
Reassessing JML’s Logical Foundation

Patrice Chalin

Dept. of Computer Science and Software Engineering,
Dependable Software Research Group, Concordia University

www.cs.concordia.ca/~chalin

Abstract. Early in the design of the Java Modeling Language (JML) care
was taken in the choice of its logical foundation to ensure that JML could
accommodate run-time assertion checking, static analysis and formal
verification. At the time, classical two-valued logic was adopted. Since
then however, we note that the main JML tools have actually implemented
differing semantics, by design. In this paper, we begin by reviewing the
current logical semantics of JML and explore some of the ramifications of
this choice. We then present the results of a survey of programmers from
industry, i.e. JML's targeted end users. We asked them how they want
assertions to be interpreted during run-time checking and static
verification. Survey results indicate that developers are in favor of a
semantics for assertions that is compatible with their current use in run-
time checking, and hence consistent with a three-valued logic in which
partial functions are modeled explicitly.

Keywords: assertions, run-time checking, verification, logical foundations,
industry survey, Java Modeling Language, three-valued logic.

1 Introduction
The Java Modeling Language (JML) is a behavioral interface specification
language for Java that can be used by developers to accurately document detail
design decisions directly in their code [LBR99, Leavens+05]. As an added
benefit to annotating their code in this way, developers can make use of several
tools that process JML annotations. The tools offer a range of functionality: e.g.
the creation of Javadoc-like documentation that includes the relevant JML
annotations, instrumentation of code with run-time checking of assertions,
automatic static checking of code against its specification, and even full formal
verification. The last three of these capabilities are supported by the JML run-
time assertion checker compiler [Cheon03], ESC/Java2 [ESCJ2] and the LOOP
tool [JP03], respectively.

Early in the design of JML care was taken in the choice of its logical foundation
to ensure that JML could accommodate the contending needs introduced by run-
time assertion checking (RAC), static analysis and formal verification. The main
challenge was—and still is—dealing with undefined expressions in assertions as
introduced by partial functions, e.g. 4/0 or a[0] when a is null. The goal was to
opt for a logic that would be suitable to “programmers and mathematicians” alike
[Leavens+05, §1.3.2], and the consensus that was arrived at was a two-valued

 1

https://www.dsrg.org/
http://www.cs.concordia.ca/~chalin

logic in which partial functions are modeled by underspecified total functions
[GS95].

Since then however, we note that the main JML tools have actually implemented
differing semantics, and this by design. In this paper we review the current
logical semantics of JML and explore some of the ramifications of this choice.
We examine why one of the tools, the run-time assertion checker compiler
(RACC), can at best approximate the semantics.

In light of this situation we believe it is time to reassess JML’s logical
foundation. To set the stage for the reassessment, we present the results of a
survey [Chalin05] whose participants were mainly programmers from industry—
i.e. JML’s targeted end users. In this survey, we asked developers whether they
used assertions and what they used them for. We also presented them with
questions whose answers can help guide us in choosing an appropriate logical
foundation for JML.

1.1 Motivation
Writing trustworthy software is a challenge. Several research (and commercial)
initiatives are underway whose common goal is to develop tools and techniques
that will enable software engineers to write more dependable applications. One
of these initiatives is the Dependable Systems Evolution Grand Challenge (DSE
GC). An important component of the DSE GC is the verifying compiler (VC)
project [DSEGC04]. Such a compiler is meant to be used to automatically prove
that a program or program component is correct. Correctness is defined by
program assertions (and other redundant annotations) that are judiciously placed
in the application code [DSEGC04]. When unable to prove correctness, a VC
may embed assertions in object code for the purpose of run-time checking,
similar to what is done by today’s compilers with respect to type checking.

DSE GC proposals stress that the tools and techniques that are to be developed
should be targeted for use by real programmers writing code for normal
commercial, industrial or open source software using mainstream languages
[Woodcock03]. We believe that JML and its associated tools can be seen as early
technological prototypes for a VC.

1.2 Importance
Like any other software engineering effort, the success of the DSE GC (and of
JML) depends on the appropriate involvement of stakeholders, particularly end-
users [LW03]. When the end-user base is large, it is particularly important to
consult with a representative set of the population [Pressman01]. Failure to do so
can significantly decrease the likelihood of user adoption.

