Towards an Effects System for Ownership
Domains*

Matthew Smith

Imperial College London

Abstract. Effects systems can capture the parts of the heap affecting
or affected by some predicate or execution. Comparison of such effects
can demonstrate the ‘independence’ of expressions and predicates thus
allowing expressions to be safely re-ordered or assuring the preservation
of predicates by execution.

We develop an effects system for Aldrich and Chambers’ ownership do-
mains based on the Joe system of Clarke and Drossopoulou. We demon-
strate our effects through an example, discuss some limitations of the
system and suggest extensions.

1 Introduction

Effects systems [7,8,11, 5] characterise execution of programs in terms of the
part of the heap that is read or written. Additionally, in previous work[18] we
extended calculation of effect to predicates with the effect describing the part of
the heap needed to determine satisfaction.

Effects describe heaps in terms of an abstraction based on a feature or prop-
erty of the language. In the language Joe[5] ownership types are exploited to
describe effects. We employ ownership domains [1], a recent development of
ownership types, to calculate effects which are more precise than those of Joe.
We base our system on Joe and extend it to exploit the features of ownership
domains.

Effects are useful for determining independence properties'. In this work in-
dependence of expressions means that the expressions can be reordered or paral-
lelised without changing the outcome. We extend the notion to predicates where
an expression and predicate are independent if execution of the expression does
not affect satisfaction of the predicate. We write e#e’ to mean that expressions
e and €' are independent, and e# P meaning predicate P and expression e are
independent (following Reynolds[15,16] and others).

Independence can be detected by comparing effects of expressions/predicates.
A static disjointness judgement determines if two effects refer to disjoint parts
of the heap. If the read effect of an expression is disjoint from the write effect of

* Work partly supported by a gift from Microsoft Research
1 Sometimes called non-interference, which we avoid because of the use of the term in
security analysis

another (and vice versa) then the expressions are independent?. If the write effect
of an expression is disjoint with the effect of a predicate, they are independent.

Independence, via effects has been used to parallelise code [7] and has been
shown to allow reordering of expressions [8,5] e.g. for code transformation. In
previous work we suggested applying effects to admit a rule of constancy [16] to
a Hoare logic using the effects system of Joe [5]. The rule has the form

{Ple{Q} Rd#te
(P ARYe{Q AR}

where independence of R and e is judged using effects.

Ownership domains [1,10] extend and generalise ownership types giving
greater flexibility but still offering strong encapsulation. Because of this we can
use ownership domains to calculate accurate effects for a variety of programs.
Ownership domains, like ownership types, impose a tree structure on the heap
but give more fine grained control by allowing objects to control multiple do-
mains of ownership. Additionally, domains give the programmer the power to
set the encapuslation policy of the system, providing greater flexibility. Based
on the effects systems of Joe[5] our system describes effects based on the tree
structure of the heap. The flexibility of ownership domains means that, with our
basic system, there are programs for which we cannot calculate accurate effects.
We suggest extensions to both ownership domains and our effects to cope with
some of these problems.

Section 2 describes ownership domains in more detail. An example follows in
Section 3 which introduces our effects and shows independence properties derived
from them. Section 4 describes the effects in more detail (though informally due
to limitations of space) and Section 5 addresses effects for more complicated
programs. We discuss related work and conclude in sections 6 and 7.

2 Ownership Domains

Ownership Domains [1, 10] are an ownership type system which provides a more
general and flexible form of ownership than previous systems. Ownership do-
mains have been presented in a general form [10] but we work in the context of
the original Java-like setting [1].

Every object is contained within a unique domain. Domains are declared in
classes and for each object instance of a class there are instances of each declared
domain, immutably tied to that object. Domains belonging to the same object
are disjoint i.e. they do not share any objects. References between domains are
constrained by explicit, programmer granted permissions and a small number of
general rules.

In ownership type systems the rules governing which references (i.e. fields)
are permitted follow the ‘owners as dominators’ principle. An object may only
reference objects it (directly) owns, its (transitive) owners and objects directly

2 the read effect always includes the write effect

owned by a transitive owner. Ownership domains are similar in that objects are
encapsulated within a tree structure but they have no fixed policy restricting
aliases. The programmer may grant reference permissions between domains more
or less as they see fit. By this mechanism strong restrictions such as those of
ownership types can be encoded but more liberal policies can also be employed.

