
Specifying and Verifying Heap Space Allocation
with JML and ESC/Java2 (Preliminary Report)

Robert Atkey

LFCS, School of Informatics
University of Edinburgh
bob.atkey@ed.ac.uk

Abstract. We examine JML’s support for specifying the heap space
allocation of Java programs. In this report we restrict ourselves to spec-
ifying and verifying only allocation but not de-allocation. We identify
some problems with with JML’s support and suggest alternatives. Also,
we describe an implementation of heap space allocation verification in
ESC/Java2. This implementation has been tested on small examples.

1 Introduction

This report is concerned with the specification and verification of the heap space
consumed by Java programs. Control of heap space usage is one part of the gen-
eral problem of ensuring that programs do not consume more resources than
they are allocated while also ensuring they successfully execute. Resource con-
strained computing — by resources we mean things like memory space, processor
time and usage of external interfaces such as disks and networks — is important
both to very small devices such as smartcards or mobile phones where the total
amount of resources in limited, and to very large multiple-user systems such as
database servers and grid computing clusters on which no one user should be
allowed to monopolise the machine.

By “heap space” we mean the memory allocated by the creation of new
Java objects and arrays. Java does not have any facility for explicit deallocation
of memory and relies on a garbage collector to free up unused memory. The
specifications of heap space in this paper will not assume that heap space is ever
freed since we can not guarantee when or if the garbage collector will run.

We have investigated the specification of heap space allocation for Java pro-
grams in JML, and its verification in ESC/Java2. JML, the Java Modelling
Language [12, 13], is a language for specifying the behaviour of Java classes.
Specifications are included in Java source code as annotations embedded inside
specially formatted comments. JML is able to express pre- and post-conditions
on methods and class invariants, in an Eiffel-like Design By Contract style [15].
Logical statements within JML specifications are written in a Java-like syntax
extended with logical features. Java methods declared as pure which have no
side-effects may be used in annotations.

JML includes features for specifying the heap space consumption of methods
as well as for accessing the heap space specification of other methods and the



run-time sizes of objects. The current facilities are based on a paper by Krone,
Ogden and Sitaraman [11]. We present JML’s current design in Section 2 with
an example illustrating its use.

We have identified several criticisms of JML’s facilities for heap space allo-
cation specification and verification which we set out in detail in Section 3. In
summary, these are:

– Poor interaction between the reflection of methods’ heap space allocation
specifications into specification expressions and program state (Section 3.1).

– The inability to access the current heap space allocation from specification
expressions within a method. Such a facility is vital for verifying methods
(Section 3.2).

– Problems with accessing the heap sizes of run-time data, particularly that
of objects with non-pure constructors (Section 3.3).

We propose alternatives to JML’s current design to address these problems.
ESC/Java2 [7] is an automatic tool for checking Java source code annotated

with JML. It is a development of the original ESC/Java developed by Compaq
Research [10]. It checks for the absence of some runtime errors such as array
out-of-bounds indexing or null dereferencing, and checks some user assertions
written in a subset of JML. ESC/Java2 extends ESC/Java by accepting all of
JML and expanding the range of features checked.

We have extended ESC/Java2 to support the checking of annotations relating
to heap space allocation and the reflection of objects’ run-time sizes into JML
specification expressions. We have also partially implemented support for re-
flecting methods’ heap space into specification expressions. Our implementation
is enough to expose the problems we describe in Section 3.1 and our proposed
solution makes use of existing JML features already present in ESC/Java2. The
implementation is described in Section 4.

Overview In Section 2 we describe JML’s current design for specifying heap
space allocation, with an example. We also discuss desirable features of such a
design. We highlight some deficiencies of JML’s design in Section 3 and suggest
alternatives. We then describe our changes to ESC/Java2 in Section 4. Finally,
in Section 5 we summarise our work and suggest further directions.

2 JML’s support for Heap Space specification

JML’s current design [13] includes a specification clause for method declarations
that sets an upper bound on the amount allocated by the method’s execution:

//@ ...
//@ working_space <long-expr> [if <bool-expr>];
//@ ...
public int methodName (...) { ...



