The Coarsest Congruence for Timed Automata with Deadlines Contained in Bisimulation

Pedro R. D'Argenio¹ and Biniam Gebremichael²

 1 Universidad de Córdoba, Argentina & University of Twente, The Netherlands

² Radboud University Nijmegen, The Netherlands

CONCUR 05

San Francisco, August 23rd, 2005

- 4 回 ト 4 ヨ ト 4 ヨ ト

CONCUR05

Contents

Motivation

Timed Automata Models The problem: Compositionality and Congruence

Towards a Congruence Relation

Basic Definitions: Bisimulation & Parallel Composition Proposals for Congruence Drop Semantics and Drop Bisimulation

Results and Conclusion

Symbolic, Decidability, Congruence and Coarsest Alternative Synchronizing Constraints Conclusion

・ 同 ト ・ ヨ ト ・ ヨ ト

イロト イポト イヨト イヨト

CONCUR05

Timed Automata models

1. Timed Automata[Alur & Dill, 1994]

$$T_1 \xrightarrow{x:=0} b \xrightarrow{x \ge 4} T_2 \xrightarrow{x:=0} b \xrightarrow{x \ge 8} T_2 \xrightarrow{x:=0} inv:x \le 8$$

- time progress controlled by invariants on locations
- tools UPPAAL, KRONOS
- several advantages in comparison with other TA models

1. Timed Automata[Alur & Dill, 1994]

$$T_1 \xrightarrow{x:=0} b \xrightarrow{x \ge 4} T_2 \xrightarrow{x:=0} b \xrightarrow{x \ge 8} T_2 \xrightarrow{x:=0} inv:x \le 8$$

- time progress controlled by invariants on locations
- tools UPPAAL, KRONOS
- several advantages in comparison with other TA models

Limitations:

- only strong synchronization (hard real-time)
 - Why not delayable synchronization
 - Eg. T_1 may wait/ignore/force T_2 .
- composition my introduce time deadlock
 - time deadlock is serious problem in TA
 - avoid it by construction (deduce from components)

2. Timed Automata with Deadlines [Bornot & Sifakis, 2000]

$$T_1 \xrightarrow{x:=0} \begin{array}{c} t_1 & b & t'_1 \\ & & & & \\ \hline \gamma:x \ge 4 \\ \delta:x \ge 6 \end{array} \qquad T_2 \xrightarrow{x:=0} \begin{array}{c} t_2 & b & t'_2 \\ & & & \\ \hline \gamma:x \ge 8 \\ \delta:x \ge 8 \end{array} \qquad tpc(t) = \bigwedge_e(\neg \delta_e)$$

- time progress controlled by deadlines on transitions (deadline implies guard)
- Tools: IF, MoDeST
- strong and delayable synchronization

Gain:

- time deadlock is avoided by construction
- delayable synchronization (several flavors).
- applications: soft real-time, stochastic, performance analysis

イロト イポト イヨト イヨト

2. Timed Automata with Deadlines [Bornot & Sifakis, 2000]

$$T_1 \xrightarrow{x:=0} t_1 \xrightarrow{b} t'_1 \xrightarrow{t'_1} T_2 \xrightarrow{x:=0} t_2 \xrightarrow{b} t'_2 \xrightarrow{t'_2} T_2 \xrightarrow{\tau_2 \xrightarrow{s} 0} T_2 \xrightarrow{\tau_2 \xrightarrow{s} 0} tpc(t) = \bigwedge_e(\neg \delta_e)$$

- time progress controlled by deadlines on transitions (deadline implies guard)
- Tools: IF, MoDeST
- strong and delayable synchronization

Gain:

- time deadlock is avoided by construction
- delayable synchronization (several flavors).
- applications: soft real-time, stochastic, performance analysis