In Figure 1 we show a class, A and, through a diagram, a possible instance
of it. In the diagram open arrows represent references (fields) and closed arrows
permissions between domains. In class A the parameters to the class name i.e.
owner and d, are ownership domains (indicated in the diagram with square
cornered boxes, objects having round corners). The special parameter owner
indicates the domain containing an instance of the class. A declares two domains,
a and b, shown by the boxes adjoined to the A object.

The types of fields may be instantiated with any domains in scope i.e. param-
eters and locally declared domains (prefixed with this.). The domains used to
instantiate a type must obey the assumptions declared in the class. Assumptions
are of the form d->d’ meaning objects in domain d have permission to refer to
objects in domain d’. Domains may be explicitly linked together (granting per-
mission for one to access the other) as in 1ink b -> d.

The assumed link owner -> d allows objects in the owner domain to refer-
ence objects in the d domain, this permits the field f£. Similarly, 1ink b -> 4
permits objects in b to access objects in d. The fields g and h are allowed as an
object can always refer to objects in its declared domains. Domain declarations
may be marked public, in which case they may be referenced by any object
which may access the declaring object without the need for an explicit link. The
domains a and b may not refer to each other unless explicitly linked.

Vo

class A<owner, d>
extends Object<owner>
assume owner -> d {
domain a,b;
link b -> d;
Object <d> f;
Object <this.a> g;
Object <this.b> h;

owner

Object

L

Fig. 1. A class with ownership domains and a possible instantiation

3 Example

Figure 2 gives code, in a Java-like language with ownership domains, for a simple
project timetabling programming.

class Timetable<owner, projects>
assume owner -> projects {
domain durs;
link owner -> durs;
Duration<durs> d;
Project<projects> p; 3
Timetable<owner, projects> next;
int delay(int x){
this.d.delay(x);
if (this.next!=null){
this.next.delay(x);

class Project<owner> {
public domain durs;
Duration<durs> d;

class Employee<owner,projects>
assumes owner -> projects {
domain official, unofficial;
link official -> projects;
link unofficial -> projects
final Timetable<official, projects> o;
final Timetable<unofficial, projects> u;
void delayo(int x) {
this.o.delay(x);

}

}

class Duration<owner> {

: }

iixt: Z::lil.ft, void delayu(int x) {
t H) this.u.delay(x);

void delay(int x) { 3}

this.start = this.start+x;

}

Fig. 2. Project management with ownership domains

Employee objects keep a record of the projects they are working on in
Timetable objects which are contained in the local domains official and
unofficial. A Timetable is a sequence of pairs of Project and Duration ob-
jects, indicating the project to be worked on and the time period for the work.
Each Timetable object declares a domain durs which contains the relevant
Duration object. Project objects are stored in the parameter domain project
thus allowing multiple timetables/employees to refer to the same project.

Figure 3 shows a possible instantiation of the classes from Fig. 2. Each
Timetable sequence is completely contained within a domain, and their
Duration objects also (transitively). Projects can be shared between employ-
ees as we expect but timetables cannot.

We also assume a predicate nonOverlapping which takes a Timetable as an
argument and is satisfied when the durations of no two elements of the Timetable
overlap. We omit the definition of the predicate for brevity’s sake, it could easily
be encoded in a simple predicate language with recursion.

3.1 Effects

In Figure 4 we give effects for each of the methods described above. Effects for
expressions (and methods) have the form rd ¢ wr ¢’ where ¢ is the read effect
(the part of the heap read, via field accesses) and ¢’ is the write effect (the part
of the heap modified, via field assignments). The read part of the effect always
contains the write part.

The delay method of Duration has effect rd this wr this meaning that
only the receiver of a call to delay is inspected/modified by the call.

projects

*‘{ Employee 4‘ Employee
J official unofficial J unofficial

official

Timetable

Duration

Timetable

Duration

Timetable

Duration

Timetable Timetable Timetable

! I |

[Duration] [Duration} [Dumlion}

Fig. 3. Instance of classes from Figure 2

The effect of delay in the Timetable class is more complicated. The method
may make a recursive call to the delay method of the next Timetable in the
sequence. The declared effect must describe reads/writes to the current receiver
(and the Duration object which is delayed) as well as the equivalent effect on the
rest of the sequence. The effect rd owner.under wr owner.under achieves this.
owner.under means all the objects in domain owner and all those transitively
contained i.e. in domains nested inside owner. This includes all the Timetable
objects in the sequence (since they all have the same owner) as well as the
Duration objects which are nested inside.

