
Verification of Programs with Inspector Methods

Bart Jacobs and Frank Piessens

Department of Computer Science, Katholieke Universiteit Leuven
Celestijnenlaan 200A, 3001 Leuven, Belgium

{bart.jacobs, frank.piessens}@cs.kuleuven.be

Abstract. Most classes in an object-oriented program provide access to
an object’s state through methods, so that client code does not depend
on and cannot interfere with the object’s internal representation com-
posed of fields and internal component objects. Methods used for this
purpose are sometimes called inspector methods. In order to extend the
benefits of inspector methods to specifications, the method contracts of
non-inspector methods may be expressed using inspector methods, hence
providing support for state abstraction in specifications.
In this paper, we propose an approach to the verification of programs
that use inspector methods in method contracts and object invariants.
Inspector methods may have parameters, and they may depend on the
state of objects passed as arguments. Our approach builds on the Boogie
methodology for object invariants and ownership.
Performing state abstraction in a programming language that allows
aliasing through object references poses a framing problem. Specifically,
client code needs to be able to tell whether modifying a given object or
calling a given method may affect the value of a given inspector method
call. We solve this by modeling inspector methods as functions that take
as arguments only those parts of the heap on which they depend. Thanks
to a novel logical encoding of the heap, we can do this without breaking
information hiding, even in cases where inspector methods depend on
internal component objects.
The core of our approach has been implemented in a custom build of the
Spec# program verifier.

1 Introduction

Consider the program in Figure 1. Class Cell provides access to the state of a
Cell object using method getX . It also uses getX to specify the effect of the
class’s constructor and of the setX method. This makes it possible to prove
the correctness of the client program using a proof that does not depend on
the internal representation of the Cell object’s state using field x. As a result,
when class Cell ’s internal representation is changed, only class Cell needs to be
reverified. The client program’s proof remains valid.

In this paper, we concern ourselves with how to prove the correctness of
programs such as the one in Figure 1.

Note that one of the key problems that needs to be solved by our verification
approach is the framing problem. Specifically, in order to prove the assertion in

class Cell {
int x;
inspector int getX ()
{ return x; }
Cell(int value)

ensures getX () = value;
{ x := value; }
void setX (int value)

modifies this.∗;
ensures getX () = value;

{ x := value; }
}

Cell c1 := new Cell(0);
int y := c1 .getX ();
assert y = 0;
Cell c2 := new Cell(5);
c1 .setX (10);
assert c1 .getX () = 10;
assert c2 .getX () = 5;

Fig. 1. A class specified using an inspector method, and a client program

Figure 1 that c2 .getX () = 5, it must be encoded in the verification logic that
c2 .getX () does not depend on any objects modified by method call c1 .setX (10).

The remainder of the paper is structured as follows. We introduce our ap-
proach in five versions, each extending the previous one. In Section 2, we address
the framing problem in its basic form (Version 1). In Section 3, we introduce the
Boogie methodology [1] for object invariants (Version 2) and ownership, and we
show how to solve the framing problem for inspector methods that may depend
on owned objects (Version 3). In Section 4, we show how we allow inspector
methods to depend on the state of objects passed as arguments (Version 4). In
Section 5, we deal with a number of formal details. In Section 6, we describe
our approach to inheritance (Version 5). In the final sections, we discuss related
work and offer a conclusion.

2 Framing

In this section, we show how our approach addresses the framing problem in
the simple setting where an inspector method may depend only on the fields of
the receiver object. In later sections, we extend the approach to allow inspector
methods to depend on fields of transitively owned objects and objects passed as
arguments.

Our solution consists of three components: the way the heap is modeled, the
way inspector method calls are modeled, and the way non-inspector method calls
(which may modify the program state) are modeled.

In our verification logic, we represent the heap as a function that maps object
references to object states. For the simple setting we discuss here, an object state
is a function that maps field names to field values. Later sections extend the
notion of object state to deal with transitively owned objects.

We treat inspector methods as follows. For each inspector method declared
in the program, we introduce a function symbol in the verification logic, as well

as an axiom, derived from the inspector method’s body, that defines the function
symbol’s meaning. All information on which the inspector method depends is
passed as arguments to the corresponding function. Hence, in the simple setting
we discuss here, we pass only the receiver’s reference and state. For example, the
assertion

assert c2 .getX () = 5;

is modeled as
assert Cell getX (c2 ,Heap[c2]) = 5;

The final ingredient to our approach is the way non-inspector method calls
are modeled in our verification logic. The post-state heap of a non-inspector
method call is assumed to be an arbitrary new heap, constrained only by the
method’s declared postconditions and by an implicit postcondition called the
frame condition. The frame condition says that for all objects o that were allo-
cated in the pre-state and that are not listed by the method’s modifies clause,
the object’s post-state is equal to its pre-state. Formally:

∀o • old(Alloc[o] ∧ o /∈ W) ⇒ Heap[o] = old(Heap[o])

where W denotes the set of objects listed by the modifies clause. (We allow only
items of the form o.∗ in modifies clauses. Also, note that a constructor’s modifies
clause is always considered to implicitly include this.∗.)

We can now prove the program of Figure 1. Let Heap and Heap′ denote
the heap in the pre-state and the post-state, respectively, of the setX call. We
need to prove Cell getX (c2 ,Heap′[c2]) = 5. From the postcondition of Cell ’s
constructor, we have Cell getX (c2 ,Heap[c2]) = 5. Finally, from the frame con-
dition of the setX call, we have Heap′[c2] = Heap[c2], which allows us to arrive
at our goal by substitution.

3 Object invariants and ownership

In this section, we integrate inspector methods with the support for object in-
variants and ownership provided by the Boogie methodology [1]. The example
in Figure 2 motivates and illustrates the approach. (Note: the expression (a : b)
denotes the range of integers i where a ≤ i < b.)

