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Abstract. It is well-known that intuitionistic and classical provability can be character-
ized by the existence of winning proponent strategies in Lorenzen dialogues. In fact, one
can bring the winning proponent strategies more or less into correspondence with sequent
calculus proofs.

This paper elaborates on the correspondence. We study a variant of sequent calculus
with only one right rule and one left rule. The rules do not concern any particular con-
nective. They are similar to the definition of Lorenzen dialogues laying out the interaction
between proponent and opponent. In the latter setting one additionally specifies, for each
connective, the attacks and corresponding defenses. Similarly, our left and right rule are
parameterized by such specifications.

The main result is cut-elimination for the system without specification of the actual con-
nectives. Cut-elimination for any combination of the usual connectives follow as a special
case. We also give a very compact proof that derivations in the system are isomorphic to
winning proponent strategies. We focus on classical propositional logic. The results carry
over to intuitionistic logic as well as first-order logic, and the equivalence of proofs and
strategies also carry over to second-order logic, in all cases with some adjustments.

1. Lorenzen dialogues

We consider E-dialogues (see [4]) following the formulation in [5].

Definition 1.1. A dialogue over ϕ is an either empty, finite, or infinite sequence of moves
M1,M2, . . . , where the odd (resp. even) moves are called proponent (resp. opponent) moves,
such that the following conditions hold.

• M1 = (D, ϕ, 0). (Proponent begins.)
• Each opponent move has form Mi = (X,ψ, i−1). For i > 1, each proponent move has

form Mi = (X,ψ, j), where j < i and Mj is an opponent move. (Opponent refers to
the immediately preceding move, proponent refers to any preceding opponent move.)

• For each proponent move Mi = (X, p, j) stating some variable p, there is an opponent
move Mk = (Y, p, l) with k < i. (Proponent may assert a variable, if it is already
asserted by opponent.)
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• For all i > 1 with Mi = (X,ψ, j) and Mj = (Y, ρ, k), either X : ψ is an attack on ρ

(see left table1) or Mk = (Z, π, l) and Y : ρ is an attack on π and X : ψ is a defense
of π against Y (see right table). (One can attack asserted formulas or defend against
a matching attack.)

Formula Attacks
σ → τ A : σ
σ ∧ τ AL : ø , AR : ø
σ ∨ τ A : ø
¬σ A : σ

Formula Attack Defenses
σ → τ A D : τ
σ ∧ τ AL D : σ
σ ∧ τ AR D : τ
σ ∨ τ A DL : σ , DR : τ

If P and P,M are dialogues over ϕ, then M is a possible move after P.

An implication σ → τ is attacked by stating σ and defended by stating τ . A conjunction
σ∧τ can be attacked in two different ways (questioning σ and τ , respectively) and defended
correspondingly by stating σ or τ , respectively. A disjunction σ ∨ τ can be attacked in only
one way, but defended in two different ways, depending on whether one claims σ or τ .
A negation ¬σ can be attacked by stating σ, but cannot be defended.

Example 1.2. The following illustrates classical negation and disjunction.

Move Player Attack/Defense Formula Ref. to prev. move
1 P D p ∨ ¬p 0
2 O A ø 1
3 P DR ¬p 2
4 O A p 3
5 P DL p 2

Definition 1.3. Let P = M1, . . . ,Mn be a dialogue over ϕ. A proponent strategy after P

is a tree labeled with moves such that

• The initial part of the tree is a single path labeled M1, . . . ,Mn.
• In every branch, each node at or after Mn labeled with a proponent move has one

child for every possible opponent move.
• In each branch, each node at or after Mn labeled with an opponent move has one

child, if there is a possible proponent move, and otherwise has no children.

A proponent strategy after P is winning if every path is finite and every leaf is a proponent
move (all dialogues end with the opponent having no reply). If P is empty, we call it
a winning proponent strategy for ϕ.

Example 1.4. A winning proponent strategy for ((p → p) → q) → q:

1 P D ((p → p) → q) → q 0

��

2OA (p → p) → q 1

��

3 P A p→ p 2

++WWWWWWWWWW

ssgggggggggg

4a OD q 3

��

4b OA p 3

��

5a P D q 2 5b P D p 4

1We use ø when there is no formula to accompany an attack; the “formula” ø cannot be attacked.
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Remark 1.5. Dialogues can be viewed as parameterized over:

• The set Φ of formulas generated from a set of variables Υ;
• For each ϕ ∈ Φ−Υ, the set {A1 :τ1, . . . , An :τn} of attacks on ϕ;
• For each ϕ ∈ Φ −Υ and attack Ai on ϕ, the set {Di

1 :σi
1, . . . ,D

i
mi

:σi
mi

} of defenses
of ϕ against Ai.