The effect declarations for the two delay methods in Employee
must include the effects of the Timetable delay call they make and
add the effect of reading their own field. For example the effect of
delayo is rd this+this.official.under wr this.official.under;
this.official.under is equivalent to owner.under in Timetable (as the

Class Method Effect
Duration<owner> delay(int x) rd this wr this
Timetable<owner, projects> delay(int x) rd owner.under

wr owner.under
Employee<owner, projects> delayo(int x) rd this+this.official.under

wr this.official.under
Employee<owner, projects> delayu(int x) rd this+this.unofficial.under

wr this.unofficial.under

Fig. 4. Effects for methods

field o has type Timetable<official, projects>) and this records the read
of field this.o.

As in our previous work [18] we can calculate an effect for the predicate
nonOverlapping in a similar way to calculating the effect of an expression. We
give this effect in Figure 5. Predicate effects have the form ¢ as they only have
a ‘read’ part. The predicate needs to compare all the Duration objects of each
Timetable object in the sequence beginning at t, so must read fields of the
Timetable objects and the Duration objects. The effect owner.under includes
all the Timetable and Duration objects in the sequence and so is an appropriate
effect for nonOverlapping.

Predicate Effect
non0(Timetable<owner,projects> t) owner .under

Fig. 5. Effects for methods and predicates

3.2 Disjointness and Independence

By comparing the effects of expressions and predicates for the above program
we can find pairs of expressions and predicates to be independent. Throughout
we assume that we are working in the context of an environment where a and b
are final variables of type Employee<owner,projects>. That is, they are each
owned by the same domain and their timetables point to projects in the same
domain. We assume further that they are known not to be aliases.

a.delayo(5)#b.delayo(23) The expressions a.delayo(5) and b.delayo(23)
have effects as follows (based on the types of the variables in our assumed envi-
ronment and the effects we have given for the methods):

a.delayo(5):rd a+a.official.under wr a.official.under
b.delayo(23):rd b+b.official.under wr b.official.under

Recall that two expressions are independent if the read effect of each ex-
pression is disjoint from the write effect of the other. Since we know a and
b to not be aliases we know that the domains a.official and b.official
are distinct, they cannot be nested, since a and b have the same owner.
Thus a.official.under and b.official.under must also be disjoint. Fur-
ther still a cannot be in b.official.under since a and b have the same owner
and all objects in b.official.under are nested within owner. By distributiv-
ity since both a and a.official.under are disjoint from b.official.under
then at+a.official.under is also disjoint from b.official.under. Thus
a.delayo(5) and b.delayo(23) are independent. In fact, any combination of
delays on a and b will be disjoint as all the timetables of a and b are separate.

a.delayo(5)#a.delayu(17) The effects are as follows:

a.delayo(5):rd a+a.official.under wr a.official.under
a.delayu(17):rd ata.unofficial.under wr a.unofficial.under

These expressions are also independent. The argument is largely the same as
above except that a.official.under and a.unofficial.under are disjoint be-
cause a.official and a.unofficial are distinct domains (different names) and
are not nested (they belong to the same object).

nonOverlapping(a.o)#a.delayu(17) The predicate nonOverlapping(a.o)
and a.delayu(17) are independent. This is because the write effect
of a.delayu(17), a.unofficial.under is disjoint from the effect of
nonOverlapping(a.o), a.official.under. These effects are disjoint by the
same argument as in Sec. 3.2. The independence of nonOverlapping(a.o)
a.delayu(17) with the rule of constancy and an appropriate Hoare logic would
allow the following deduction:

{P}a.delayu(17){Q} nonOverlapping(a.o)#a.delayu(17)

