

Our annotation system is strongly based on Boyland’s fsaeti permission system [2], but
whereas Boyland’s system is defined for a simple languade peitallel composition, we extended
it to a Java-like language with synchronisation, threadtipe and joins Moreover, our annotation
system supports proper encapsulation of the object staiatimducing names for the different
permissions.

This paper gives a quick overview of the syntax of our anmmagystem, described as an ex-
tension of JML [7]. The remainder of the paper shows how thetations can be used to specify
typical multithreaded programming patterns. In particuee discuss the following patterns: Im-
mutability, Lock Splitting, Confinement across methods rk®o threads, Fork/Join algorithms, and
concurrent Subject/Observers. These patterns and thelieinentations are all taken or inspired by
Lea’s book on concurrency in Java [6] or the Design Patteok 8.

2. SHORT OVERVIEW OF THE ANNOTATIONS

A class can contain several permission and lock clausesrd-iygives their grammar (where
we use regular expression notatioxi’ for 0 or 1 X, X* for 0 or moreX, andX* for 1 or moreX).
A permission consists of a list of names and for each namegssiy empty) list of permission
declarations. A permission declaration can specify a psgion for a field of primitive type, a field
of reference type, or it can be a special lock permission. Wnssion declaration for a primitive
field contains the field name and a base permission. A pewnisigclaration for a reference field,
in addition, specifies the encapsulated permissions of lfecoreferenced to. Finally, references
can be declared to be special lock permissions.

Notice that such a thread creation/join mechanism can si@plarallel composition, but parallel composition cannot
simulate all programs using thread creation and joining.

PERMISSION SPECIFICATIONS FOR COMMON MULTITHREADED PROGRIMING PATTERNS 149

PermPred ::= \ spl it (Path PermNameNa) |\ part (Path PermNamg
| \has(PathNat Nad |\ hasnot (Path
| Path PermNameé PermPred PermPred
Path ::= ArgAcces$ | ArgAcces$. FieldAccess

ArgAccess ::= this | VarName
FieldAccess ::= FieldName FieldAccess FieldName

Figure 2: Grammar for permission predicates

A base permission is of the fortnspl it (n) (wheren is a natural number). Its intuitive
meaning is that there are at m@8tthreads accessing the field at the same time. Permissions can
be split, using the equivalendespl it (n) = \split(n+l)*\split(n+1), where thex
operator comes from separation logic [9]. For standard Jiressionsy and& are equivalent,
but their meaning is slightly different for permission fartas. Intuitively, if P and@ are permission
formulas, ‘Px(Q is valid w.r.t. to a hea” means that can be split in two disjoint heaps, and
hs such that “P is valid w.r.t.h;” and “Q is valid w.r.t. hy”. For this paper, it is sufficient to
understand as&. The equivalence doubles the number of threads that cassatteefield. Notice
that permission splitting is unbounded.

For convenience we introdud&/to abbreviate spl it (0): since2’ = 1, this means that
the thread has exclusive access to the field, and thus cafobesdlto write to it. Any permission
\'split(n),wheren > 0, allows only to read, because there might be other threartssing the
field. We useRto abbreviata spl it (1), a basic read permission.

Encapsulated permissions are of the farapl i t (p, n) , meaning that the reference permis-
sion containg1/2")" of the permission namegl, from the object that the reference points to. We
use the permission nanpeto abbreviatd spl i t (p, 0),i.e.exclusive hold of the permission. As
base permissions, encapsulated permissions can be spfjtthe equivalencesplit(p, n) =
\split(p,n+tl)*\split(p, n+l).

For each lock permission declaration, the class contaiqeeeia lock clause. This specifies
which permissions are obtained when the lock is acquiretlitively, at every point in the exe-
cution, a thread has certain permissions on an object. Ifeathacquires a lock, it obtains the
permissions that are held by that lock, and when it reledsebtk, it returns these permissions to
the lock. Fields that are declared as locks are required finale

To ensure that the annotations avoid data races, each g@mighould contain at most one
write permission per field, and if a permission contains @espermission, it cannot contain read
permissions on the same field. Notice that this only has touleagteed at the current class level:
it is implicitly guaranteed to hold for all objects that aefarenced to by fields in the class.