We write this shorter as ϕ⊳(τ1⊢Σ1) . . . (τn⊢Σn) where Σi = σi
1, . . . , σ

i
mi

, leaving out names

of attacks and defenses. We omit ø to the left of ⊢, and write Φø for Φ∪{ø}. Attacks τi are
in Φø, but defenses σi

j are in Φ.

Example 1.6. The tables in Definition 1.1 correspond to this specification:

• ϕ1 ∧ ϕ2⊳(⊢ ϕ1)(⊢ ϕ2).
• ϕ1 ∨ ϕ2⊳(⊢ ϕ1, ϕ2).
• ϕ1 → ϕ2⊳(ϕ1 ⊢ ϕ2).
• ¬ϕ⊳(ϕ ⊢).

And in general we have p⊳() (variables cannot be attacked) as well as ø⊳().

2. The system LKd

We introduce a dialogue-inspired variant of LK.

Definition 2.1. Given a specification as in Remark 1.5, the system LKd is defined in
Figure 1. Sequents use sequences of formulas, so we include structural rules. In left rules
the leftmost premiss is omitted when τi is ø.

For each connective there is one right rule and as many left rules as there are attacks on
that connective. LK is a special case.

Proposition 2.2. LKd with the specification in Example 1.6 is equivalent to LK.

Proof. The system LKd relative to this specification is a standard LK except that the
usual two right rules for disjunction (indicated to the left below) are replaced by a single,
equivalent rule (indicated to the right below).

Γ ⊢ ϕ,∆

Γ ⊢ ϕ ∨ ψ,∆

Γ ⊢ ψ,∆

Γ ⊢ ϕ ∨ ψ,∆

Γ ⊢ ϕ,ψ,∆

Γ ⊢ ϕ ∨ ψ,∆

Also, the more usual axiom ϕ ⊢ ϕ follows from (Ax) and logical rules.

Definition 2.3. Define ≻ on formulas: when ϕ⊳(τ1 ⊢ Σ1) . . . (τn ⊢ Σn) we stipulate ϕ ≻ τi
and ϕ ≻ σ, for all σ ∈ Σj and all i, j.

We next prove cut-elimination for LKd relative to any specification such that ≻ is well-
founded.

Definition 2.4. The degree of a cut is the length of the longest ≻-sequence starting from ϕ,
the formula eliminated in the cut. We write Γ ⊢d ∆ if there is a derivation of Γ ⊢LKd ∆ in
which all cuts have degree at most d.

Lemma 2.5. Let d(ϕ) = d + 1, ϕ ∈ ∆, and ϕ ∈ Γ′. If Γ ⊢d ∆ and Γ′ ⊢d ∆′, then
Γ, (Γ′ − ϕ) ⊢d (∆ − ϕ),∆′.2

2The notaion “−ϕ” means with all occurrences of ϕ removed.
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Axiom:

p ⊢ p (Ax)

Structural Rules:

Γ ⊢ Θ

Γ, ϕ ⊢ Θ
(LW)

Γ ⊢ Π

Γ ⊢ ϕ,Π
(RW)

Γ, ϕ, ψ,Γ′ ⊢ Θ

Γ, ψ, ϕ,Γ′ ⊢ Θ
(LX)

Γ ⊢ ∆, ϕ, ψ,∆′

Γ ⊢ ∆, ψ, ϕ,∆′
(RX)

Γ, ϕ, ϕ ⊢ Θ

Γ, ϕ ⊢ Θ
(LC)

Γ ⊢ ϕ,ϕ,∆

Γ ⊢ ϕ,∆
(RC)

Logical Rules:

Γ⊢τi,∆ Γ, σi
1⊢Θ · · · Γ, σi

mi
⊢Θ

Γ, ϕ ⊢ ∆,Θ
(Li)

Γ, τ1⊢Σ1,∆ · · · Γ, τn⊢Σn,∆

Γ ⊢ ϕ,∆
(R)

Side condition: ϕ⊳(τ1⊢Σ1) . . . (τn⊢Σn), Σi = {σi
1, . . . , σ

i
mi

}, 1≤ i≤n

Cut Rule:

Γ ⊢ ϕ,∆ Γ, ϕ ⊢ Θ

Γ ⊢ ∆,Θ
(Cut)

Figure 1: Classical Sequent Calculus LKd.