{P A nonOverlapping(a.o) }a.delayu(17){@Q A nonOverlapping(a.o)}

4 Effects

In this section we describe the core of the effects system we propose for ownership
domains. We present a grammar for effects and describe the rest of the system
informally. The effects describe heap structure in terms of the tree structure of
domains (where nesting of domains forms a tree). The grammar of effects, 1, is:

WP = rd pwr ¢’
¢ == 0|fO.under |emp| ¢+ ¢
0 == d | path | path.d | path.all

path == z|path.f

where z ranges over program variables, f over field identifiers and d over the
names of parameter domains and locally declared domains.
The meaning of effects is as follows:

d the set of objects in domain d, a parameter to the current receiver (or the top
level domain world)

path the object denoted by the sequence of field accesses path

path.d the set of objects in the domain d of the object pointed to by path

path.all all objects in all the domains of the path object

f.under all the objects below the object(s) denoted by @ in the tree (including
the object(s) in 0)

emp the empty shape, denoting no objects

¢ + ¢’ the union of ¢ and ¢’

For matters of soundness, all paths in effects, e.g. path.d, must be final i.e.
a sequence of final field accesses rooted at a final variable. These terms must be
constant throughout execution in order for the effect to be valid. If they were
not, the meaning of an effect annotation before and after a computation could
be different and the system would not be sound. Similar restrictions are required
in both the effects of Joe, where all local variables are final [5] and the original
domain system [1] where final paths are required to make type instantiations
sound.

4.1 Disjointness of Effects

Judgement of disjointness for our effects is formed from a combination of typing,
syntactic comparison and structural properties of trees. We describe a selection
of rules from the system.

Pairs of domain parameters cannot be detected disjoint as we have no knowl-
edge of their position in the tree, only of the links between them. Simple paths
can be shown disjoint when their types are incompatible i.e. neither is a subtype
of the other, since they cannot refer to the same object. Further from this, for
any disjoint paths, path and path’ any local domains of these paths, path.d and
path’.d', must be disjoint since domains belong to only one object and these ob-
jects are known to be disjoint. Any two path.d effects where the domain names
(d) are distinct must be disjoint simply since they have different names.

Structural shapes i.e. f.under are more difficult to judge disjoint, as we must
be certain that neither shape is nested inside the other. The effects path.d.under
and path.d’ .under are disjoint when d # d’ since path.d and path.d’ are different
domains and thus the sets of all objects each (transitively) contains are disjoint.
Because d and d’ belong to the same object, path they cannot be nested.

General rules such as distributivity where ¢ is disjoint from ¢’ + ¢" if it is
disjoint from ¢’ and from ¢” and rules allowing subsumption of effects complete
the system.

4.2 Joe

Our effects system is based on that of Joe [5]. Both systems exploit the underlying
tree structure of ownership types/domains. The grammar for Joe effects is as
follows:

Y = rdowr ¢
¢ == 0| pn | under(p.n) | ¢U

In the effects of Joe the ‘root’ of each effect (p in p.n) is a local variable or
type parameter. The equivalent ‘roots’ in our system are richer as we allow final
paths, (rather than just variables) and domain expressions (d, path.d, path.all)
(rather than just parameter domains). A subtle but important distinction is
that, in Joe, p whether a variable or a parameter refers to an object (which owns
other objects). In our system, because domains and objects are distinct there

is a semantic difference between a path which refers to a single object and a
domain expression (d or path.d, for example) which refers to a set of objects. In
both systems an inclusion relation is used in the effects system to reason when
a root is higher in the tree than another. In Joe this is a relation on pairs of
objects but in our system it is a relation between pairs of objects (paths), pairs
of domains and between domains and objects.

We use the notion of ‘under’ from Joe (where it is written under (target)) to
describe all objects which are under target in the ownership tree. Joe includes
a more fine grained effect called bands (p.n), which describes strata within the
tree e.g. z.1 is the objects owned by z whereas z. 2 is the objects owned by those
in z.1. Such effects could be included for ownership domains but we omit them
here for brevity and as they do not add anything to our examples. Selection of
all local domains e.g. path.all is equivalent to the Joe effect z.1.

Naturally some of our judgements of effect disjointness etc. follow from those
seen in Joe. We have rules equivalent to each of those in Joe as well as additional
rules for dealing with features new to our contribution.

