
Static Analysis of Java Cryptographic Applets

Pierre Boury1 and Nabil Elkadhi2

1 GIE Dyade,

Domaine de Voluceau - Rocquencourt - B.P. 105

78158 Le Chesnay Cedex France,

e-mail: Pierre.Boury@dyade.fr,

home page: http://www.dyade.fr/fr/actions/VIP/pb homepage.html
2 EPITECH,

14-16 rue Voltaire,

94270 Le Kremlin Bicêtre France

e-mail: nelkadhi@club-internet.fr

home page: http://www.epita.fr/~el-kad n

Abstract. Secure Java applications such as JavaCard applets often rely

on cryptography for implementing security functions such as authentica-

tion, or the creation of con�dential channels. The question addressed by

this paper is to provide automated support for the veri�cation of such

applications. We describe here our experience in the design and imple-

mentation of StuPa, a prototype of a static analyzer performing veri�ca-

tion of Java cryptographic applets in order to prevent the disclosure of

speci�ed sensitive data. We give an overview of the formal models it is

based on, particularly those used for modeling cryptographic knowledge.

Finally, we review the scope and limitations of the current prototype,

and its interest for practical applications. 1

1 Introduction

JavaCard ([10]) is a simpli�ed subset of Java, which has been lightened and se-

cured to run on smartcards. JavaCard applets are typically used for authentica-

tion and electronic commerce applications and have high security requirements.

Our objective in this paper is to statically detect potential aws in an untrusted

applet. We are mainly interested in con�dentiality properties: while a trusted

program is interacting with an untrusted environment, we want to ensure that

secret data cannot be disclosed, inadvertently or mischievously. Several formal

models for the analysis of cryptographic protocols have been proposed, notably

[3] and [13]. These methods allow for the veri�cation of various cryptographic

properties such as freshness, authentication and con�dentiality. Moreover, some

other recent approaches such as [1], [9] and [7], are fully automated.

The point addressed by this paper is the adaptation of these methods to the

veri�cation of con�dentiality properties of JavaCard applets. Such a task raises

several problems. First, these methods generally require a complete speci�cation

1 This work was partially supported by the TASSC ITEA project

of protocols, including a description of the role of each participant, whereas in

the applications we consider, we only possess a Java program. Second, in contrast

with these approaches which only apply to dedicated speci�cation formalisms,

we need, for practical reasons, to be able to deal with real Java programs in a

highly automated way.

The focus of the following work is to derive suitable formal models that com-

ply with these requirements. This task has been done following the methodology

of abstract interpretation, as described by [6].

The points addressed in the following are twofold. First, we review in section

2 the formal approach we have designed for the static analysis of con�dentiality.

This approach has been derived from [3] and is applicable to general crypto-

graphic algorithms. Second, in section 3 we explain how we have adapted this

approach to the static analysis of Java. The necessity of dealing with real Java

program instead of algorithms speci�ed into a dedicated language raises several

concerns we consider below. We explain in sub-section 3.1 how we have dealt

with static analysis issues proper to Java such as managing statically unknown

values and references. In section 3.2 and 3.3, we consider the problem of iden-

tifying and modeling cryptographic actions of Java applets. Finally, our design

choices and solutions have been tested and experimented in StuPa, a prototype

static analyzer. We will briey summarize the �rst results of these investigations

in section 4.

2 Automated veri�cation of con�dentiality properties

To begin with, we designed a convenient formal framework for the static ana-

lysis of cryptographic programs. Our approach is an adaptation of Bolignano's

method [3], which is oriented toward automated veri�cation of con�dentiality.

We have modi�ed this method to make it automated and more easily applicable

to real programs. The techniques we use to achieve these goals are derived from

proof-theoretical results about the evolution cryptographic knowledge. We fol-

low the abstract interpretation methodology in order to translate these results

into an automated veri�cation method. The idea of using abstract interpretation

in the area of cryptographic protocol veri�cation to get automated procedures

has been applied independently in [4] and [9].

