
Reasoning with specifications
containing method calls

David R. Cok
Eastman Kodak R&D Laboratories

FTfJP – June 2004

Outline

Background
on Abstraction in specification
on JML
on ESC/Java & ESC/Java2
on Simplify

Implementing method calls
Exceptional behavior in annotations
Other applications

Abstraction in specifications

Using (pure) methods in specs
Model fields
Model classes

e.g. JML’s mathematical classes

Advantages

Abbreviation (readability)
Simplifies mental models (e.g. can make
use of functions on mathematical
constructs)
Allows specification in terms of abstract
concepts instead of (or in the absence of)
concrete implementations
Inheritance
Simplifies automated reasoning

Java Modeling Language

JML is
a specification language (a BISL)
for Java
uses Java-like syntax and semantics
embeds annotations in formatted Java
comments (either in a source file or in a
specification file)

Examples of JML

class C {

//@ requires i != 0;
//@ ensures i < 0 ==> \result > 0;
//@ signals (Exception e) i == 0;
//@ diverges i > 1000000000;
public int m(int i) {

...
//@ assert i < 10;
....

}

}

precondition
(calling method is required
to satisfy this pre-state
condition; implementation
may presume it)

normal postcondition
(If method terminates normally, then
this post-state expression is true)

exceptional
postcondition
(If method throws exception of the
given type, then the post-state
expression must be true)

non-termination
(if method does not terminate,
then this pre-state expression
is true)

Specially formatted
comment In-body logical assertion

ESC/Java

A static analysis tool that
efficiently checks for bugs in low-level code
constructs (e.g. NullPointerException) by applying
a (hidden) prover to generated verification
conditions
had reasonably good performance
annotation language close to a subset of JML
no manual proving required

But
no abstraction
not consistent with JML
not maintained

ESC/Java2

Project begun by Cok & Kiniry to evolve
ESC/Java

bring ESC/Java to Java 1.4
bring ESC/Java to current JML
extend the set of checked constructs, while
maintaining the original design philosophy
improve the overall packaging as needed
provide some ongoing support

Enable evalution of this style of verification
on sets of Java code with more extensive and
abstract specifications

Simplify

ESC/Java(2) uses a back-end prover named
Simplify
It accepts expressions in an untyped first-
order logic with quantifiers
Decides validity, invalidity, sometimes
produces counterexamples, sometimes runs
out of resources
Has built-in knowledge of term equality,
simple arithmetic (using Simplex algorithm),
+ axioms for arrays, type relationships
fully automatic (no access for manual
intervention)

Translation – implicit state

public class Z {

static int si;
boolean b;

public int mm(Z z) {
si = si + 1;
b = (si == 0);
boolean bb = b;
z.b = bb;
//@ assert b;

}

}

assume si1 == si0 + 1;

assume b1 == store(b0, this, (si1==0));

assume bb0 = select(b1, this);

[state = {bb0, b1, si1, ... }]

assert z != null;
assume b2 == store(b1, z, bb0);

assert select(b2, this);

-Instance fields are represented as arrays indexed by object ids.
-The ‘state’ is the set of current variables.

Translation – explicit state

assume state1 ==
store(state0,si,select(state0,si) + 1);

assume state2 == store(state1,b,this,
(select(state1,si) == 0));

...

public class Z {

static int si;
boolean b;

public int mm(Z z) {
si = si + 1;
b = (si == 0);
boolean bb = b;
z.b = bb;
//@ assert b;

}

} -arrays representing field values now have an
additional dimension
-using arrays builds in the axioms about the
values of fields that do not change

Translation – explicit state II

public class Z {

static int si;
boolean b;

public int mm(Z z) {
si = si + 1;
b = (si == 0);
boolean bb = b;
z.b = bb;
//@ assert b;

}

}

assume si(state1) == si(state0) + 1;

assume b(state2,this) ==
(si(state1) == 0);

assume bb(state2) == b(state2);

assume b(state3,z) == bb(state2);

assert b(state3,this);

-fields are functions on a state variable and object ids
-What about b(state2,x) for x != this? Needs an axiom
-What about f(state2,x) for a different field f?

Translation of method calls

Bad choices:
inlining the specification

e.g. if the spec is ensures \result == ...;
Not always a suitable expression to inline
Might be more than one
May be recursive calls
Can get huge verification conditions

inlining the implementation
There may not be an implementation
There may be recursive calls
Messy – mixing logical with imperative statements
Loses benefits of abstraction

For some methods (e.g. getters and setters),
inlining might be a good optimization

Translation of method calls

Convert each method call into a
function term with appropriate
arguments.
Use a state argument to distinguish
calls in different state contexts.
Include the specifications of the method
as assumptions (in the appropriate
state context).

