
Julia:

A Generic Static Analyser for the Java Bytecode

Fausto Spoto

Dipartimento di Informatica, Verona, Italy
fausto.spoto@univr.it

Abstract. We describe our software tool Julia for the static analysis
of full Java bytecode, for optimisation as well as verification. This tool
is generic since abstract domains (analyses) are not part of Julia but
rather external classes that specialise its behaviour. Static analysis is
performed through a denotational or constraint-based fixpoint calcula-
tion, focused on some program points called watchpoints. These points
specify where the result of the analysis is useful, and can be automati-
cally placed by the abstract domain or manually provided by the user.
Julia can be instructed to include a given set of library Java classes in
the analysis, in order to improve its precision. Moreover, it gives abstract
domains the opportunity to approximate control and data-flow arising
from exceptions and subroutines.

1 Introduction

This paper describes the Julia software tool that we have developed in order
to apply the abstract interpretation technique [10] to the static analysis of Java
bytecode [16]. The motivation underlying our effort is to provide a software
support for optimising, verifying and reasoning upon Java bytecode applications
before they are run, and when their source code is not available or does not
even exist. Forseeing the behaviour of programs, before their actual execution,
becomes more and more relevant as such programs increase in complexity and get
used in critical situations such as medical operations, flight control or banking
cards. Being able to prove, in an automatic way, that programs do adhere to their
functional specifications is a basic factor to their success. This is particularly
true for applications written in Java bytecode, distributed on the Internet or
used inside a smart card, and hence potentially harmful to the client. In this
perspective, analyses for security are attracting more and more interest [20]. But
the information inferred by a static analysis can also be used for optimisation,
documentation and debugging.

Abstract interpretation [10] has served as a primary framework for the formal
derivation of static analyses from the property of interest. It features the ability
to express correctness as well as optimality of a static analysis. It consists in
executing the program over a description (the abstract domain) of the actual
run-time data. By saturating all possible program execution paths, we get a

domain description size

rt rapid type analysis (a kind of class analysis) [5] 743

ps denotational set-based class analysis [18, 24] 841

cps constraint and set-based class analysis [18, 24] 775

er denotational escape analysis [7, 15] 1016

cer constraint-based escape analysis [7, 15] 1030

bni information-flow analysis with Boolean formulas [13, 20] 2659

static static initialisation analysis 539

Fig. 1. The abstract domains currently implemented inside Julia. Their size is given
in number of Java source code lines, comments included.

provably correct picture of its run-time behaviour, which is more or less precise,
depending on how much the chosen description approximates the actual data.

The goal of Julia was to fulfill the following criteria:

– the analyser is generic i.e., it does not embed any specific abstract domain
but allows instead the addition of new abstract domains as external classes;

– the analyser allows one to specify the set of classes which must be analysed,
called the application classes. They must not change from analysis-time to
run-time (through dynamic loading); this would otherwise break the correct-
ness of the analysis;

– the abstract domain developer has his work simplified as much as possible.
Namely, he must be able to apply the formal framework of abstract interpre-
tation to define its abstract domain, even for the most complex bytecodes
and in the presence of all the intricacies of the Java bytecode. All he needs
to do is to provide implementations of the abstract operations corresponding
to the concrete bytecodes, together with a bottom element and a least upper
bound operator;

– the analysis is localised i.e., its cost is proportional to the number of program
points where the abstract information must be computed (the watchpoints);

– the analyser does not impose any constraint on the precision of the abstract
domain. Namely, it allows a given abstract domain to exploit the flow of
control due to exceptions and subroutines to get a more precise analysis, yet
allowing another domain to disregard the same flows and get a less precise
analysis. Precision remains a domain-related issue [10];

– the analyser uses efficient techniques for computing the fixpoint needed for
the static analysis [10]. These techniques are domain-independent, so that
the abstract domain developer does not need to care about how the fixpoint
is computed for its abstract domain.

Julia is free software [23]. It currently includes seven abstract domains,
which are described in Figure 1. Class analysis is used to transform some virtual
calls into static calls, whenever their target is statically determined [25]. Escape

analysis determines which creation instructions can safely allocate objects in the
activation stack instead of the heap, since those objects will never outlive the

method which creates them [7, 15]. Information-flow analysis approximates the
flow of data in a program, permitting one to spot violations of non-interference
conditions in the analysis of security [20]. Static initialisation analysis determines
the set of classes which are definitely initialised in a given program point, so that
references to such classes do not induce a call to their static initialiser. We discuss
it in Section 9 as a simple example of abstract domain.

The paper is organised as follows. Section 2 describes related work. Sections 3
to 8 show how each of the previous criteria have been attained with Julia.
Section 9 shows an example of abstract domain which can be plugged inside
Julia. Section 10 discusses the application of Julia to multi-threaded programs.
Section 11 presents the cost in time for the analysis of some non-trivial Java
bytecode applications. Section 12 concludes.