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

CONCUR05

2. Timed Automata with Deadlines [Bornot & Sifakis, 2000]

$$T_1 \xrightarrow{x:=0} t_1 \xrightarrow{b} t_1' \\ \xrightarrow{\gamma:x \ge 4} O \xrightarrow{\gamma:x \ge 4} O \xrightarrow{\gamma:x \ge 8} O \xrightarrow{\gamma:x \ge 8} O \xrightarrow{\gamma:x \ge 8} O \xrightarrow{\gamma:x \ge 8} O$$

- time progress controlled by deadlines on transitions (deadline implies guard)
- Tools: IF, MoDeST
- strong and delayable synchronization

Gain:

- time deadlock is avoided by construction
- delayable synchronization (several flavors).
- applications: soft real-time, stochastic, performance analysis

Lose: strong bisimulation is not congruent

The problem with delayable synchronization

 Compositionality: A component can be replaced with behaviorally equivalent component without affecting the big system

this does not hold for delayable synchronization in TADs

• even if T = T *, A and B may not be equivalent

Timed Automata Models The problem: Compositionality and Congruence

Example 1

Pedro R. D'Argenio and Biniam Gebremichael The Coarsest Congruence for TADs

2

Timed Automata Models The problem: Compositionality and Congruence

・ロン ・回と ・ヨン・

3

CONCUR05

Example 1

 $T_1 \sim T_2 \;\; \mathrm{but} \;\; T_1 \mid\mid_a^{\otimes} \mathrm{stop} \not\sim T_2 \mid\mid_a^{\otimes} \mathrm{stop}$

Timed Automata Models The problem: Compositionality and Congruence

Example 1

 $T_1 \sim T_2 \;\; \mathrm{but} \;\; T_1 \mid\mid_a^{\otimes} \mathrm{stop} \not\sim T_2 \mid\mid_a^{\otimes} \mathrm{stop}$

Problem: Delayable synchronization reveals hidden behaviors

 \blacktriangleright we need a different \sim (a congruent and coarsest \sim)

(국물) (국물) 문

CONCUR05

problem already known [Bornot & Sifakis, 2000] but unsolved

Basic Definitions: Bisimulation & Parallel Composition Proposals for Congruence Drop Semantics and Drop Bisimulation

・ロン ・回と ・ヨン・

-2

CONCUR05

The Goal of This Work

Find an equivalence relation R for TADs such that:

- 1. it is bisimulation $(\subseteq \sim)$
- 2. it is congruent (for parallel composition)
- 3. it is the coarsest

Basic Definitions: Bisimulation & Parallel Composition Proposals for Congruence Drop Semantics and Drop Bisimulation

イロン 不同と 不同と 不同と

CONCUR05

Timed Bisimulation

Two states are timed bisimilar (\sim) if for any discrete transition or time passage (α)

and \sim is symmetric.

Basic Definitions: Bisimulation & Parallel Composition Proposals for Congruence Drop Semantics and Drop Bisimulation

CONCUR05

Parallel Composition for TADs

$$\begin{array}{c} s_1 \xrightarrow{a,\gamma,\delta,\mathbf{x}} 1 & s'_1, a \notin B \\ \hline (s_1, s_2) \xrightarrow{a,\gamma,\delta,\mathbf{x}} (s'_1, s_2) \\ (s_2, s_1) \xrightarrow{a,\gamma,\delta,\mathbf{x}} (s_2, s'_1) \end{array} \xrightarrow{s_1,\gamma,\delta,\mathbf{x}} (s_2, s'_1) \\ \end{array} \\ \begin{array}{c} s_1 \xrightarrow{a,\gamma_1,\delta_2,\mathbf{x}_1} 1 & s'_1, s_2 \xrightarrow{a,\gamma_2,\delta_2,\mathbf{x}_2} 2 & s'_2, a \in B \\ \hline (s_1, s_2) \xrightarrow{a,\gamma_1\wedge\gamma_2,(\delta_1,\gamma_1)\otimes(\delta_2,\gamma_2),\mathbf{x}_1\cup\mathbf{x}_2} (s'_1, s'_2) \end{array}$$

- Synchronization MAY take place when both guards are true
- ► Synchronization MUST take place when some function (⊗) of the deadlines and the guards is true.
- ▶ \otimes distributive wrt \lor , preserves $\delta \Rightarrow \gamma$, preserves left closure.