An object of class IntList in Figure 2 represents a container for a list of
integers. Internally, the integers are stored in an array elems. As is common, the
array may be larger than the length of the list to minimize the number of heap
allocations when adding or removing elements. The actual number of elements
is stored in the count field.

3.1 Object Invariants

Methods that operate on an IntList object, such as the add method, need to
know that count is never negative and never greater than the length of elems.

final class IntList {
rep int[] elems;
int count ;

invariant 0 ≤ count ∧ count ≤ elems.length;

inspector int getCount() { return count ; }
inspector int getItem(int index)

requires 0 ≤ index ∧ index < getCount();
{ return elems[index]; }

derived invariant 0 ≤ getCount();

IntList(int[] xs)
requires ¬xs.committed ;
ensures ¬this.committed ∧ this.inv ;
ensures getCount() = xs.length;
ensures

forall{int i in (0 : getCount()); getItem(i) = xs[i]};
{ . . . }

void add(int x)
requires ¬this.committed ∧ this.inv ;
modifies this.∗;
ensures ¬this.committed ∧ this.inv ;
ensures getCount() = old(getCount()) + 1;
ensures

forall{int i in old((0 : getCount())); getItem(i) = old(getItem(i))};
ensures getItem(old(getCount())) = x;

{
unpack this;
count++;
ensureCapacity(count);
elems[count − 1] := x;
pack this;

}

. . .
}

int[] xs := {1, 2, 3};
IntList list := new IntList(xs);
xs[0] := 5;
assert list .getItem(0) = 1;

Fig. 2. A class that illustrates object invariants, ownership, parameterized inspec-
tor methods, inspector method preconditions, and derived invariants. (Note: reference
types are non-null types by default.)

It would be unfortunate to require the method’s caller to guarantee this; this
would cause the caller to depend on the internals of class IntList . To solve this
problem, the Boogie methodology provides a mechanism called object invariants
that allows a developer to expose conditions on internal state to clients in an
abstracted form. Specifically, it allows a developer to declare an object invariant
using the new invariant keyword, and in each object, it introduces a special
boolean field inv and it restricts modifications of this field and the object’s other
fields in such a way that inv is only ever true at a time when the object invariant
holds. Consequently, by exposing to clients only the inv field and requiring inv
to be true on entry to a method, the method can rely on the internal object
invariant without having to expose it. Note that methods are not allowed to
assume without proof that object invariants hold on entry to the method; this
would be unsound because of possible re-entrancy [1].

An object o for which o.inv is false is called mutable; if o.inv is true, the
object is called valid. An assignment to a field o.f is allowed only when o is
mutable.

Field inv is initially false. It may be read only in method contracts, not in
program code. Also, it may be updated only through the special new statements
pack o; and unpack o;. These statements behave as follows (where Inv(o) de-
notes o’s object invariant):

pack o; ≡
assert ¬o.inv ;
assert Inv(o);
o.inv := true;

unpack o; ≡
assert o.inv ;
o.inv := false;

That is, the pack o; operation checks that o is mutable, and that o’s object
invariant holds. It then marks the object as valid. The unpack o; operation
checks that o is valid. It then marks the object as mutable.

Provided that an object o’s object invariant depends only on the fields of
o, the semantics of pack and unpack together with the restriction on field
assignments guarantee that whenever the object is valid (i.e. o.inv is true), its
object invariant holds. We call this property the soundness of the object invariant
methodology.

Inspector methods and object invariants Non-inspector methods that rely on
an object’s invariant need to require the object’s validity as a precondition.
Whereas for non-inspector methods we provide the option of either requiring
validity of a given object or not requiring it, for inspector methods we always
require validity of the receiver object. That is, each inspector method implicitly
gets a precondition saying that the receiver object is valid. We made this choice
because supporting inspector methods that do not require the validity of their
receivers would complicate the approach, and scenarios where the abstraction
provided by inspector methods is required but the abstraction provided by object
invariants is not, are probably rare.

Since it needs to be possible to evaluate an object invariant even in a state
where it does not hold, we do not allow inspector method calls on this in an

object invariant. However, in addition to an object invariant, a class may declare
a derived invariant, using one or more derived invariant declarations. If a class
declares a derived invariant, this implies a proof obligation that the derived
invariant follows from the object invariant. Contrary to an object invariant, a
derived invariant may include inspector method calls on this. If a class mentions
private fields in its object invariant, it must declare the object invariant itself
private, and as a result, other classes cannot use it in proofs. Still, the class
can expose information to other classes in the form of public derived invariants,
provided that the information is stated in terms of public inspector methods.

We could have allowed inspector method postconditions instead of, or in ad-
dition to, derived invariants. This would be equivalent in terms of expressiveness.
However, since such postconditions would in general have to mention other in-
spector methods, to express relationships between inspector methods, it seems
more natural to centralize this information at the class level.

Derived invariants (or an equivalent mechanism) serve to reduce specification
effort. For example, if class IntList did not declare a derived invariant, each
method that takes an IntList object list as an argument would have to specify
0 ≤ list .getCount() in its precondition and postcondition.

3.2 Ownership

Does the client program provided in Figure 2 verify? Without an ownership
system, the answer would be yes, regardless of whether IntList ’s constructor
copies xs into a new array or simply stores a reference to xs into the elems field.
Clearly, this is unsound.

The cause of this unsoundness is the fact that the getItem inspector reads the
elements of elems, even though, as discussed in Section 2, the function generated
for the logical encoding of getItem takes only the state of this, not the state of
the elems array, as a parameter.

In order to allow inspector methods like getItem, which depend on the state
of objects other than the receiver object, we apply the Boogie methodology’s
ownership system, where an object can own other objects. Specifically, whenever
an object o is valid, it owns the objects referred to by o’s rep fields. For example,
in Figure 2, whenever an IntList object o’s inv field is true, o owns the array
pointed to by o.elems.

