
Temporal Verification Theories

for Java-like Classes

Suad Alagić, Mark Royer, and Dennis Crews

Department of Computer Science
University of Southern Maine

Portland, ME 04104-9300
e-mail: {alagic,mroyer,crews}@cs.usm.maine.edu

Abstract. We consider Java-like object types equipped with assertions
as in recent proposals and implementations. The first issue that we con-
sider is the formal notion of an object-oriented type extended with logic-
based constraints along with the notions of inheritance and substitutabil-
ity for such extended types. The second issue is a suitable logic for ex-
plicitly expressing properties of sequences of object states, particular
cases of which appear for mutator methods in Java-related and other
object-oriented assertion languages. The third issue is a suitable prover
technology and the required techniques for verifying properties of object
types extended with logic-based constraints. We present our solution for
these problems based on the view of object types as temporal theories
along with a model theory and the required verification techniques. The
temporal logic-based approach makes it possible to reason about proper-
ties of sequences of object states which allows verification of behavioral
subtyping requirements that are based on history properties.

1 Introduction

This paper investigates the formal basis and the verification techniques for the
application of modern verification systems to object-oriented languages extended
with logic-based constraints. The starting point is the fact that an object-
oriented type signature when extended with logic-based constraints (method
preconditions, method postconditions and class invariants in particular, as in
Eiffel [27], JML [24, 20] or OCL [33]) may be viewed as a theory. This makes it
possible to apply a tool such as PVS [28], which is based on the view of types
as theories.

The types as theories view requires a suitably defined general notion of a
class as a theory along with the notion of a class theory morphism expressing
the semantic relationships among classes. The underlying model theory is then
required to tie the inheritance of class constraints and behaviorally compatible
object substitutability. Following [15, 14], a theory of behavioral compatibility
presented in [2] abstracts over a variety of logics that have been proposed for
expressing the behavioral (semantic) features of the object-oriented paradigm,
and it applies to any well-defined notion of a model (interpretation) of a class

signature. The key component of this model theory is the Satisfaction Condition
[15, 14] which ties precisely the inheritance of class constraints and behaviorally
compatible object substitutability [2].

In addition to the PVS view of types as theories [28], the choice of PVS is also
based on its sophisticated type system with predicate subtyping and bounded
parametric polymorphism which makes it possible to represent parametric classes
that appear in Java 5.0 when equipped with assertions. The types as theories
view a presented in [2] is thus extended in this paper to parametric theories
following [15]. Very general, and even higher-order logic capabilities of PVS
allow specification of a suitable temporal logic theory which is the basis of our
representation techniques for Java-like classes as temporal theories [4].

The first challenge in this paper is representation of classes as program verifi-
cation system theories and representation of inheritance and subtyping as defined
in object-oriented languages in terms of import of theories and subtyping as de-
fined in PVS. Another major challenge is in representing methods that mutate
the underlying object state within the functional, abstract data type based view
of types in PVS. Behavioral subtyping as defined in [26] is not based on the
notion of types as theories. Because of that a further challenge is in the devel-
opment of a technique for verifying behavioral subtyping requirements within
the framework of a program verification system based on theories. Finally, in
order to appropriately represent the fact that the lifetime of an object is a se-
quence of object states, a more sophisticated temporal logic is required. This
leads to temporal class theories defined in a program verification system (PVS
in particular) and the development of techniques for verification of behavioral
compatibility among classes. This in particular allows verification of behavioral
subtyping requirements that are based on history properties [26].

2 Constraints for parametric classes

A sample parametric interface Collection, in the JML notation [24, 20], ex-
tended with assertions, is given below as an illustration. The difference in com-
parison with the current version of JML is in the usage of parametric polymor-
phism as in Java 5.0. To our knowledge, JML is currently being extended with
features such as genericity. The method count is a pure function that returns
the number of occurrences of its argument object in the underlying Collection
object. The mutator methods insert and delete that change the underlying ob-
ject state are equipped with method preconditions and method postconditions.
The postconditions for the methods insert and delete are in fact specified in
a temporal logic style because they refer to both the current and the previous
object states. The latter are denoted using the keyword old as in Eiffel or JML,
and OCL has an alternative notation. This temporal logic aspect of the asser-
tion languages of JML and Eiffel is implicit in these assertion languages. In this
paper we make it explicit and develop both the formal theory and verification
techniques based on the view of classes as temporal theories.

public interface Collection<T> {

/*@ pure @*/

public int count(T o);

/*@ ensures \result <==> this.count(o) > 0; pure @*/

public boolean belongs(T o);

/*@ ensures this.count(o) == \old(this.count(o)) + 1 &&

(\forall T o1; !o1.equals(o) ==>

(this.count(o1) == \old(this.count(o1)))); @*/

public void insert(T o);

/*@ requires this.belongs(o);

ensures this.count(o) == \old(this.count(o)) - 1 &&

(\forall T o1; !o1.equals(o) ==>

(this.count(o1) == \old(this.count(o1)))); @*/

public void delete(T o);

/*@ invariant (\forall T o; this.count(o) >= 0); @*/

}

An implementing class of the interface Collection<T> would naturally in-
clude a constructor with the postcondition (\forall T o; this.count(o) ==
0). The first order predicate calculus-based constraints appear in the sample
class Collection given above. We show in section 4 how a temporal logic is
used to express the object-state changes caused by mutator methods that re-
quire usage of the operator old.