Basic Definitions: Bisimulation & Parallel Composition Proposals for Congruence Drop Semantics and Drop Bisimulation

ロン (雪) (目) (日)

-2

CONCUR05

Parallel Composition for TADs

$$\begin{array}{c} s_1 \xrightarrow{a,\gamma,\delta,\mathbf{x}} 1 & s'_1, a \notin B \\ \hline (s_1, s_2) \xrightarrow{a,\gamma,\delta,\mathbf{x}} (s'_1, s_2) \\ (s_2, s_1) \xrightarrow{a,\gamma,\delta,\mathbf{x}} (s_2, s'_1) \end{array} \xrightarrow{s_1,\gamma,\delta,\mathbf{x}} s_2 \xrightarrow{s_1,\gamma,\delta_2,\mathbf{x}} s_1 \\ \hline s_1 \xrightarrow{a,\gamma_1,\delta_2,\mathbf{x}} 1 & s'_1,s_2 \xrightarrow{a,\gamma_2,\delta_2,\mathbf{x}} s_2 \\ \hline s_1 \xrightarrow{a,\gamma_1,\delta_2,\mathbf{x}} (s'_1,s_2) \\ \hline (s_1,s_2) \xrightarrow{a,\gamma_1\wedge\gamma_2,(\delta_1,\gamma_1)\otimes(\delta_2,\gamma_2),\mathbf{x}_1\cup\mathbf{x}_2} (s'_1,s'_2) \end{array}$$

- Synchronization MAY take place when both guards are true
- ► Synchronization MUST take place when some function (⊗) of the deadlines and the guards is true.
- ▶ \otimes distributive wrt \lor , preserves $\delta \Rightarrow \gamma$, preserves left closure.
 - Patient synchronization: ($\delta_1 \wedge \delta_2$)
 - Impatient synchronization ((δ₁ ∨ δ₂) ∧ (γ₁ ∧ γ₂))
 - Other guard synchronizations: MAX, MIN, OR.

Motivation Basic Definitions: Bisimulation & Parallel Composition Towards a Congruence Relation Proposals for Congruence Results and Conclusion Drop Semantics and Drop Bisimulation

Example 1 – Revised

 $T_1 \sim T_2$ but $T_1 \mid_a^{\otimes} \operatorname{stop} \not\sim T_2 \mid_a^{\otimes} \operatorname{stop}$

CONCUR05

<ロ> (四) (四) (三) (三) (三)

Motivation Basic Definitions: Bisimulation & Parallel Composition Towards a Congruence Relation Results and Conclusion Drop Semantics and Drop Bisimulation

Example 1 – Revised

 $T_1 \sim T_2$ but $T_1 \parallel_a^{\otimes} \text{stop} \nsim T_2 \parallel_a^{\otimes} \text{stop}$ Goal: Distinguish T_1 and T_2 – Ask what is after x = 3?

<ロ> (四) (四) (三) (三) (三)

Motivation Basic Definitions: Bisimulation & Parallel Composition Towards a Congruence Relation Results and Conclusion Drop Semantics and Drop Bisimulation

Example 1 – Revised

 $T_1 \sim T_2 \;\; \mathrm{but} \;\; T_1 \mid\mid_{a}^{\otimes} \mathrm{stop}
eq T_2 \mid\mid_{a}^{\otimes} \mathrm{stop}$

Goal: Distinguish T_1 and T_2 – Ask what is after x = 3? Solution: Allow time to progress beyond *tpc*

potential time delay
$$s \rho \xrightarrow{[d]} s(\rho + d)$$

<ロ> (四) (四) (三) (三) (三)

CONCUR05

$$T_1 \not\sim T_2$$
 achieved $T_2 = b.3.[1].c$

Pedro R. D'Argenio and Biniam Gebremichael The Coarsest Congruence for TADs

 Motivation
 Basic Definitions: Bisimulation & Parallel Composition

 Towards a Congruence Relation
 Proposals for Congruence

 Results and Conclusion
 Drop Semantics and Drop Bisimulation

Example 2

Potential time delay is not enough!