2 Related Work

Because of the actual complexity of the Java bytecode, static analysers for full
Java bytecode have not been developed intensively yet.

A decompilation tool, such as Soot [26], is often used as the front-end of a
static analyser for Java bytecode. Currently, class analyses similar to rapid type
analysis are implemented inside Soot. Decompilation is problematic when the
bytecode is not the result of the compilation of Java, and maybe contains some
exotic features of the Java bytecode that have no direct counterpart in Java,
such as overlapping or recursive exception handlers (i.e., catching exceptions
thrown by themselves), or recursive Java bytecode subroutines (which cannot
be decompiled into finally clauses). The Indus tool [1] is an analyser based on
Soot. It currently includes some flavour of class analysis, escape analysis and
analyses targetted for concurrent programs, to be coupled with a model-checker.

In [17], a set of tools and components for building language runtimes is
shown. The bytecode they consider includes the Java bytecode as a special case.
Such tools have been used to implement some static analyses as well. Their code
preprocessing is much lighter than ours and consequently much faster.

A generic analyser for a subset of Java (rather than Java bytecode) is de-
scribed in [19]. It has only be applied to small programs. It allows completely
relational, flow and context-sensitive static analyses. In this sense it is quite close
to our work.

Various flavours of rapid class analyses have been implemented in [25]. The
tool is not available and genericity is not mentioned. Some benchmarks are
similar to ours and their analysis seems faster than ours.

Escape analysis has been implemented through specialised analysers for Java
source code only, rather than Java bytecode. For instance, the analysis in [7]
works inside a commercial Java compiler. The construction is specific to escape
analysis, and it cannot be immediately applied to other analyses. A more complex
escape analysis has been implemented in [9] and it seems to perform like ours.
However, it is not a generic nor localised tool.

A generic analyser for the Java Card bytecode has been defined in [8]. The
approach is fascinating, since it is based on the automatic derivation of a correct
static analyser from its same proof of correctness. However, the Java Card byte-
code is simpler than the Java bytecode. Moreover, exceptions are not considered.
No examples of analysis are shown. Hence, actual analysis times are unknown.

jDFA [2] performs constant propagation and liveness analysis for variables,
but none of the analyses we show in Figure 9. JNUKE [4] performs dynamic

rather than static analysis. No sensible comparison is hence possible with Julia

3 A Generic Analyser

Being generic is a useful feature of a modern static analyser. Current program-
ming languages, such as the Java bytecode, are so complex that the development
of a new static analysis is hard and error-prone. However, different static analyses
do share a lot. The preprocessing phase (Section 5) and the fixpoint computa-
tion (Section 8) are the same for every abstract domain. And they represent
by themselves most of the development effort of a static analysis. It is hence
convenient to develop and debug them once and for all, and to see new abstract
domains as plug-in’s which are added to the static analyser in order to specialise
its behaviour.

Genericity requires however to provide an interface between the code prepro-
cessor and the analyser. We solved this problem by specifying all bytecodes as
state transformers. For each state transformer the abstract domain provides an
approximation (see for instance Section 9).

bytecode resultsRomeo Juliet

Bcel Domain

Julia

Fig. 2. The structure of Julia.

To fulfill this requirement, we
structured Julia as in Figure 2. A
code preprocessor, called Romeo,
feeds the preprocessed code into
a generic fixpoint engine called
Juliet. The latter uses an exter-
nal module, the abstract domain,
to abstract every single bytecode,
but uses its own fixpoint strategies,
independent from the abstract do-
main. The Bcel library [12] is a
low-level interface to .class files.

Figure 1 shows that genericity
leads to small abstract domain implementations, and hence faster and simpler
development.

4 Application Classes

The Java Virtual Machine loads classes dynamically as they are needed during
the execution of a program. Hence, we have no guarantee that the classes that will
be loaded at run-time will correspond to those that were present in the system

during the static analysis. We might think to analyse a class without assuming
anything about its surrounding environment. Any reference to an external class
is treated through a worst-case assumption [11] claiming that nothing is known
about its outcome. This is definitely correct, but often useless in an object-
oriented language, where classes are tightly coupled through virtual method
invocations, field accesses and constructor chaining. This approach results in
static analyses of very little precision.

Instead, we follow here the solution to this problem used in the decompilation
tool Soot [26], which allows one to make explicit assumptions about which
classes (called application classes) are not allowed to change from analysis-time
to run-time. As a consequence, we can inspect them during the analysis and
gather abstract information which improves the precision of the analysis.

Application classes are typically those of the application we are analysing.
Libraries are not considered application classes, usually. Hence, any reference to
a library class is resolved through the worst-case assumption. However, stronger
hypotheses than the worst-case assumption can be made. For instance, in [25],
the set of application classes is assumed to be closed wrt. subclassing. This
improves the precision of the analysis.