PVS techniques in this paper are targeted toward verification of behavioral
compatibility conditions among classes such as behavioral subtyping. As an il-
lustration, a parametric class Bag equipped with assertions is constructed in
such a way that Bag is a behavioral subtype of Collection. The preconditions
and postconditions of the inherited mutator methods insert and delete re-
main the same as in the supertype Collection. The semantics of the additional
Bag methods union and intersect are defined by the postconditions of these
methods.

public interface Bag <T> extends Collection <T>{

/*@ ensures (\forall T o;

this.count(o) >= b.count(o) ==>

this.union(b).count(o) == this.count(o) &&

this.count(o) < b.count(o) ==>

this.union(b).count(o) == b.count(o));

pure @*/

public Bag<T> union(Bag<T> b);

/*@ ensures (\forall T o;

this.count(o) < b.count(o) ==>

this.intersect(b).count(o) == this.count(o) &&

this.count(o) >= b.count(o) ==>

this.intersect(b).count(o) == b.count(o));

pure @*/

public Bag<T> intersect(Bag<T> b);

}

An interplay of bounded parametric polymorphism and behavioral subtyping
is illustrated below in the interface OrderedCollection whose type parameter
is bounded by Comparable.

public interface OrderedCollection

<T extends Comparable> extends Collection<T> {

/*@ ensures \result >= 0; pure @*/

public int index(T x);

/*@ invariant (\forall T x1,x2; this.belongs(x1) && this.belongs(x2) ==>

(x1.compareTo(x2) <= 0 ==> this.index(x1) <= this.index(x2))); @*/

}

The condition that the actual type substituted for T is a subtype of Comparable
will be checked by the type system. This will guarantee that the actual type pa-
rameter is equipped with comparison methods. But this provides no guarantee
that these methods have the desired properties as specified by assertions in the
interface Comparable. The required check is that the actual parameter substi-
tuted for T is a behavioral subtype of Comparable. The type system has no
way of checking this behavioral requirement. JML might be able to check it
when extended with bounded parametric polymorphism. This is an example of
a condition that one would like to be verified by invoking a prover.

3 Class theories

In order to verify properties of a class equipped with assertions, the class must be
transformed into a specification that can be handled by PVS. PVS specifications
are theories. A theory of a class consists of the type signatures of its methods
represented in the standard functional style along with a collection of logic-based
constraints, which are sentences expressed in the chosen logic.

We will use the notion of a class signature to denote the collection of type
signatures of methods of the class. Extending the notion of a class signature with
constraints expressed as sentences of a particular logic leads to the notion of a
class theory.

A class theory ThA = (ΣA, EA) consists of a class signature ΣA and a finite
set EA of ΣA sentences.

Given a theory (Σ, E), Mod(Σ) will denote a collection of Σ models and
|=Σ will denote the satisfaction relation between models and Σ sentences. A Σ
model provides an interpretation of the signatures of functions given in Σ. The
fact that a model M satisfies a sentence e is thus denoted as

M |=Σ e.

Given a theory (Σ, E), closureΣ(E) denotes the set of Σ sentences containing
E defined as

e ∈ closureΣ(E) iff M |=Σ e for all Σ models M such that M |=Σ E.
Theory specifications in this paper are typically not closed. This is why they

are often called theory presentations.
Given a theory (Σ, E), E∗ will denote a collection of Σ models M defined as
E∗ = {M | M |=Σ E}.
The paradigm underlying PVS is naturally functional. But mutator methods,

i.e., methods that change the underlying object state are not functions. In our
approach, a mutator method is represented as a binary predicate that defines
pairs of object states such that the second state may be obtained from the
first by invoking the mutator. This is our PVS representation (based on [31]) of
constraints that requires usage of the operator old in Eiffel or JML to express
properties of pairs of object states. The object state prior to the invocation of a
mutator m is characterized by a precondition predicate prem and the state after
invocation of a mutator m is specified by a predicate postm. While mutators are
predicates that are required to hold for pairs of object states, preconditions and
postconditions are predicates required to hold in particular object states.

So a class theory (ΣA, EA) will be equipped with the following predicates for
each mutator m of A:
prem : A → bool, postm : A → bool, and
mutatorm : A, A → bool,
i.e., prem ∈ ΣA, postm ∈ ΣA, and mutatorm ∈ ΣA.

In addition, the set of sentences EA will be extended with the following
sentence for each mutator m of A expressing the requirement for correctness of
a mutator:

∀(o1, o2 : A)(prem(o1) ∧ mutatorm(o1, o2) ⇒ postm(o2)) ∈ EA

However, there is more to the above specification since o1 and o2 correspond
to object states before and after execution of a mutator m. Explicit representa-
tion of this fact in this paper will be based on a suitable temporal logic introduced
in section 4.

If ThA = (ΣA, EA) and ThB = (ΣB, EB) are class theories, φ : ThA → ThB

is a theory morphism iff
φ : ΣA → ΣB is a type signature morphism such that e ∈ EA implies

φ(e) ∈ closure(EB).
A type signature morphism is a function φ : ΣA → ΣB. This function induces

a mapping of terms and hence a mapping of ΣA sentences into ΣB sentences. If
e is a ΣA sentence then φ(e) denotes its corresponding ΣB sentence under the
mapping φ.

Following [15], C[T :: B] will denote a theory with a type parameter T whose
bound is B. Such a theory is viewed as a theory morphism

ηB : B → C[T :: B].
This morphism embeds the theory of the bound B into the parametric the-

ory C. The diagram 1. is required to be a pushout [15]. This property will be

explained in section 5 as it applies to inheritance of parametric classes. In PVS
this is expressed by an import as

C[(IMPORTING B) T: TYPE FROM B]
Instantiation of C with the actual parameter D is represented by the following

commutative diagram of theory morphisms:

B
ηB−→ C[T :: B]

f

�

�c<D/T>

D
ηD−→ C[D]

Diagram 1: Instantiation of a parametric type

In the above diagram, the existence of a theory morphism f : B → D is
required, since it guarantees the semantic compatibility of the actual parameter
D with respect to the bound B. In PVS this is expressed by an import clause
and PVS subtyping:

D: THEORY

BEGIN IMPORTING B

D: TYPE FROM B

% body of D

END D

c<D/T> : C[T :: B] → C[D] is the substitution morphism induced by T → D.
The morphism ηD : D → C[D] embeds the theory of the actual parameter D
into the instantiated parametric theory C[D]. In PVS this import of D into C[D]
is naturally implied.