・ロン ・回と ・ヨン・

3

CONCUR05

 $T_3 \sim T_4$ but $T_3 \parallel^{\otimes} T_5 \nsim T_4 \parallel^{\otimes} T_5$ $(T_3 \parallel^{\otimes} T_5 = a.3)$

Motivation Basic Definitions: Bisimulation & Parallel Composition Towards a Congruence Relation Proposals for Congruence Results and Conclusion Drop Semantics and Drop Bisimulation

Example 2

Potential time delay is not enough!

 $T_3 \sim T_4 \text{ but } T_3 \parallel^{\otimes} T_5 \nsim T_4 \parallel^{\otimes} T_5$ ($T_3 \parallel^{\otimes} T_5 = a.3$)

Problem: When time progressed beyond tpc, it is relevant to know whose deadline is dropped (*b*'s or *c*'s). Solution:

- parametrize potential time delay by a set of actions (D) whose deadlines will have no effect on tpc.
- drop transition (∇_D) instead of potential time delay [d].

•
$$T_3 \not\sim T_3$$
 achieved $T_3 = a.2.\nabla_{\{c\}}.5$

ヘロン 人間 とくほど くほとう

イロト イヨト イヨト イヨト

Semantics of TADs extended with Drop-transitions

- State was $s\rho$ is $(s, D)\rho$
 - D set of dropped actions
- drop transition: ∇_E drop the actions in E.

$$(s,D)
ho \xrightarrow{\nabla_E} (s,D \cup E)
ho$$

delay transition: The deadlines associated with the dropped actions have no influence over the *tpc*.

$$tpc(s, D) = \bigwedge \{ \neg \delta \mid s \xrightarrow{a, \gamma, \delta, \mathbf{x}} s' \text{ and } a \notin D \}$$

delay transition
$$\frac{\forall d' < d : \rho + d' \models tpc(s, A - D)}{(s, D)\rho \xrightarrow{d} (s, D)(\rho + d)}$$

Motivation Basic Definitions: Bisimulation & Parallel Composition Towards a Congruence Relation Proposals for Congruence Results and Conclusion Drop Semantics and Drop Bisimulation

Example 3

Once a deadline is dropped it can not be observed again

$$\delta : x = 1$$

$$\delta : x = 1$$

$$\delta : f = 1$$

$$T_6 \sim T_7 \quad \text{but} \quad T_6 \mid_{\mathcal{A}}^{\otimes} T_8 \nsim T_7 \mid_{\mathcal{A}}^{\otimes} T_8$$

Motivation **Basic Definitions: Bisimulation & Parallel Composition** Towards a Congruence Relation **Proposals for Congruence** Results and Conclusion Drop Semantics and Drop Bisimulation

Example 3

Once a deadline is dropped it can not be observed again

$$T_6 \sim T_7 \;\; \mathrm{but} \;\; T_6 \mid|_{\mathcal{A}}^{\otimes} T_8 \nsim T_7 \mid|_{\mathcal{A}}^{\otimes} T_8$$

Pedro R. D'Argenio and Biniam Gebremichael

Motivation Basic Definitions: Bisimulation & Parallel Composition Towards a Congruence Relation Results and Conclusion Drop Semantics and Drop Bisimulation

Undrop transition

undrop transition: In the future all disregarded deadline will be considered again

$$(s,D)
ho \stackrel{\Delta}{\longrightarrow} (s,\varnothing)
ho$$

イロン イヨン イヨン イヨン

2

CONCUR05

Motivation Basic Definitions: Bisimulation & Parallel Composition Towards a Congruence Relation Results and Conclusion Drop Semantics and Drop Bisimulation

Example 4

্≣ ৩৭ CONCUR05 Motivation Basic Definitions: Bisimulation & Parallel Composition Towards a Congruence Relation Results and Conclusion Drop Semantics and Drop Bisimulation