We allow inspector methods to depend on their receiver object, as well as any
objects directly or indirectly owned by it. However, in the verification logic, we
still wish to pass just the state of the receiver object as an argument, as opposed
to passing an additional argument for each owned object. The reason is that
rep fields are typically private fields, so requiring clients to pass an additional
argument for each rep field in inspector method function applications when
verifying their code would break information hiding.

To make this work, we change the logical encoding of the heap. Object ref-
erences still map to object states, but the notion of object state is extended to
deal with ownership. An object o’s object state is extended to contain a copy
of the state of each of o’s owned objects. Specifically, for each rep field o.f ,

we introduce an additional field o.fstate which maps to a copy of the state of
the object referred to by o.f whenever o.inv is true. Of course these additional
fields exist only in the logical encoding; they do not exist at run time. We do
not change the program’s run-time semantics.

This extended notion of object state allows inspector method results to be de-
fined entirely in terms of the state of the receiver object. For example, the axiom
that defines the function symbol for inspector method getItem is as follows:

∀o, ostate, i •
IntList getItem(o, ostate, i) = ostate[IntList elemsstate][i]

Clearly, using a copy of an object’s state instead of the original is sound
only if the copy is up-to-date whenever it is used. This is exactly what the heap
consistency theorem below shows. The proof of this theorem relies on another
aspect of the Boogie methodology. The methodology does not allow updates to
fields of committed objects, i.e. objects owned by other objects.

An object p is committed if and only if there is some valid object o that has
a rep field o.f such that o.f = p. However, to simplify the verification logic, we
track whether an object o is committed explicitly in the form of a boolean field
o.committed . Like the inv field, this field can be read only in method contracts
and cannot be assigned to explicitly in code.

To deal with ownership, we extend the meaning of the pack and unpack
commands as follows:

pack o; ≡
assert ¬o.committed ∧ ¬o.inv ;
foreach (non-null rep field o.f)

assert ¬o.f.committed ∧ o.f.inv ;
assert Inv(o);
foreach (non-null rep field o.f) {

o.f.committed := true;
o.fstate := Heap[o.f];

}
o.inv := true;

unpack o; ≡
assert ¬o.committed ∧ o.inv ;
foreach (non-null rep field o.f)

o.f.committed := false;
o.inv := false;

Heap consistency As explained above, if the body of an inspector method derefer-
ences an owned object this.f , we retrieve its state from a special field this.fstate

instead of looking it up in the heap as usual. This is sound because this is
rep-consistent :

Definition 1 (rep-Consistency). An object o is rep-consistent if, for each
non-null rep field o.f , it holds that

o.fstate = Heap[o.f]

.

In fact, we have the following theorem:

Theorem 1 (rep-Consistency). In each program state of each execution of
each valid program, each valid object is rep-consistent.

Proof. Since our approach is a conservative extension of the Boogie methodol-
ogy [1], we may assume the known properties of the Boogie methodology. In
particular, we know that objects pointed to by rep fields of valid objects are
valid and committed.

We prove the theorem by induction over the length of an execution. This
holds for the empty execution, since in the initial program state no object is
valid. Now consider a non-empty execution. We now look at the final command
performed in this execution:

– A field assignment p.g := v;. We know that p is mutable and rep-consistency
involves only valid objects; therefore, this command does not invalidate the
theorem.

– A pack p; operation. This operation establishes the rep-consistency of p, and
it does not break the rep-consistency of the objects pointed to by the rep
fields of p since changing o.committed does not influence the rep-consistency
of an object o.

– An unpack p; operation. Since p is made mutable, the theorem no longer
applies to p. Also, since the Boogie methodology guarantees that committed
objects have unique owners, changing the committed bits of p’s owned objects
does not invalidate the rep-consistency for any valid object o 6= p.

– No other commands modify existing objects.

Ownership and frame conditions Recall from Section 2 that each method gets an
implicit postcondition, called the frame condition, that encodes in the verification
logic that some objects are not modified by the method. The frame condition
given in Section 2 was:

∀o • old(Alloc[o] ∧ o /∈ W) ⇒ Heap[o] = old(Heap[o])

In the presence of ownership, a different frame condition is required. Specif-
ically, we wish to allow a method that lists an object o in its modifies clause to
modify not just o, but objects directly or indirectly owned by o as well. (We can-
not require the method to list these owned objects in the modifies clause because
of information hiding.) To achieve this, we follow the Boogie methodology [1] in
allowing the method to modify any object that is committed in the pre-state, in
addition to the objects listed in the modifies clause:

∀o • old(Alloc[o] ∧ o /∈ W ∧ ¬o.committed) ⇒ Heap[o] = old(Heap[o])

4 Multi-dependent inspector methods

In this section, we show how the approach supports multi-dependent inspector
methods, i.e. inspector methods that depend on the state of objects passed as
arguments, in addition to the state of the receiver object.

A motivating example is shown in Figure 3. It shows part of the Microsoft
.NET Framework’s support for restricting the access partially trusted code has
to system resources.1 A PermissionSet object holds the permissions assigned to
a given piece of code. Permissions are represented using objects that implement
interface Permission. For example, a SecurityPermission object may represent
permission to run, or permission to skip bytecode verification (or both, or nei-
ther).

Interface Permission declares an inspector method isSubsetOf that returns
whether one permission of a given type is implied by another permission of the
same type. Also, class PermissionSet declares an inspector method contains that
returns whether the set contains a given permission.

Importantly, in the .NET Framework Permission objects are mutable. That
is, a given Permission object may be made to represent different permissions
at different points in time. However, a PermissionSet object contains specific
permissions, not Permission objects. Therefore, the contains inspector method
must be allowed to depend on the state of the Permission object passed as an
argument, not just its identity.