4 Temporal verification theories

The main advantage of temporal logics for the object-oriented paradigm is that
they provide explicit support for the view that the lifetime of an object is in
fact a sequence of object states. In addition, the rules for behavioral subtyping
as defined in [26] are based on properties of sequences of object states (history
properties) and temporal logics offer a paradigm for reasoning about sequences
of states.

In the temporal logic underlying PVS theories developed in this paper a
sequence of object states is a function

seq : TIME → state
where TIME is just the set of natural numbers.
The notation for a set of functions with the domain A and codomain B is [A →
B]. A temporal predicate TemporalPred is now a function:

TemporalPred : [TIME → state] × TIME → bool.
So given a state sequence seq : TIME → state, and a time instant t, TemporalPred
evaluates to a boolean value for the state seq(t).

Standard temporal operators of the logic in this paper are:
ALWAYS, NEXT, UNTIL, and EVENTUALLY.

These operators act on temporal predicates so that the type of ALWAYS,
NEXT, and EVENTUALLY is [TemporalPred → TemporalPred]. The type of
the temporal operator UNTIL is

[TemporalPred× TemporalPred → TemporalPred].
In the temporal theory given below the temporal operators are specified along

with the standard boolean operator AND. All the remaining standard boolean
operators (OR, IMPLIES and NOT) are also necessarily defined for temporal pred-
icates. The boolean constants are also specified as temporal using overloading
available in PVS. TYPE+ denotes an uninterpreted nonempty type. Usage of up-
per case identifiers is only for readability purposes and has no significance in
PVS.

temporal [state: TYPE+]: THEORY

BEGIN TIME: TYPE = nat

stateSequence: TYPE = [TIME -> state]

TemporalPred: TYPE = [stateSequence, TIME -> bool]

ss: VAR stateSequence

p,q: VAR TemporalPred

t,j,k: VAR TIME

ALWAYS: [TemporalPred -> TemporalPred] = (LAMBDA p:

(LAMBDA ss, j: FORALL t: t >= j IMPLIES p(ss,t)));

NEXT: [TemporalPred -> TemporalPred] = (LAMBDA p:

(LAMBDA ss, t: p(ss, t+1)));

EVENTUALLY: [TemporalPred -> TemporalPred] = (LAMBDA p:

(LAMBDA ss,j: EXISTS k: k >= j AND p(ss,k)));

UNTIL: [TemporalPred, TemporalPred -> TemporalPred] =

(LAMBDA p,q: (LAMBDA ss,j: EXISTS k: k >= j AND q(ss,k) AND

FORALL t: j <= t AND t < k IMPLIES p(ss,t)));

AND: [TemporalPred,TemporalPred -> TemporalPred] =

(LAMBDA (p,q): (LAMBDA ss,t: p(ss,t) AND q(ss,t)));

% definition of OR, NOT, and IMPLIES

isValid(p): bool = FORALL ss: p(ss, 0)

predicateToTemporal(p: PRED[state]):

TemporalPred = (LAMBDA ss, t: p(ss(t)))

CONVERSION predicateToTemporal

END temporal

Since the predicate evaluation function evaluates a predicate with respect
to a sequence of object state, the semantics of ordinary predicates must be
defined in the temporal paradigm. This is done in the above theory by a func-
tion predicateToTemporal which takes an ordinary predicate on the object
state and defines its semantics when this predicate is viewed as a temporal
one. For a predicate p on the object state, its corresponding temporal predi-
cate predicateToTemporal(p) will evaluate to true for a sequence of object

states seq and a time instant t iff p evaluates to true in the state seq(t).
The CONVERSION statement in the above theory will automatically perform a
conversion of an ordinary predicate into a temporal one whenever required.

In the mutators theory given below, the effect of mutator methods is ex-
pressed in the above defined temporal paradigm.

mutators[state: TYPE+]: THEORY

BEGIN IMPORTING temporal[state]

MUTATOR: TYPE = [state,state -> bool]

m: VAR MUTATOR

s: VAR state

pre,post,p,q: VAR pred[state]

seq: VAR stateSequence

t,t1,t2: VAR TIME

correctMutator(pre,m,post): TemporalPred =

(LAMBDA seq,t: (FORALL t1,t2:(t <= t1 AND t1 < t2) IMPLIES

(pre(seq(t1)) AND m(seq(t1),seq(t2)) IMPLIES post(seq(t2)))))

mutatorConstraint(pre, m, post, seq,t1,t2): bool =

t1 < t2 AND pre(seq(t1)) AND m(seq(t1),seq(t2)) AND post(seq(t2))

% mutator composition etc.

END mutators

The type parameter state stands for the type of the receiver object. The
mutators theory is based on the temporal theory so that it allows modeling
of object state changes along the time axis. The predicate correctMutator
is a temporal specification of the usual Hoare-style correctness. The predicate
mutatorConstraint will be used in restricting the sequences of object states to
those that are created by application of mutators of a particular theory as in the
Collection example given below. The limitation of the above theory is that it
does not specify that object identity remains invariant along the time axis.

The Collection theory imports the mutators theory with the actual type
parameter Collection standing for the state type. Methods insert and delete
are defined as mutator predicates. Two temporal theorems insertTheorem and
deleteTheorem are defined using the temporal operator ALWAYS to express prop-
erties of sequences of Collection object states. These two theorems are success-
fully proved by PVS.
Collection[T: TYPE+]: THEORY

BEGIN

Collection: TYPE+

IMPORTING mutators[Collection]

c,c1,c2: VAR Collection

o,o1: VAR T

t,t1,t2: VAR TIME

seq: VAR stateSequence

% Definitions

count(c,o): int

belongs(c,o): bool = count(c,o) > 0

% Mutators

insert(o): MUTATOR = (LAMBDA (c1,c2): count(c2,o) = count(c1,o) + 1 AND

FORALL (o1| o1 /= o): count(c1,o1) = count(c2,o1))

preInsert(o): pred[Collection] = (LAMBDA c: count(c,o) >= 0)

postInsert(o): pred[Collection] = (LAMBDA c: belongs(c,o))

delete(o): MUTATOR = (LAMBDA (c1,c2): count(c2,o) = count(c1,o) - 1

AND FORALL (o1|o1 /= o): count(c1,o1) = count(c2,o1))

preDelete(o): pred[Collection] = (LAMBDA c: belongs(c,o))

postDelete(o): pred[Collection] = (LAMBDA c: TRUE)