Method pre- and postconditions can be extended with peioniggedicates, see Figure 2 for
their grammar (where a path denéter more indirections beginning withhi s or a variable name,
i.e., a sequence of the forthis. f1..... fnorv.f1..... f n). Intuitively, a precondition
specifies which permissions are necessary to execute a anethmostcondition specifies which
permissions are returned to the caller

2We do not consider exceptional postconditions in this papgoically, exceptional permission postconditions would
coincide with the method’s normal permission postcondgio

150 MARIEKE HUISMAN AND CLEMENT HURLIN

class Fraction{
/[l @permission rd = num: R den : R
protected final |long num den;

/'l @ensures rd;
public Fraction(long n, long d) { // ... normalize
num= ...; den = ... }

/[l @requires \part(rd) = \part(f.rd);
/I @ensures \part(rd) = \part(f.rd) * \result.rd;
public Fraction plus(Fraction f) {
return new Fraction(num= f.den + f.num* den, den * f.den);}}

Figure 3: Fragment of immutable claBsact i on

Permission predicates can be base permissions on the figfasabject, or on the encapsulated
fields of the object (hamed by a qualified expression, coimgithe name of the surrounding per-
mission). Additionally, permission predicates can expm@iether a thread owns a lock or not: per-
mission\ has(pat h, i, j) means that the considered thread has acquired the lock aijiet
pointed to bypat h j times, and in addition at mostother threads have permission to acquire this
lock. Further, we introduce to useful abbreviatiohpart (p) and\ hasnot (pat h) , defined in
terms of JML/permission expressions. Expressipart (p) abbreviateg\ exi sts i nt n.
\split(p,n) & n >= 0), i.e.it denotes a read permission on the fields containgal iEx-
pression\ hasnot (pat h) indicates that a thread does not hold the lock pointed tpdiyh: it
abbreviateg \ exi sts int i.\has(path,i,0) & i >= 0). Other useful abbreviations
could be imaginede.g.to express that exactly the same permission is returnede ixperience
with writing permission annotations will show which abhiedions are useful.

To allow modular verification, standard JML uses modifiesisés. However, because permis-
sions can be considered as modifies clauses (i.e., a writdéiggon on a field in a precondition is
similar to a modifies clause mentioning this field), we do rexehto specify modifies clause in this
paper.

3. ANNOTATIONS OF DIFFERENT CONCURRENCYPATTERNS

This section shows how the annotation system presenteckabparticularly suited to specify
several common concurrent programming patterns. Therpattbat we present here are derived
from Lea’s pattern collection [6] and the Design Patternko(®).

3.1. Immutability. The first example is the immutability pattern. An object iglta be immutable

if after initialisation it can never change its internaltetésee also [4]). This is useful for multi-
threaded programming, because accesses to (initialiseduiable objects do not have to be pro-
tected by locks. Typical applications of immutable objets abstract data types, value containers
and shared state representations.

Figure 3 presents an example of an immutable object, rempiegethe abstract data type of
fractions (taken from [6§2.1.1]). The annotations specify that the class has onlypemmission
rd, in which both numeratornum and denominatorden) can only be read. The constructor
returns the full permissiond to its caller. These permissions can then freely be spligje read
access to the fraction object to any thread that requires Tioibe able to compute with fractions (as

PERMISSION SPECIFICATIONS FOR COMMON MULTITHREADED PROGRIMING PATTERNS 151

cl ass Person{
protected int age, salary;

[l @permssion d = {I1}, {l2};
/1@l ock {I1} age : W
/1@l ock {I2} salary : W

final protected bject
final protected Object

new bj ect ();

I
I new Obj ect () ;

1
2
[l @requires \part(d);

/'l @ensures \part(d);
public int getAge(){synchronized(l1) {return age;}}

[l @requires \part(d);
[l @ensures \part(d);
public void birthday(){
synchroni zed(l 1) {synchroni zed(| 2) { age++; sal ary +=100;}}}

[/ @requires \part(d);
/|l @ensures \part(d);
public int getSalary(){synchronized(l2) {return salary;}}}

Figure 4: Fragment of clag2er son, illustrating the lock splitting pattern

does methog! us), one needs to have some part of tleepermission. Aftepl us has finished, a
(possibly different) part of thed permission is returned to the caller. In addition, the callgains
the complete d permission on the newly created object.