5 Further Issues

So far we have discussed ownership domains in general and have presented a
simple example. Whilst we have not excluded any part of the system we have not
seen the full power of ownership domains. Ownership domains can provide good
solutions to programming problems that have proved hard in other ownership
type systems. Unfortunately the same features that admit these solutions also
make it hard to give accurate effects to methods/expressions in these programs.

In this section we present an example for which we cannot calculate useful
effects. We go on to suggest an extension to our effects and to ownership domains
which addresses this deficiency.

5.1 Iterators

In [1] an interesting solution is given to a common problem with ownership
type systems. Whilst linked lists are the paradigmatic example of the power of
ownership types, iterators over such lists are problematic. Ownership types allow
the internal structure i.e. link nodes to be encapsulated by making them owned
by the list object. This ensures that i) no two lists can share a representation
(though they may contain the same data) ii) the list object controls all access to
the list representation. Unfortunately, in general, iterators [6] require access to
the internal representation of the list they iterate over. Various solutions have

been proposed to this problem with varying degrees of success®.

3 Clarke and Drossopoulou [5] allow stack variables to break ownership boundaries,
allowing an iterator to be created and used within a method body. This has limited
usefulness since the reference to the iterator cannot be stored (in a field) by an
external client. Boyapati et al. [3] follow a suggestion of Clarke [4] and allow inner
classes to refer to owned objects of the enclosing instance but for instances of such
inner classes to be passed out to clients.

Figure 6 shows the ownership domains solution to list iterators as presented
in [1]. In this solution each List has a domain for holding the list representa-
tion (list) and one for iterators (iters). The iters domain is public so that
clients can refer to iterators of the list. The getIterator method of List creates
a specialised ListIterator but it is returned with only the generic Iterator
interface type. The Iterator interface takes only two domain parameters, one
for the owner and one for the domain where the list data is stored. The spe-
cialised ListIterator takes a further parameter, list, the domain containing
the representation of the list it iterates.

class List<owner, elems> class ListIterator<owner, elems, list>
assumes owner->elems { implements Iterator<owner, elems>
domain list; assumes owner->elems, owner->list
public domain iters; , list->elems {
link list->elems, iters->elems, Cons<list, elems> current;
iters->list; boolean hasNext(){...}
Cons<list, elems> head; Object<elems> next() {
void add(Object<elems> o){...} Object<elems> obj = current.obj;
Iterator<iters, elems> getIter(O{ current = current.next;
return new ListIterator<iters, return obj;
elems, list>(head); }
} }
}
class Client<owner> {
class Cons<owner, e> assumes owner->e { domain d;
Object<e> obj; final List<d,d> 1 = new List<d,d>();
Cons<owner,e> next; void run(){
} Object<d> obj = ...
1.add(obj);
interface Iterator<owner, elems> assumes Iterator<l.iters, d> i = 1.
owner->elems { getIters();
Object<elems> next(); T
boolean hasNext(); ¥
}

Fig. 6. Lists and Iterators in Ownership Domains

5.2 Effects for Iterators

In Figure 7 we attempt to give effects for the methods in Fig. 6. Whilst we
can easily calculate an effect for next in ListIterator we cannot calculate a
satisfactory effect for next in Iterator.

The effect of next in ListIterator should be obvious. The read effect must
include list as it reads the next field of current, which is owned by list, also
it reads and writes the receiver’s field current so the effect must include this.

The declared effect of an overriding/implementing method must be a sub-
effect of the declaration in the superclass (c.f. covariant changes to return types).
Thus, the effect of next in Iterator must include list. This poses a problem

Class Method Effect
Iterator<owner,elems> next() rd this+? wr this
ListIterator<owner,elems,list> next() rd this+list wr this

Fig. 7. Partial effects for Iterator methods

since in the Iterator interface there is no way to mention list (since it is not
a parameter to the type and there is no structural way to refer to it).

The trivial effect world.under would be a sound effect (since it describes the
entire heap) but it is also useless as it is only disjoint with the empty effect.

5.3 Constraints and More Expressive Effects

To overcome our problem in calculating effects for Iterators we propose addi-
tional constructs to our effects and analogous constraints which will be added
to the assumes clause of classes.

