
The Java Memory Model
and Simulator

Jeremy Manson, William Pugh
Univ. of Maryland, College Park

2

Java Memory Model and
Thread Specification

• Defines the semantics of multithreaded
programs
– When is a program correctly

synchronized?
– What are the semantics of an incorrectly

synchronized program?
• e.g., a program with data races

3

Weird Behavior of Improperly
Synchronized Code

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2

Can this result in i = 0 and j = 0?

start threads

4

No?

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2

 i = 0 and j = 0 implies temporal loop!

start threads

5

Answer: Yes!

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2

How can i = 0 and j = 0?

start threads

compiler could
reorder

Write could go into
a write buffer, be
bypassed by read

6

How Can This Happen?
• Compiler can reorder statements

– or keep values in registers
• On multiprocessors, values not synchronized in

global memory
– Writes go into write buffer
– Are bypassed by reads

• Must use synchronization to enforce visibility and
ordering
– as well as mutual exclusion

7

Java Thread Specification
• Chapter 17 of the Java Language Spec

– Chapter 8 of the Virtual Machine Spec
• Very, very hard to understand

– not even the authors understood it
– doubtful that anyone entirely understands it
– has subtle implications

• that forbid standard compiler optimizations
– all existing JVMs violate the specification

• some parts should be violated

8

Revising the Thread Spec
• JSR 133 will revise the Java Memory Model

– http://www.cs.umd.edu/~pugh/java/memoryModel
• Goals

– Clear and easy to understand
– Foster reliable multithreaded code
– Allow for high performance JVMs

• Will affect JVMs
– and badly written existing code

• including parts of Sun’s JDK

9

Proposed Changes
• Make it clear
• Allow standard compiler optimizations
• Remove corner cases of synchronization

– enable additional compiler optimizations
• Strengthen volatile

– make easier to use
• Strengthen final

– Enable compiler optimizations
– Fix security concerns
– no time to talk about this in this talk

10

Incorrect synchronization
• Incorrectly synchronized program must

have well defined semantics
– Much other work in the field has avoided

defining any semantics for incorrectly
synchronized programs

• Synchronization errors might be
deliberate
– to crack security of a system
– just like buffer overflows

11

VM Safety

• Type safety
• Not-out-of-thin-air safety

– (except for longs and doubles)
• No new VM exceptions
• Only thing lack of synchronization can

do is produce surprising values for
getfields/getstatics/array loads
– e.g., arraylength is always correct

12

Synchronization

• Programming model is (lazy) release
consistency
– A lock acts like an acquire of data from

memory
– An unlock acts like a release of data to

memory

13

When are actions visible and
ordered with other Threads?

x = 1

unlock M

Thread 1

lock M

i = x

Thread 2

lock M

y = 1

unlock M

j = y

Everything before
the unlock

Is visible to everything
after the matching lock

14

New Optimizations Allowed
• Turning synchronizations into no-ops

– locks on objects that aren’t ever locked by any
other threads

– reentrant locks

• Lock coarsening
– merging two calls to synchronized methods on

same object
• need to be careful about starvation issues

15

Existing Semantics of Volatile
• No compiler optimizations

– Can’t hoist read out of loop
– reads/writes go directly to memory

• Reads/writes of volatile are sequentially
consistent and can not be reordered
– but access to volatile and non-volatile variables

can be reordered – makes volatiles much less
useful

• Reads/writes of long/doubles are atomic

16

Proposed New, Additional
Semantics for Volatile

• Write to a volatile acts as a release
• Read of a volatile acts as an acquire

• If a thread reads a volatile
– all writes done by any other thread,
– before earlier writes to the same volatile,
– are guaranteed to be visible

17

When Are Actions Visible to
Other Threads?

answer = 42

ready = true

Thread 1

if (ready)

println(answer)

Thread 2

anything done by thread 1, before
before writing ready

must be visible to any
operations in thread 2 that
occur after readying ready

18

Non-atomic volatiles?