Notice that our permission system is also suitable to esgragial immutability, where only
some fields are immutable, or an object only is immutablendud part of the execution (e.g.,
before or after calling a certain method). To support the Giese, a class can declare different
permissions: one containing read permission declarafionsll immutable fields, and one (or
more) containing write permission declarations for theabld fields. To support the second case,
different permissions can be specified, so that the objectlange its state from one permission to
another. Methods that need the object to be immutable, nethat the object is in the appropriate
permission state, and thus that the appropriate read pomssare held.

3.2. Lock Splitting. To increase performance, it often is useful to associatesloaly with certain
functionalities of a class. Thus, different (groups of)d&hre protected by different locks. Natu-
rally, this makes it even more important to clearly specifyiah fields are protected by which lock
(and to ensure that the application respects this).

Figure 4 gives a typical example of this lock splitting pait¢6, §2.4.2]. The clas®er son
contains fieldage andsal ar y. It has a single permissiah which declares two lock permissions.
All methods in the class require and ensure a fraction ofgérsnission. Further the class contains
two lock clauses: the first specifies that if a thread acquoels| 1, it obtains the permission to
write the fieldage; similarly acquiring lock 2 gives the permission to writgal ar y. Notice that
the method specifications only mention the permissioRlowever, the lock clauses ensure that any
access tage or sal ary is protected by the appropriate locks.

152 MARIEKE HUISMAN AND CLEMENT HURLIN

cl ass Point{
public int x, vy;
/Il @permissiong =x: Wy: W}

class Plotter{
/] @ensures true;
public voi d showNext Poi nt () {
Point p = new Point();
P.X = ...; pP.Y = ...;
di splay(p); }

[l @requires p.q;
protected void display(Point p){ ... }}

Figure 5: Fragment of clasd ot t er , showing confinement across methods

Note that thesynchr oni zed(. .) statements in clad@er son can bere-entrantacquire-
ments of the lock$ 1 andl 2. A lock acquire is said to be re-entrant if the thread thatiaeg
the lock already has it. In this case, Java’s semantics Is that the thread continues normally. To
allow re-entrant acquirement of locks, our system procesdsllows: whenever a thread acquires
a lock, if the thread does not already have the lock, it obtdie permissions inside the lock; if the
thread already has the lock, it must show that it has the cetieplermissions contained in the lock.
Thus, after executing a lock acquire instruction, one ig $bat the thread holding the lock has all
permissions contained in the lock. For example, after elgehesynchr oni zed(| 1) block in
get Age, the thread obtains write access to the feedge and thus can executeet ur n age; .

3.3. Confinement Across Methods. Thread localityj.e. the case where an object is only accessi-
ble via a single thread, is another means to guarantee nerigrence of other threads. A gener-
alisation of this is the case where there is at most one thaie#tte time having a reference to an
object. After passing an object to another method (whichhiniguse it to be accessed by different
threads), the calling method guarantees that it does nesadtanymore. Thus, possible changes
to the object do not change the correct behaviour of the ndetRbis pattern is calledonfinement
across methodgs, §2.3.1].

Figure 5 shows a typical example of this pattern. The b@sicnt class contains a single per-
mission set that allows to write both its fields. In cl&wt t er , the methodshowNext Poi nt
creates a new point class, and properly initialises it. Aiitéialisation, it gives the newly cre-
ated point to the display method (that will typically use @pkthreads for doing the graphics).
The fact that the object is given away, is made explicit byrttethod’s postcondition: the caller
of showNext Poi nt does not get back any permissions on the newly created pdilso the
di spl ay method requires the full permission on the point, and do¢ésatiorn any permission.

Notice that other confinement patterns (confinement withihread, confinement within an
object) can also be expressed in a natural way with our atinotsystem.