For example, in the piece of client code shown at the bottom of Figure 3,
permission to execute is added to a permission set, and the contains method
returns true for the Permission object that represents this permission. However,
if subsequently permission to skip verification is added to the Permission object,
calling contains with the same object returns false. This shows the need for
multi-dependent inspector methods.

The following issues arise when multi-dependent inspector methods are ad-
mitted: how are calls of such methods translated into the verification logic, how
do we ensure consistency of the resulting logic, and how do we specify the ab-
stract state of an object using multi-dependent inspector methods.

An inspector method is allowed to depend on the state of the receiver object,
the objects that are passed as arguments for parameters marked state, and their
transitively owned objects. A call of an inspector method is translated into an
application of the corresponding function symbol with the following arguments:

– For each argument a to the inspector method call, there is an argument to
the function symbol application that models the value a.

– In addition, for each argument a to the inspector method call for a parameter
marked state, there is an argument to the function symbol application that
models the state of the object a.

An inspector method implicitly gets a precondition that says that each ar-
gument a for a state parameter must be valid (i.e., a.inv is true).

1 We changed names to conform to Java naming conventions.

interface Permission {
inspector boolean isSubsetOf (state Permission other)

requires other .getClass() = getClass();
}
final class SecurityPermission implements Permission {

static final int EXECUTION := 1;
static final int SKIP VERIFICATION := 2;

int flags;
inspector int getFlags() { return flags; }
inspector boolean isSubsetOf (state Permission other) {

return (flags & ∼((SecurityPermission)other).flags) = 0;
}
derived invariant

forall{state SecurityPermission p;
isSubsetOf (p) = ((getFlags() & ∼p.getFlags()) = 0)};

SecurityPermission(int flags)
ensures getFlags() = flags;

{ this.flags := flags; }

void setFlags(int flags)
ensures getFlags() = flags;

{ this.flags := flags; }
}
final class PermissionSet {

import Permission;
. . .
inspector boolean contains(state Permission p) { . . . }

PermissionSet()
ensures forall{state Permission p; ¬contains(p)};

{ . . . }

void setPermission(Permission p)
ensures forall{state Permission q;

contains(q) = (q.getClass() = p.getClass() ? q.isSubsetOf (p) : old(contains(q)))};
{ . . . }

}

PermissionSet s := new PermissionSet();
Permission p := new SecurityPermission(SecurityPermission.EXECUTION);
s.setPermission(p);
assert s.contains(p);
p.setFlags(SecurityPermission.EXECUTION |SecurityPermission.SKIP VERIFICATION);
assert ¬s.contains(p);

Fig. 3. An example demonstrating multi-dependent inspector methods and quantifi-
cation over object states

Consistency of the verification logic For each inspector method, an axiom is
added to the verification logic that defines the corresponding function symbol.
We restrict inspector method bodies to be of the form { return E; }, so that we
can translate an inspector method whose body is { return E; } into an axiom

axiom (∀x1, . . . , xn • C m(x1, . . . , xn) = [[E]]);

A potential problem with this approach is that the resulting set of axioms may be
inconsistent. Notice that this is the case only if there is an inspector method call
that does not terminate. To ensure that inspector methods always terminate, we
restrict which method calls may appear inside inspector method bodies. Specif-
ically, if a method call o.m1(. . .) appears in the body of an inspector method
m2, then m1 must be an inspector method and the the declaring class of m2

must transitively import the static type of o. A type may import another type
explicitly using an import declaration. Also, when a class C implements an in-
terface I, I implicitly imports C (sic). For example, in Figure 3, PermissionSet
imports Permission and Permission imports SecurityPermission. (We discuss
the import relation in the presence of subclassing in Section 6.) It is checked at
load time that the import relation is acyclic. This ensures that inspector method
calls always terminate.

Quantification over object states Typically, a postcondition of a non-inspector
method fully specifies the post-state of each object o that is modified by the
method. It does so by specifying the value of each inspector method call on
o. If an inspector method has parameters, this requires quantifying over the
possible argument values. For example, in the IntList example (Figure 2), both
the constructor and the Add method have an ensures clause that quantifies over
a range of integers, to serve as the argument to the getItem inspector method.

If an inspector method takes an object reference as an argument, one may
quantify over object references, using the following syntax:

forall{T o; E}

Variable o ranges over both unallocated and allocated objects, so that if the
inspector method whose value is being defined by the quantification is called
with an argument object that is allocated after the quantification is asserted,
the quantification applies to that call as well. However, expression E is not
allowed to access the state of o and E cannot assume the validity of o; therefore,
o cannot be passed as an argument for a state parameter.

To support full specification of the abstract state of an object that has in-
spector methods that take object states as arguments, we support quantification
over object states, using the following syntax:

forall{state T o; E}

Variable o again ranges over both unallocated and allocated object references,
but when the state of o is inspected, it is not looked up in the heap; rather, the

state, too, is considered to be bound by the quantification, and it ranges over
all possible valid object states. That is, the above quantification translates into
the verification logic as follows:

(∀o, ostate • ostate[inv] ⇒ [[E]])

For example, referring to Figure 3,

forall{state Permission q; contains(q) = . . .}

is encoded as

(∀ q, qstate • qstate[inv] ⇒
PermissionSet contains(this,Heap[this], q, qstate) = . . .)

5 Formal details

Well-formedness conditions Method preconditions and postconditions and ob-
ject invariants must be pure expressions, and the body of an inspector method
must be of the form { return E; } where E is a pure expression. A pure expres-
sion is a Java expression that does not contain object or array creations, simple
or compound assignments, or increment or decrement operators, and that calls
only inspector methods. This ensures that evaluation of pure expressions has no
side-effects and that they can be translated easily into first-order logic.