We assume that every abstract domain plugged inside Julia decides how to
deal with references to non-application classes. It can use a worst-case assump-
tion or other, stronger hypotheses. This must be clearly stated in its definition,
so that the user of Julia can judge whether such hypotheses are realistic or
not for his own analyses. For instance, our abstract domain rt for rapid type
analysis assumes that application classes are downward closed, as in [25], while
our domain er for escape analysis assumes that non-application classes have the
same method and field signatures as in the system used for the analysis; their
implementation can however change.

5 Bytecode Simplification (Preprocessing)

The application of abstract interpretation to a complex language such as the
Java bytecode is a real challenge. This is because abstract interpretation allows
us to derive a static analysis from a specification of the concrete semantics of a
program given as an (operational or denotational) input/ouput map. But some
Java bytecodes cannot be immediately seen as input/output maps. Examples are
the control-related bytecodes such as goto or lookupswitch. Other bytecodes
are input/ouput maps, but they are so complex that the application of abstract
interpretation is very hard and error-prone. Examples are the four invoke byte-
codes. Moreover, exceptions break the input/output behaviour of a bytecode,
since for some input state there is no output state, but rather an exceptional
state. We want to spare as much as possible the abstract domain developer from
knowing the intricacies of the bytecode, and allow him to define correct (and
potentially optimal) operations on the abstract domain corresponding to the
concrete bytecodes.

To this goal, we apply a light preprocessing to the Java bytecode, in the sense
that most of the bytecodes, those which are already input/output maps, are not
transformed. The result is a graph of basic blocks [3] of a simplified Java byte-
code, which we call Juliet bytecode. Edges between basic blocks model control.
Conditional jumps use new filter bytecodes, which play exactly the same role as
the assume statements used in [6]. These filter bytecodes can be used to improve
the precision of a static analysis, as [6] shows. An example is in Section 9. They
can also be conservatively abstracted as no-ops. Figure 3 shows a bytecode and
its translation into a graph of basic blocks, where the goon new filter bytecodes
select the execution path on the basis of the outcome of the if icmplt test.

0 iconst_0 8 iload_1

1 istore_1 9 bipush 100

2 goto 8 11 if_icmplt 5

5 iinc 1 1 14 return

Component 1

Component 2 (rec)

 Component 3

Block 1

 iconst_0
 istore_1

Block 2

 iload_1
 bipush 100

Block 3

 goon_if_icmplt
 iinc 1 1

Block 4

 goon_if_icmpge
 return

Fig. 3. A piece of bytecode and its
graph of basic blocks.

For instance, static initialisation
of a class κ (and of all its super-
classes) occurs the first time that
a new κ, getstatic κ, pustatic κ

or invokestatic κ bytecode is ex-
ecuted [16]. If this is the case, κ’s
static initialiser and those of κ’s super-
classes are run. This behaviour must
be considered by a static analyser
that faithfully respects the semantics
of Java. Hence we compile a new κ

bytecode into the Juliet code in Fig-
ure 4. The new initialise κ byte-
code marks a given class (and all its su-
perclasses) as already initialised. The
new call κ.〈clinit〉 bytecode stands
for a call to the static initialiser of
κ and to those of all its superclasses.
The new resolved new κ bytecode be-
haves like the old new κ bytecode,
but it does not check for initialisation.
All bytecodes in Figure 4 are now in-
put/output maps. This compilation of
the original new bytecode simplifies the
subsequent static analysis. An example is in Section 9. In a similar way, an
invoke instruction is compiled into a Juliet code which explicitly resolves the
class, then resolves the method, then looks for the target method of the call
(through a compiled lookup procedure), then creates the activation frame for
the method, then calls the selected method and finally moves the return value
of the called method into the operand stack of the caller. The domain devel-
oper does not need to know how a method is resolved and looked up by the
Java Virtual Machine [16]. He does not need to know about visibility modifiers,
nor about the exceptions which might be thrown during the method call. Ev-
erything has been compiled, he just has to abstract the resulting code. Also
exception handlers are compiled into the code.

x

goon_ifinitialised goon_ifnotinitialised κ
κnew

x

y

κ

y

resolved_new κ
call .<clinit>κ

initialise κ

Fig. 4. The compilation of a new bytecode.

Since Juliet bytecode is derived by splitting complex Java bytecodes, it is
more fine-grained than Java bytecode. Hence all properties of the Java bytecode
can be expressed as properties of Juliet bytecode. In particular, we claim that
the resulting Juliet bytecode has the same concrete semantics as the original
Java bytecode. We are confident in this result since most of the Java bytecodes
are not changed during the translation. The most complex bytecodes are trans-
lated by following their operational semantics in the Java Virtual Machine official
documentation [16].

Since a graph of basic blocks of bytecode is used, we can fit all the complex
features of the Java bytecode into that formalism (see Section 2). Namely, edges
connecting the blocks of code let us represent exception handlers of any shape
and recursive subroutines.