Who are the targeted end users of this technology? Some JML references name
mathematicians and programmers [Leavens+05]. DSE GC proposals and most
JML literature clearly indicate that the main end users are general practitioners
writing software for varied application domains—e.g. “the aim of JML is to
provide a specification language that is easy to use for Java programmers”

 2

[Burdy+05]. Hence, the importance of gathering the opinions of our main
targeted end user group, and then using this to drive the reassessment.

1.3 Outline
In Section 2 we provide an introduction to the programmer survey following by a
brief review of JML’s current logical foundation (Section 3). Section 2 presents
only enough of the survey results to motivate the discussion on the logical
foundation that is given in Section 4. In Section 5 we share a summary of “what
practitioners want” as a logical foundation for program assertions. We discuss
these results (Section 6) and then conclude (Section 7).

2 Programmer survey, an introduction
We recently conducted an end-user survey of programmers, mostly from
industry. The survey was open to all programmers, not only those developing
Java applications though 63% of respondents reported programming in Java. The
main purpose of the survey was to uncover the preferences of programmers with
respect to the logical semantics of program assertions in the context of run-time
checking and extended static checking (a form of static analysis).

Over two hundred developers participated in the survey, 77% worked in industry
and 26% worked in academia. Most respondents were from the United States
(46%), Europe (23%) and Canada (23%). Respondents worked in a variety of
application domains such as: business/finance, entertainment, medical, military,
security, software tools, and systems software. All but one respondent claimed
that assertions were used at their institutions1. Respondents were asked to choose
a representative product developed or maintained at their institution and to
estimate the proportion of lines of code (LOC) that were assertions; on average
between 1.4% and 5% was reported. Assertions are primarily used (97%) in run-
time assertion checking (RAC). About 20% reported use of extended static
checking (ESC) or static analysis (SA) tools.

3 JML’s current logical foundations
JML is based on classical two-valued logic in which partial functions are
modeled by underspecified total functions [GS95] as we explain next. Let f be a
function in such a logic then f will be defined for all values of its domain and f(v)
will always have a value in the range of f. If f is usually undefined at v then f(v)
will have some unspecified value in the range of f. As an example, consider the
array access expression a[0] in the context of the following declaration:

int a[] = null;

In this case, a[0] is undefined because a is null. In this logic, a[0] will have
some integer value, although we do not know which value it is. Note that a[0]

1 Note that the purpose of the survey was not to perform a random sampling of developers so as to

determine the proportion that actually made use of assertions. We are simply noting here that of the
responses received, only one claimed not to have used assertions.

 3

and a[1] are not necessarily equal since the array access operator is being
applied to different arguments, (null,0) and (null,1) respectively, and hence these
might be mapped to different values.

One of the advantages of modeling partial functions in this way is that the rules
of classical logic with equality can be preserved. Thus, in particular

• equality remains reflexive so that a[i] == a[i] regardless of the values of
a and i, and

• the law of excluded middle holds, e.g. a[i] == 1 or a[i] != 1 for any
value of a and i.

In the remainder of this article, we will use the term “classical two-valued logic”
(or simply classical logic) to mean “two-valued logic with partial functions
modeled as underspecified total functions”.

As a consequence of having adopted a two-valued logic, Java’s conditional
Boolean operators naturally become equivalent to their non-conditional
counterparts; i.e. conditional conjunction (&&) and conditional disjunction (||)
are interpreted in the same way as Java’s Boolean non-conditional2 conjunction
(&) and disjunction (|), respectively. Thus,

a != null && a[0] > 1

is taken to be logically equivalent to
a != null & a[0] > 1

and
a[0] > 1 & a != null

(which may come as a surprise to practitioners).

4 Classical logic and run-time assertion checking
4.1 Approximating classical logic, at best
Classical two-valued logic cannot be practically implemented in run-time
assertion checking code. The main challenge is that for any given function f and
arguments v that are outside the domain of f, the system must choose an arbitrary
value for f(v) and it must record this value so that it can be returned in all
subsequent cases where f is applied to v. Note that by a function f we mean any
JML operator or (functional) pure method. Pure methods are the only methods
that can be used in assertion expressions.