% Mutator Correctness theorems

insertTheorem: THEOREM isValid(ALWAYS(

correctMutator(preInsert(o),insert(o),postInsert(o))))

deleteTheorem: THEOREM isValid(ALWAYS(

correctMutator(preDelete(o),delete(o),postDelete(o))))

% Invariant and initial state

initialState: AXIOM (FORALL (o, seq): count(seq(0), o) >= 0)

naturalCount: TemporalPred = (LAMBDA seq, t:

(FORALL (o): count(seq(t),o) >= 0))

nextState(seq,t1,t2): bool = (FORALL (o):

mutatorConstraint(preInsert(o), insert(o),postInsert(o),seq,t1,t2) OR

mutatorConstraint(preDelete(o), delete(o),postDelete(o),seq,t1,t2))

naturalCountStates: TemporalPred = (LAMBDA seq, t1:

(FORALL t2: naturalCount(seq,t1) AND nextState(seq,t1,t2)

IMPLIES naturalCount(seq,t2)))

countTheorem: THEOREM isValid(ALWAYS(naturalCountStates))

END Collection

The fact that the theory Collection is parametric is reflected in the signa-
tures of method preconditions, method postconditions and mutator predicates.
For a method m we have the following representation:

prem : T → [Collection[T] → bool],
postm : T → [Collection[T] → bool], and
mutatorm : T → [Collection[T]× Collection[T] → bool].

A predicate nextState : [TIME → state] × TIME × TIME → bool
specifies valid pairs of object states as those that are created by invocation of the
mutators insert and delete. The initial state axiom is the assumption about
constructors of objects requiring that initial object states satisfy the invariant.
Given the above, the reasoning behind the proof includes the assumption that all
state transitions satisfy the nextState predicate. This assumption is justified
because insertTheorem and deleteTheorem were proved to hold. The proof

then amounts to verifying that if the invariant holds in a particular object state,
it will hold in a subsequent object state, where the two states are specified by
the nextState predicate. Since the initialState axiom guarantees that the
invariant holds in the initial object state, these conditions produce the desired
result: isValid(ALWAYS(naturalCountStates)).

5 Inheritance and substitutability

The relationship between a class A and its subclass B is represented in the
corresponding class theories as a pair of functions

– A type signature morphism φ : ΣA → ΣB

– The abstraction function Mod(φ) : Mod(ΣB) → Mod(ΣA)

The signature morphism φ is represented by importing the theory A into the
theory B so that ΣA is a subsignature of ΣB. The abstraction function Mod(φ)
maps a model for ΣB into a model for ΣA. The PVS representation technique
has the following form:

A: THEORY B: THEORY

BEGIN A: TYPE BEGIN IMPORTING A

% body of theory A B: TYPE FROM A

END A % body of theory B

END B

In PVS the subtype declaration B: TYPE FROM A is equivalent to

B_pred: [A -> bool]

B: TYPE =(B_pred)

where (B pred) denotes a type that satisfies B pred. This is the PVS notion
of predicate subtyping. So the clause IMPORTING A corresponds to the signature
morphism importAB : ΣA → ΣB and the clause B: TYPE FROM A corresponds to
the abstraction map

Mod(importAB) : Mod(ΣB) → Mod(ΣA).
If Σ is a type signature, then Sen(Σ) denotes the set of Σ sentences of a

particular logic. Sentences in Sen(Σ) are constructed starting with the terms
that are based on function signatures from Σ and applying the rules of a par-
ticular logic. Sen(importAB) : Sen(ΣA) → Sen(ΣB) will denote the inclusion of
sentences over the subsignature ΣA of ΣB into the set of sentences over ΣB. The
relationships described above are represented in the diagram below:

Mod(ΣA) |=ΣA Sen(ΣA)
Mod(importAB)

�

�Sen(importAB)

Mod(ΣB) |=ΣB Sen(ΣB)

Diagram 2: Inheritance and substitutability

The above diagram illustrates duality of inheritance, expressed by the ar-
row Sen(importAB), and substitutability, expressed by the arrow Mod(importAB),
where the two have opposite directions [2, 14].

The IMPORT clause in fact includes the whole theory of A into the theory of
B so that all sentences of A will be available in B. This situation is a particular
case of the notion of a theory morphism. So the desired effect of the import of
the theory A into the theory of B is

Mod(importAB) : E∗
B → E∗

A.
The PVS notion of predicate subtyping has the following implication on

modeling inheritance of methods. A method m of A with the signature
m: [A,C2,...,A,...,Cm -> A]
will be available in B with exactly the same signature, just like in the Java

invariant subtyping rule for signatures of inherited methods. However, since B is
a PVS subtype of A, the effect would be as if m is available in B with the signature
m: [B,C2,...,B,...,Cm -> A]. Otherwise, overriding the signature of m in B
to a signature such as

m: [B,C2,...,B,...,Cm -> B]
which has covariant change of the result type as in Java 5.0 requires definition

of a new function m in B.
The fact that a theory K[T :: B] is representing a subclass K of a parametric

class C is represented by a theory morphism:
C[T :: B] → K[T :: B]

expressed by an import in the PVS notation

K [(IMPORTING B) T: TYPE FROM B]

BEGIN

IMPORTING C[T]

K: TYPE FROM C[T]

% body of K

END K

According to the above we have a theory morphism φ : C[T :: B] → K[T ::
B]. Given a theory morphism f : B → D, instantiation of the parametric theory
K[T :: B] produces a theory morphism k<D/T> : K[T :: B] → K[D] according
to diagram 1. By composition,

φ : C[T :: B] → K[T :: B] and k<D/T> : K[T :: B] → K[D]
produce a theory morphism k<D/T>φ : C[T :: B] → K[D]

so that we have the following commutative diagram 3 of theory morphisms:

B
ηB−→ C[T :: B]

f

�

�k<D/T>φ

D
ηD−→ K[D]

Diagram 3: Inheritance and instantiated types

The above diagram 3 along with diagram 1 produces a unique theory mor-
phism C[D] → K[D]. This is the pushout property [15]. This morphism guaran-
tees compatibility of K[D] with C[D].