Additionally, object invariants and derived invariants may depend only on
the fields of this and on the fields of objects transitively owned by this. An
object invariant cannot assume that this is valid; therefore, it cannot include
inspector method calls on this. It can, however, include inspector method calls
on objects pointed to by rep fields of this. Also, as stated before, inspector
method bodies may depend only on the fields of the receiver object, objects
passed as arguments for parameters marked state, or objects transitively owned
by these objects.

Soundness of derived invariants The declaration of a derived invariant in a class
C generates a proof obligation saying that it holds for all valid objects of class
C. For discharging this obligation, one may assume that all derived invariants
applicable to the owned objects of o hold for those objects (even if some of the
owned objects are themselves of class C). To show that this proof rule is sound,
we prove the following theorem:

Theorem 2 (Derived invariants). In each execution state, for each valid ob-
ject, each derived invariant applicable to it holds.

Proof. By induction on the length of the execution. The only interesting case
is when the last operation is a pack o; operation. The induction hypothesis
allows us to apply the aforementioned proof obligation to prove that all derived
invariants applicable to o hold.

Dynamically bound inspector method calls An inspector method call may be
either statically or dynamically bound. For example, calls of inspector methods
of final classes are statically bound, and calls of inspector methods of interfaces
are dynamically bound. (In the presence of subclassing, methods may generally
be called both ways. We discuss subclassing in Section 6.)

In contrast with a statically-bound inspector method, the function for a
dynamically-bound inspector method is not defined once and for all by the
method’s declaration; rather, it is partially defined by each non-abstract in-
spector method that overrides it. Specifically, for each non-abstract inspector
method m in class C, and each dynamically-bound inspector method m in class
or interface T that it overrides, an axiom is generated that says that if the target
object’s type is C, both functions coincide. Formally:

∀o, ostate, a1, . . . , an • type(o) = C ⇒
T m(o, ostate, a1, . . . , an) = C m(o, ostate, a1, . . . , an)

6 Subclassing

In this section, we describe an extension of our approach that allows a superclass
to hide its internal representation not only from client code, but from code in
subclasses as well.

Our approach is based on the observation that if we want to abstract super-
class state from subclasses, then objects are no longer the unit of abstraction.
Indeed, we must subdivide an object along the classes that contribute state to
it. We call each such subdivision an object frame (or frame for short). That is,
a frame (or frame reference) is a tuple (o, C) consisting of an object reference o
and the name of a class C of which o is an instance. If a class D extends a class
C which extends class Object , then an object whose type is D consists of three
frames: (o,D), (o, C), and (o,Object).

We update our heap representation accordingly. Rather than mapping object
references to object states, in our new encoding the heap maps frames to frame
states. The frame state for a frame (o, C) consists of the values of the fields of o
declared in C.

In previous sections, we achieved abstraction of object state from client
code by introducing per-object inv and committed fields, introducing pack and
unpack operations on objects, introducing an ownership relation between ob-
jects, caching owned object state in owner objects, and passing object states as
arguments in inspector method function applications. Completely analogously,
to achieve abstraction of superclass state from subclass code, we introduce per-
frame inv and committed fields, pack and unpack operations on frames, and
an ownership relation between frames, and we cache owned frame state in owner
frames and we pass frame states as arguments in inspector method function ap-
plications. Note that in the absence of subclassing, we again obtain the approach
of the previous sections as a special case.

class Cell {
int x;
invariant 0 ≤ x;
inspector int getX () { return x; }
derived invariant 0 ≤ getX ();
dynamic invariant 0 ≤ getX ();

Cell(int x)
requires 0 ≤ x;
ensures ¬committed ∧ inv ;
ensures getX () = x;

{ this.x := x; pack this; }

void setX (int x)
requires ¬committed ∧ inv ;
requires 0 ≤ x;
modifies this.∗;
ensures ¬committed ∧ inv ;
ensures getX () = x;

{
unpack this;
this.x := x;
pack this;

}
}

class MyCell extends Cell {
invariant 1 ≤ super.getX ();
inspector int getX ()
{ return super.getX ()− 1; }

MyCell(int x)
requires 0 ≤ x;
ensures ¬committed ∧ inv ;
ensures getX () = x;

{ super(x + 1); pack this; }

void setX (int x)
requires ¬committed ∧ inv ;
requires 0 ≤ x;
modifies this.∗;
ensures ¬committed ∧ inv ;
ensures getX () = x;

{
unpack this;
super.setX (x + 1);
pack this;

}
}

Fig. 4. Example illustrating the approach for verification of programs with subclassing.
An instance of type Cell may hold an arbitrary nonnegative integer value, which may
be retrieved using inspector method getX and set using method setX . Both class Cell
and class MyCell implement the Cell type. Class Cell does so by storing the value in
a field x, whereas MyCell does so by storing the value plus one in its superclass frame.
While contrived, this example shows how our approach supports the clean separation
of the two aspects of subclassing: interface re-implementation and implementation in-
clusion. There need be no relationship between how the superclass and the subclass
implement the superclass’s interface; in particular, if the subclass chooses to re-use the
included superclass implementation, it need not do so by direct delegation. This clean
separation promotes modularity, i.e. separate development and evolution of superclass
and subclass code. Note: all methods in this example are virtual and subclass methods
override the corresponding superclass methods.

Frame ownership The definition of the ownership relation between frames in-
volves a few design issues. One is: are there ownership relationships between
the frames of a given object? In order to allow the subclass object invariant
and subclass inspector methods to depend on superclass state, we consider a
valid subclass frame to own its superclass frame. In fact, each class other than
Object gets a special rep field called super that refers to the superclass frame.
(Note that this field is exceptional in that it contains a frame reference instead
of an object reference.) It follows that packing a subclass frame requires that
the superclass frame is valid and uncommitted and commits it. Also, if the most
derived frame of an object (i.e., the frame corresponding to the object’s run-time
type) is valid, it transitively owns all of the object’s frames and encapsulates the
entire object’s state.