Example 4

Basic Definitions: Bisimulation & Parallel Composition Proposals for Congruence Drop Semantics and Drop Bisimulation

Extended Semantics of TAD

Let $\Sigma=\mathcal{A}\cup 2^{\mathcal{A}}\cup \{\Delta\}\cup \mathbb{R}_{\geq 0}$ be the set of actions then \longrightarrow is the smallest relation satisfying

- A1: discrete transition $s \xrightarrow{a,\gamma,\delta,\mathbf{x}} s'$ and $\rho \models \gamma$ implies $(s, D)\rho \xrightarrow{a} (s', \emptyset)\rho\{\mathbf{x}_i := 0\}$
- A2: delay transition $\forall d' < d : \rho + d' \models tpc(s, A - D) \text{ implies}$ $(s, D)\rho \xrightarrow{d} (s, D)\rho + d$

A3: drop transition – no precondition $(s, D)\rho \xrightarrow{\nabla_E} (s, D \cup E)\rho$

A4: undrop transition – no precondition $(s, D)\rho \xrightarrow{\Delta} (s', \emptyset)\rho$

(日) (同) (E) (E) (E)

Basic Definitions: Bisimulation & Parallel Composition Proposals for Congruence Drop Semantics and Drop Bisimulation

・ロン ・回と ・ヨン・

Drop-bisimulation (\sim^{∇})

The same as the standard bisimulation except both TADs have to match on drop and undrop actions besides the delay and discrete actions.

$$\mathcal{A} \cup \mathbb{R}_{\geq 0} \quad \mapsto \quad \underbrace{\mathcal{A} \cup \mathcal{A}_{\nabla} \cup \{\Delta\}}_{\bigvee} \cup \mathbb{R}_{\geq 0}$$

discrete action

 $\sim^{\!\!\nabla}$ in terms of \sim

$$T_1 \sim^{\nabla} T_2 \Leftrightarrow TS_{\nabla}(T_1) \sim TS_{\nabla}(T_2)$$

Symbolic, Decidability, Congruence and Coarsest Alternative Synchronizing Constraints Conclusion

What is Drop-bisimulation Good for?

Pedro R. D'Argenio and Biniam Gebremichael The Coarsest Congruence for TADs

2

・ロト ・回ト ・ヨト ・ヨト

Symbolic, Decidability, Congruence and Coarsest Alternative Synchronizing Constraints Conclusion

(日) (同) (E) (E) (E)

What is Drop-bisimulation Good for?

Results – \sim^{∇} is a:

- 1. bisimulation ($\sim^{\nabla} \subset \sim$)
- 2. congruent ($T_1 \sim^{\nabla} T_2 \Rightarrow T_1 \mid \mid^{\otimes} T_0 \sim^{\nabla} T_2 \mid \mid^{\otimes} T_0$)
- 3. coarsest ($\forall T_0 \text{ if } T_1 \parallel^{\otimes} T_0 \sim^{\nabla} T_2 \parallel^{\otimes} T_0 \text{ then } T_1 \sim^{\nabla} T_2$)
- 4. decidable
 - there is an equivalent symbolic bisimulation which is decidable

Symbolic, Decidability, Congruence and Coarsest Alternative Synchronizing Constraints Conclusion

What is Drop-bisimulation Good for?

Results – \sim^{∇} is a:

- 1. bisimulation ($\sim^{\nabla} \subset \sim$)
- 2. congruent ($T_1 \sim^{\nabla} T_2 \Rightarrow T_1 \mid \mid^{\otimes} T_0 \sim^{\nabla} T_2 \mid \mid^{\otimes} T_0$)
- 3. coarsest ($\forall T_0 \text{ if } T_1 \parallel^{\otimes} T_0 \sim^{\nabla} T_2 \parallel^{\otimes} T_0 \text{ then } T_1 \sim^{\nabla} T_2$)
- 4. decidable
 - there is an equivalent symbolic bisimulation which is decidable