As the names suggest, <long-expr> and <bool-expr> stand for expres-
sions of type long and boolean respectively. The if <bool-expr> part is op-
tional. All the expressions in these clauses are evaluated in the post state of the
method, but selected sub-expressions can be evaluated in the pre-state using
the \old(<expr>) construct. The semantics of working space specifies that, if
<bool-expr> holds, terminating execution of the method (including any meth-
ods it calls) should allocate no more than the value of <long-expr> bytes of heap
space. This includes exceptional termination, but there is no way to determine
the exception thrown, except by making a separate heavyweight specification
case for each exception.

JML also includes two specification expression functions for heap space:
\working space and \space. The function \working space(...) takes as an ar-
gument a quoted method call expression and evaluates to a value of type long. For
example: \working space(obj.m (a, b)). The method call ”obj.m(a, b)” is
not evaluated, but quoted. The whole expression evaluates to the value of m’s
working space clause given the static type of obj, the values of a, b and obj
and the current program state. JML does not specify what the value should be
if there is more than one working space clause, but we take it as the minimum
of the applicable clauses. The function \space(...) takes an expression of ref-
erence type (i.e. an object or an array) and evaluates to the amount of heap
space occupied by the referenced object. This does not include the heap space
occupied by objects linked from the starting object. The result is of type long.

The design of these facilities has been adapted from the work of Krone et al
[11]. In that paper the authors argue for several points to be taken into consider-
ation when designing a specification language for resource usage, including: the
usage of actual program values when specifying resource usage, the importance
of modularity of specification and the ability to do verification.

The use of actual program values in specification expressions, in the place of
metrized versions of values such as the length of a list data structure or the depth
of a tree data structure, helps ensure precision in the specification of resource
usage. For example, the heap space usage of a method operating on a list may
depend on the contents of the list, not just its length. JML supports this by
allowing references to any variable in scope in the post-state in working space
clauses.

Modular specification of components is a necessity for large programs. A
change in the specification for one component should be automatically carried
through to all parts that refer to it. In the case of resource usage specifications,
this means that methods’ resource usage specifications should not hard-code
the resource specifications of methods they use. Rather, they should refer to the
resource usage by the method’s name and the arguments it will be passed. When
the called method is altered, the resource specification of dependent methods
will be automatically updated. JML attempts to support this by means of the
\working space functions. In Section 3.1, we show that this mechanism does not
work in the presence of state changing functions and suggest a simpler method.



Krone et al also emphasise the need for verification. They give verification
rules for loops and procedure calls that incorporate resource usage. JML does not
currently have support for verifying the heap space usage of loops. We address
this in Section 3.2.

2.1 Example

The following Java source code illustrates the use of JML’s facilities for specifying
heap space allocation:

class ResourcesExample {
//@ working_space \space(new int[2]);
/*@ pure @*/ ResourcesExample () { new int[2]; }

//@ working_space \space(new ResourcesExample())
//@ + \working_space(new ResourcesExample ());
public static void fiddle () { new ResourcesExample (); }

//@ requires c >= 0;
//@ working_space c * \working_space (fiddle ());
public static void muddle (int c) {

for (int i = 0; i < c; i++) fiddle ();
}

}

This class defines a single constructor and two static methods:

ResourcesExample The constructor does two things: it makes an implicit call
to Object’s constructor and it allocates a two element array of ints. Assum-
ing that the constructor of Object is declared to not allocate any memory,
the total working space of this constructor is the space occupied by a two
element array of int. The space occupied by the newly allocated object is
not included. We have had to declare the constructor as pure in order to
use it in the specification of fiddle. Obviously, not all constructors can be
declared pure. We address this problem in Section 3.3.

fiddle This static method creates a new instance of ResourcesExample. There-
fore, the heap space allocated by this method is the space required by an
instance of ResourcesExample and the space required by the execution of
the constructor. The expression new ResourcesExample () in the specifica-
tion is only used as a guaranteed way to obtain a non-null ResourcesExample
reference. The constructor was required to be declared pure so it could be
legally used within a specification expression.

muddle The static method takes an int argument c and calls the fiddle ()
method c times, hence its working space is c times the working space of
fiddle (). This specification demonstrates the use of \working space to
obtain the heap space allocation specification of another method.



3 Criticisms of JML’s support

We have identified several shortcomings of JML’s facilities for heap space specifi-
cation and verification. In this section, we describe them and offer some possible
solutions.