The JML run-time assertion checker compiler (RACC) does its best to
approximate classical logic. It does so by interpreting an atomic undefined
proposition as either true or false depending on the context [Cheon03, §3.6].
Assertion evaluation is treated as a game where the system tries to maximize its
chances at winning (i.e. making an undefined assertion false at the top-level)

2 Non-conditional operators are called “logical operators” in Java [JLS2, §15.22].

 4

while keeping false positives to a minimum [CL05]3. Hence the RACC would
choose to make a[0] > 0 false in

a[0] > 0 | true

but it would make it true in
!(a[0] > 0) | true

Note that in both cases the overall expressions will be true because the second
disjunct is true.

The contextual approach does have some “anomalies” (as they are called by the
RACC author). For example, let a and b be array references that are null, then
a[0] == b[0] is interpreted as false but then again so is a[0] == b[1]. In
classical logic the former would be true and the latter undetermined. To deal
with this situation the RACC author has chosen to depart from the JML semantics
and to report these kinds of assertions as exceptional assertion failures. The
justification for this choice was for the run-time checking code to be of maximum
benefit to programmers by catching potential errors due to undefinedness
[Cheon03, §1.3.2]. Hence, in conclusion, the RACC does not implement a
semantics of assertions based on classical logic.

4.2 Loss of referential transparency
It should be noted that the contextual approach leads to the loss of referential
transparency. For example, let f(int v) be a boolean method with body

return v > 0 || true

then the following two assertions, though logically equivalent, would yield true
and false (failure), respectively, in the RACC: a[0] > 0 || true and f(a[0]).
Loss of referential transparency has the RACC depart even further from classical
logic.

4.3 Industry
As was stated in Section 2, current industrial use of assertions is mainly for run-
time assertion checking, and this is likely to remain the case well into the next
decade. Thus, JML RAC support must adequately meet the needs of industry. It
is unlikely that developers will accept an implementation of RAC that only
approximates the intended assertion semantics. More importantly, the majority of
developers have stated that they want RAC and static analysis tools to agree on
their interpretation of assertions; details are given in Section 5.3. Hence JML’s
logical foundation needs to be reassessed if we want to meet the needs of our end
users. What better way to ensure that we can meet those needs than by asking
them?

3 Another aspect of the “game” has to do with attempting to make top-level assertions true if they

contain informal assertions. Since this feature is not relevant to our presentation, we do not discuss
it here.

 5

Table 1, Responses to Questions C.2, D.1, D.4

Question true false error/
exception other

C.2 0% 9% 81% 9%
D.1 <EXPR>

t || (nullRef[0] > 0) 73% 1% 18% 7%
(nullRef[0] > 0) || t 6% 5% 84% 4%

nullRef[0] > 0 1% 5% 91% 3%
t | (nullRef[0] > 0) 4% 5% 87% 3%

D.4 <EXPR>
a[0] == a[0] 16% 7% 75% 3%
a[0] == b[0] 7% 8% 80% 4%
a[0] == b[1] 3% 8% 84% 5%

g(a[0]) == a[0]/a[0] 6% 9% 82% 3%
a[0] == 0 || a[0] != 0 8% 10% 74% 7%

5 Logical foundations: what do practitioners want?
A summary of the survey results is given in this section. Further details can be
found in [Chalin05].

5.1 Exceptions during RAC
We asked:

C.2. What should be done during run-time assertion checking if an
error/exception is reported during the evaluation of an assertion expression
(such as a[0] > 0 when a is null)?

The choice of answers was:

• Interpret the expression as true.
• Interpret the expression as false.
• Report an error/exception.
• Other (provide details).

5.2 Exceptions and ESC
We presented various expressions and asked respondents how they should be
interpreted in the context of static analysis (SA).

D.1. During static analysis how should each of the following assertion
expressions, <EXPR>, be interpreted when nullRef is a null array reference
and, t is true?

The <EXPR>s along with the profile of responses are given in Table 1. The first
expression involves a conditional-or operator with its first argument being true.
In such a case the value of the second argument is not interpreted and the overall

 6

expression evaluates to true. The majority of respondents chose “true”. The next
most popular answer was “error/exception” which appears to have been chosen,
in some cases, because the reader was unaware that “||” is a conditional-or in C-
based languages4. Hence we see that developers would prefer that JML preserve
the semantics of conditional operators.

All other expressions in D.1 would result in a null pointer exception if evaluated
during run-time checking. Most respondents were in favor of the same
interpretation in the case of static analysis.