Symbolic Characterization of Drop-bisimulation

Symbolic Bisimulation (\sim^{ϕ}) – $s \sim^{\phi} t$ iff

- 1. \sim^{ϕ} is symmetric.
- 2. ϕ is open ended clock constraint (\uparrow -closed).
- 3. Every action in A is simulated by one or more edges labeled with the same action, and the destination locations are bisimilar.

$$\gamma: x \leq 2$$

$$\delta: \mathbf{ff}$$

$$\gamma: x \geq 4$$

$$\gamma: x \geq 4$$

$$\gamma: \mathbf{tt}$$

$$\gamma: \mathbf{tt}$$

4. Time progress conditions if t and s are equivalent $\forall a \in \mathcal{A}$. $\phi \Rightarrow (tpc(t, a) \Leftrightarrow tpc(u, a))$

・ロト ・回ト ・ヨト ・ヨト

CONCUR05

Drop Bisimulation is Equivalent to Symbolic Bisimulation

Theorem: For an initial clock constraint $\phi_0 \equiv \bigwedge_{x,y \in C_1 \cup C_2} (0 \le x = y)$

$T_1 \sim^{\phi_0} T_2$ if and only if $T_1 \sim^{\nabla} T_2$

Theorem: \sim^{ϕ} is decidable, so is \sim^{∇} **Proof hint:**

- follows from [Lin & Yi 2000 and Čerāns 1992]
- There are only finite regions, and finite $a \in \mathcal{A}$

Proving Congruence of Drop Bisimulation

Theorem: \sim^{∇} is congruent for parallel composition

Proof hint:

- First prove congruence on symbolic semantics, then apply ~[∇] iff ~^φ (non conventional approach)
- Why not directly prove on the transition system?
 - Defining parallel composition on the transition system is very complex
 - Needs complex bookkeeping to know which deadline is blocking time progress
 - Commit to one instance of \otimes

Theorem: \sim^{ϕ} is congruent for parallel composition

$$T_1\sim^{\phi}T_2$$
 and $T_3\sim^{\phi}T_4$ implies $T_1\mid\mid^{\otimes}T_3\sim^{\phi}T_2\mid\mid^{\otimes}T_4$

The same holds for \sim^{∇} .

<ロ> (四) (四) (三) (三) (三)

Symbolic, Decidability, Congruence and Coarsest Alternative Synchronizing Constraints Conclusion

(日) (同) (E) (E) (E)

Proving Coarsest Congruence

Theorem: \sim^{∇} is the coarsest congruent for parallel composition

$$\forall T_0: if T_1 \mid|_B^{\otimes} T_0 \sim^{\nabla} T_2 \mid|_B^{\otimes} T_0 then T_1 \sim^{\nabla} T_2$$

proof hint: by contradiction. Construct a test automaton T_t that distinguishes T_1 and T_2 .

The test automaton has transitions, similar to the drop and undrop actions of the extended semantics

$$s_D \xrightarrow{a, \text{tt}, \mathbf{0}_{\delta}, \varnothing} s_{\varnothing} \qquad s_D \xrightarrow{\nabla_{D'}, \text{tt}, \text{ff}, \varnothing} s_{D \cup D'} \qquad s_D \xrightarrow{\Delta, \text{tt}, \text{ff}, \varnothing} s_{\varnothing}$$

Symbolic, Decidability, Congruence and Coarsest Alternative Synchronizing Constraints Conclusion