A theory OrderedCollection illustrates representation of bounded para-
metric polymorphism in PVS. A theory Comparable is equipped with a par-
tial ordering <=. The type parameter of the theory OrderedCollection has
a bound Comparable, hence a valid actual type for T must be a PVS sub-
type of Comparable. OrderedCollection is also defined as a PVS subtype of
Collection.
OrderedCollection [(IMPORTING Comparable)

T: TYPE+ FROM Comparable]: THEORY

BEGIN IMPORTING Collection[T]

OrderedCollection: TYPE+ FROM Collection[T]

IMPORTING mutators[OrderedCollection]

seq: VAR stateSequence[OrderedCollection]

t: VAR TIME[OrderedCollection]

i1,i2: VAR T

index: [OrderedCollection, T -> nat]

isOrdered: temporal[OrderedCollection].TemporalPred =

(LAMBDA seq, t: FORALL(i1,i2):

belongs(seq(t),i1) AND belongs(seq(t),i2) IMPLIES

(compareTo(i1,i2) <= 0 IMPLIES

index(seq(t),i1) <= index(seq(t),i2)))

END OrderedCollection

6 Verifying behavioral subtyping

The notion of behavioral subtyping as defined in [26] is based on assertions
(method preconditions, method postconditions and type invariants). The effect
of the behavioral subtyping rules for mutators of a class A and its subclass B
may be expressed by the following sentence:

∀(o1, o2 : B)(preA
m(o1) ∧ mutatorB

m(o1, o2) ⇒ postAm(o2))

where o1 and o2 correspond to object states prior to and after invocation of a
mutator m. So if the precondition of the mutator m in the class A is satisfied,
and the mutator m as redefined in the class B is executed, the postcondition of
the mutator m as specified in A will be satisfied. This will indeed be the case if
the rules of behavioral subtyping:

∀(o : B)(preA
m(o) ⇒ preB

m(o)),
∀(o : B)(postBm(o) ⇒ postAm(o)),

are satisfied for the mutator m along with the condition for correctness of the
mutator m in B:

∀(o1, o2 : B)(preB
m(o1) ∧ mutatorB

m(o1, o2) ⇒ postBm(o2)).

The PVS notion of subtyping has its limitations with respect to inheritance
and subtyping in object-oriented languages. The above sentences are written in
such a way that they reflect the PVS view of predicate subtyping. Class theories
consist of method signatures and the associated sentences. In fact, typical object
types considered in this paper such as Collection and Bag do not come with
the specification of object state in Java itself. Hence, all of the above applies
directly to these Java types.

A theory of a subclass extends the theory of the superclass by additional
method signatures and additional sentences. Our main goal is verification of be-
havioral compatibility (behavioral subtyping) of a subclass with respect to the
superclass. Behavioral compatibility is expressed in terms of sentences that in-
volve method invocation only, hence the PVS notion of subtyping is adequate
for this purpose. It would not be adequate if we were trying to reason explicitly
about components of object states. The object state of a subtype is an exten-
sion of the object state of the supertype. The abstraction (typically projection)
function Mod(import) maps the state of a subtype object to the state of the
corresponding supertype object. The abstraction function would then have to
appear in the above sentences.

The construction of a class theory is performed in such a way that it extends
the superclass theory. In other words, the superclass theory is a subtheory [15,
2] of the subclass theory. The behavioral subtyping conditions are verified by
constructing a suitable PVS theory as described below. A Bag theory is spec-
ified by importing Collection theory and defining Bag as a PVS subtype of
Collection. The theory Bag introduces functions union and intersect that
apply to bags. These two functions satisfy the properties specified in this theory
by making use of the predicates postUnion and postIntersect defined in this
theory. The theorems insertTheorem and deleteTheorem have the same form
as in Collection theory.

Bag[T: TYPE+] : THEORY

BEGIN IMPORTING Collection[T]

Bag: TYPE+ FROM Collection[T]

IMPORTING mutators[Bag]

b,b1,b2: VAR Bag

o: VAR T

t,t1,t2: VAR TIME[Bag]

seq: VAR stateSequence[Bag]

union: [Bag,Bag -> Bag]

intersect: [Bag,Bag -> Bag]

postUnion(b1,b2): pred[Bag] = (LAMBDA (b): (FORALL (o):

(count(b1,o) >= count(b2,o) IMPLIES count(b,o) = count(b1,o)) AND

(count(b1,o) < count(b2,o) IMPLIES count(b,o) = count(b2,o))))

postIntersect(b1,b2): pred[Bag] = (LAMBDA (b): (FORALL(o):

(count(b1,o) >= count(b2,o) IMPLIES count(b,o) = count(b2,o)) AND

(count(b1,o) < count(b2,o) IMPLIES count(b,o) = count(b1,o))))

% union and intersect theorems via postUnion and postIntersect

preInsert(o): pred[Bag] = (LAMBDA (b): Collection.preInsert(o)(b))

postInsert(o): pred[Bag] = (LAMBDA (b): Collection.postInsert(o)(b))

insert(o): MUTATOR[Bag] = (LAMBDA b1,b2: Collection.insert(o)(b1,b2))

preDelete(o): pred[Bag] = (LAMBDA (b): Collection.preDelete(o)(b))

postDelete(o): pred[Bag] = (LAMBDA (b): Collection.postDelete(o)(b))

delete(o): MUTATOR[Bag] = (LAMBDA b1,b2: Collection.delete(o)(b1,b2))