We propose the addition of a term .siblings to our effects, so that:

¢ == ...|d.siblings | path.d.siblings

The meaning of these effects is intended to be all domains belonging to the
same object as d or path.d. Figure 8 shows this graphically where p is a path
referring to the indicated object and dom is an alias for the indicated domain
(if dom were a parameter say). The effects p.a.siblings and dom.siblings are
equal and refer to the three shaded objects, that is all the objects in all the
domains belonging to p. The observant reader may notice that path.d.siblings
is equivalent to path.all. The effect is still necessary however as it may oc-
cur through instantiation of a type, it could be converted to path.all through
subsumption or equivalence.

Fig. 8. The sibling effect

Now we can give an effect to both next methods as shown in Figure 9. This
would appear to be sufficient but in fact we need a little more. Whilst the effect
we have given is appropriate for iterators in the context of Figure 6 we have no

way of knowing that, in general, the domains 1ist and owner of ListIterator
are siblings. It is, of course, the intent that ListIterator objects are only ever
created by List objects, and that owner and 1ist will only ever be instantiated
with sibling domains but that is neither enforced nor statically detectable.

Class Method Effect
Iterator<owner,elems> next() rd this+owner.siblings wr this
ListIterator<owner,elems,list> mnext() rd this+owner.siblings wr this

Fig. 9. Full effects for Iterator methods

To cope with this we suggest the introduction of further constraints between
domains in the assumes clause of a class. A constraint of the form d sibling d’,
meaning that domain d is a sibling domain of d’, would be checked when the type
is instantiated (just like the link assumptions). Adding owner sibling list to
the assumes clause of ListIterator guarantees that owner and list are always
sibling domains and that the effect of next is sound.

Statically Checking Siblings Implementing the sibling constraint does not
require any fundamental changes to the machinery of ownership domains, only
extension. We add rules for checking the constraint in the assumes clause and
rules for calculating subshapes involving siblings.

Consider class List in Figure 6 and assume the addition of owner sibling
list to the assumes clause of ListIterator. In the getIter method where
ListIterator is instantiated, the type system will check that iters and list
(the instantiations of owner and list) are siblings. This is straightforward as
iters and list are both declared in List. In general we can deduce that for
any path, path.d sibling path.d’*. Sibling constraints can also be propagated
through the assumes clause, just as link is.

Calling method next on i in the run method of Client has the effect rd
i+l.iters.siblings wr i. By subsumption this becomes rd i+l.all wr i
(which is, in fact, equivalent) and then the standard rules of our system can be
used to reason about the effect.

6 Related Work

Through ownership domains we gain greater expressive power than Joe. In [18]
we presented, in Joe, a similar example to that in Figure 2. Were we to reformu-
late Fig. 2 in Joe each employee would own both timetables but they would not

4In the previous sentence iters and list are shorthands for this.iters and
this.list

be separated as in ownership domains®. Using Joe effects we could still deduce
the independence described in Sec. 3.2 as each employee would own its timeta-
bles and we know the employees to be distinct. Using Joe we could not deduce
the independence in Sec. 3.2, however, as the two timetables would be owned
by the employee and thus cannot be distinguished (just as would be the case if
they were in the same domain).

Ownership domains with our effects are (up to inclusion of bands) demon-
strably more powerful than the effects of Joe since i) ownership types can be
encoded in ownership domains ii) we have shown properties of independence
that could not be deduced in Joe.

The ‘regions’ effects system of Greenhouse and Boyland [8] and datagroups
[11,12] bear similarities with ownership domains and our effects but have major
differences. Both these systems declare groups, not unlike domains, to which
fields may belong. The difference is that these regions divide up the fields of
an object into sub-objects rather than containing the objects pointed to, as
in domains. There is an implicit ownership relation through the use of unique
pointers to objects, known as ‘pivot’ fields. The datagroups of a pivot field may
be mapped into those of the owning object allowing the effects of computation
on the pivot object to be captured by the datagroups of the owner.

Other systems for object encapsulation could be candidates for development
of effects systems based on the structure they enforce on the heap. In practise
systems like balloons [2], islands [9] and similar do not seem to offer general
enough structure or access to that structure to exploit.