Proof. We proceed by induction on the sum of the heights of the derivations D and D′ of
Γ ⊢d ∆ and Γ′ ⊢d ∆′, respectively. We consider the different shapes of D and D′. The only
interesting case is when D ends with a right rule (R), and D′ ends with a left rule (Li), and
both introduce ϕ, to the right and left, respectively:

Γ, τ1 ⊢ Σ1,∆1 · · · Γ, τn ⊢ Σn,∆1

Γ ⊢ ϕ,∆1

Γ′

1 ⊢ τi,∆
′ Γ′

1, σ
i
1 ⊢ Θ′ · · · Γ′

1, σ
i
mi

⊢ Θ′

Γ′

1, ϕ ⊢ ∆′,Θ′
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where Σi = {σi
1, . . . , σ

i
m} and ϕ⊳ (σ1 ⊢ Σ1) . . . (σn ⊢ Σn). By the induction hypothesis,

applied above the line in one rule and below the line in the other, and using structural rules:

Γ, τi, (Γ
′

1 − ϕ) ⊢ Σi, (∆1 − ϕ),∆′,Θ′ for all i (2.1)

Γ, (Γ′

1 − ϕ) ⊢ (∆1 − ϕ), τi,∆
′ for some i (2.2)

Γ, (Γ′

1 − ϕ), σi
j ⊢ (∆1 − ϕ),Θ′ for some i and all j (2.3)

Combining (2.1) and (2.2) with (Cut), we have Γ, (Γ′

1−ϕ) ⊢ Σi, (∆1−ϕ),∆′,Θ′. Combining
this and (2.3) with (Cut), we get Γ, (Γ′

1 − ϕ) ⊢ (∆1 − ϕ),∆′,Θ′.

Theorem 2.6. The system LKd without Cut is complete.

Proof. We show for any d that Γ ⊢d+1 ∆ implies Γ ⊢d ∆. The proof is by induction on the
derivation of Γ ⊢d+1 ∆ using Lemma 2.5.

Example 2.7. Say we remove negation from the propositional language, and instead add
⊤ and ⊥ by stating that there is no attack on ⊤, while ⊥ can be attacked but not defended,
i.e. ⊤⊳ () and ⊥⊳ (⊢ ). By Theorem 2.6, we immediately know that cut-elimination holds
for this instance of LKd.

3. The system LKD

The system LKd suggests that in Γ ⊢ ∆, we can read Γ and ∆ as utterances from a dialogue,
and that derivations may be related to dialogues. Next we introduce the system LKD, where
these suggestions can be substantiated more clearly than with LKd (larger “D” means closer
to dialogues).

Definition 3.1. Given a specification as in Remark 1.5, the system LKD is defined in
Figure 2. Sequents use sets of formulas.

Γ, σ1 ⊢ Σ1,∆ · · · Γ, σn ⊢ Σn,∆ Γ, ρ1 ⊢ ∆ · · · Γ, ρm ⊢ ∆

Γ ⊢ ∆
(L)

[ϕ∈Γ, ϕ⊳· · · (σ⊢ρ1, . . . , ρm) · · · , σ∈(Φø−Υ)∪Γ, σ⊳(σ1⊢Σ1) . . . (σn⊢Σn)]

Γ, σ1 ⊢ Σ1,∆ · · · Γ, σn ⊢ Σn,∆

Γ ⊢ ∆
(R)

[ϕ ∈ ∆, ϕ⊳(σ1⊢Σ1) . . . (σn⊢Σn), ϕ ∈ (Φ−Υ)∪Γ ]

Γ ⊢ ϕ,∆ Γ, ϕ ⊢ Θ

Γ ⊢ ∆,Θ
(Cut)

Figure 2: Classical Sequent Calculus LKD.

By replacing sequences with sets, and by using G3-style (see [5]), the structural rules have
been avoided. The right rule in LKD is similar to the one in LKd, but includes (Ax) as
a special case; this is the condition ϕ ∈ (Φ − Υ) ∪ Γ, which states that if ϕ is a variable,
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it must be in Γ. In this case we have n = 0, since p ⊳(). The left rule in LKD is obtained
from the one in LKd by insisting that the left-most premiss, if present, is inferred using a
right rule.

LKd and LKD derive the same sequents.

Lemma 3.2. Assume ψ⊳· · · (σ ⊢ ρ1 . . . ρm) · · · and ψ ∈ Γ. If Γ ⊢LKD σ,∆ (or σ is ø) and
Γ, ρ1 ⊢LKD ∆ · · ·Γ, ρm ⊢LKD ∆, then Γ ⊢LKD ∆.