% spec. of initial state axiom and nextState

insertTheorem: THEOREM temporal[Bag].isValid(

temporal[Bag].ALWAYS(correctMutator(preInsert(o),insert(o),

postInsert(o))))

deleteTheorem: THEOREM temporal[Bag].isValid(

temporal[Bag].ALWAYS(correctMutator(preDelete(o),delete(o),

postDelete(o))))

nextStateTheorem: THEOREM (FORALL seq,t1,t2:

Bag.nextState(seq,t1,t2) IMPLIES Collection.nextState(seq,t1,t2))

% Count theorem

END Bag

PVS verifies the theorems in the above specification. Bag is defined in such
a way that the abstract type Bag is a subtype of the abstract type Collection
equipped with additional properties expressed as theorems. This means that the
Bag theory is intended to be a consistent extension of the Collection theory.
The nextStateTheorem illustrates a behavioral subtyping requirement related
to history properties [26]. This theorem states that sequences of object states of
the subtype are in fact valid sequences of states of the supertype.

In order to verify the behavioral subtyping conditions a suitable PVS theory
called BagBehavior is constructed.
BagBehavior[T: TYPE+]: THEORY

BEGIN IMPORTING Bag[T]

insertBehavior: THEOREM FORALL(o:T, B: Bag):

(Collection.preInsert(o)(B) IMPLIES Bag.preInsert(o)(B))

AND Bag.postInsert(o)(B) IMPLIES Collection.postInsert(o)(B)))

deleteBehavior: THEOREM (FORALL (o: T, B: Bag):

(Collection.preDelete(o)(B) IMPLIES Bag.preDelete(o)(B))

AND (Bag.postDelete(o)(B) IMPLIES Collection.postDelete(o)(B)))

insertHistory: THEOREM (FORALL (o: T, B1,B2: Bag)

(Bag.insert(o)(B1,B2) IMPLIES Collection.insert(o)(B1,B2))

deleteHistory: THEOREM (FORALL (o: T, B1,B2: Bag)

(Bag.delete(o)(B1,B2) IMPLIES Collection.delete(o)(B1,B2))

insertMutatorTheorem: THEOREM

temporal[Collection].isValid(temporal[Collection].ALWAYS(

correctMutator(Collection.preInsert(o),

Bag.insert(o), Collection.postInsert(o))))

deleteMutatorTheorem: THEOREM temporal[Collection].isValid(

temporal[Collection].ALWAYS(correctMutator(Collection.preDelete(o),

Bag.delete(o), Collection.postDelete(o))))

END BagBehavior

An attempt to verify the theorems of this theory by PVS succeeds. Of course,
this is obvious in this example because of the way it was constructed. The
insertMutatorTheoremand deleteMutatorTheoremare implications of the pre-
viously proved theorems and correspond precisely to the notion of behavioral
subtyping: if the precondition for insert in Collection holds for the receiver
Bag object and the Bag insert is executed, the postcondition for insert in
Collection will hold for the receiver Bag object. Likewise for delete. Note that
all the theorems of the Collection theory: insertTheorem, deleteTheorem and
countTheorem have already been proved to hold for Bag theory. This is in accor-
dance to the view of behavioral subtyping [26, 2] which requires that all theorems
of the supertype must hold for its subtypes. This allows behaviorally compatible
substitution of a Bag object for a Collection object.

Consider now a PVS theory Set, given below, constructed in such a way that
the abstract type Set is a subtype of the abstract type Collection.

Set[T: TYPE+] : THEORY

BEGIN IMPORTING Collection[T]

Set: TYPE+ FROM Collection[T]

IMPORTING temporal[Set]

s,s1,s2: VAR Set

o, o1: VAR T

n: VAR nat

seq: VAR temporal[Set].stateSequence

t: VAR temporal[Set].TIME

member(s,o): bool =count(s,o)=1

preInsert(o): pred[Set] = (LAMBDA (s): NOT member(s,o))

postInsert(o): pred[Set] = (LAMBDA (s): member(s,o))

insert(o): MUTATOR[Set] = (LAMBDA s1,s2: member(s2,o) AND

(FORALL (o1 | o1 /= o): member(s1,o1) IFF member(s2,o1)))

preDelete(o): pred[Set] = (LAMBDA(s): member(s,o))

postDelete(o): pred[Set] = (LAMBDA (s): NOT member(s, o))

delete(o): MUTATOR[Set] = (LAMBDA s1,s2: NOT member(s2,o) AND

(FORALL (o1 | o1 /= o): member(s1,o1) IFF member(s2,o1)))

union(s1,s2): pred[Set] = (LAMBDA (s): (FORALL (o): member(s,o)

IFF (member(s1,o) OR member(s2,o))))

intersect(s1,s2): pred[Set] = (LAMBDA (s):(FORALL (o): member(s,o)

IFF member(s1,o) AND member(s2,o)))

% insertTheorem, deleteTheorem, nextStateTheorem

END Set

An attempt to prove that Set is a behavioral subtype of Collection using
the methodology described above would fail because Set naturally strengthens
the insert precondition. The nextStateTheorem relating the history properties
of Set and Collection will also fail and so will insertMutatorTheorem and
deleteMutatorTheorem in the SetBehavior theory.

7 The constraint rule

The rules for behavioral subtyping defined in [26] include particularly strong re-
quirements for compatibility of history properties. History properties are prop-
erties of sequences of object states. A pair of states where the second succeeds
the first is a particular case. The notion of a constraint as defined in [26] is thus
naturally expressed as a temporal predicate:

Constraint : [TIME → state] × TIME → bool
For a particular theory A the constraint is proved based on the assumption

that state transitions are restricted by the nextState predicate. The initialState
axiom is also needed to establish:

ALWAYS(Constraint[A])
Since an invariant is just a predicate on a single object state, by the predicate

to temporal conversion predicateToTemporal specified in the PVS temporal
theory, an invariant may be viewed as a constraint. However, a constraint may
be much more general, and it typically expresses properties of a sequence of two
or more object states as in [26].