Example

//@ pure
public boolean m(M o);

static public M make(int i);

//@ requires o != null;
//@ requires m(o);
//@ ensures m(o);
public int mm(M o) {
//@ assert m(o);
o.i = 1;
//@ assert m(o);
o = make(0);
//@ assert m(o);

}

assume ZZ.m(state0,this,o0);

assert ZZ.m(state0,this,o0);

assume i1 == store(i0,o0,1);
assert ZZ.m(state1,this,o0);

assume o1 == ...;
assert ZZ.m(state2,this,o1);

assert ZZ.m(state0,this,o0) ==>
ZZ.m(state2,this,o0);

Example

//@ pure
public boolean m(M o);

static public M make(int i);

static public M o;

//@ requires o != null;
//@ requires m(o);
//@ ensures m(o);
public int mm() {
//@ assert m(o);
o.i = 1;
//@ assert m(o);
o = make(0);
//@ assert m(o);

}

assume ZZ.m(state0,this,o0);

assert ZZ.m(state0,this,o0);

assume i1 == store(i0,o0,1);
assert ZZ.m(state1,this,o0);

assume o1 == ...;
assert ZZ.m(state2,this,o1);

assert ZZ.m(state0,this,o0) ==>
ZZ.m(state2,this,o1);

Example – adding specs

//@ ensures \result ==
(o.i==0);

//@ pure
public boolean m(M o);

static public M make(int i);

//@ requires o != null;
//@ requires m(o);
//@ ensures m(o);
public int mm(M o) {
//@ assert m(o);
o.i = 1;
//@ assert m(o);
o = make(0);
//@ assert m(o);

}

assume (forall t,o; ZZ.m(state0,t,o) == (i0[o] == 0));
assume ZZ.m(state0,this,o0);

assume (forall t,o; ZZ.m(state0,t,o) == (i0[o] == 0));
assert ZZ.m(state0,this,o0); // OK

assume i1 == store(i0,o0,1);
assume (forall t,o; ZZ.m(state1,t,o) == (i1[o] == 0));
assert ZZ.m(state1,this,o0); // FAILS

assume o1 == ...;
assume (forall t,o; ZZ.m(state2,t,o) == (i1[o] == 0));
assert ZZ.m(state2,this,o1); // DEPENDS

assume (forall t,o; ZZ.m(state2,t,o) == (i1[o] == 0));
assert ZZ.m(state0,this,o0) ==>

ZZ.m(state2,this,o0); // FAILS

Example – Java vs. spec

//@ pure
public boolean m(M o);

public int mm(M o) {
...
b = m(o);
//@ assert b == m(o);
...

}

assume b1 == store(b0,this,RES);

assert b1 == ZZ.m(state1,this,o0);

No logical connection between these values
that enables the assertion to be proved!

Need a connection between m in the code
and m in the assertion.

Example – Java vs. spec

//@ pure
public boolean m(M o);

public int mm(M o) {
...
b = m(o);
//@ assert b == m(o);
...

}

assume RES == ZZ.m(state0,this,o0);
assume b1 == store(b0,this,RES);

assert b1 == ZZ.m(state1,this,o0);

Need to add an assumption when an annotation
method is used in the source code.

But still cannot prove the assertion because the
state has changed.

Example – Java vs. spec

//@ ensures \result ==
(o.i==0);

//@ pure
public boolean m(M o);

public int mm(M o) {
...
b = m(o);
//@ assert b == m(o);
...

}

assume (forall t,o; ZZ.m(state0,t,o)
== (i0[o] == 0));

assume RES == ZZ.m(state0,this,o0);
assume b1 == store(b0,this,RES);

assume (forall t,o; ZZ.m(state1,t,o)
== (i0[o] == 0));

assert b1 == ZZ.m(state1,this,o0);

Now the assertion is provable.

Example – Java vs. spec

//@ pure
public boolean m(M o);

public int mm(M o) {
...
if (b == m(o)) {
//@ assert b == m(o);
...
}

}

// In the then branch...
assume b0 == ZZ.m(state0,this, o0);
assert b0 == ZZ.m(state0,this,o0);

Without a state change the assertion is trivially
provable, even without a specification.

//@ ensures \result ==
(o.i==0);

//@ pure
public boolean m(M o);
public boolean b;

public int mm(M o) {
...
b = m(o);
//@ assert b == m(o);
...