a = 1 r1 = a
r2 = b

b = 1 r3 = b
r4 = a

Can we get r1 = 0, r2 = 1, r3 = 0, r4 = 1?

a and b are volatile and initially 0

19

Conflicting opinions

• Hans Boehm (HP) and Rick Hudson
(Intel) say this behavior must be
allowed to allow Java to be
implemented efficiently on future
architectures

• Sarita Adve (UIUC) says nonsense
• I’ll let them fight it out

20

Conflicting and unclear
goals/constraints

• Three different goals, often in conflict
– what VM implementers need
– what Java programmers need

• for efficient, reliable software
• for security

– making the spec clear and simple
• None of these are clearly or formally

specified

21

Immutable Objects
• Many Java classes represent immutable

objects
– e.g., String

• Creates many serious security holes if
Strings are not truly immutable
– probably other classes as well
– should do this in String implementation,

rather than in all uses of String

22

Strings aren’t immutable

String foo
 = new String(sb)

Global.s = foo

String t = Global.s

ok = t.equals(“/tmp”)

just because thread 2 sees new value for Global.s
doesn’t mean it sees all writes done by thread 1
before store to Global.s

Compiler, processor or memory system
can reorder these writes
Symantic JIT will do it

thread 1

thread 2

23

Why aren’t Strings
immutable?

• A String object is initialized to have
default values for its fields

• then the fields are set in the constructor
• Thread 1 could create a String object
• pass it to Thread 2
• which calls a sensitive routine
• which sees the fields change from their

default values to their final values

24

Final = Immutable?

• Existing Java memory model doesn’t
mention final
– no special semantics

• Would be nice if compiler could treat
final fields as constant
– Don’t have to reload at memory barrier
– Don’t have to reload over unknown

function call

25

Proposed Semantics for Final
• Read of a final field always sees the

value set in constructor
– unless object is not constructed properly

• allows other threads to view object before
completely constructed

• Can assume final fields never change
• Makes string immutable?

26

Problems

• JNI code can change final fields
– System.setIn, setOut, setErr
– Propose to remove this ability

• hack for setIn, setOut, setErr
• Objects that can be seen by other

threads before constructor is complete
• Doesn’t suffice to make strings

immutable

27

Doesn’t make Strings
immutable

• No way for elements of an array to be final
• For Strings, have to see final values for elements of

character array
• So…

– Read of final field is treated as a weak acquire
• matching a release done when object is constructed

– weak in that it only effects things dependent on value read
• no compiler impact

28

reached
via

Visibility enforced by final field a

this.a = new int[5]

end constructor int[] tmp = t.a

… = tmp[0]

Foo.x++

this.a[0] = 42

… = Foo.x

Foo.b = this

Foo t = Foo.b

All actions done before
completion of constructor

must be visible to any action
that is data dependent on the read
of a final field set in that constructor

29

Contrast with volatile

this.a = new int[5]

end constructor

int[] tmp = t.a

… = tmp[0]

Foo.x++

this.a[0] = 42

… = Foo.xFoo.b = this

Foo t = Foo.b

Actions done before assignment
to volatile field

must be visible to any action
after the read

30

reached
via

Data dependence is transitive

this.a = new int[5][5]

end constructor

int[][] tmp = t.a

int[] tmp2 = tmp[0]

Foo.x++

this.a[0][0] = 42
… = Foo.x

Foo.b = this

Foo t = Foo.b

… = tmp2[0]

31

Complications
• Semantics said that two different

references to the same object might
have different semantics
– one reference published “correctly”, one

published “prematurely”
• JVM implementers insisted this wasn’t

acceptable
• Changing the semantics to

accommodate JVM implementers

32

Some things to make your
brain hurt

Why this is hard…

33

Consider

Thread 1
r1 = x
if r1 >= 0 then
 y = 1

Thread 2
r2 = y
if r2 >= 0 then
 x = 1

Initially, x = y = 0

Can this result in r1 = r2 = 1?