Consider now a theory B which imports the theory A and defines B as a PVS
subtype of A. This theory import will be denoted as importAB . The corresponding
abstraction function Mod(importAB) acts on the state B to produce a state A:

Mod(importAB)state : stateB → stateA.
An implication of the above relationship between the theories A and B is that

a state sequence of B produces a state sequence of A. Indeed, stateSequence[B] :
TIME → stateB and Mod(importAB)state produce stateSequence[A] : TIME →
stateA by composition so that we have

stateSequence[A](t) = Mod(importAB)state(stateSequence[B](t)).
In order to establish that the theory B specifies a behavioral subtype of the

theory A we assume that their respective constraints are proved in each theory
separately:

ALWAYS(Constraint[A]) and
ALWAYS(Constraint[B]).

In addition we prove the following property:
nextState[B] ⇒ nextState[A].
We take the assumptions about initial object states as axioms, but in fact

the idea is that the following should also hold:
initialState[B] ⇒ initialState[A].

The implication is:
ALWAYS(Constraint[B] ⇒ Constraint[A]).

In other words, if the constraint for B holds then under the above assumptions,
the constraint for A will hold as well under the same assumptions as illustrated
by the following diagram:

stateB × TIME
Constraint[B]−→ true

Mod(importAB)state × 1TIME

�

�=

stateA × TIME
Constraint[A]−→ true

where 1 denotes the identity function. Following the above reasoning, the prov-
able properties of the relationship between the theories Collection and Bag as
indicated in the Bag theory are:

initialState[Bag] ⇒ initialState[Collection]
nextState[Bag] ⇒ nextState[Collection]

leading to the desired result
ALWAYS(Constraint[Bag] ⇒ Constraint[Collection]).

The corresponding theorem for the Set and Collection theories fails.

8 Related research

A number of projects are addressing the problem of extending object-oriented
languages, Java in particular, with assertions [5]. ESC/Java [13] statically de-
tects some programming errors. Nice [11] is a functional Java like language with
assertions that are enforced at run-time, and Spec# [8] is a superset of C#
equipped with assertions. JML [24, 25] annotates Java programs with behavioral
specifications that are compiled and enforced at run-time, and LOOP [10] gen-
erates theories (PVS in particular) representing the semantics of Java classes so
that they can be verified by a theorem prover. A related work is [18].

The rules for behavioral subtyping as specified in [26] were accompanied with
a hint that the problem of behavioral subtyping should be viewed in terms of
subtheories. The related work includes extensive research reported in [21, 22, 24]
where the results [30, 23] are in fact of model theoretic nature. The notion of
specification as used in [1] corresponds to the notion of a theory.

Integrating classes and algebraic specifications has been studied by [12]. Our
view of classes as theories is based on [15]. The model theory is based on [15]
and [14]. Its applications to module-based component software systems are given
in [16]. The implications of this model theory in the object-oriented paradigm
were investigated in [2] developing a model theory of behavioral compatibility
for an object-oriented paradigm based on self-typing. In a coalgebraic view of

the problem of behavioral compatibility [32] the notion of behavioral compati-
bility and the results on soundness and completeness are closely related to the
Satisfaction Condition in [14, 15, 2]. The same remark applies to the notion of
behaviorally correct subtyping [23].

In comparison with our earlier work reported in [2], the main contribution of
this paper is in matching this theory of behavioral compatibility with the tools
and techniques based on the PVS system [28]. Both this theory and PVS are
attractive for the object-oriented paradigm because they are general enough to
apply to a variety of logics [15, 14, 2].

Classes as temporal theories were studied in [4, 6] with an implementation
of a declarative object-oriented temporal language on top of the Java Virtual
Machine [5]. The temporal PVS view presented in this paper builds upon the
work reported in [31] which considers sequences of states and temporal operators
using the apparatus available in PVS. Our earlier paper applies PVS technology
to the problem of verification of object-oriented database transactions [3].

PVS is a programmable verification system. It has a small language (with
a type system and even formal semantics [19]) for specifying proof strategies.
This makes it possible to customize the proof checking capabilities of PVS to
the specific problem of verification of behavioral subtyping requirements. The
strategy language and a variety of already available proof strategies are given in
[29, 7].

9 Conclusions

In this paper we addressed the following problems in the formal foundations for
the applications of modern program verification systems to Java-like parametric
classes equipped with logic-based constraints:
– Representing classes equipped with assertions as theories of a modern pro-

gram verification system.
– Matching an object-oriented type system with a type system of a modern

program verification system equipped with subtyping and parametric theo-
ries.

– Expressing the effects of methods that change the underlying object state
(mutators) within the abstract data type, functional program verification
system paradigm.

– A model-theoretic approach to the problem of behavioral compatibility of
a subclass with respect to its superclass, which makes it possible to apply
modern program verification tools to verify the behavioral compatibility re-
quirements.

– A technique to fit the notion of behavioral subtyping to the types as theo-
ries view, and using program verification tools based on that view to verify
behavioral subtyping requirements.

– Developing a temporal logic view of the object-oriented paradigm based on
suitable program verification system theories, and using temporal theories
to represent classes and verify or disprove behavioral properties such as be-
havioral compatibility.

The current representation does not address the issues related to object iden-
tity. This extension is left for future work. It would require specification of an
Object theory that would include functions for identity comparisons like the de-
fault method equals in Java, and the associated constraints. This would produce
a more complex but more realistic object-oriented modeling framework capable
of object aliasing and expressing properties implemented by the heap model.