Instead of considering Java byte-code at �rst, we use a simple language of

cryptographic actions in order to set up the formal foundations of static crypto-

graphic veri�cation. This language is limited to what is essential and suÆcient

to describe cryptographic programs: its has simple testing and branching in-

structions in order to describe program control, and its elementary instructions

include cryptographic actions such as equality tests, cryptographic message con-

struction and decomposition, nonce and key generation, and message reception

and emission (see table 1 below). Known or public messages are those that

could be constructed by an intruder in an untrusted environment using only

initially known data and data having leaked from user program. As more and

more data get disclosed along program execution, the set of public messages is

a 2 A ::= � null action

j x = y equality test

j : x = y non-equality test

j x := y assignment

j x := op(x1,x2,...,xn) elementary operation

j y := [x1;x2;...,xn] tuple construction

j detuple(x, [x1;x2;...,xn]) tuple read

j x := ?y channel read

j x ! y channel write

j x := encrypt�y z encryption

j x := decrypt�y z decryption

j decryptfail�y z decryption failure

j x := fresh nonce generation

j x,y := keys� keys generation

Table 1. Cryptographic actions

growing. This set is somehow an approximation of the cryptographic knowledge

of a hostile intruder. Within this model, we have de�ned a deduction relation

describing when a message is constructible from a set of known messages. What

is needed for program veri�cation is an automated procedure to statically com-

pute the evolution of cryptographic knowledge during program execution. We

have investigated the formal properties of the deduction relation and derived

sound veri�cation procedures from it. A complete description of this approach

can be found in [8]. We will only mention that, in this approach, the concrete

meaning of cryptographic actions is de�ned as terms of transformations acting

on cryptographic environement made of an environment carrying information

about messages content, and of a set containing all disclosed messages describ-

ing the state of knowledge of an untrusted intruder. Over that concrete model

is de�ned a static abstract model in order to statically compute the evolution of

cryptographic knowledge. Variables are associated to message components, and

constraints on these variables express assertions about the structure of messages,

and about the set of public data. Sets of constraints approximate cryptographic

knowledge and are interpreted as sets of admissible cryptographic environments.

Cryptographic actions are interpreted as particular transformers of constraints

sets.

We can see how this approach works by considering the following piece of

cryptographic protocol (de�ned in table 2): a message x is read, decrypted into

a message z using a secret key k1, then encrypted into a message w using a

secret key k2, and �nally sent. In that example, after stage 1, the constraint

:known(x; k2) means that key k2 is con�dential assuming message x is public,

and before stage 3, the constraint w � fzg
a

k2
means that message x is equal to

message z encrypted using key u, which is the inverse key of k1. Table 2 below

action cryptographic constraints

0. (initial assumptions) �0 = fis simple(k1), :known(;k1), is simple(k2),

:known(;k2) g

1. x := ?ic �1 = �0 [fis simple(k1), :known(x; k1), is simple(k2),

:known(x; k2) g

2. z := decryptak1x �2 = �1 [fis simple(u), Inva(u; k1); x � fzg
a

u g

3. w := encryptak2z �3 = �2 [fw � fzg
a

k2
g

4. w !oc �4 = fis simple(k1), :known(x; k1), is simple(k2),

:known(x; k2), is simple(u), Inva(u; k1), x � fzg
a

u,

w � fzg
a

k2
g

Table 2. A part of a cryptographic protocol

shows the evolution of cryptographic constraints resulting from the execution of

the protocol.

More generally, this approach has been implemented and tested on programs

implementing parts of well-known cryptographic protocols, and it gave sensible

results. We use this formal approach in section 3.3 below in order to model

cryptographic information in Java programs.

3 Formal models for Java programs

The formal approach of section 2 is ignoring Java-speci�c problems such as the

matching of Java instructions to cryptographic actions, which we consider in

sub-sections 3.2 and 3.3 below. In order to set up convenient formal models for

Java, we have adapted its former approach to the particular structures of Java

Virtual Machine runtime data and values.