Proof. If σ is ø, use (L). Otherwise we proceed by induction on the derivation of Γ ⊢LKD σ,∆.
Assume, for instance that the derivation ends in (R). First use the induction hypothesis on
each premise of (R). If ϕ 6= σ (using the same variable names as in Figure 2) use (R),
otherwise use (L).

Proposition 3.3. For a sequence Γ, let Γ∗ denote the set of its members. For a set Γ, let
Γ+ denote the sequence (ordered somehow) of its elements.

(i) If Γ ⊢LKd ∆ then Γ∗ ⊢LKD ∆∗.
(ii) If Γ ⊢LKD ∆ then Γ+ ⊢LKd ∆+.

Proof. Property (i) is by induction on the derivation of Γ ⊢LKd ∆, using Lemma 3.2, and
(ii) is by induction on the derivation of Γ ⊢LKD ∆.

By noticing that cut-free proofs are taken to cut-free proofs, we obtain:

Corollary 3.4. The system LKD without Cut is complete.

The rules in LKD formalize winning proponent strategies. In Γ ⊢ ∆ we read Γ as the asser-
tions that have been stated by the opponent and thus may be attacked by the proponent,
and ∆ as assertions that may be asserted by the proponent, as defenses or as the initial
formula. Reading the rules upside-down, the right rule corresponds to a node where the
proponent states ϕ in a defense, and the strategy has a branch for each possible opponent
attack on ϕ. The left rule corresponds to a node where the proponent attacks a formula ϕ
stated by the opponent. In this case the strategy has a branch for each possible opponent
defense and for each opponent counter-attack.

Definition 3.5. Let P be a finite play over ϕ. Define Sit(P ) = Γ ⊢ ∆, the situation
after P , as follows. If P is the empty play, then Sit(P ) = ⊢ ϕ. Otherwise P = Q,M , for
some M = (X,σ, i), and Sit(Q) = Γ ⊢ ∆.

• If M is a proponent move, then Sit(P ) = Γ ⊢ ∆.
• If M is an opponent defense, then Sit(P ) = Γ, σ ⊢ ∆.
• IfM is an opponent attack on the preceding proponent move (X, ρ, j), then Sit(P ) =

Γ, σ ⊢ Σ,∆ where ρ ⊳ · · · (σ ⊢ Σ) · · · .

When translating from derivations to strategies, we would like to make sure that we do not
make the proponent repeat the initial formula, since this is not necessarily permitted.

Definition 3.6. An instance of (R) is redundant if, for some i (using the same variable
names as in Figure 2), Σi ⊆ ∆ and either σi is ø or σi ∈ Γ.

Lemma 3.7. If Γ ⊢LKD ∆, then there is a derivation of Γ ⊢LKD ∆ without redundant
instances of (R).

Proof. By induction on the derivation of Γ ⊢LKD ∆. The only interesting case is when the
derivation ends in (R). If this instance is redundant, then Γ, σi ⊢ Σi,∆ is Γ ⊢ ∆, so by
the induction hypothesis, there is a derivation of this sequent without redundant instances
of (R).
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Theorem 3.8. If ⊢LKD ψ, then ψ has a winning proponent strategy.

Proof. We show that if P is a play (of length k) over ψ, not ending with a proponent move,
resulting in the situation Γ ⊢ ∆, and there is a derivation of Γ ⊢LKD ∆, then there is
a winning proponent strategy for ψ after P . In particular, if ⊢ ψ, then there is a winning
proponent strategy for ψ. The proof is by induction on the derivation of Γ ⊢LKD ∆. We
assume it has no redundant occurrences of (R).

We consider the case where the derivation ends in (R). If P is the empty play, the
situation is ⊢ ψ, so ψ = ϕ (using the same variable names as in Figure 2). In this case,
(D, ϕ, 0) is a possible move. If P is not the empty play, then we must have ψ 6= ϕ. Indeed,
assume ψ = ϕ. We have P = M1,M2, . . . and M2 = (Ai, σi, 1), for some i. Then σi = ø
or σi ∈ Γ, and Σi ⊆ ∆, a contradiction. Since Γ ⊢ ∆ is the situation after P , and ϕ ∈ ∆
is not ψ, there must be a proponent move Ml = (X, ρ, ℓ) and and an opponent move
Mj = (A,σ, l) where ρ ⊳ · · · (σ ⊢ · · ·ϕ · · · ) · · · . But then (D,ϕ, j) is a possible move with
this j and some D. Whether P is empty or not, we have a possible move (D,ϕ, j). With
ϕ⊳(σ1 ⊢ Σ1) · · · (σ1 ⊢ Σ1), each play Pi = P, (D,ϕ, j), (Ai , σi, k+ 1) results in the situation
Γ, σi ⊢ Σi,∆, so there are winning proponent strategies Si for Γ, σi ⊢ Σi,∆. Then

(D,ϕ, j)

))SSSSSS

uullllll

(A1, σ1, k + 1)

��

. . . (An, σn, k + 1)

��

S1 Sn

is the desired strategy.