There is one other design decision involving the ownership relation between
frames. Specifically, if a rep field o.f declared in a class C of a valid object
o points to an object p, which ownership relationship does this give rise to?
In order to allow the object invariant and the inspector methods of class C to
perform dynamically-bound inspector method calls on p, which access p’s most
derived frame, we consider frame (o, C) to own p’s most derived frame. Due to
the previous design decision, it follows that (o, C) transitively owns all of p’s
frames.

Static and dynamic binding As pointed out earlier, in general inspector method
calls may be statically bound or dynamically bound. Calls of abstract methods
are always dynamically bound and calls of private methods are always statically
bound, but for a non-abstract inspector method of a non-final class, some calls
that resolve to such a method at compile time may be statically bound and some
may be dynamically bound. Since at run time, these calls may bind to different
methods and yield different results, we encode them differently in the verification
logic. Specifically, for calls resolved at compile time to a method m of a class
or interface T , we encode statically bound ones as T m(. . .) and dynamically
bound ones as T mD(. . .). Function symbol T m is defined fully by the body of
method m in T ; function symbol T mD is defined partially by each non-abstract
method that overrides it, as explained earlier.

In the encoding of a statically bound call to an inspector method m of class
C on an object o, the frame state passed as the state of the receiver is always
the state of frame (o, C), whereas in the encoding of a dynamically bound call,
the frame state passed is always the state of the most derived frame. (Also, an
argument for a parameter marked state in a call of a multi-dependent inspector
method is always interpreted as the most derived frame.)

The object invariant and the derived invariants declared in a class C apply
to frames (o, C). Since they must depend only on the state of the frame to which
they apply (plus transitively owned frames), they must not include dynamically
bound inspector method calls on this. Therefore, we always interpret inspector
method calls on this in object invariants and derived invariants as statically
bound calls.

Inspector method calls may occur in preconditions of inspector methods and
in preconditions and postconditions of non-inspector methods. It is crucial for
the soundness of verification that there be no confusion as to whether these
calls are statically or dynamically bound. Our approach is sound regardless of
which choice is made, so long as the choice is the same when verifying the caller
and when verifying the callee. Note in this regard that it is fine, and often
appropriate, to make different choices for statically and dynamically bound calls
of the method in whose contract the inspector method call appears. This is
sound so long as it is verified that the contract for dynamically bound calls is
implied by the contract for statically bound calls under the assumption that the
run-time type of the receiver equals its static type. The method body need then
only be verified against the contract for statically bound calls.

The question remains as to how the choice of static or dynamic binding
of inspector method calls in method contracts is made. Java specifies that a
call in program code is dynamically bound unless the call is a super call or the
method being called is private. However, this approach is not always appropriate
for inspector method calls in method contracts. For example, consider the getX ()
call in the contract of method setX of class Cell in Figure 4. Interpreting the
call as dynamically bound would be approriate for dynamically bound calls of
setX , but not, for example, for the super.setX call that occurs in class MyCell .
Indeed, super.setX (5) ensures super.getX () = 5, not getX () = 5.

Therefore, we interpret calls in contracts differently from calls in program
code. Also, the interpretation is different depending on whether the contract
is used for a statically bound call or a dynamically bound call. The rule is as
follows: all calls are bound dynamically, except for super calls, calls of private
methods, or calls on this in contracts for statically bound calls. Calls whose
target expression is not this (explicitly or implicitly) or calls on this in contracts
for dynamically bound calls are bound dynamically. For example, for the purpose
of verifying the super.getX call in Figure 4, the getX call in the contract of
Cell .setX is interpreted as a statically bound call. Note that this rule ensures
that the contract for dynamically bound calls is equivalent to the contract for
statically bound calls under the assumption that the receiver’s run-time type is
equal to its static type.

The import relation In the presence of subclassing, the import relation which
we use to ensure termination of inspector method calls, and consistency of their
axiomatization, must be refined. In particular, for each class, we introduce two
nodes in the import graph, which we shall call the static node and the dynamic
node. An interface only has a dynamic node. The rules are as follows:

– The dynamic node of C imports the static node of C.
– If a class C declares an import T ; declaration, this means the static node

of C imports the dynamic node of T .
– If a class D extends a class C, this means the static node of D imports the

static node of C, and the dynamic node of C imports the static node of D.
– If a class C implements an interface I, this means the dynamic node of I

imports the static node of C.

– If a class C declares an inspector method whose body includes a dynamically
bound inspector method call resolved at compile time to a method of a type
T , then the static node of C must transitively import the dynamic node of
T .

– If a class C declares an inspector method whose body includes a statically
bound inspector method call declared by a class D, then the static node of
C must import the static node of D.

This ensures that there can be no inspector method call cycles within an inher-
itance hierarchy.

Dynamic invariants As stated above, a class C may declare a derived invariant,
using the derived invariant keyword. This invariant applies to frames (o, C)
only, and inspector method calls in derived invariants are always interpreted as
statically bound calls. This means that derived invariants declared by a class C
are useful for a subclass of C when performing super calls, or if C is a final
class, but not for client code that accesses an instance of C through dynamically
bound calls.

To convey properties of and relationships between dynamically bound inspec-
tor methods, a class or interface may declare one or more dynamic invariants,
using the dynamic invariant keyword. A dynamic invariant declared by a type
T is enforced against all non-abstract classes that implement or extend T . It fol-
lows that a dynamic invariant declared by a type T holds for all instances of
T .

Note: dynamic invariants do not subsume derived invariants; for example,
an abstract class that implements some of its inspector methods may declare
a derived invariant to specify a relationship between the inspector methods it
implements.