On one hand, we have to deal with general issues of Java static analysis

such as how to handle unknown values. On the other hand, we have to inte-

grate our general model of cryptographic knowledge in a seamless way into our

Java-oriented framework of static analysis. Formal models encoding Java Virtual

Machine con�gurations have to be augmented with cryptographic information,

and cryptographic actions have to be identi�ed inside Java programs.

In the following, we explain how we deal with these issues in StuPa. As an

illustration, we will use a Java implementation of the piece of protocol presented

in table 2 above. StuPa takes as input a set of Java class-�les, and additionnal

cryptographic information, and returns as output static information about the

cryptographic knowledge at di�erent control points of the program. Table 3 be-

low shows the source code and the byte-code of the main method of our example.

As additionnal information, we have set the assumptions that the static �elds

k1 and k2 hold con�dential keys at their initialization. We also have declared

the cryptographic methods put, get, encrypt and decrypt so that they are

submitted to a particular processing during static analysis. We give some details

about this point below.

3.1 Static approximations

The Java Virtual Machine, or JVM, is described in [12], and more formally in

[2]. As usual in static analysis, we have to approximate the JVM values which

are unknown at compile-time. We make the following choices: unknown JVM

numerical values (int, long, double, oat) are approximated by their type, and

unknown references are approximated by their set of possible sites of creation,

or locations , which are the program control points where they may have been

created. The main consequences of these modeling decisions are that actual

classes of instances can be resolved accurately, but di�erent instances created at

a same control point are modeled as a single abstract instance (corresponding

instances �elds must be merged).

We also have to make decisions about the modeling of control information.

For the sake of simplicity, methods calls are in-lined, which is suÆcient in the

public static void main() f

int x size = 5; // read incomming message

// 0 iconst 5

// 1 istore 0

int[] x = Env.get(x size);

// 2 iload 0

// 3 invokestatic #8 hMethod int get(int)[]i

// 6 astore 1

int[] z = decrypt(x, k1); // decipher incomming message

// 7 aload 1

// 8 getstatic #9 hField int k1i

// 11 invokestatic #5 hMethod int decrypt(int[], int)[]i

// 14 astore 2

int[] w = encrypt(z, k2); // compose outgoing message

// 15 aload 2

// 16 getstatic #10 hField int k2i

// 19 invokestatic #6 hMethod int encrypt(int[], int)[]i

// 22 astore 3

Env.put(w); // send outgoing message

// 23 aload 3

// 24 invokestatic #11 hMethod void put(int[])i

return;

// 27 return

g

Table 3. main method of the Java applet

absence of recursion, as it is the case in most JavaCard applets. Otherwise,

method calls require further standard treatment we don't wish to describe here.

As one can expect, this way we can faithfully model statically-de�ned in-

structions: static method call and static �elds access and local access on the

JVM stack are interpreted without loss of information. Computations on static

data are also translated accurately. On the contrary, the abstract interpretation

of dynamic instructions induces non-determinism, which arises from branches

and method invocation.

3.2 Models of data leakage

In order to be able to state and check con�dentiality properties, we must be

able to distinguish, inside the program to be analyzed, which part is trusted and

allowed to hold secret data, and which part belongs to the untrusted external

environment, and toward which no secret information should leak. Note that

this requirement di�ers from our previous cryptographic framework [8], in which

such de�nitions are de�ned as primitive notions.

Our approach to that point consists in de�ning a frontier between the user

program and its untrusted environment, following an approach inspired from

[11]. This is done by declaring a set of trusted classes and by observing the

JVM stack. Potential leaks of information are detected as follows. Numerical

values are typed and partionned into three sets: surely public messages, possibly

con�dential messages, and values without cryptographic content (which are not

messages). A leak is detected when a trusted method writes a con�dential data

on a �eld belonging to an untrusted class, or returns a con�dential value to a

calling method of an untrusted class, and when a method of an untrusted class

gets con�dential values as parameters, or reads a con�dential data from some

�eld.