The last expression of D.1 uses Java’s non-conditional or; the first term is true
and the second undefined. We see that most developers prefer that the
interpretation of non-conditional operators be strict (also called Weak Kleene).

5.3 Consistency in the interpretation of assertions
Respondents were also asked whether RAC and SA tools should be consistent in
their interpretation of any given assertion (and for a given specific program state).

D.2. For any given assertion expression E and program state S, should run-
time assertion checking (RAC) and static analysis (SA) always agree on
the same interpretation of E? That is, should
- they both interpret the assertion as true, or
- they both interpret it as false, or
- RAC will report an error/exception and SA will interpret the assertion as

being in error.
73% of respondents answered “yes” citing:

• “[consistency avoids] special cases; helps me remember how things work.”
• “Anything other than complete agreement will inevitably lead to confusion”,
• and a few commented that to do otherwise would violate the principle of

least surprise.

Several who answered “no” did so because they remarked that SA might not be
able to determine the value of arbitrary assertions. This is true in general, hence
we were careful to phrase the question in terms of a given program state S. Some
respondents appear of have missed this point.

5.4 Questions specific to classical two-valued logic
We anticipated that the respondents who answered no to D.2, might have in mind
the modeling of partial functions by underspecified total functions. To test this
hypothesis we asked such respondents to complete the following question:

D.4. During static analysis how should each of the following assertion
expressions, <EXPR>, be interpreted when a and b are null?

The <EXPR> of D.4 were chosen so as to highlight issues that might arise under
the interpretation of partial functions.

4 A small proportion of developers did not program in C-based languages.

 7

As indicated in Table 1, 16% of respondents believed that a[0] == a[0] should
be true when a is null—consistent with an interpretation in two-valued logic. On
the other hand a[0] == b[0] would also be true under a two-valued logic when
a and b are null because the expression simplifies to null[0] == null[0]
which is true; yet only 7% of respondents recognized this. As was explained in
Section 3, the third expression would have an undetermined value in a two-
valued logic because the arguments to the array access operator are different.
The next expression involves a function g declared as follows:

int g(int m) {
 return m/m;
}

It is unclear how the expression g(a[0]) == a[0]/a[0] should be interpreted
in classical logic. An issue of concern is the following: since a[0]—the
argument to g—is undetermined, should we still attempt to interpret g at a[0]?
The final expression is an instance of the law of excluded middle—a central
axiom of two-valued logic5. The majority of respondents chose “error/exception”
for all expressions.

6 Discussion
6.1 What practitioners want
In the main paper discussing the choice of logical semantics for JML it is written
“we are willing to accept a slightly different semantics [from Java’s semantics]
for assertion evaluation as long as programmers are not too surprised by it”
[Leavens+05, §1.3.2]. It would appear that developers would be surprised by the
current JML semantics.

The survey results indicate that practitioners are in favor of an interpretation of
assertions, be it for run-time or extended static checking, in which an
error/exception is reported when a partial function is applied to arguments outside
its domain. In the next sections, we explore some of the top factors that may
have influenced this choice.

6.2 Why they want it
• Two-valued logic is misaligned with programming practice.

The laws of classical logic do not hold in the context of most programming
languages. For example, 1/x == 1/x will not be interpreted as true if x is
0, instead a “division by 0” exception will be raised. Exceptions raised under
such circumstances signal the presence of an error in the program; e.g. the
programmer must have believed that x could not be 0 if 1/x was to be
evaluated (of course the belief could have been wrong; in either case a bug
has been exposed). Exceptions have been recognized as a useful tool in
helping to detect such programming errors as close to their point of
occurrence as possible.

5 It is amusing to note how the second most popular answer was false rather than true. (Of course the

differences between the number of responses for true and false is not statistically significant.)

 8

It is obvious that the evaluation of program expressions can result in side-
effects, thus easily contravening the laws of logic. It is well understood by
programmers that assertions, as well as any debugging code, must be free of
side-effects. Of course, any assistance by languages and tools in preventing
and/or detecting potential side-effects would be welcome.

• Ignoring errors/exceptions is bad programming practice.

Rephrased in programming terms, modeling a partial function as an
underspecified total function, essentially amounts to catching exceptions
raised by the partial function and ignoring or masking them by returning an
arbitrary legal value. This makes it much more difficult to locate the origin
of an error. It is also known to be bad programming practice, e.g. Item 47 in
[Bloch01], “Don’t ignore exceptions”.