Which Synchronization Operations are Supported by $\sim^{ abla}$

$$\begin{array}{c} \underline{s_1 \xrightarrow{a,\gamma,\delta,\mathbf{x}}}_1 \underline{s_1', a \notin B} \\ (\underline{s_1, s_2}) \xrightarrow{a,\gamma,\delta,\mathbf{x}} (\underline{s_1', s_2}) \\ (\underline{s_2, s_1}) \xrightarrow{a,\gamma,\delta,\mathbf{x}} (\underline{s_2, s_1'}) \end{array} \xrightarrow{s_1 \xrightarrow{a,\gamma_1,\delta_2,\mathbf{x_1}}}_1 \underline{s_1', \underline{s_2} \xrightarrow{a,\gamma_2,\delta_2,\mathbf{x_2}}}_2 \underline{s_2', a \in B} \\ (\underline{s_1, s_2}) \xrightarrow{a,\gamma_1 \oplus \gamma_2, (\delta_1, \gamma_1) \otimes (\delta_2, \gamma_2), \mathbf{x_1} \cup \mathbf{x_2}} (\underline{s_1', s_2'}) \end{array}$$

Synchronizing guards $\gamma_1 \oplus \gamma_2$

AND: both guards true $(\gamma_1 \wedge \gamma_2)$. supported by \sim^{∇}

- OR: one guard true $(\gamma_1 \lor \gamma_2)$.
- MIN: one guard true, the second guard will be true in the future (the faster forces the slower)
- MAX: one guard true, the second guard was true in the past. (the faster waits the slower). Can be expressed in terms of AND.

Synchronizing deadlines

・ロト ・回ト ・ヨト ・ヨト

Symbolic, Decidability, Congruence and Coarsest Alternative Synchronizing Constraints Conclusion

Which Synchronization Operations are Supported by $\sim^{ abla}$

Synchronizing deadlines

- ► any ⊗ that,
 - ▶ is distributive wrt ∨,
 - preserves $\delta \Rightarrow \gamma$,
 - preserves left closure,
 - has identity deadline

Patient: both deadlines true $\delta_1 \wedge \delta_2$,

Impatient: one deadline true and both guards true $(\delta_1 \vee \delta_2) \wedge (\gamma_1 \wedge \gamma_2)$.

Strong: one deadline true $(\delta_1 \vee \delta_2)$ (does not preserve $\delta \Rightarrow \gamma$)

$(\delta_1, \gamma_1) \otimes (\delta_2, \gamma_2)$

・ロン ・回 と ・ヨン ・ヨン

CONCUR05

 Motivation
 Symbolic, Decidability, Congruence and Coarsest

 Towards a Congruence Relation
 Alternative Synchronizing Constraints

 Results and Conclusion
 Conclusion

Conclusion

Summary:

We have characterized the coarsest congruence relation that is included in the bisimulation relation for Timed Automata with Deadlines. An equivalent symbolic bisimulation is also characterized and proved to be decidable.

Related work:

- Huimin Lin & Wang Yi (2002) have done similar symbolic characterization for Timed Automata with Invariants.
- Timed IO Automata with Urgency [Gebremichael & Vaandrager, 2004] solves the problem of delayable synchronization and parallel composition by IO distinction.

Future work:

Axiomatization of Timed Automata with Deadlines.

・ロン ・回と ・ヨン・

7

Symbolic, Decidability, Congruence and Coarsest Alternative Synchronizing Constraints Conclusion

APPENDIX: Examples on synchronizing Guards

OR:
$$T_{11} \mid \mid_{a}^{\otimes} T'''$$
 can do *a* but not $\approx^{\nabla} T_{12} \mid \mid_{a}^{\otimes} T'''$
MIN: $(\gamma_{1} \land \gamma_{2} \Downarrow) \lor (\gamma_{2} \land \gamma_{1} \Downarrow)$. in $T_{13} \mid \mid_{a}^{\otimes} T'''$ action *b* is possible but
not in $T_{14} \mid \mid_{a}^{\otimes} T'''$
MAX: $(\gamma_{1} \land \gamma_{2} \Uparrow) \lor (\gamma_{2} \land \gamma_{1} \Uparrow)$. in $T_{15} \mid \mid_{a}^{\otimes} T'''$, *a* can be delayed until
 $z > 3$ and *c* will be possible. remove $\gamma : x < 1$ from T_{15} to
express MAX in AND.

Pedro R. D'Argenio and Biniam Gebremichael The Coarsest Congruence for TADs CONCUR05