For instance, in the example of table 3 above, the de�nition class of methods

encrypt and decrypt is trusted, whereas the de�nition class of methods put and

get is not. When an int array is passed as argument to the untrusted putmethod,

the values contained in the array are checked, and a leak of data is detected for

the values which are typed as con�dential (values without cryptographic content

would produce a type error). This means that this method call will be interpreted

as a sequence of channel write action on these values, as we will see in sub-section

3.3 below. Similar checks are applied to �eld access intructions.

In so doing, we de�ne a single con�dentiality domain, the limits of which are

set at the level of classes (by the distinction made between trusted and non-

trusted classes). This approach has appeared to be convenient in practice. One

should also note that in order to perform the static analysis of a program, we

not only have to supply a set of class-�les (to be loaded and launched), but

also additional information that specify trusted classes and initially secret data

(designated as particular con�dential static �elds).

This model of data leakage has some similarities to the approach of [11]

which considers the dual problem of access to sensitive references. This latter

method consists in using a dedicated type system which assigns a particular typ-

ing to references in order to detect access to sensitive references. This approach

is applied to a ML-like language with references and functional closures. The

type soundness properties of this language are formally investigated in [11] and

they allow to use type inference algorithms in order to make the detection. Our

approach to data leakage detection is similar in that it also assigns particular

typing to sensitive values. But it di�ers from it in that it uses data ow analysis,

rather than type inference, in order to propagate typing information. We have

chosen a di�erent approach because, in the case of JavaCard applets, which are

somehow more restricted than ML programs, this choice leads to simpler static

analysis algorithms.

3.3 Models of cryptographic knowledge evolution

In section 2, we referred to a general model of cryptographic knowledge we have

designed for automated veri�cation. We have now to incorporate this formal into

a Java-oriented framework of static analysis.

First, we need to de�ne a meaning for cryptographic notions such as messages

or cryptographic knowledge within the concrete JVM model of execution. This

task raises no particular diÆculty. This is done by augmenting the JVM run-

time structures with additional cryptographic information. To the JVM global

con�guration is associated a cryptographic environment in the same way as

environments are associated to cryptographic programs in [8]. JVM numerical

values are associated with messages showing their cryptographic content.

Second, we have to de�ne what is the cryptographic counterpart of the in-

structions of this augmented JVM, that is to say how is propagated and modi�ed

cryptographic information along execution. This point is less easy, because in the

JVM model of execution, there is no simple counterpart to the elementary cryp-

tographic actions de�ned in our cryptographic model. We proceed as follows:

message emission is modeled following the method described in sub-section 3.2

for detecting data leakage; other cryptographic actions such as encryption, de-

cryption, nonce or key creation, and message construction or decomposition are

associated to calls to particular library methods. The cryptographic meaning of

these methods is hard-coded inside our analyzer as a set of speci�cations that

must be supplied once and for all with each cryptographic API.

Finally, we have to abstract this augmented JVM model of execution into

a static abstract model, well-adapted to automated analysis. Following the ap-

proach initiated in [8] and presented in section 2, this stage of abstraction poses

not particular problem.

We achieve this in our abstract model by associating variables to numerical

values having a crytographic content, and by augmenting the JVM con�gu-

ration state with a set of cryptographic constraints. Admissible cryptographic

environments are statically modeled as a set of cryptographic contraints as in the

example of table 2 above. During the static analysis of execution, a fresh vari-

able is associated to each new value. Cryptographic constraints on that variable

are generated and transformed along the execution of each instruction which

happens to be interpreted as a cryptographic action.