Our experiences show that using PVS comes with nontrivial subtleties. One
of them is that, contrary to our natural expectations, PVS does not check the
soundness of a set of axioms. The other subtlety is that even if the proofs succeed,
one has to be very cautious about what PVS actually proved. That requires
looking into the actual proofs which are by no means easy to read. On the
positive side, using PVS requires explicit specification of the assumptions that
make the proofs go through. This makes both specifications and proofs much
more carefully defined. This paper reports the results attained thus far, with a
number of issues still to be resolved in future work. Perhaps the most important
area that is still under development is the proof strategies suited for classes as
temporal verification theories.

References

1. M. Abadi and K. R. M. Leino, A logic of object-oriented programs, Proceedings of
TAPSOFT ’97, Lecture Notes in Computer Science 1214, pp. 682-696, Springer,
1997.

2. S. Alagić, S. Kouznetsova, Behavioral compatibility of self-typed theories. Pro-
ceedings of ECOOP 2002, Lecture Notes in Computer Science 2374, pp. 585-608,
Springer, 2002.

3. S. Alagić and J. Logan, Consistency of Java transactions, Proceedings of DBPL
2003, Lecture Notes in Computer Science 2921, pp. 71-89, Springer, 2004.

4. S. Alagić, Semantics of temporal classes, Information and Computation, 163 pp.
60-102, 2000.

5. S. Alagić, J. Solorzano, and D. Gitchell, Orthogonal to the Java imperative, Pro-
ceedings of ECOOP ’98, Lecture Notes in Computer Science 1445, pp. 212 - 233,
Springer, 1998.

6. S. Alagić and M. Alagić, Order-sorted model theory for temporal executable spec-
ifications, Theoretical Computer Science 179, pp. 273-299, 1997.

7. M. Archer, B. Di Vito, and C. Munoz, Developing user strategies in PVS: A
tutorial, Proceedings of STRATA 2003.

8. M. Barnett, K. R. M. Leino, and W. Schulte, The Spec# programming system:
an overview, Microsoft Research 2004. Also in Proceedings of CASSIS 2004.

9. V. Benzanken and X. Schaefer, Static integrity constraint management in object-
oriented database programming languages via predicate transformers, Proceed-
ings of ECOOP ’97, Lecture Notes in Computer Science 1241, pp. 60-84, 1997.

10. J. van den Berg and B. Jacobs, The LOOP compiler for Java, Lecture Notes in
Computer Science 2031, Springer, 2001, pp. 299 - 312.

11. D. Bonniot, The Nice programming language, http://nice.sourceforge.net/.

12. R. Breu, Algebraic specifications in Object-Oriented Programming Environments,
Lecture Notes in Computer Science 562, Springer, 1991.

13. C. Flanagan, K. R. M. Leino, G. Nelson, J. B. Saxes, and R. Stata, Extended
static checking for Java, Proceedings of PLDI, ACM, 2002, pp. 234-245.

14. J. Goguen and R. Burstall, Institutions: Abstract model theory for specification
and programming, Journal of the ACM, 39, pp. 92-146, 1992.

15. J. Goguen, Types as theories, in: G. M. Reed, A. W. Roscoe and R. F. Wachter,
Topology and Category Theory in Computer Science, pp. 357-390, Clarendon
Press, Oxford, 1991.

16. J. Goguen and W. Trace, An implementation oriented semantics for module com-
position, in: G. Leavens and M. Sitaraman, Foundations of Component-Based
Systems, pp. 231 - 263, Cambridge University Press, 2000.

17. B. Jacobs, Objects and classes, co-algebraically, in B. Freitag, C.B. Jones, C.
Lengauer, and H.-J. Schek, eds., Object Orientation with Parallelism and Persis-
tence, pp. 83–103, Kluwer, 1996.

18. B. Jacobs, L. van den Berg, M. Husiman and M. van Berkum, Reasoning about
Java classes, Proceedings of OOPSLA ’98, pp. 329-340, ACM, 1998.

19. F. Kirchner, Coq tacticals and PVS strategies: A small step semantics, Proceed-
ings of STRATA 2003.

20. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cook,
P. Muller, and J. Kiniry, JML Reference Manual (draft), July 2005,
http://www.cs.iastate.edu/ leavens/JML/.

21. G. Leavens and D. Pigozzi, The behavior-realization adjunction and generalized
homomorphic relations, Theoretical Computer Science 177, pp. 183-216, 1997.

22. G. T. Leavens and K. K. Dhara, Concepts of behavioral subtyping and a sketch of
their extension to component-based systems, in: G. T. Leavens and M. Sitaraman,
Foundations of Component-Based Systems, Cambridge University Press, 2000.

23. G. Leavens and D. Pigozzi, Equational reasoning with subtypes, TR #02-07,
Department of Computer Science, Iowa State University, 2002.

24. G. Leavens and Y. Cheon, Design by contract with JML, Iowa State University,
2004.

25. G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok, How the design
of JML accommodates both runtime assertion checking and formal verification,
Science of Computer Programming, Vol. 55, pp. 185-205, Elsevier, 2005.

26. B. Liskov and J. M. Wing, A behavioral notion of subtyping, ACM Transactions
on Programming Languages and Systems, 16, pp. 1811-1841, 1994.

27. B. Meyer, Object-Oriented Software Construction, Prentice Hall, 1997.
28. S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Clavert: PVS Lan-

guage Reference, SRI International, Computer Science Laboratory, Menlo Park,
California.

29. S. Owre and N. Shankar, Writing PVS proof strategies, Computer Science Labo-
ratory, SRI International, http://www.csl.sri.com.

30. D. Pigozzi and G. Leavens, A complete algebraic characterization of behavioral
subtyping, Acta Informatica 36, pp. 617-663, 2000.

31. A. Pnueli and T. Arons, TLPVS: A PVS-based LTL verification system, In:
Verification: theory and Practice, Lecture Notes In Computer Science Vol 2772,
Springer, 2004.

32. E. Poll, A coalgebraic semantics of subtyping, Theoretical Informatics and Appli-
cations Vol. 35(1), pp. 61-82, 2001.

33. J. Warmer and A. Kleppe, The Object Constraint Language: Getting your Models
Ready for MDA, Addison-Wesley, 2003.