• Consistency in the interpretation of assertions across tools

As was reported in Section 5.3, the top reason for having run-time checking
and static analysis agree on the interpretation of assertions is consistency.
Lack of consistency would require that practitioners be versed in two logical
systems. Managing one logical system is already a challenge for the
majority of practitioners and students—as is exemplified by ongoing debates
on the role of mathematics in computer science and software engineering
education—e.g. [Devlin03]. The need to learn and use two logical systems
will have an impact on costs, e.g. due to training, and productivity. The
impact on productivity should be apparent to anyone who has developed
software in two mostly similar but subtly different languages—e.g. C++, Java
or C#. The minor differences in language semantics often gives rise to subtle
bugs.

Of course, consistency could be achieved by adapting the semantics of run-
time checkers to conform to a two-valued logic of static checkers but such an
adaptation can only be approximated, for all practical purposes (see Section
4.1). It seems more sensible, from a practitioners point of view, for the
semantics of static checkers to be adapted to conform to the semantics of
run-time checkers.

6.3 Logics
The survey results indicate that the majority of practitioners would prefer a logic
in which partial functions and undefinedness were modeled directly in a manner
that is consistent with the operational semantics of programming languages.
Three-valued logics appear more suitable in this case.

Barringer, Cheng and Jones have explored various formulations of three-valued
logic [BCJ84], finally settling upon what has become known as the Logic of
Partial Functions (LPF), the logic underlying the Vienna Development Method
(VDM) [Jones90]. LPF adopts a choice of logical operators (called Strong
Kleene) that are non-strict and monotonic [CJ91]. While such a choice of
operators may be suitable for a foundation of LPF, strict and conditional
operators will also be required if we are to accurately reason about the logical
connectives of Java (cf. Section 5.2).

 9

As pointed out by Cheng and Jones, conditional operators enjoy fewer properties
(such as commutativity and distributivity), but this is a cost that end users may
need to experience first-hand: e.g. if the use of non-conditional operators (such as
Java’s “|”) allows ESC tools to prove more properties automatically, then
practitioners may be more inclined to use them. Habits will not be changed
unless there is sufficient motive to do so. In a separate survey, we have noticed
that Eiffel programmers, for example, make use of non-conditional operators
more frequently than their conditional counter parts [Chalin05b]. This may stem
from the fact that Eiffel conditional operators—whose syntax is borrowed from
Ada—are longer to write: e.g. “or else” vs. simply “or”. No matter what the
reason, the end result may well be that it will be easier to (automatically or
manually) verify the validity of Eiffel contracts than, say, JML contracts. In the
end, the use of conditional operators in programs will not disappear. Hence we
will need a logic suitable for reasoning about them.

The survey results support an interpretation of assertions that is consistent with a
three-valued logic. Of course, no statement is being made concerning the
necessity of using a three-valued logic in the provers underlying verification
tools. It is well known that two-valued logics are sufficient to model three valued
logics—e.g. [Konikowska93, JM94].

7 Conclusion
Every experienced programmer knows that exceptions report exceptional
situations and that it is bad programming practice to ignore them [Bloch01]. This
holds true for program assertions as well (i.e. exceptions raised by partial
functions should not be ignored during assertion interpretation) yet, this is what
the current JML semantics propose. We have shown how, for all practical
purposes, JML’s logical semantics cannot be consistently implemented by both
RAC and ESC tools. Our programmer survey confirms that developers want
tools to adopt a common semantics. Furthermore, they are in favor of a
semantics that is consistent with their current experiences with run-time assertion
checking. We note that the semantics of JML assertions could naturally be based
on a three-valued logic—e.g. a suitably extended LPF.

References
[BCJ84] H. Barringer, J.H. Cheng, and C.B. Jones, “A Logic Covering Undefinedness in

Program Proofs,” Acta Informatica, vol. 21, no. 3, pp. 251-269, 1984.
[Bloch01] Joshua Bloch. Effective Java Programming Language Guide. Addison-Wesley. The

Java Series. 2001.
[Burdy+05] Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry, Gary T.

Leavens, K. Rustan M. Leino and Erik Poll. An overview of JML tools and
applications. In International Journal on Software Tools for Technology Transfer
(STTT), vol. 7, no. 3, June 2005.