We can get some insights into this approach by looking at the example of table 3.

initial assumptions

�0 = fis simple(k1), :known(; k1), is simple(k2), :known(; k2)g

read incomming message

0 iconst 5

1 istore 0

2 iload 0

3 invokestatic #8 hMethod int get(int)[]i

6 astore 1

�1 = �0 [fis simple(k1), :known(x; k1), is simple(k2),

:known(x; k2), :known(x; k2), x � [x1;x2;x3]g

decipher incomming message

7 aload 1

8 getstatic #9 hField int k1i

11 invokestatic #5 hMethod int decrypt(int[], int)[]i

14 astore 2

�2 = �1 [fis simple(u), Inva(u; k1), x
0
� [x1; x2;x3],

x
0
� fzg

a

u, z � [z1; z2; z3]g

compose outgoing message

15 aload 2

16 getstatic #10 hField int k2i

19 invokestatic #6 hMethod int encrypt(int[], int)[]i

22 astore 3

�3 = �2 [f z
0
� [z1; z2; z3], w � fz

0
g
a

k2
, w0

� [w1;w2;w3] g

send outgoing message

23 aload 3

24 invokestatic #11 hMethod void put(int[])i

27 return

�4 = fis simple(k1), :known(x; k1), is simple(k2), :known(x; k2),

is simple(u), Inva(u; k1), x � [x1;x2;x3], x
0
� [x1;x2;x3],

x
0
� fzg

a

u, z � [z1; z2; z3], z
0
� [z1; z2; z3], w � fz

0
g
a

k2
,

w � [w1;w2;w3] g

Table 4. knowledge evolution

For instance, in table 3, at method call Env.put(w) near byte-code 23, the int

array argument w is scanned for leakage detection, and for each leaking value (here,

for each value), the associated variables are extracted and cryptographic write chan-

nel actions are generated. Another illustration is given by method call encrypt(z,

k2) near bytecode 19: in that case, the values contained in the array argument z are

fetched, the sets of their associated variables z1, z2 and z3 are read, and the follow-

ing cryptographic actions are generated: �rst, a tuple construction of the message to

be encrypted: z0 := [z1; z2; z3]; second, an encryption of that message (using a fresh

variable w as result): w:= encryptak2z
0; and third, a tuple reading of the resulting mes-

sage (using fresh variables w1, w2 and w3 for the contained values): w := [w1;w2;w3].

(The tupling and detupling actions are necessary in order to set the lengths of the

arrays taken as argument and returned as result.) Table 4 shows the kind of cryp-

tographic information that StuPa can deduce from the static analysis of the

applet. In particular, we can check data con�dentiality by tracking constraints

:known(:::; :::) and :old(:::; :::). The example above shows that the keys k1 and

k2 remain con�dential up to the end of the execution of the protocol.

4 First implementation results

We have reviewed above the underlying formal models used as basis for the

design of StuPa, an automated tool for the static veri�cation of con�dentiality

of Java cryptographic applets.

At the current stage of development, a prototype is working, and is under

experimentation. Up to now, it has been tested on small cryptographic applets

such as one implementing the user's role in the Yalahom protocol described in

[5]. On these examples, our tool yields good results in terms of leak detection

and veri�cation of con�dentiality. Experiments on larger applets are on the way.

The main task required for carrying them is to incorporate cryptographic spec-

i�cations of the JavaCard API into the analyzer.

After some usage, the main limitations that appear are related to loss of

information in the process of static analysis. Some limitations result from design

decisions. As it is oriented toward the veri�cation of JavaCard applets, our formal

model doesn't support features of the Java language which are un-used in this

Java subset, such as threads and reection. Other sources of information loss are

related to the existing trade-o� between accuracy of analysis and its cost. For

instance, we could get more information by unfolding iterations more. For those

cases, it is possible to �ne-tune the analyzer.

5 Conclusions

An innovative aspect of StuPa is undoubtedly the way it handles cryptographic

knowledge: this tool rests on a formal framework that provides both an accurate

description of cryptography, and a well-�tted model for automated analysis. It

enables us to formally relate Java implementations of cryptographic mechanisms

to their design requirements, and to verify their conformance in an automated

way.

Much care has been taken in achieving a sound design, in accordance with

the methodological principles of the abstract interpretation framework. In par-

ticular, formal foundations of the model of cryptographic knowledge have been

extensively investigated ([8]).

StuPa sets the focus of static analysis on JavaCard-compliant applets, for

which �rst experiments gave conclusive results. The small size of these applets

and the restricted subset Java they are implemented on mostly account for this

success. For more general Java programs, more look is needed to deal with re-

cursion (which poses no theoretical diÆculties), thread and reection (which are

harder to deal with).