Separation logic [13,17,14] seems a rather direct competitor to effects sys-
tems and the strong encapsulation provided by ownership domains and similar.
Separation logic is able to reason about structures such as linked lists without
the need for explicit encapsulation. The ‘frame rule’ and spatial conjunction are
the counterparts to the rule of constancy and static judgement of independence
but require the specifier to think ‘spatially’ as well as logically. Separation logic
requires less of the language (no sophisticated type systems as here) and less of
the programmer but more of the verifier and specifier.

7 Conclusions and Further Work

We have established the core of an effects system for a language with ownership
domains. We have shown, through a simple example, that the effects system we
propose is more powerful than the system of Joe on which it is based.

As we have shown in Section 5, we cannot, with our core system give good
effects to all programs. We suggested an addition to our effects, which also
required an extension to ownership domains. Further work remains to investigate
other useful additions to the effects system. Constraints similar to the sibling
constraint we suggested could be useful in general (not just paired with a related
effect). Structural constraints, e.g. constraining a domain to be contained within

5 In ownership types each object effectively has only one domain which contains all
objects it owns.

another would assist in judging disjointness of effects in general. For example
constraining a parameter domain to be nested within another would imply the
two domains are disjoint. We intend to investigate further. Proof of soundness
of the effects system also remains further work.

Acknowledgements

I would like to thank my supervisor, Sophia Drossopoulou for her help and guid-
ance with this work and to the anonymous reviewers for their helpful suggestions.
Thanks also go to the members of the SLURP group at Imperial for listening
and discussing.

References

1.

2.

10.

11.

12.

J. Aldrich and C. Chambers. Ownership domains: Separating aliasing policy from
mechanism. In ECOOP Proceedings, June 2004.

P. S. Almeida. Balloon types: Controlling sharing of state in data types. In ECOOP
Proceedings, June 1997.

C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation.
In Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 213-223. ACM Press, 2003.

D. Clarke. Object Ownership and Containment. PhD thesis, University of New
South Wales, Australia, 2001.

D. Clarke and S. Drossopoulou. Ownership, encapsulation and the disjointness of
type and effect. In Proceedings of the 17th ACM conference on Object-oriented
programming, systems, languages, and applications, pages 292-310. ACM Press,
2002.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

D. K. Gifford, P. Jouvelot, J. M. Lucassen, and M. A. Sheldon. Fx-87 reference
manual. Technical Report 407, M.I.T. Laboratory for Computer Science, Septem-
ber 1987.

A. Greenhouse and J. Boyland. An object-oriented effects system. Lecture Notes
in Computer Science, 1628:205-229, 1999.

J. Hogg. Islands: aliasing protection in object-oriented languages. In Conference
proceedings on Object-oriented programming systems, languages, and applications,
pages 271-285. ACM Press, 1991.

N. Krishnaswami and J. Aldrich. Permission-based ownership: Encapsulating state
in higher-order typed languages. In Proceedings of the ACM SIGPLAN 2005
conference on Programming language design and implementation, New York, NY,
USA, 2005. ACM Press.

K. R. M. Leino. Data groups: specifying the modification of extended state. In
Proceedings of the conference on Object-oriented programming, systems, languages,
and applications, pages 144-153. ACM Press, 1998.

K. R. M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using data groups to specify
and check side effects. In Proceedings of the ACM SIGPLAN 2002 Conference
on Programming language design and implementation, pages 246—257. ACM Press,
2002.

13.

14.

15.

16.

17.

18.

P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs that
alter data structures. In Computer Science Logic, 15th International Workshop,
CSL 2001. 10-13, 2001, Proceedings, volume 2142 of Lecture Notes in Computer
Science. Springer, 2001.

M. Parkinson and G. Bierman. Separation logic and abstraction. In to be published
in Proceedings of POPL. ACM Press, 2005.

J. C. Reynolds. Syntactic control of interference. In Proceedings of the 5th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, pages
39-46. ACM Press, 1978.

J. C. Reynolds. The Craft of Programming. Prentice-Hall International Series in
Computer Science. Prentice Hall International, 1981.

J. C. Reynolds. Separaion logic: A logic for shared mutable data structures. In
Proceedings of LICS, 2002.

M. Smith and S. Drossopolou. Cheaper reasoning with ownership types. In IWACO
Proceedings, 2003.