3.1 Interaction between the program state and \working space

The heap space consumption of a Java method may depend on the state of
variables external to the method. Hence, the function \working space may have
different values for identical quoted invocations depending on the program state
that it is evaluated in. The working space specification clause is defined by JML
to be evaluated in the post-state of the method, and it can access the pre-state
by use of the \old(...) function. The restriction to only the pre- and post-state
means that it is impossible to use the \working space function as intended, as
the following example demonstrates:

class StatefulResourcesExample {
boolean flag;

//@ working_space flag?\space (new int[2]):0;
public void condAlloc () { if (flag) new int[2]; }

//@ working_space 2*\working_space(condAlloc()) if \old(flag);
//@ working_space \space (new int[2]) if !\old(flag);
public void tricksy () {

condAlloc ();
flag = !flag; condAlloc ();
flag = !flag; condAlloc ();

}
}

This class has one boolean instance variable flag, and two methods:

condAlloc This method allocates a two element array of int if flag is true.
Otherwise, it does no allocation.

tricksy This method calls condAlloc three times, inverting flag between each
call. In terms of heap space allocation there are two possibilities: if flag is
true to start with then the method will allocate two two-element arrays of
int, if flag is false to start with then the method will allocate one two-
element array. These two cases are covered by two working space clauses.
In the first case we have access to a state in which flag is true (either the pre-
or post- state) and so we can specify the behaviour in terms of the working
space of condAlloc. In the second case we do not have access to a state
where flag is true and so we must resort to specifying the space directly.



There is no way to specify the heap space consumption of tricksy without
referring directly to condAlloc’s actual heap space allocation. Since there is no
way in JML of evaluating a specification expression in an arbitrary program
state, it seems likely that \working space could never be made to interact well
with methods whose heap space consumption depends on the program state.

In order to retain modularity of heap space consumption specifications, we
propose that auxiliary model functions be used to specify the heap space alloca-
tion of methods. For the example above we need a function with the following
specification and signature:

//@ ensures \result == (f?\space(new int[2]):0);
//@ signals (Exception) false;
/*@ pure @*/ public int condAlloc_space (boolean f)

This function explicitly takes the relevant part of the state and returns the
working space specification required. Unfortunately, this specification is not
implementable in Java since we have no access to the value of \space(new
int[2]). This is not a severe problem since we can give a dummy implemen-
tation and skip its verification. Alternatively, it would be possible to provide a
class containing static methods corresponding to the space function at different
types which is specified to have the same values as the specification functions.
Each JVM implementation would have to provide an implementation of this
class to supply the real values for run-time specification checking.

This problem notwithstanding, the specifications of the methods can be re-
placed with:

//@ working_space condAlloc_space (flag);
public void condAlloc () { ... }

//@ working_space 2*condAlloc_space(flag)+condAlloc_space(!flag);
public void tricksy () { ... }

Thus the working space of tricksy has been specified directly in terms of
the working space of condAlloc. If the heap space allocation of condAlloc were
to change then the definition of condAlloc space would change and so would
the specification of tricksy. Thus, this alternative technique is modular, unlike
the implicitly state-dependent \working space functions. This technique also
has the advantage of reusing existing JML features.

3.2 Accessing the current heap space allocation

In [11] Krone et al augment the usual loop invariant and variant annotations with
information on the maximum amount of heap space allocated by the iterations
of the loop. This information is vital for verifying the heap space consumption of
methods that use loops. JML currently has no way of specifying this information.

We fix this by adding a special variable for specification expressions, named
\current working space. This special variable denotes the current amount of



heap space allocated by the current method above that allocated by its callers.
It may only occur in specification expressions within methods. We do not need
to make a distinction between the maximum heap usage and the current heap
allocation as Krone et al do because Java has no de-allocation operation to
explicitly decrease the size of the heap.

An example of its use is taken from the body of the muddle method above:

//@ loop_invariant 0 <= i && i <= c;
//@ loop_invariant
//@ \current_working_space <= i * \working_space (fiddle ());
for (int i = 0; i < c; i++)

fiddle ();

This annotation states that the heap space allocated by the loop is always
equal to i times the heap space allocation of the fiddle() method. Our exten-
sion to ESC/Java2, described in Section 4, can use this annotation to verify that
this method does indeed match its specification1.