6 Localisation

The information computed by a static analysis is typically useful in some special
program points only, called watchpoints. The number and position of the watch-
points depends on the way the abstract information is used to reason about the
program. For instance, in the case of class analysis we want to know which virtual
calls are actually determined i.e., always lead to the same target method [25].
Hence a watchpoint must be put before the virtual calls of the program, so that
we can use the abstract information collected there to spot determinism. In the
case of escape analysis, we bracket, between an entry and an exit watchpoint,
the methods containing a new bytecode. This allows us to spot the new byte-
codes creating objects that never escape their creating method. Those objects
can hence be allocated in the activation stack instead of the heap [7, 15].

Since, in general, watchpoints are internal program points, the denotation
computed by a static analyser cannot be just an input/ouput map. A richer
structure is needed. Moreover, it is desirable that the cost of the analysis scale
with the number of watchpoints, in which case we say that the static analysis
is focused or localised. This is important because it allows us to concentrate the
typically little computational resources of time and memory on the watchpoints
only, instead of the whole program. Hence larger programs can be analysed.

A general framework for focused static analyses was developed in [22] for
a simple high-level language. In [21] we show how it can be applied to the
Java bytecode, by exploiting the same simplification of the bytecode highlighted
in Section 5. We have then implemented this localised analysis inside Juliet,
the fixpoint engine of Julia. Our experiments confirm that the resulting static
analyses outperform their unfocused versions [21].

A positive property of our focused analyses is that the abstract domain de-
veloper is not aware of how the focusing technique works [22, 21]. He develops
his abstract domain as for a simple input/ouput analysis.

Abstract domains for Julia put watchpoints automatically, since they are
aware of the goal of the analysis they implement. We report an example in
Section 9. But the user can put watchpoints explicitly if he wants.

Julia runs also unfocused, constraint-based analyses. Although they often
perform worse than their focused versions, such analyses are often simpler to de-
velop. For instance, we have developed both class and escape analysis in focused
(denotational) and unfocused (constraint-based) way, which resulted in the fo-
cused ps and er and in the unfocused cps and cer domains (Figure 1). This
does not mean that cps and cer are useless. Constraint-based static analyses
can be made (completely or partially) flow-insensitive by merging (all or some)
variable approximations. The same is much harder to achieve with denotational
abstract domains. Hence, if flow-sensitivity is not important, as experiments
show for class and escape analysis, then constraint-based analyses provide fast
static analyses. In other cases, such as static initialisation analysis and control-
flow analysis, flow-sensitivity is very important, so denotational, localised static
analyses should be preferred.

7 No Constraints on Precision

Abstract interpretation [10] entails that the precision of a static analysis is
domain-related. The precision of different domains can be formally compared
without considering their implementation in the analysis. It is desirable that
this situation be maintained in practice. Hence the analyser should not limit
the precision of the analysis because of spurious constraints due to the way the
analysis is implemented.

Many static analyses compile the source program into a constraint whose
solution is an approximation of the abstract behaviour of the program. This
has the drawback that a given variable of the constraint is used to represent
the approximation of a program variable throughout its whole existence. But
a program variable can hold different values in different program points (flow

sensitiveness). Hence, this technique merges all those approximations in the
same variable, thus imposing a limit to the precision of the analysis.

This situation improves by using variable splitting or variable indexing in or-
der to multiply the variables used in the constraint to represent a given program
variable. This means that the domain developer (who writes the compilation of
the source program into a constraint) must be aware of the problem. Moreover,

if a given method is called from different contexts, the same approximation is
still used for all such calls. Method cloning [27] can be used here, which further
complicates the analysis. Consequently, to the best of our knowledge, it has never
been implemented for the Java bytecode.

We prefer instead to stick to the traditional definition of abstract interpre-
tation [10], so that static analysis works by computing a denotational fixpoint
over data-flow equations derived from the structure of the program. This results
in a flow and context sensitive analysis. The abstract domain might decide not
to exploit this opportunity of precision, but no constraint is imposed by the
analyser itself.

Similarly, the preprocessing of the Java bytecode performed by Julia (Sec-
tion 5) exposes the flows of control arising from the lookup procedures for virtual
method invocations, from exceptions and from subroutines. Again, it is an ab-
stract domain matter to decide whether those flows of control must be selectively
chosen, in order to get a more precise analysis, or rather they must be considered
as non-deterministic choices without any preference, thus getting a less precise
analysis. Often, it is just a matter of trade-off between precision and cost of the
analysis. For instance, the rt domain for rapid type analysis chooses between
those flows non-deterministically, while the abstract domain ps for class analysis
selects them in order to drive the analysis and collect more precise information.

8 Fixpoint Engine

Computing a global fixpoint over data-flow equations can be computationally
expensive or even prohibitive. We have used some techniques to tame this com-
plexity issue.