Method inheritance As in the Boogie methodology [1], we do not allow method
inheritance as such. That is, each class must override all visible methods of
its superclass. This rule is crucial for the soundness of our approach since our
approach is based on the assumption that if a dynamically bound call binds to a
method m declared by a class C, then the static type C of m’s receiver is equal
to its run-time type. This is true only if m was not inherited from C by the
receiver’s run-time type.

However, to reduce programming overhead, we follow the Boogie method-
ology in generating a default override for each method that is not overridden
explicitly. The body of the default override for a method m is of the form

{ unpack this; super.m(); pack this; }

(or similar if m has parameters or a return value). Note that default overrides are
subject to verification just like explicitly declared methods. If a default override
fails to verify, an explicit override must be provided.

7 Related Work

The Boogie methodology Our approach is based for object invariants, ownership,
and method framing on the Boogie methodology [1]. In order to add support for
inspector methods, we applied the following modifications:

– In the Boogie methodology, the heap is encoded in the verification logic as
a function that maps an object reference and field name combination to a
field value. We encode the heap as a function from frame references to frame
states. (Note: the notion of object frames was introduced in [1], under the
name class frames, but in [1] it was not used as the basis for the encoding
of the heap.)

– We extend the semantics of the pack command to store a copy of each owned
frame’s state in a special field of the owner frame. This allows inspector
method calls to be encoded as function applications that take object frame
states.

– In the Boogie methodology, method frame conditions are expressed as equal-
ities between field values. We express method frame conditions as equalities
between object frame states. Together with the previous modification, this
enables a theorem prover to carry information regarding inspector method
call return values across method calls.

– Instead of introducing a single committed bit and a single inv field per object,
and storing in the inv field the name of the most derived type whose object
frame is valid, we introduce separate inv and committed bits in each object
frame.

Method calls in specifications Darvas and Müller [3] identify and propose solu-
tions for problems that arise when method calls are used in specifications. Specif-
ically, the authors show how to deal with abrupt termination, object creation,
and inconsistent axiomatization due to unsatisfiable postconditions. Methods
called in specifications must be pure, which means they do not modify existing
objects. Inspector methods are like pure methods, with the additional constraint
that they depend only on the state of the receiver object and objects passed as
arguments for parameters marked state (and their transitively owned objects).
A minor difference is that we do not allow inspector methods to declare a post-
condition and that we derive the axiom that defines the corresponding function
from the inspector method’s body rather than its postcondition. We avoid the
abrupt termination issue by verifying that the inspector method body does not
throw any exceptions.

Darvas and Müller’s solution to the object creation issue is to pass the heap as
an argument to the function and have the function return a new heap together
with its result value. We did not adopt this solution because it is incompati-
ble with our approach to framing; specifically, our approach requires that only
the state of the dependee objects is passed to the inspector method’s function,
rather than the entire heap. Therefore, we disallow object creation in inspector
methods.

We avoid the problem of inconsistent axiomatization by imposing a partial
order on classes and by allowing nested inspector method calls to proceed along
this partial order only. This ensures that inspector method calls always terminate
and have a return value under Java semantics, and the return values thus ob-
tained always satisfy the system of equations that defines the inspector method
functions of a given program.

State abstraction in ownership systems Müller [7] combines a notion of model
fields with an ownership type system called Universes. Model fields are compa-
rable with parameterless inspector methods. The Universes ownership system is
less flexible than that of the Boogie methodology; for example, it does not allow
ownership transfer. On the other hand, Müller allows model fields of an object o
to depend on fields of peer objects of o, i.e. objects that have the same owner as
o, provided that the model field definitions are visible to the field declarations,
i.e. both are in the same module. We intend to add support for visibility-based
inspector methods to our approach as future work.

Leino and Müller [6] achieve state abstraction by combining the Boogie own-
ership system with another notion of model fields, similar to but distinct from
that of Müller [7]. Model fields in [6] are encoded in the verification logic as if
they are stored in the heap along with concrete fields. Each model field declara-
tion specifies a model field constraint that serves as an abstraction relation. The
constraint for a model field o.m needs to hold only when o is valid. As part of
executing a pack statement on an object o, the constraints of the model fields of
o are checked and, if they do not hold, a new value that satisfies the constraint
is assigned to the model field. If no such value exists, the pack statement is
considered invalid.

A constraint may underspecify a model field, and subclasses may strengthen
an inherited model field’s constraint. As a result, packing an object for a subclass
may assign a new value to a model field declared in a direct or indirect superclass.
An underspecified model field is similar to an abstract inspector method with a
dynamic invariant, and a strengthening of an inherited model field’s constraint
by a subclass is similar to an inspector method that overrides an abstract in-
spector method. However, “overriding” a fully specified model field with another
differently fully specified model field, similar to overriding a non-abstract inspec-
tor method, is not supported in [6]. This means that a subclass is forced to adopt
fully specified public superclass model fields as part of its own abstract state,
without the ability to provide a different abstraction function. Alternatively, if
a class leaves a model field underspecified and does not tie it to its own concrete
state, so that subclasses have maximum freedom in providing an abstraction
function, then the class cannot use the model field to abstractly expose its own
state. Therefore, it also is not able to fully implement methods specified using
the model field. As a result, in practice, classes with underspecified model fields
are effectively abstract. In other words, [6] does not fully support specification of
classes that may be used both for direct instantiation and as superclasses, while
leaving subclasses free to provide their own abstraction functions for superclass
model fields. (For example, see class Cell in Figure 4.)

To support the kind of specifications enabled in our approach by parame-
terized inspector methods, such as the getItem method in the IntList example
of Figure 2, [6] would have to use model fields containing special-purpose im-
mutable objects such as immutable list objects (known as model types in JML
[5]).