The advantage of exposing the current heap allocation via a special variable
rather than an additional loop annotation is that it may also be used in other
method body annotations such as assert, allowing the programmer to document
the expected heap consumption behaviour of their program and to help find
mismatches between implementation and specification.

3.3 Accessing the sizes of run-time data

In the example in Section 2.1, it was necessary to declare the constructor pure so
that it could be legally used in a JML specification expression. For the purposes
of the specification we were not interested in the effect of the constructor, nor
even its specification, merely that it provide us with a non-null reference of
the correct type so that the \space function would return the amount of space
it occupied. The requirement of purity is a serious limitation since we would
like to be able to access the sizes of objects that have non-pure constructors, yet
JML does not currently have a construct to obtain run-time object sizes without
evaluating some specification expression of the correct type.

We propose a fix by adding to JML a way of obtaining the run-time space
consumption of data on the heap by just their type in the case of single objects
and by their type and size in the case of arrays. This is accomplished by remov-
ing the \space function and replacing it by two functions \object space and
\array space.

The function \object space takes a single argument of type \TYPE, the
JML type of Java types, and returns the size in bytes occupied by objects of the
supplied type at run-time as a value of type long, which is always greater than

1 Proviso: this verification is only: (a) safe when the -loopSafe switch is used; and
(b) possible when the axiom ∀x.∀y.xy + y = (x + 1)y is added to help the theorem
prover Simplify prove the verification condition.



or equal to 0. If the supplied type is primitive, an array type, an interface type
or an abstract class type then the function evaluates to 0.

The function \array space takes two arguments: one of type \TYPE and one
of type long. It returns a value of type long: the size in bytes occupied by an
array of the specified type with the specified number of elements, which is always
greater than or equal to 0. For any two reference types ty1 and ty2 (i.e. when ty1
and ty2 are array, interface or object types), the values of \array space(ty1,
n) and \array space(ty2, n) are equal for all n.

Sometimes the \space function is useful for specifying the amount of heap
space allocated, if the type of the object is not known at compile-time. An
example is an abstract clone method; when specifying such a method we do not
know the type of the implementing class, so we do not know what type to pass
to \object space. In Section 4.3 we show how to axiomatise \space in terms
of our primitive space functions.

4 Extending ESC/Java2

We have extended ESC/Java2’s JML support to cover heap space allocation an-
notations, both with support for the JML functions \space and \working space
(though this is limited, see below) and with support for our alternative functions.
The current release already parses and type-checks working space clauses, so
our work focused on implementing them in the later phases of ESC/Java2’s
operation.

Our modifications involve three parts: extra functions and axioms for the
logic of ESC/Java2 to symbolically interpret the run-time sizes of object in-
stances and arrays; an extension of the translation into guarded commands to
support the verification of heap space consumption specifications; and extending
the translation of specification expressions into the logic to handle the \space,
\array space and \object space functions, the \current working space vari-
able and an encoding of methods’ working space clauses into logical axioms to
support the \working space function.

4.1 Extending the logic

Two new functions object space, of arity 1, and array space, of arity 2, have
been added, with axioms:

∀t.object space(t) ≥ 0
∀t.object space(array(t)) = 0
∀t.∀n.array space(t, n) ≥ 0
∀t.∀n.t <: java.lang.Object⇒

array space(t, n) = array space(java.lang.Object, n)

To this for each primitive type primtype we also add an axiom of the form
object space(primtype) = 0 . The function array constructs an array type from



any other type, so for all arrays object space is defined to be 0. The relation <:
represents Java subtyping and java.lang.Object represents that Java type in
the logic. Java regards all array types as well as all object types as subtypes
of java.lang.Object. ESC/Java2 currently has no way of distinguishing ab-
stract class and interface types from instantiable object types, so we could not
implement this part of our specification of object space, but it would be an easy
extension.

The axioms evidently express the requirements on the two functions described
in Section 3.3. By axiomatising in this way, rather than supplying concrete val-
ues, we avoid tying ourselves to any particular JVM implementation.