3.4. Worker Threads. The next pattern that we discuss is the worker thread patierimportant
pattern for many industrial applications. A main threadpares different tasks, and sends them
off to a worker thread for computation. This ensures thatritzén thread is never blocked for a
long time, and thus that the application can stay reactivés important that access to the task
is exclusive,i.e. once the main thread has send off the task, it should no lomgmgss the fields

PERMISSION SPECIFICATIONS FOR COMMON MULTITHREADED PROGRIMING PATTERNS

cl ass Mai nThread extends Thread{

/| @permni ssion before
/] @permi ssion after

wk : R(p), t : R(w, regain);
wK : R(p), t : R(w);

final private Task t;
final private WrkerThread wk;

[l @requires wk.p;

/'l @ensures before;

publ i ¢ Mai nThread(Wr ker Thr ead wk)
{this.wk = wk; t = new Task();}

/[l @requires before;
/|l @ensures after;
public void run()
{t.prepare(); wk.addTask(t); ...; if t.isDone(){...}}}

Figure 6: Fragment of clasder ver Thr ead, part of the worker thread pattern

cl ass Worker Thread extends Thread{

final private Vector<Task> tp; //task pool
[l @perm ssion p = {this};

153

[l@lock {this} =tp : W(...); // encapsul ate perm ssions from Vector

[l @requires \part(p);
/'l @ensures \part(p);
public void run(){
Task t;
whil e(true){

i f(taskWaiting()){t = getTask(); t.doTheJob(); t.setlsDone();}}}

[l @requires \part(p) * t.wr;
[l @ensures \part(p);
public synchroni zed voi d addTask(Task t){tp.add(t);}

[l @requires \part(p);
/[l @ensures \part(p) * \result.w;
publi ¢ synchroni zed Task get Task(){
Task t = tp.element At (0); tp.renoveEl enentAt(0); return t; }

[l @requires \part(p);
/'l @ensures \part(p);
publi ¢ synchroni zed bool ean taskWaiting(){return tp.size !'= 0;}

Figure 7: Fragment of clad&r ker Thr ead, part of the worker thread pattern

154 MARIEKE HUISMAN AND CLEMENT HURLIN

cl ass Task{
vol ati |l e bool ean done;

[l @perm ssion w = ...;
/| @perm ssion regain;

[l @requires w;
/] @ensures wr;
public void prepare(){}

[l @requires w;
/| @ensures w;
public void doThedob(){ ... }

[l @requires w;
public void setlsDone(){ ... }

/'l @requires regain;
/Il @ensures \result ==> w && !\result ==> regain;
public bool ean isDone(){ ... }}

Figure 8: Fragment of clasgask, part of the worker thread pattern

involved in the computation. Only once it knows that the task finished, it can be allowed to
access these fields again.

Figure 6 shows an implementation of a main thread, that pesgabs for a worker thread. In
our simple example, it has read-only references to a singhev thread and a single task object.
It has two different permissionsbef or e andaf t er. The only difference between these two
permissions is whether the server thread has a speeighi n permission on task. The role
of this r egai n permission will be explained below. The permissions on tleeker thread and
task objects are encapsulated in the permission stated@ethver Thr ead object. Notice that
since bothbef or e andaf t er contain the full encapsulated permissigng&ndwr (explained
below), the main thread cannot hold both bef or e and theaf t er permission at the same time.
Notice further thatSer ver Thr ead’s constructor requires that its parameter has an apptepria
permission on the worker thread. In contrast, since the isagknewly created object, no further
requirements are necessary.

Figure 7 shows the implementation of a worker thread (iesplvy [6,54.1.4]). The worker
thread has a single permission, which ensures that accélss task pool is protected by a lock.
This avoids possible race conditions.

Figure 8 gives a possible implementation of tasks. It hagmigsionwr giving write access
to the fields of the task (not further detailed here), and &iapeegai n permission, mentioned
above. This permission is only a marker, it does not give sscte any of the fields. The holder
of ther egai n permission is allowed to regain thwe permission, once the task is done. The
constructor offask returns this permission to the thread that constructedtfexb This (or some
other) thread can inspect whether the task is finished, aswl it regains the write permissian
on the fields of the task, and thegai n permission is destroyed.