Theorem 3.9. If ψ has a winning proponent strategy, then ⊢LKD ψ.

Proof. Let T be a winning proponent strategy for ψ. We show that if P is a play in T not
ending in an proponent move and Γ ⊢ ∆ is the situation after P , then Γ ⊢LKD ∆. Taking
P to be the empty play then yields ⊢ ψ. The proof is by induction on the subtree below P

inside T .
So, let P = M1, . . . ,Mn by a play in T not ending in a proponent move, and let the

root of the subtree below P have label M . We consider the case where M = (A,σ, i) is an
attack. Then P has an opponent move M ′ = (X,ϕ, i′) with ϕ ⊳ · · · (σ ⊢ ρ1 . . . ρm) · · · . With
σ ⊳ (σ1 ⊢ Σ1) . . . (σn ⊢ Σn), the subtree below P looks as follows:

M

$$
HH

HHH
HH

HH

))TTTTTTTTTTTTTTTTTTTT

zzvv
vv

vvv
vv

uujjjjjjjjjjjjjjjjjjjj

A1

��

. . . An

��

D1 . . .

��

Dm

��

T1 Tn S1 Sm

The situation at Ti and Sj are Γ, σi ⊢ Σi,∆ and Γ, ρj ⊢ ∆, respectively. By the induction
hypothesis, Γ, σi ⊢LKD Σi,∆ and Γ, ρj ⊢LKD ∆. Since Γ ⊢ ∆ is the situation after P , we

have ϕ ∈ Γ, and σ ∈ (Φø − Υ) ∪ Γ, so Γ ⊢LKD ∆.
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4. Conclusion and related work

We have gone from LK to LKd by replacing the concrete connectives with a specification of
attacks and defenses, and by implicitly replacing the traditional right rules for disjunction
with a single rule, and by restricting (Ax) to variables. As we have seen, generating left
and right rules from attacks and defenses is one way of ensuring that the system satisfies
cut-elimination.

We have then gone from LKd to LKD by eliminating the structural rules, by building
(Ax) into (R), and by adopting a left-right regime where the leftmost premiss of (L) must be
inferred using (R). Derivations in the resulting system are practically identical to winning
proponent strategies, if we agree to avoid redundant occurrences of (R).

Others have proved equivalence between derivations and dialogues, e.g. Felscher [1],
who also comments on other such proofs [2]. See also Krabbe [4] for more references. The
merits of the present proof are that it shows precisely which modest changes we have to
make to LK to make derivations and strategies isomorphic. Moreover, it gives a condition
for a sequent calculus to satisfy cut-elimination: that it can be obtained as an instance of
Figure 1.

The similarity to some aspects of Girard’s ludics [3] is obvious. The abstraction of
concrete formulas to specifications of attacks and defenses yields the rules of LKd where
there is no syntax for the formulas; these rules are similar to the positive and negative rules
of ludics, used to build designs. Moreover, as inferences of LKD axiomatize winning prover
strategies, so can designs in ludics be read as strategies, though with some differences.

The system LKD is one way of presenting classical sequent calculus for “arbitrary”
formulas. Another is to recall that any formula ϕ in classical logic can be written as a
conjunctive normal form ∧i((∨j¬pij)∨(∨kqik)). Applying left and right rules of LK upwards
we get the following derived rules for the synthetic connective represented by ϕ, which also
admit a dialogue interpretation:

Γ ⊢ pi1,∆ · · · Γ ⊢ piji
,∆ Γ, qi1 ⊢ ∆ · · · Γ, qiki

⊢ ∆

Γ, ϕ ⊢ ∆
(L)

· · ·Γ, pi1 . . . , piji
⊢ qi1 . . . qiki

,∆ · · ·

Γ ⊢ ϕ,∆
(R)

where there is one (R) (with a premiss for each i) and one instance of (L) for each i.
By shifting formulas to the right and adding negations as appropriate, we can write

¬pi1 ⊢ ∆ · · · ¬piji
⊢ ∆

⊢ ∨i ∧j pij,∆
(+)

· · · ⊢ ¬pi1 . . .¬piji
,∆ · · ·

∨i ∧jpij ⊢ ∆
(−)

where there is one (−) (with a premiss for each i) and one instance of (+) for each i. Again
these rules are similar to the positive and negative rules of ludics.
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