4.2 Accounting for and Verifying Heap Space Consumption

After parsing and typechecking JML-annotated Java source code, ESC/Java2
translates each method into a guarded command language, as described in [14].
The method’s preconditions are inserted as assumptions at the start of the
guarded command sequence and the post-conditions are asserted at the end.
It also translates the annotations on the rest of the program into a “background
predicate” detailing the other classes, methods and fields in the program and
their specified behaviour. The guarded command language is given a semantics
by a weakest liberal precondition function. ESC/Java2 generates an approxi-
mation of the weakest liberal precondition for the method and passes it to a
theorem prover to check that it is consistent with the background predicate. By
default, this prover is the automatic first-order theorem prover Simplify [9].

In order to verify working space annotations on methods we have altered the
translation to guarded commands. We maintain a count of the current number of
bytes allocated by the execution of the method in a variable called WSPC. At the
start of the guarded command sequence it is initialised to 0. Each Java source
level expression that causes allocation of memory is translated to a sequence of
guarded commands that includes an instruction for incrementing WSPC. At the
end of the guarded command sequence, the value of WSPC is checked against the
stated working space clauses for the current method, in the same manner as
the checking of post-conditions.

There are two ways of constructing new arrays in Java: by an array literal
or the allocation of an array with default values of given type and dimensions.
For both of these, the WSPC variable is incremented by array space(t, n) for the
appropriate type t and length n. For multi-dimensional arrays, the space for
the sub-arrays is summed and added to the space for the containing array. For
object instantiation, the WSPC counter is incremented by object space(t) for the
appropriate type t. This is done after the constructor call to ensure correct
behaviour in the event that the constructor raises an exception.

Incrementing WSPC for method calls is more involved. First, we must extract
the working space clauses from the specification of the method called and the
methods it overrides in super-classes. This is accomplished with a minor exten-
sion of the generation of specifications for method calls as described in Section
7 of [14]. For each method, this generates a list of (P,W ) pairs. The predicate



P is a pre-condition derived from the if part of the working space clause and
the method’s preconditions. The expression W is the translation of the value of
working space. During the translation of a method call, after the program state
has been updated, a series of guarded command assume statements is inserted of
the form P ⇒ WSPC’ ≤ W , where WSPC’ is a fresh variable. An assumption that
WSPC’ ≥ 0 is also inserted. The variable WSPC is then incremented by WSPC’.
This translation ensures that the current heap size is incremented by a value
bounded by the working space specification of the called method. If the called
method has no specification then the possible allocated memory is unbounded.

4.3 Interpreting Specification Expressions

Our JML specification expression functions \object space and \array space
are directly translated into their counterparts in the logic. Interpreting our new
variable \current working space is also straightforward; it translates directly
to the variable WSPC. This variable, as described above, holds the current count
of bytes allocated by the method’s execution to this point, as required.

We translate \space to a function space in the logic. We axiomatise the
behaviour of space in terms of object space and array space:

∀x.x = null⇒ space(x) = 0
∀x.x 6= null ∧ typeof (x) = array(elemtype(typeof (x))) ⇒

space(x) = array space(elemtype(typeof (x)), arrayLength(x))

∀x.x 6= null ∧ typeof (x) 6= array(elemtype(typeof (x))) ⇒
space(x) = object space(typeof (x))

These axioms state that: if the reference is null, then the value is 0; if the
reference points to an array (the dynamic type given by typeof is of an array
type) then the value is equal to the appropriate value of array space; otherwise
it is equal to the appropriate value of object space. The formulation typeof (x) =
array(elemtype(typeof (x))) is the standard way of distinguishing values of array
type in the logic of ESC/Java2. Note that the type-checking phase of ESC/Java2
ensures that we only apply space to values of reference type.

Our interpretation of the \working space function is currently limited to
invocations of methods that are declared pure and whose working space clauses
are non-overlapping. We have augmented ESC/Java2’s axiomatisation of pure
methods to also include information about their heap space allocation.

The axiomatisation is described in detail by Cok in [6]; we give a short sum-
mary here. Given an invocation of a method C.m in a specification expression,
ESC/Java2 translates this to a function application for some function name de-
rived from the class and method name with the current state, the instance object
(if applicable) and the other arguments as parameters. It then also inserts as-
sumptions of the form ∀−→x .P ⇒ Q, where −→x are the formal arguments (including
the object instance in the case of non-static methods), P is the method’s pre-
condition and Q is the method’s post-condition with \result translated to the



chosen function name2. This axiomatisation is done once for each state that the
method is called in. Note that the state argument is not quantified over: we have
a new axiom for each possible state.