Ther un method of theSer ver Thr ead first prepares the task, and then it puts it in the
task pool of the worker thread. Notice that the specificatbmddTask in Wor ker Thr ead
requires themr permission on the task object, and does not returneitthe server thread looses

PERMISSION SPECIFICATIONS FOR COMMON MULTITHREADED PROGRIMING PATTERNS 155

class Fib extends FJTask{
i nt nunber;
/!l @permni ssion p = nunber : W

/'l @ensures p;
Fib(int n) { nunber = n; }

[l @requires p;
/] @ensures p;
public void run() {
int n = nunber;
if (n =1) nunber = 1;
else {Fib fl1 = new Fib(n - 1);Fib f2 = new Fib(n - 2);
col nvoke(f1, f2);
nunber = f1. nunber + f2.nunber;}}}

Figure 9: Fragment of fork-join implementation of Fibonigitmction

its permission to do something with the task. When\tse ker Thr ead takes the task from the
task pool (usingget Task) it acquires the permissiomr on the task, and thus it is able to do the
job, and then set a volatile fieldo signal that it is done. By executing tet | sDone method,

it looses its permission to access the task. In the mean tmeser ver Thr ead can continue
with other things €.g.react on other requests). When it needs the result of theitaskn inspect
whether the task is finished, using theDone method. For this it needs the speciagai n
permission. If the sDone method returns true, theegai n permission is destroyed, and instead
the wr permission is returned (otherwise thegai n permission is kept). Thus, implicitly the
permission ofSer ver Thr ead changes fronbef oretoaf ter.

The use of the specialegai n permission ensures that the permission is not duplicated:
once thewr permission has been returnedibyDone, ther egai n permission is destroyed, and
thus thei sDone method cannot be called anymore for this task. A variant isf $pecification
would be that the method would only return tiwe permissionjf the method was called with the
r egai n permission (which is then destroyed). Alternatively, ooeld also imagine a specification
where method sDone requires only a part of theegai n permission and returns the correspond-
ing part of thewr permission (see methadun of the Mat ri x example in the next paragraph for
such an example).

3.5. Fork/Join Algorithms. Animportant class of concurrent algorithms are fork/jdogpoaithms —
the concurrent variation of divide-and-conquer algorighrne. each thread spawns off several other
threads to do sub-computations. It waits for all these thsda finish, and then combines their re-
sults into a single result. We show how our annotation systambe used to show that the fork-join
implementation in Figure 9 of the Fibonacci function §8,4.1] does not contain data races.

3To avoid possible race conditions, and therewith unexpdotdaviours.
4Even though, as pointed out by Lea, this is an unrealistiengk®, because there are much faster non-recursive
solutions. However, because of its simplicity, it nicelysitrates the working of our annotation system.

156 MARIEKE HUISMAN AND CLEMENT HURLIN

ClassFi b contains a permissiop, that allows to write the fielshunber °. The implemen-
tation of the methodcol nvoke from the classFJTask is such that it implicitly behaves as
fl.fork(); f2.fork(); f2.join(); f1.join();. Since thef ork method starts a
new thread, that will execute itsun method, the precondition of threun method is propagated to
also be the precondition of tHeor k method. Further, each runnable object is supposed to contai
an implicitj oi n permission, that is returned to the creator of the class ¢ande passed around).
Thej oi n method has the following (implicit) specification:

requires join;

ensures Q_run;
al so

requires true;

ensures true;

where@ _r un is the specified postcondition of the methodn (notice that to get even more pre-
cision and flexibility, we could specify that only a fractiohthej oi n permission is required, and
that exactly this fraction of the permissionsrinin’s postcondition are returned). Thus, when a
thread creates objecfsl andf 2, it obtains the permission to write themunber fields, plus a
specialj oi n permission. Withincol nvoke, the permission omunber is given to the forked
threads, and after joining, they regain the permission tessmunber — however, they have lost
the implicitj oi n permission.