34

Real example

• While not too many systems will do an
analysis to determine non-negative
integers

• Compilers might want to determine
references that are definitely non-null

35

Null Pointer example

Thread 1
r1 = Foo.p.x;
Foo.q = Foo.r;

Thread 2
r2 = Foo.q.x;
Foo.p = Foo.r;

Initially
Foo.p = new Point(1,2);
Foo.q = new Point(3,4);
Foo.r = new Point(5,6);

Can this result in r1 = r2 = 5?

36

A Formalization of the
Proposed Semantics for

Multithreaded Java
Jeremy Manson & Bill Pugh

37

Basic Framework

• Operational semantics
• Actions occur in a global order

– consistent with original order in each
thread

• except for prescient writes
• If program not correctly synchronized

– reads non-deterministically choose which
value to return from set of candidate writes

38

Terms
• Variable

– a heap allocated field or array element
• Value

– a primitive type or reference to an object
• Local

– a value stored in a local or on the stack
• Write

– a <variable, value, GUID> triplet
– GUID used to distinguish writes

• e.g., two writes of 42 to the same variable

39

Write Sets
• allWrites: all writes performed so far
• Threads/monitors/volatiles

have/know:
– overwritten: a set of writes known to be

overwritten
– previous: a set of writes known to be in the

past
• These are all monotonic sets

– they only grow

40

Normal Reads

• A non-final, non-volatile read
• Nondeterministically returns a write in

AllWrites
– that the thread doesn’t know to be

overwritten

41

Normal Writes

• All writes known to be previous
– are added to overwritten

• The write performed
– is added to allWrites and previous

42

Example
lock A

x = 3

unlock B
x = 2

unlock A

lock A

overwrittenA(x) = {0,1}
previousA(x) = {0,1,2}

overwrittenB(x) = {0}
previousB(x) = {0,3}

lock B

print x

x = 4

print xx can print 2 or 3,
but not 0 or 1

must print 4

overwrittent(x) = {0,1}
previoust(x) = {0,1,2, 3}

x = 1

unlock A

overwrittenA(x) = {0}
previousA(x) = {0,1}

overwrittent(x) = {0,1,2, 3}
previoust(x) = {0,1,2, 3, 4}

initially, x = 0

43

x = 0
• x = 1
• x = 2
• x: {2,3,4}
• print x

• x = 3
• x: {1,2,3}
• allWrites = {0,1,2,3}

previous_2 = {0,3}
overwritten_2 = {0}

• x = 4
• allWrites = {0,1,2,3,4}

previous_2 = {0,3,4}
overwritten_2 = {0,3}

• print x

44

Happens-before
relationship

x = 1

x = 3

x = 2
print x

x = 4

print x

x = 0

previous: reachable backwards
overwritten: exists a backwards paths

where it is overwritten

45

Prescient Writes

Can this result in i = 1 and j = 1?

x = y = 0

j = y

x = 1

Thread 1

i = x

y = 1

Thread 2

• In original order, some
write instruction must go
first

• Neither can
• Use prescient write
instead

46

The Java Memory Model
Simulator

47

Motivation
• Memory model is complicated

– Want to ensure it does what we want it to do
• Proof techniques are costly and complicated

– Often informal or applied to a subset of the
semantics

– Needs to be performed again every time semantics
are changed

– Doesn’t mean we don’t want to do them!

48

Simulator
• Allows us to take small programs, and produce all of

their possible results.
• Compiler writers plug in examples and possible

optimizations
– Reveals all of the possible outcomes.
– If optimization is illegal, introduces new behavior

49

Transmogrifier

• Given a program
– applies “standard compiler transformations”

• e.g., can reorder two independent memory accesses
• or move a memory access inside a synchronized block
• doesn’t try to optimize, just generates legal

transformations
– For each resulting program

• check that simulator produces no new behaviors

50

Implementation
• Two implementations – Haskell and Java

– Haskell for rapid prototyping
• The rules translate easily into Haskell

– Java for efficiency
• Much easier to write efficient Java code

• Helps to ensure understanding of semantics
– conflicts are sometimes broken implementation,

sometimes because semantics are unclear

51

Input Language – Closing the
Semantic Gap

• Wanted something intuitive, similar to what
programs look like

• Very similar to Java, but optimized for small
examples – ex:

Begin_Thread
 Local j;
 j = this.y;
 this.x = 1;
End_Thread

Begin_Thread
 Local i;
 i = this.x;
 this.y = 1;
End_Thread

52

Control Flow

• Full control flow would be nice, but is
unimplemented
– Also would cause a lot more states

• if ... else ... endif construct
• “Spin wait” statement

– Thread does not proceed until condition is
true.

– Captures some interesting cases

53

More About the Input
Language

• Also has other language features
– Objects and references
– Final and volatile fields
– More planned features

• Dynamic allocation
• More Control flow

• But we need to support features
inimical to the model, not just to
languages...

54

Prescient Writes
• Prescient writes can be placed in some places,

not in others
– semantics will verify correct placement
– but can’t generate all legal placements

• except through exhaustive testing

• Automatically place of prescient writes of
constant values within the same basic block
as original write

• Other prescient writes can be placed by hand

55

Efficiency

• For each thread with its instruction set,
there are a lot of possible interleavings

• Going through them all would be very
expensive

56

Worklist-based approach
• Keep list of

– states seen but not yet explored
• worklist

– states seen
• Don’t add to worklist states already

seen
– If we see a state through more than one

program path, it doesn’t get explored
separately

57

Timing Environment

• Dual 350 MHz Pentium II, 1 GB RAM
• Sun JDK 1.4.0
• 57 Litmus Tests

– 2 – 5 Threads, 2 – 17 Instructions each

58

Results

Test Name States CPU Total Time States CPU Total Time
coherence 23 0:02 0:02 67 0:02 0:02
alpha-3 77 0:03 0:03 364 0:04 0:02
final-2 77 0:04 0:04 379 0:05 0:04
navolatile 209 0:11 0:10 2720 1:01 0:51
PC-5 2277 2:25 1:42 dnf dnf dnf
All 57 6148 6:19 5:23 dnf dnf dnf

Optimized Unoptimized

Times are MM:SS – All done in Java (for performance)
dnf – Simulator took more than 24 hours

59

Live Demo

60

Related Work
• Original Specification is Ch. 17 of Java

Language Spec.
– Lots of people have studied it
– Model still broken, doesn’t meet needs of Java

programmers and of VM implementers
• Maessen, Arvind, Shen: Improving the Java

Memory Model using CRF
– Useful in understanding core issues
– Formalization was only able to handle some

requirements of the new Java MM

61

Related Work
• Yang, Gopalakrishnan, Lindstrom; Analyzing

the CRF Java Memory Model
– A simulator for CRF memory model, using Murj

• Ibid, Formalizing the Java Memory Model for
Multithreaded Program Correctness and
Optimization
– Attempt to build simulator for our semantics
– semantics are not the same as our model

• treats all potential dependences as strict ordering
constraints

• doesn’t handle references

62

More related work

• Moore, Porter:An Executable Formal
Virtual Machine Thread Model
– Specifies Java using an operational

semantics
– Assumes Sequential Consistency for

multithreaded semantics

63

Future work

• Finish Memory Model
– Still needs some work (mostly polish), for

which the simulator helps
• Continue work on Simulator

– Support full looping, dynamic allocation
– Support other memory models (SC)
– Support more realistic programs
– Explaining results to users

64

Conclusions
• PL memory models

– more complicated than architecture models
• Have to consider compiler and architecture

optimizations
– balance usability, security and implementability

• understandable (limited) model for programmers
– this is how you should program

• full details understandable by VM implementers and
authors of thread tutorials

65

Conclusions
• Simulator helps us with these problems

– Different Haskell & Java versions helpful
– Simply going through the process of

writing simulator helps refine the
semantics

• Ease of use is valuable
– VM Builders and those creating new

libraries can use tool to see possible legal
results