To handle \working space we add assumptions of the form

∀−→x .P ⇒ C .m#WSPC (state,−→x ) = W

for each (P,W ) derived from the method’s working space clauses. Each in-
stance of \working space quoting a call of C.m is translated to an application
of C .m#WSPC with the required parameters.

As pointed out by Darvas and Müller [8], ESC/Java2’s axiomatisation of
pure methods leads to unsoundness in the case of unsatisfiable specifications
and does not handle weak purity. As a consequence of adapting ESC/Java2’s
current axiomatisation, our implementation of \working space suffers from the
same problems, as well as not being able to deal with methods that update global
state. It is possible to adapt Darvas and Müller’s solution to handle some cases
of \working space, though this would not directly work for recursive methods
or methods that throw exceptions. However, given the problems inherent in the
design of this function we feel that it is not necessary.

4.4 Verification of Heap Space Allocation with ESC/Java2

We have verified the examples in this paper using our modified ESC/Java2. Ver-
ifying methods without loops is straightforward. Verifying methods with loops
requires annotation of the loops with invariants using \current working space.
Simplify is not always able to prove the resulting verification conditions, but it
is possible to add extra axioms to the background predicate to help Simplify.
ESC/Java2 is currently undergoing extension to be able to use more powerful
interactive provers. This will allow the verification of more elaborate programs.

In our experience, there are two main difficulties with verifying the heap
space usage of larger programs. Firstly, any Java program of reasonable size
makes heavy use of library classes and so we require the specification of the heap
space allocation of library functions. The documentation almost never gives the
required level of detail to specify this information.

Secondly, most Java programs rely heavily on the garbage collector to ensure
good heap space usage. Since Java has no explicit de-allocation instruction it
is difficult to verify methods which rely on the de-allocation of heap space. We
see two possible approaches. One is to make the programmer responsible for
manually re-using memory. This is the method used to simulate de-allocation in
the Camelot language of the MRG project [1]. We have attempted to implement
such a technique with our extended ESC/Java2; however, we ran into problems
with difficulties with the reasoning about linked data structures required (such as
the free list), and the fact that the arithmetical verification conditions generated
2 The translation differs from the one described in [6] since it does not handle signals

and diverges clauses. These have not been implemented in ESC/Java2’s axiomati-
sation of methods.



are beyond Simplify’s capabilities. Alternatively, JML could be augmented with
a system capable of identifying unique references; when such references are lost,
then the associated memory could be regarded as de-allocated. This relies on
the garbage collector being able to collect all unreferenced objects.

5 Conclusions

We have presented a description of JML’s current support for specifying heap
space allocation and several criticisms of that support. In summary our criticisms
are that: the reflection of methods’ heap space specifications does not interact
well with methods that alter the program state; it is not possible to access the
current heap space allocated from within a method, which is vital for verifica-
tion; and it is often not possible to obtain the run-time sizes of objects. We
have offered solutions to these problems. We have also presented a preliminary
implementation of heap space allocation verification in ESC/Java2.

Barthe, Pavolva and Schneider [2] have described an extension to the Byte-
code Modelling Language for specifying and verifying heap space allocation
bounds for Java bytecode programs. As with our approach, they use an auxillary
variable to track allocation. They do not consider the abstract specification of
allocation bounds; rather, they specify the bounds directly in terms of their aux-
illary variable. They also give an algorithm for inferring heap space allocation
bound specifications for methods.

We put forward the following as directions for future research:

Non-terminating methods JML currently defines that the working space
clauses must hold on termination of a method. This is a consequence of eval-
uating the clause in the post-state of the method. Non-terminating methods,
such as server threads that loop processing requests, are also candidates for
heap space usage specification – one does not want a server to suffer from a
slow memory leak. A possible solution is to require that the working space
clause hold for all executions of the method, non-terminating or otherwise.
This would require evaluation in the pre-state.