The first consists in building the maximal strongly connected components of
the call graph of basic blocks and methods. These components are then sorted
topologically and used to build the analysis of the whole program through local

fixpoints. There is a local fixpoint for each recursive component. For instance,
Figure 3 contains three components. The static analyser works by first computing
the analysis for component 3 (which does not require any fixpoint) then the
analysis for component 2 (which does require a local fixpoint) and, finally, the
analysis for component 1 (without any fixpoint).

A second technique was originally developed for the static analysis of logic
programs and is known as abstract compilation [14]. During the abstract inter-
pretation process, a given bytecode is repeatedly abstracted because of loops and
recursion. It becomes hence convenient to abstract it once and for all, and com-
pute the fixpoint over an abstract program i.e., a program where each bytecode
has been substituted with its abstraction into the abstract domain. For instance,
the code shown in Figure 3 first gets abstracted into the chosen abstract domain,
as Figure 5 shows. Then, the fixpoint mechanism is applied as before.

Abstract compilation can be applied repeatedly. If the analysis a of a piece
of code c is stable i.e., it will not change anymore during the analysis, then c can
be substituted with a. For instance, during the computation of the local fixpoint

Component 1

Component 2 (rec)

 Component 3

Block 1

 a_1
 a_2

Block 2

 a_3
 a_4

Block 3

 a_5
 a_6

Block 4

 a_7
 a_8

Fig. 5. The abstract compilation of the program in Figure 3.

for component 2 in Figure 5 we compute repeatedly the sequential composition
of a 3 and a 4 and of a 5 and a 6. It is hence convenient to compute these
compositions once and for all, before the fixpoint mechanism starts.

It must be noted that the abstract domain designer is not aware of the use
of strongly connected components and abstract compilation, which are domain-
independent techniques. Domain-specific fixpoint acceleration techniques will be
added in the future to Julia, through widening operators [10]. They are essential
for using abstract domains with infinite ascending chains, such as polyhedra.

9 Writing Abstract Domains for Julia

New abstract domains can be developed and plugged inside Julia. The domain
developer must define the abstract counterparts of the concrete bytecodes, a
bottom element, a least upper bound operator and how the watchpoints are put
in the source code to perform the analysis implemented by the domain. Ab-
stract domains for Julia are Java classes that extend juliet.BottomUpDomain,
if localisation is used (Section 6), or juliet.ConstraintDomain, otherwise. We
describe here an abstract domain of the first kind, which is used for static

initialisation analysis. This analysis collects the set of classes which are defi-
nitely initialised in each given program point. This information is useful before
a goon ifinitialised or goon ifnotinitialised bytecode (Figure 4), which
might be found to be redundant. If that is the case, they can be safely re-
moved from the code, so that subsequent static analyses (class, escape analysis,
etc.) will run on a simplified program, and be potentially faster and more pre-
cise. The set of initialised classes enlarges only when an initialise κ or a
goon ifinitialised κ bytecode is executed (Figure 4), and never shrinks. In-
deed, we know that, after both bytecodes, class κ and all its superclasses are

initialised. From this idea, we implemented the abstract domain for static ini-
tialisation shown in Figures 6, 7 and 8.

In Figure 6, we see that an abstract element contains the set initialised of
definitely initialised classes. The init method prepares the domain for the static
analysis. In our case, it puts a watchpoint in front of each goon ifinitialised

bytecode. We do not put any watchpoint in front of the goon ifnotinitialised

bytecodes, since they are always coupled with a goon ifinitialised (Figure 4),
so one watchpoint is enough for both. The method equals checks when two
abstract domain elements are the same. In our case, they must contain the same
set of initialised classes.

Our static domain continues in Figure 7. The toString method is used
for printing an abstract domain element, while the output method provides sta-
tistical information at the end of a static analysis, by reporting the number of
redundant goon ifinitialised tests. There is also a method that computes the
bottom element of the abstract domain, another that clones an abstract domain
element and another that computes the least upper bound (lub) of two abstract
domain elements. This last operation consists in the intersection of the two sets
of initialised classes, since a class is definitely initialised after a conditional if it is
definitely initialised at the end of both its branches. The compose method com-
putes the sequential composition of two abstract domain elements. It computes
the union of the classes which are definitely initialised in both. The analyse

method computes the abstraction of a bytecode in occurring in a basic block cb

(Section 5). Normally, it returns an abstract domain element whose set of ini-
tialised classes is empty, except for the initialise κ and goon ifinitialisedκ

bytecodes, whose execution initialises κ and all its superclasses. To this purpose,
the private method add scans the class hierarchy from κ upwards. It stops as
soon as a non-application class is found (Section 4), since we do not want to as-
sume anything about non-application classes, not even their hierarchy. The last
method, applyAnalysis in Figure 8, is called at the end of the analysis. It scans
the watchpoints that we have put before a goon ifinitialised κ bytecode, and
checks whether the set of initialised classes there includes κ. If this is the case,
the corresponding test for initialisation is useless since it will always succeed.