}

assume (forall s,t,o; ZZ.m(s,t,o)
== (select(s,i,o) == 0));

assume state1 == store(state0, b, this,
ZZ.m(state0,this,o0);

assert select(state1,b,this) ==
ZZ.m(state1,this, o0);

-using explicit state reduces the number of introduced
assumptions for ZZ.m

Example – explicit state

Implicit vs. Explicit

Using explicit state
allows more compact representation of
method calls
complicates reasoning about field access
by introducing a new array
dimension/function argument

It would be useful to understand the
trade-off experimentally

Exceptional behavior

//@ ensures P;
//@ pure
public boolean m(M o);

//@ ensures Q;
public int mm(M o) {

b = m(o);
//@ assert b == m(o);

}

If m terminates normally,
then P holds. Nothing known
if m terminates exceptionally.

If mm terminates normally,
then Q holds.

Exceptional behavior

If m terminates normally, then P holds.

What if m terminates with an exception
in the postcondition?

JML semantics say the result is
undefined (more specifically, an
arbitrary value). [Spec# says the
postcondition fails.]

We can only conclude that if
(mm terminates normally AND
the various assertions terminate
normally) then mm satisfies its
specification. Pretty Weak!

//@ ensures P;
//@ pure
public boolean m(M o);

//@ ensures m(o);
public int mm(M o) {

...;
}

Exceptional behavior
For a method that is used in an
annotation, we need a spec that
guarantees normal termination
(under the relevant preconditions)

- This is stronger than most specs
are written.

- This puts a significant burden on
overriding methods.

//@ ensures P;
//@ signals (Exception) false;
//@ diverges false;
//@ pure
public boolean m(M o);

//@ ensures m(o);
public int mm(M o) {

...;
}

- If we presume this behavior, then
the default behavior in an annotation
is different than the default behavior
in code (and a problem for runtime checking)

Other applications

Pure constructors
Array constructors
Model variables
Quantified expressions

No specs – what about exceptional
behavior ?
We lose guarding conditionals

Immutable values

Figuring out what does and does not change
is a big part of a verifier’s task.
Knowing which types and values are
immutable could assist reasoning: these
objects remain equal despite state changes.
Requires purity, immutable internal objects,
limits on rep exposure, a way to check for
immutability, ...

Conclusions

We have successfully implemented the use of
methods in annotations in ESC/Java2.
Methods used in annotations should preclude
exceptional behavior – which puts a burden
on specification writers and on derived
classes.
The same techniques can be used for other
specification constructs.

For discussion...

The choice of logical representation is
not obvious and needs some
comparative work.
Will a concept of immutability assist in
verification?

Translation – explicit state II

assume H(si,state1) == H(si,state0) + 1;
assume (forall f; f != si ==>

H(f,state1) == H(f, state0));

assume H(b,state2,this) ==
(H(si,state1) == 0);

assume (forall f,o;
(f != b || o != this) ==>
H(f,state2,o) == H(f, state1,o));

public class Z {

static int si;
boolean b;

public int mm(Z z) {
si = si + 1;
b = (si == 0);
boolean bb = b;
z.b = bb;
//@ assert b;

}

}

//@ ensures \result ==
(o.i==0);

//@ pure
public boolean m(M o);

public int mm(M o) {
...
b = m(o);
//@ assert b == m(o);
...

}

assume (forall s,t,o; ZZ.m(s,t,o)
== (i(s,t,o) == 0));

assume b(state1,this) ==
ZZ.m(state0,this,o0);

assert b(state1,this) ==
ZZ.m(state1,this,o0);

-using explicit state reduces the assumptions for ZZ.m
-but requires a number of other assumptions on each

assignment noted earlier

Example – explicit state

	Reasoning with specifications containing method calls
	Outline
	Abstraction in specifications
	Advantages
	Java Modeling Language
	Examples of JML
	ESC/Java
	ESC/Java2
	Simplify
	Translation – implicit state
	Translation – explicit state
	Translation – explicit state II
	Translation of method calls
	Translation of method calls
	Example
	Example
	Example – adding specs
	Example – Java vs. spec
	Example – Java vs. spec
	Example – Java vs. spec
	Example – Java vs. spec
	Example – explicit state
	Implicit vs. Explicit
	Exceptional behavior
	Exceptional behavior
	Exceptional behavior
	Other applications
	Immutable values
	Conclusions
	For discussion...
	Translation – explicit state II
	Example – explicit state