De-allocation As mentioned above, Java does not include any facilities for ex-
plicit de-allocation. An alternative is to use a linear type system such as that
of [3] to determine when an object is capable of being garbage collected and
treat that as de-allocation. This is the approach taken by [5]. Specification
of methods that de-allocate memory will require two values: the amount of
memory they require above their caller, and the amount of memory of they
free. Verification will require two variables: one to track the difference in
heap size from the start of the method, and one containing the maximum
heap size required. In order to maintain a direct connection to actual run-
time performance, we must have some guarantee that the memory is actually
de-allocated when we expect it to be. This will require changes to the JVM.

Other resources We have not discussed the specification and verification of
other resources such as network usage and CPU time in this paper. Chander
et al [4] discuss enforcement of resource bounds using an acquire/consume



paradigm and verify them using ESC/Java. The design of JML includes
facilities for specifying the time consumed by the execution of a method (in
terms of the number of JVM instructions executed), in a manner similar
to the support for specifying heap space usage. However, the \duration
functions, which offer the same service as the \working space functions,
suffer the same problems. Also, it is not possible to obtain the number of
JVM instructions for an arbitrary piece of Java code.

Acknowledgement This work was funded by the ReQueST grant (EP/C537068)
from the Engineering and Physical Sciences Research Council.

References

1. David Aspinall, Stephen Gilmore, Martin Hofmann, Donald Sannella, and Ian
Stark. Mobile resource guarantees for smart devices. In Gilles Barthe, Lilian
Burdy, Marieke Huisman, Jean-Louis Lanet, and Traian Muntean, editors, CAS-
SIS 2004, volume 3362 of LNCS, pages 1–26, January 2005.

2. G. Barthe, M. Pavlova, and G. Schneider. Static analysis of memory consumption
using program logics. In 3rd IEEE International Conference on Software Engi-
neering and Formal Methods. IEEE, IEEE Computer Society Press, September
2005.

3. John Boyland, James Noble, and William Retert. Capabilities for aliasing: A gener-
alisation of uniqueness and read-only. In Jørgen Lindskov Knudsen, editor, ECOOP
2001 — Object-Oriented Programming, 15th European Conference, volume 2072 of
LNCS, pages 2–27, 2001.

4. Ajay Chander, David Espinosa, Nayeem Islam, Peter Lee, and George Necula.
Enforcing resource bounds via static verification of dynamic checks. In Mooly
Sagiv, editor, 14th European Symposium on Programming, ESOP 2005, volume
3444 of LNCS, pages 311–325, 2005.

5. Wei-Ngan Chin, Huu Hai Nguyen, Shengchao Qin, and Martin Rinard. Memory
usage verification for OO programs. In Static Analysis: 12th International Sympo-
sium, SAS 2005, volume 3672 of LNCS, pages 70–86, September 2005.

6. David R. Cok. Reasoning with specifications containing method calls in JML and
first-order provers. In 6th Workshop on Formal Techniques for Java-like Programs
- FTfJP2004, June 2004.

7. David R. Cok and Joseph R. Kiniry. ESC/Java2: Uniting ESC/Java and JML.
In Gilles Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet, and Traian
Muntean, editors, CASSIS 2004, volume 3362 of LNCS, pages 108–128, January
2005.

8. Ádám Darvas and Peter Müller. Reasoning about Method Calls in JML Specifica-
tions. In 7th Workshop on Formal Techniques for Java-like Programs - FTfJP2005,
July 2005.

9. David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for
program checking. Technical Report HPL-2003-148, HP Laboratories, July 2003.

10. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In Proceedings of the ACM SIGPLAN 2002 Con-
ference on Programming Language Design and Implementation (PLDI’02), pages
234–245. ACM Press, June 2002.



11. Joan Krone, William F. Ogden, and Murali Sitaraman. Modular verification of
performance constraints. Technical Report RSRG-03-04, Department of Computer
Science, Clemson University, May 2003.

12. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary Design of JML:
A Behavioral Interface Specification Language for Java. Technical Report TR
#98-06-rev29, Department of Computer Science, Iowa State University, January
2006.

13. Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby,
David Cok, Peter Müller, and Joseph Kiniry. JML reference manual.
http://www.jmlspecs.org/, January 2006.

14. K. R. M. Leino, James B. Saxe, and Raymie Stata. ESCJ 16c: Java to guarded
commands translation. Available from the ESC/Java2 website, August 1998.

15. Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, 2nd edition,
1997.