Appropriate import statements must be put at the beginning of Figure 6.
The actual code is in the file static/Static.java of Julia, optimised by
using bitmaps instead of HashSets (the underscore in static is needed since
a keyword cannot be a package name in Java). However, the code in Figure 6,
7 and 8 is perfectly working, and able to analyse all valid Java bytecode. For
instance, you can apply it to itself (i.e., its compiled code) in library mode i.e.,

by assuming that all its public methods may be called from outside. The result is
that 11 out of a total of 36 static initialisation tests are found to be redundant. In
Figures 6, 7 and 8, they are underlined. Namely, the recursive static calls inside
putWatchpoints do not need any initialisation of the Static class, since it has
already been initialised by the first static call. The StringBuffer creation inside
toString does not need any initialisation of StringBuffer since it has already
been initialised by the creation of a StringBuffer object in the previous line.

public class Static extends BottomUpDomain {

private HashSet initialised = new HashSet(); // the classes initialised
private static HashSet all; // all classes checked for initialisation
private static int useless, total; // useless/total initialisation tests
private Static(HashSet initialised) { this.initialised = initialised; }

public void init(Loader loader) {
// we put the watchpoints in each method
for (int i = 0; i < loader.program.methods.length; i++)
putWatchpoints(loader.program.methods[i]);

}

private static void putWatchpoints(MethodCode mc) {
// we add the watchpoints in the instructions
for (int i = 0; i < mc.blocks.length; i++)
mc.blocks[i].ins = putWatchpoints(mc,mc.blocks[i].ins);

}

private static Instruction putWatchpoints(MethodCode mc, Instruction ins) {
if (ins instanceof SEQ) { // a sequence
((SEQ)ins).left = putWatchpoints(mc,((SEQ)ins).left);

((SEQ)ins).right = putWatchpoints(mc,((SEQ)ins).right);

return ins;
} // a watchpoint is put in front of every GoOnIFINITIALISED
else if (ins instanceof GoOnIFINITIALISED) {
all.add(mc.ot); // we add this class to the set of all classes
return new SEQ(new Watchpoint(ins,mc),ins);

}
else return ins;

}

public boolean equals(BottomUpDomain d) {
return initialised.equals(((Static)d).initialised);

}

Fig. 6. An abstract domain for static initialisation analysis.

public String toString() { // prints the set of initialised classes
String res = ”{”; Iterator it = initialised.iterator();
while (it.hasNext()) { res += it.next().toString();
if (it.hasNext()) res += ”,”; }

return res + ”}”;
}

public String output() { // final statistics
return super.output() +
” Number of redundant initialisation tests/total ” +
useless + ”/” + total + ”\n”;

}

public BottomUpDomain bottom() { // all classes are initialised
return new Static(new HashSet(all));

}

public BottomUpDomain id() { // clones this object
return new Static(new HashSet(initialised));

}

public BottomUpDomain lub(BottomUpDomain d) { // result = lub(this,d)
// we let initialised := intersect(initialised,other)
HashSet temp = new HashSet(initialised);
temp.removeAll(((Static)d).initialised);
initialised.removeAll(temp);
return this;

}

public BottomUpDomain compose(BottomUpDomain d) { // d, then this
// we let initialised := union(initialised,other)
initialised.addAll(((Static)d).initialised);
return this;

}

public BottomUpDomain analyse(Instruction in, CodeBlock cb) {
Static res = new Static();
// only the following bytecodes affect the set of classes
if (in instanceof INITIALISE)
res.add(((INITIALISE)in).ot);

else if (in instanceof GoOnIFINITIALISED)
res.add(((GoOnIFINITIALISED)in).ot);

return res;
}

private void add(ObjectType ot) {
// adds, to initialised, ot and all its superclasses. . .

}

Fig. 7. An abstract domain for static initialisation analysis (cont’d).

public void applyAnalysis(ProgramCode program) {
super.applyAnalysis(program); // we compute ”denotation”
if (denotation == null) return; // no main or callee methods: we have finished
HashMap wps = denotation.getWatchpoints();
Iterator it = wps.keySet().iterator();
Watchpoint wp;
Static st;
useless = total = 0;
while (it.hasNext()) { // for each watchpoint, we get its abstract information
wp = (Watchpoint)it.next(); st = (Static)wps.get(wp);
if (wp.label instanceof GoOnIFINITIALISED) {
total++;

// we check whether this test is redundant
if (st == null ||

st.initialised.contains(((GoOnIFINITIALISED)wp.label).ot))
useless++;

}
}

}
}

Fig. 8. An abstract domain for static initialisation analysis (cont’d).

The access to the static total field of Static inside output does not require
initialisation of Static since it has already been initialised by the previous access
to useless. Similarly in applyAnalysis for the static fields denotation, total
and useless (the ++ operator performs two accesses).