As a more complex example, we sketch a program where we splitecombine permissions.
Suppose we have a clabfit ri x with permissionwr , that allows to write the elements in the
matrix (but not to change the shape of the matrix), and witiragriate method annotatichs
class Matri x{

final int[][] elens;
/[l @permssion w: w=-elens : RRRIW];

To be able to initialise the matrices, we need write perraissin the elements. However, if we
suppose that we only need read access to do the matrix caiopstave can have the following
programming pattern (where we have matriaeendb):

whil e(true){
initialise(a,b);
[l split matrix perm ssions for different threads
colnvoke(...); // do fork-join matrix conputations
/'l reconbine fractioned perni ssions into conplete permssion }
provided that the un method for the matrix computation is specified as follows:
requires \part(a.w) * \part(b.w);
ensures \part(a.w) * \part(b.w) &
(\Mforall int n.\old(\split(a.w, n)) \split(a.wr, n)) &
(\Mforall int n.\old(\split(b.w, n)) \split(b.wr, n));

This specifies that a fraction of thve permission ora andb is needed for the thread to start,
and that after joining the finished thread, exactly the sagrenjssion is given back. It is crucial
here that exactly the same fraction of the permission isngbhack: this allows to conclude that
after joining all threads, the main thread holds the coneplet permission again, and thus that the
matrices can be re-initialised.

SNotice that we do not requineunber to be volatile, in contrast with Lea’s implementation. Withr annotation
system, and knowledge of the new Java Memory Model [8], wesbam that there will be no data races, thus there is no
need for this variable to be volatile.

SWhere the grammar of permission declarations is extendaday declarations in the obvious way.

PERMISSION SPECIFICATIONS FOR COMMON MULTITHREADED PROGRIMING PATTERNS 157

cl ass Subj ect {
/]l @pernission p
1@ r
/1 @1 ock {this}

{this};
v . W
v: W obs : W(\split(qg,1));

Gbserver obs; int v;

/[*@requires (\exists int i,j. \has(this,i,j) &i >0 &j > 0) =*
@ obs.s == this;
@ensures (\exists int i,j. \has(this,i,j) &i >=0 & j > 0) =*
@ obs.s == this;
@/

public void notifyObs(){ obs.update(); }

/[*@requires (\exists int i,j. \has(this,i,j) &i >0 &j > 0) =*
@ obs.s == this;
@ensures (\exists int i,j. \has(this,i,j) &i >=0 & j > 0) =*
@ obs.s == this;
@/

public void setState(int v){
this.v = v;
noti fyQCbs();}

/Il @requires \part(r);
/'l @ensures \part(r);
int getState(){ return v; }}

Figure 10: Fragment of clagubj ect

3.6. Concurrent Subject Observer. The last pattern we discuss is the subject observer patiern;
typical example of object-oriented programming{8]. In this pattern, a single subject is observed
by several observers: when the subject’s state changeshs®evers are notified, so that they can
update their internal representation of the subject'®staigures 10 and 11 show a fragment of an
implementation of this pattern. For clarity of presentatiz’e only have one observer per subject.

The Subj ect class has a permissignm that allows to lock the considered subject. Once a
subject is locked, write access to its stat¢ &nd permissiomg on the observer are granted. Class
Subj ect imposes client-side locking: to call a method on a subjent, must lock it beforehand.
For examplenot i f yObs'’s precondition indicates that to call this method, a thrieasito hold the
lock on the subjectt has(t hi s, i,j) withj greater tham is required.

The method described in Section 3.2 to handle lock re-eceraamiso applies for this pattern.
For example, when theynchroni zed(t hi s) block is entered in methodpdat e of class
Cbser ver, the system ensures that either the observer was not alleeidyd, in which case the
permissions inside the observer is transferred to the ¢xgcthread, or the current thread already
has the permissions contained in the lock (i.e., write actethe fieldcache). Thus, after entering
the block, the thread can execatache = v; .