Ownership-free approaches Kassios [4] also uses abstraction functions, but in-
stead of an ownership system he proposes dynamic frames to abstractly specify
an abstraction function’s dependencies and a mutator method’s effects. Dynamic
frames are themselves abstraction functions that return sets of locations. A mod-
ule specification may specify a frame (i.e., an upper bound on the set of loca-
tions that an abstraction function depends on) for each abstraction function
separately.

The dynamic frames approach subsumes our approach on an abstract level.
However, it is formulated in the context of an idealized logical framework; for
example, it does not show how to apply the approach to Java-like inheritance.
Also, the proposed approach has not been applied in the context of an automatic
program verifier.

Parkinson and Bierman [9] and Parkinson [8] extend separation logic with
abstract predicates and apply it to Java to achieve state abstraction for Java
programs. Abstract predicates are similar to inspector methods that return a
boolean value. However, as in the case of the aforementioned dynamic frames
approach, Parkinson and Bierman do not restrict the set of locations that an
abstract predicate may depend on. Rather, it is up to client code to track the
separation between abstract predicates. Parkinson and Bierman solve the prob-
lem of well-definedness of abstract predicates by allowing abstract predicates to
appear inside other abstract predicates only in positive positions, and by tak-
ing the least fixpoint of a set of abstract predicate definitions as their meaning.
Subclassing is addressed by introducing abstract predicate families; that is, an
abstract predicate name may be subscripted by a class name, and a separate
definition may be given for each subscript. For example, the abstract predicate
saying that a Cell instance o holds the value v could be written cell type(o)(o, v).

The use of abstract predicates in method contracts typically requires the use
of universally quantified logical variables whose scope extends across both the
pre- and post-state. For example, the contract for a method that that incre-
ments the value of a cell would say that for each value v, if cell(o, v) holds in the
pre-state, then cell(o, v + 1) holds in the post-state. This could be a disadvan-
tage compared to model fields or inspector methods, in particular for run-time
checking.

Redundant invariants Our derived invariants and dynamic invariants are similar
to JML’s [5] redundant invariants, in that an object’s redundant invariants must
be implied by its invariants. However, the interaction between JML’s different
kinds of invariants and JML model fields is not clear. Specifically, on which
invariants is a JML model field’s represents clause, which defines its abstraction
relation, allowed to depend to prove absence of evaluation errors such as null

dereferences or divisions by zero? And which invariants are allowed to mention
model fields of this?

8 Future Work

We are currently working on a rigorous and comprehensive formalization and
soundness proof of the approach.

We are also investigating relaxations of the requirement that nested inspector
method calls follow a partial order. One relaxed rule would be that for each
nested call, the callee must depend on fewer objects (or object frames) than the
caller. Or alternatively, that the size of the argument list, defined as the total
number of object states, including duplicates and internal owned object states,
must decrease.

Another area of extension is to allow inspector methods to depend on non-
owned peer objects of classes declared in the same module.

9 Conclusion

We proposed an approach to the verification of object-oriented programs that
use inspector methods for state abstraction in specifications.

We solve the problem of encoding in the verification logic whether a given
method call or field assignment affects a given inspector method call’s return
value, by

– modeling the heap as a function that maps object references to object states,
– logically (but not physically) storing a copy of the state of owned objects in

special fields of the owner object, and
– encoding inspector method calls as function applications whose arguments

include the object states on which the inspector method depends.

We support multi-dependent inspector methods, i.e. inspector methods that
depend on the state of objects passed as arguments. To enable the specification
of the return values of all possible calls of a multi-dependent inspector method,
we support quantification over object states.

Our approach to subclassing is to separate its two aspects: superclass in-
terface re-implementation and superclass implementation inclusion. Subclasses
may override superclass inspector methods; our approach preserves soundness
by binding inspector method calls statically or dynamically as appropriate. A
distinction is made between derived invariants, which apply only to the declaring
class, and dynamic invariants, which apply to subclasses as well.

We implemented the core of our approach in a custom build of the Spec#
program verifier [2]. This will allow us to gain experience and validate the ap-
proach on larger programs.

We are currently working on a rigorous and comprehensive formalization and
soundness proof of the approach.

Acknowledgements

The authors thank Rustan Leino, Peter Müller, and Jan Smans for helpful com-
ments and discussions. Bart Jacobs is a Research Assistant of the Fund for
Scientific Research - Flanders (Belgium) (F.W.O.-Vlaanderen).

References

1. Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram
Schulte. Verification of object-oriented programs with invariants. Journal of Object
Technology, 3(6):27–56, June 2004. Special issue: ECOOP 2003 workshop on FTfJP.

2. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming
system: An overview. In CASSIS 2004, volume 3362 of LNCS. Springer, 2004.

3. Ádám Darvas and Peter Müller. Reasoning about method calls in JML specifica-
tions. In Francesco Logozzo, editor, Proceedings of the Seventh Workshop on Formal
Techniques for Java-like Programs (FTfJP 2005), 2005.

4. Ioannis T. Kassios. Dynamic frames: Support for framing, dependencies and sharing
without restrictions. Technical Report 528, Dept. of Computer Science, University
of Toronto, July 2005.

5. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A
behavioral interface specification language for Java. Technical Report 98-06-rev28,
Department of Computer Science, Iowa State University, July 2005.

6. K. Rustan M. Leino and Peter Müller. A verification methodology for model fields.
In Proc. ESOP, 2006. To appear.

7. Peter Müller. Modular Specification and Verification of Object-Oriented Programs,
volume 2262 of LNCS. Springer-Verlag, 2002.

8. Matthew J. Parkinson. Local reasoning for Java. PhD thesis, Computer Laboratory,
Cambridge University, 2005.

9. Matthew J. Parkinson and Gavin M. Bierman. Separation logic and abstraction. In
Proc. POPL, 2005.