Nevertheless, even as limited to JavaCard, this approach seems promising,

because there are today are high needs of formal veri�cation on JavaCard ap-

plets, which have high security requirements.

References

1. Monniaux, D. Abstracting cryptographic protocols with tree automata. In Static

Analysis (1999), A. Cortesi and G. Fil�e, Eds., vol. 1694 of Lecture Notes in Com-

puter Science, Springer, pp. 149{163.
2. Bertelsen, P. Dynamic semantics of Java bytecode. In Workshop on Principles

of Abstract Machines (Pisa, Italy, Sept. 1998).
3. Bolignano, D. An approach to the formal veri�cation of cryptographic protocols.

In 3rd ACM Conference on Computer and Communications Security (New Delhi,

India, Mar. 1996), C. Neuman, Ed., ACM Press, pp. 106{118.
4. Bolignano, D. Using abstract interpretation for the safe veri�cation of security

protocols. In Electronic Notes in Theoretical Computer Science (2000), M. M.

Stephen Brookes, Achim Jung and A. Scedrov, Eds., vol. 20, Elsevier Science Pub-

lishers.), pp. 77{87.
5. Burrows, M., Abadi, M., and Needham, R. A logic of authentication. ACM

Transactions on Computer Systems 8, 1 (Feb. 1990), 18{36.
6. Cousot, P., and Cousot, R. Abstract interpretation: A uni�ed lattice model

for static analysis of programs by construction of approximation of �xed points. In

Proceedings of the 4th ACM Symposium on Principles of Programming Languages,

Los Angeles (New York, NY, 1977), ACM, pp. 238{252.
7. Lowe, G. Casper: A compiler for the analysis of security protocols. In 10th IEEE

Computer Security Foundations Workshop (CSFW '97) (Washington - Brussels -

Tokyo, June 1997), IEEE, pp. 18{30.
8. Elkadhi, N. Automatic veri�cation of con�dentiality properties of cryptographic

programs. Networking and Information Systems (2001), pp. 4{15, Available at

url: http://www.epita.fr:8000/~el-kad n/Hermes.ps

9. Goubault-Larrecq. A method for automatic cryptographic protocol veri�ca-

tion. In SPDP: IEEE Symposium on Parallel and Distributed Processing (2000),

ACM Special Interest Group on Computer Architecture (SIGARCH), and IEEE

Computer Society.
10. Sun Microsystems, Inc. The JavaCard 2.2.1 Platform Speci�cation. Palo

Alto/CA, USA, May 2000.
11. Leroy, X., and Rouaix, F. Security properties of typed applets. In Conference

Record of POPL 98: The 25TH ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, San Diego, California (New York, NY, Jan.

1998), ACM, pp. 391{403.
12. Lindholm, T., and Yellin, F. The Java Virtual Machine Speci�cation. The

Java Series. Addison-Wesley, Reading, MA, USA, Jan. 1997.
13. Meadows, C. Applying formal methods to the analysis of a key management

protocol. Journal of Computer Security 1, 1 (1992), 5{36.

6 Authors background and expectations

Nabil EL KADHI is professor of computer science at Paris EPITA/EPITECH.

Among his research interests are the security of cryptographic protocol and the

static analysis of program con�dentiality.

He is the author of a Phd thesis on the \automatic veri�cation of con�den-

tiality properties of cryptographic programs".

Pierre BOURY is research engineer at GIE Dyade, a common BULL-INRIA

subsidiary. His main research interests are formal methods applied to software

engineering. He has recently been involved in a project of cryptographic protocols

veri�cation using the Coq proof assistant, and is today developing static analysis

tools for the automated veri�cation of Java cryptographic applets.

Our expectations toward the Workshop on Formal Techniques for Java Pro-

grams are to share ideas about formal veri�cation of security properties in the

domain of Java, and particularly to bring our contribution to the �eld of auto-

mated veri�cation of cryptographic security.