[Chalin05] P. Chalin. “Logical Foundations of Program Assertions: What do Practitioners
Want?” In Proceedings of the 3rd International Conference on Software
Engineering and Formal Methods, Koblenz, Germany, September 5-9, 2005 (to
appear).

 10

[Chalin05b] P. Chalin. “Are Practitioners Writing Contracts?” In Proceedings of the Workshop
on Rigorous Engineering of Fault Tolerant Systems (REFTS’05), July 2005 (to
appear).

[Cheon03] Yoonsik Cheon. A Runtime Assertion Checker for the Java Modeling Language.
Ph.D. thesis. Dept. of Computer Science, Iowa State University, TR #03-09, April
2003.

[CJ91] J.H. Cheng and C.B. Jones. On the usability of logics which handle partial
functions. In C. Morgan and J.C.P. Woodcock (eds), 3rd Refinement Workshop,
pp. 51-69. Springer Workshops in Computing Series, 1991.

[CL05] Yoonsik Cheon and Gary T. Leavens. A Contextual Interpretation of Undefinedness
for Runtime Assertion Checking. Department of Computer Science, University of
Texas at El Paso, TR #05-10, March 2005.

[Devlin03] Keith Devlin. Why Universities Require Computer Science Students To Take Math.
CACM 46(9):36-39, September 2003.

[DSEGC04] GC6 Steering Committee. Verified Software Repository: a step towards the
Verifying Compiler. Draft, 2004-12-20.

[ESCJ2] ESC/Java2 site at secure.ucd.ie/products/opensource/ ESCJava2.
[GS95] D. Gries and F. B. Schneider. Avoiding the undefined by underspecification. In J.

van Leeuwen, editor, Computer Science Today: Recent Trends and Developments,
LNCS 1000, pp. 366–373. Springer-Verlag, 1995.

[JLS2] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language Specification, 2nd
ed. Addison-Wesley Professional, 2000.

[JM94] C.B. Jones and C.A. Middelburg, “A Typed Logic of Partial Functions Recon-
structed Classically,” Acta Informatica, vol. 31, no. 5, pp. 399-430, 1994.

[Jones90] C.B. Jones. Systematic Software Development using VDM. Computer Science
Series. PHI, 2nd ed., 1990.

[JP03] B. Jacobs and E. Poll, “Java Program Verification at Nijmegen: Developments and
Perspective.” In Proceedings of the International Symposium on Software Security
- Theories and Systems (ISSS 2003), LNCS 3233, pp. 134-153, 2003.

[Konikowska93] B. Konikowska, “Two Over Three: A Two-Valued Logic for Software Specifica-
tion and Validation Over a Three-Valued Predicate Calculus,” Journal of Applied
Non-Classical Logics, vol. 3, pp. 39-71, 1993.

[LBR99] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. “JML: A notation for detailed
design.” In H. Kilov and B. Rumpe, editors, Behavioral Specifications of Business
and Systems, pp. 175-188. Kluwer, 1999.

[Leavens+05] Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde Ruby, and David R. Cok.
“How the design of JML accommodates both runtime assertion checking and
formal verification.” Science of Computer Programming, vol. 55, pages 185-205,
2005.

[LW03] Dean Leffingwell and Don Widrig. Managing Software Requirements: A Use Case
Approach. Second edition. Addison-Wesley, Object Technology Series, 2003.

[Pressman01] Roger S. Pressman Software Engineering: A Practitioner's Approach, 5th edition.
McGraw Hill. 2001.

[Woodcock03] J.C.P. Woodcock. Dependable Systems Evolution: A Grand Challenge for
Computer Science. 2003-05-26.

 11

ftp://ftp.cs.iastate.edu/pub/techreports/TR03-09/TR.pdf
http://www.cs.utep.edu/~cheon/techreport/tr05-10.pdf
http://secure.ucd.ie/products/opensource/ESCJava2

	Introduction
	Motivation
	Importance
	Outline

	Programmer survey, an introduction
	JML’s current logical foundations
	Classical logic and run-time assertion checking
	Approximating classical logic, at best
	Loss of referential transparency
	Industry

	Logical foundations: what do practitioners want?
	Exceptions during RAC
	Exceptions and ESC
	Consistency in the interpretation of assertions
	Questions specific to classical two-valued logic

	Discussion
	What practitioners want
	Why they want it
	Logics

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