Our static domain can be made more precise by observing that if an in-
stance method of a class κ is called, then κ and all its superclasses must have
been initialised. Nevertheless, Figures 6, 7 and 8 show that writing an abstract
domain for Julia is very simple. You do not see there any of the problems re-
lated with parsing the set of closed classes (Section 4), giving structure to the
code (Section 5), focusing the analysis on the watchpoints (Section 6), making
up a flow and context sensitive analysis (Section 7) or computing a fixpoint
(Section 8). They have all been solved by Julia.

10 A Note on Multithreading

The abstract domain of Section 9 yields correct results for the analysis of both
single and multi-threaded programs. Namely, during the analysis of a method, it
assumes that only the current method can initialise classes. This hypothesis leads
to correct (but imprecise) results if, instead, a concurrent thread autonomously
initialises classes.

This is not a general result. Other abstract domains might yield incorrect

results if used to analyse multi-threaded programs. However, this is not the case
for any of the abstract domains in Figure 1 which are object-insensitive i.e., they

compute flow and context insensitive approximations for the fields of the objects
(this can be controlled in Julia through a command-line option).

It must be noted, however, that there is currently a relative lack of theoretical
results about abstract interpretation of imperative, object-oriented concurrent
programs. The important point, here, is that the correctness of a static analysis
implemented inside Julia and applied to a concurrent program does not depend
on the analyser itself, but on the abstract domain which is used for the analysis
and the level of flow sensitivity that it features.

11 Benchmarks

We report the time of some static analyses of a set of benchmark programs.
Some of them are analysed in application mode (A), which means that we as-
sume that only the main method is called from outside. Some of them, such as
multithreaded applets, are analysed in library mode (L), which means that we
assume that all public methods can be called from outside. The experiments have
been performed on a Pentium 2.4 Ghz machine with 1 gigabyte of RAM, run-
ning Linux 2.6, Sun Java Development Kit version 1.5 with HotSpot just-in-time
compiler, and Julia version 0.40.

Figure 9 reports the time of the preprocessing performed by Romeo for
loading the classes, parsing the bytecode and building the graph of basic blocks
(Section 5). Note that if many static analyses are performed, one after another,
then preprocessing time is spent only once. The same figure shows the results for
some static analyses. These are the times of the fixpoint computation performed
by Juliet.

We can hence affirm that Julia features reasonable efficiency and precision
at least for some middle-size applications.

12 Conclusion

Our static analyser Julia is a generic static analyser for full Java bytecode. We
have described its structure, the techniques involved in its implementation, an
example of abstract domain and some examples of analysis. The latter show that
the current version of Julia is already able to analyse non-trivial applications.

References

1. Indus Project. Available at http://indus.projects.cis.ksu.edu/.
2. jDFA - The Data-Flow Analysis Framework for Java. Available at

http://jdfa.sourceforge.net/.
3. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles Techniques and

Tools. Addison Wesley Publishing Company, 1986.
4. C. Artho, V. Schuppan, A. Biere, P. Eugster, M. Baur, and B. Zweimüller. JNuke:

Efficient Dynamic Analysis for Java. In Proc. of Computer Aided Verification
(CAV’04), volume 3114 of Lecture Notes in Computer Science, pages 462–465,
Boston, MA, USA, 2004.

program size prepr. rt cps cer static

time time P time P time P time P

Dhrystone(A) 6/21/607 1254 97 40% 257 40% 373 75% 113 71%

ImageView(L) 2/20/1235 1120 146 10% 485 10% 670 8% 158 29%

Morph(L) 1/14/1367 1415 101 34% 410 34% 674 5% 129 11%

JLex(A) 25/131/12472 3408 312 12% 2799 14% 1972 20% 2137 62%

JavaCup(A) 45/315/14475 4825 485 24% 11772 26% 6239 38% 2045 67%

Jess(A) 264/1553/44001 11708 2755 41% 42725 46% 30011 21% 7986 56%

jEdit(A) 492/2643/98964 29401 5111 35% 177416 39% 146281 3% 18991 63%

Julia(A) 841/5040/142266 42055 10288 37% 413283 42% 470141 3% 33045 55%

Fig. 9. Size (in number of classes/methods/bytecodes), time (in milliseconds, for pre-
processing and analysis) and precision P of the application of Julia to some bench-
marks. Precision P is expressed in number of dynamic calls which are found to be static
for rt and cps; in number of creation points which are stack-allocated for cer; in num-
ber of class initialisation checks which are found to be useless for static. Dhrystone
is a testbench for numerical computations; ImageView is an image visualisation applet;
Morph is an image morphing program; JLex is a lexical analysers generator; JavaCup is
a compilers’ compiler; Jess is a rule-based language; jEdit is a text editor; Julia is
our Julia analyser itself.

5. D. F. Bacon and P. F. Sweeney. Fast Static Analysis of C++ Virtual Function
Calls. In Proc. of OOPSLA’96, volume 31(10) of ACM SIGPLAN Notices, pages
324–341, New York, 1996. ACM Press.

6. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic Predicate Ab-
straction of C Programs. In Proc. of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI’04, volume 36(5) of SIGPLAN
Notices, pages 203–213, Snowbird, Utah, May 2001. ACM Press.

7. B. Blanchet. Escape Analysis for JavaTM : Theory and Practice. ACM Transactions
on Programming Languages and Systems (TOPLAS), 25(6):713–775, November
2003.

8. D. Cachera, T. Jensen, D. Pichardie, and V. Rusu. Extracting a Data Flow Anal-
yser in Constructive Logic. In D. A. Schmidt, editor, Proc. of the European Sym-
posium on Programming, ESOP’04, volume 2986 of Lecture Notes in Computer
Science, pages 385–400, Barcelona, Spain, March-April 2004. Springer-Verlag.

9. J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P. Midkiff. Stack
Allocation and Synchronization Optimizations for Java Using Escape Analysis.
ACM TOPLAS, 25(6):876–910, November 2003.

10. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. of POPL’77, pages 238–252, 1977.

11. P. Cousot and R. Cousot. Modular Static Program Analysis. In R. N. Horspool,
editor, Proceedings of Compiler Construction, volume 2304 of Lecture Notes in
Computer Science, pages 159–178, Grenoble, France, April 2002. Springer-Verlag.

12. Apache Software Foundation. Bcel - The Bytecode Engineering Library.
jakarta.apache.org/bcel/, 2002.

13. S. Genaim and F. Spoto. Information Flow Analysis for Java Bytecode. In
R. Cousot, editor, Proc. of the Sixth International Conference on Verification,
Model Checking and Abstract Interpretation (VMCAI’05), volume 3385 of Lecture
Notes in Computer Science, pages 346–362, Paris, France, January 2005. Springer-
Verlag.

14. M. Hermenegildo, W. Warren, and S. K. Debray. Global Flow Analysis as a Prac-
tical Compilation Tool. Journal of Logic Programing, 13(2 & 3):349–366, 1992.

15. P. M. Hill and F. Spoto. A Refinement of the Escape Property. In A. Cortesi, editor,
Proc. of the VMCAI’02 workshop on Verification, Model Checking and Abstract
Interpretation, volume 2294 of Lecture Notes in Computer Science, pages 154–166,
Venice, Italy, January 2002.

16. T. Lindholm and F. Yellin. The JavaTM Virtual Machine Specification. Addison-
Wesley, second edition, 1999.

17. K. Palacz, J. Baker, C. Flack, C. Grothoff, H. Yamauchi, and J. Vitek. Engineering
a Customizable Intermediate Representation. In Proc. of the ACM SIGPLAN
Workshop on Interpreters, Virtual Machines and Emulators (IVME), San Diego,
California, June 2003. ACM Press.

18. J. Palsberg and M. I. Schwartzbach. Object-Oriented Type Inference. In Proc.
of OOPSLA’91, volume 26(11) of ACM SIGPLAN Notices, pages 146–161. ACM
Press, November 1991.

19. I. Pollet. Towards a Generic Framework for the Abstract Interpretation of Java.
PhD thesis, Department of Computing Science and Engineering, Catholic Univer-
sity of Louvain, 2004.

20. A. Sabelfeld and A. Myers. Language-based Information-Flow Security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, January 2003.

21. F. Spoto. Focused Static Analyses for the Java Bytecode. Available at
www.sci.univr.it/∼spoto/papers.html.

22. F. Spoto. Watchpoint Semantics: A Tool for Compositional and Focussed Static
Analyses. In P. Cousot, editor, Proc. of the Static Analysis Symposium, SAS’01,
volume 2126 of Lecture Notes in Computer Science, pages 127–145, Paris, France,
July 2001. Springer-Verlag.

23. F. Spoto. The Julia Generic Static Analyser. Available at
www.sci.univr.it/∼spoto/julia, 2005.

24. F. Spoto and T. Jensen. Class Analyses as Abstract Interpretations of Trace Se-
mantics. ACM Transactions on Programming Languages and Systems (TOPLAS),
25(5):578–630, September 2003.

25. F. Tip and J. Palsberg. Scalable Propagation-Based Call Graph Construction
Algorithms. In Proc. of OOPSLA’00, volume 35(10) of SIGPLAN Notices, pages
281–293, Minneapolis, Minnesota, USA, October 2000. ACM Press.

26. R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, and V. Sundare-
san. Optimizing Java Bytecode using the Soot Framework: Is It Feasible? In
D. A. Watt, editor, Proc. of Compiler Construction, volume 1781 of Lecture Notes
in Computer Science, pages 18–34, Berlin, Germany, April 2000.

27. J. Whaley and M. Lam. Cloning-based Context-Sensitive Pointer Alias Analysis
using Binary Decision Diagrams. In W. Pugh and C. Chambers, editors, Proc.
of Programming Language Design and Implementation (PLDI), pages 131–144,
Washington, DC, USA, June 2004.