Note that a thread can lock the subject and the observer dsitgermissiom on the subject,
while another thread can lock the observer if it has a pareofissionq of this observer. Two dif-
ferent threads can simultaneously hold permisgiamd a part of permission, because the subject
only has half of the permissianon its observer (see annotatibnck {this} = ..., obs : W

158 MARIEKE HUISMAN AND CLEMENT HURLIN

cl ass Cbserver{
/]l @pernission g
1@l ock {this}

{this}, sub : R ();
cache : W

final Subject sub; int cache;

/] @ensures q * s == sub;
public Cbserver(Subject sub){ this.sub = sub; }

[l @requires \part(q) * \part(sub.r);
[l @ensures \part(q) * \part(sub.r);
voi d updat e(){

int v = sub.getState();

synchroni zed(t hi s){ cache = v; }}

[l @requires \part(q);
/'l @ensures \part(Qq);
public synchronized int getCache(){ return cache; }}

Figure 11: Fragment of clagdbser ver

(\split(qg,1)); inclassSubj ect). Thus, one can write a program where one thread updates
the subject and the observer, while another thread simadtzsty inspects the observer (to update a
GUI for example).

Finally, to notify the observer, one has to know that its uhyiieg subject (fields ub) is the sub-
ject wherenot i f yObser ver is called: this is specified (using standard JMLhiot i f yCbs'’s
precondition byobs.s == this. Because of this equality, the permissibspl it (v, 0)
(which is contained inhas(this,i,j) atnotifyQbs’s entry) can be used to show that the
precondition ofupdat e is satisfied.

4. CONCLUSION & FUTURE WORK

We have shown how our annotation system for permissions eamsbd to specify several
common multithreaded programming patterns. The specéditatre intuitive to understand, and at
the same time highly expressive. They allow to prove absehrace conditions, and moreover the
annotations can be used as auxiliary information for théh&rrverification of the program: if we
can deduce from the permission annotations that otherdbreannot interfere at certain program
points, then we do not have to consider the possible intériga at these points (see [5] for details).

Currently, we have implemented a run-time checker for theotation system, and we are
working on the development of a static verification methodr this, we will extend an existing
translation of JML-annotated programs into BoogiePL [1fhwihformation about the permissions
of the current threads. We will then use a verification caadigjenerator for BoogiePL to generate
appropriate proof obligations.

Acknowledgements. It is our pleasure to dedicate this paper to Henk Barendigghk has been
one of the PhD supervisors of the first author, Marieke HuismBRuring this period, Henk has
taught me about the importance of looking at known facts witttifferent and fresh mindset, in

PERMISSION SPECIFICATIONS FOR COMMON MULTITHREADED PROGRIMING PATTERNS 159

order to establish new connections. This is one of the lestwi | now try to teach to my own PhD
students. Happy birthday!

REFERENCES

[1] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K.MR.Leino. Boogie: A modular reusable verifier for
object-oriented programs. Formal Methods for Components and Obje@805.

[2] J. Boyland. Checking interference with fractional pé&sions. In R. Cousot, edito6tatic Analysis Symposiym
volume 2694 oL ecture Notes in Computer Sciengages 55-72. Springer-Verlag, 2003.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissidssign Patterns: Elements of Reusable Object-Orientetivad
Addison-Wesley, 1994.

[4] C. Haack, E. Poll, J. Schafer, and A. Schubert. Imnm@attijects for a Java-like language. In R. De Nicola, editor,
European Symposium on Programmjihgcture Notes in Computer Science, pages 347-362. Spiifagkag, 2007.

[5] M. Huisman and C. Hurlin. The stability problem for veciition of concurrent object-oriented programsVAMP
2007: Proceedings of the 1st International Workshop onfidation and Analysis of Multi-threaded Java-like Pro-
grams 2007. Technical Report ICIS-R07021, Radboud Universifgnigen.

[6] D. Lea. Concurrent Programming in Java: Design Principles and Bais (Second Edition)Addison-Wesley,
Boston, MA, USA, 1999.

[7]1 G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D.iCand J. Kiniry.JML Reference Manualuly 2005.
In Progress. Department of Computer Science, lowa Stateetsity. Available fromht t p: / / www. j m specs.
org.

[8] J. Manson, W. Pugh, and S. V. Adve. The Java memory modePrinciples of Programming Languagepages
378-391, 2005.

[9] J. C. Reynolds. Separation logic: A logic for shared rbigalata structures. Inogic in Computer Scienc€open-
hagen, Denmark, July 2002. IEEE Press.

