Model Checking with SMV

Biniam Gebremichael

biniam@cs.ru.nl

ITT — Computing Science Department
University of Nijmegen
The Netherlands

March 2006

http.// www.cs.ru.nl/"biniam/smv

Content

1. Model Checking

2. SMV: Symbolic Model Verifier

3. Simple Example

4. Second Example: Mutual Exclusion

5. Case Study: Smart Card Personalisation Machine
=» System description
=» Problem definition
=¥ Modeling in SMV
=» Temporal Logic for synthesizing a scheduler

6. Exercise

BINIAM GEBREMICHAEL, MODEL CHECKING WITH SMV, 2006

Model Checking

Model = 4 YES
Model
heckin I
Property = Checking too NO
\V Counter Example
Over flow

Model checking = An automatic technique for verifying properties of a
finite model of a system.

General approach:

=¥ Construct M= a model of the behavior of the system (given as kripke
structure, finite automata, ...). M must be finite.
=¥ Specify ¢ = a property expected of the system (given as Temporal Logic)

=¥ Check that M satisfies ¢, if not , produce counter-example.

Examples of model checking tools: SMV, SPIN, Uppaal, Kronos ...

BINIAM GEBREMICHAEL, MODEL CHECKING WITH SMV, 2006

Advantages and disadvantages of model checking (+/-):

+ Completeness : verification is fully exhaustive.
Compare with simulation.

+ Usability :
=» Completely automatic,
=» can produce counter-examples that represent subtle errors or interesting
execution paths.

Compare with Theorem Proving

- Applicability : State explosion problem
=» The model should be finite and not too big.

=» Techniques to alleviate this problem: BDD data structure, partial reduction,
symmetry,

BINIAM GEBREMICHAEL, MODEL CHECKING WITH SMV, 2006

Notable Examples

e Cache coherence protocol in the IEEE Futurebus standard in SMV
[Clarke 1992]

e Cache coherence protocol of the IEEE Scalable Coherent Interface in
Muro [Dill 1992]

e High-level Data Link Controller (HDLC) in FormalCheck [AT &T 1996]

e Control Protocol used in Philips stereo components in Kronos
[Bengtsson 1996]

e CCITT ISDN User Part Protocol [AT &T 92]

e Active structural control system, to make buildings more resistant to
earthquakes [1995]

BINIAM GEBREMICHAEL, MODEL CHECKING WITH SMV, 2006

SMV: Symbolic Model Verifier

Ken McMillan, Symbolic Model Checking: An Approach to State Explosion
Problem, 1993

e Modeling Language
=» Modularized and hierarchical descriptions
=» Finite data types: boolean, enum, int ... etc
=» Array, loops, if-close ... etc
=» Non-determinism, parallel execution

e Property specification Language
=» CTLand LTL
=» safety, lifeness, deadlock
=» Fairness

e Cadence SMV: command line and GUI for Windows / Linux / Sun-OS

e Other SMV versions: CMU-SMV, NuSMV

BINIAM GEBREMICHAEL, MODEL CHECKING WITH SMV, 2006

Modeling the SMV way

request = false Control =
ready (R)

Figure 1: Simple SSH server

request = true

T

Control =
busy (B)

=» state variables: control, request
4 states { (R,T), (R,F), (B,T), (B,F)}
-» state change:
=¥ initial value: eg. { (R,T), (R,F) }
=» next value: when does a state variable change...
eg{(RT)—(B,),...}

=» desired properties: in CTL or LTL
eg. whenever a request is made it will be answered eventually.

BINIAM GEBREMICHAEL, MODEL CHECKING WITH SMV, 2006

Simple SSH server

module main() {
-- state variables and their possible values
request: boolean;
control: {ready, busy};
-- initial value
init(control) := ready;
-- next value
if (control = ready & request) next(control) := busy;
else next(control) := {ready, busy}; -- non deterministic choice
-- request 1is not initialized and no next value is given

-- it means request can be T or F (it is not upto the system to control it)

-- whenever (AG) a request arrives it will be processed eventually (AF)
-- eventually, some time in the future, (AF)
pl: SPEC AG (request -> AF (control=busy));

}

BINIAM GEBREMICHAEL, MODEL CHECKING WITH SMV, 2006 8

Mutual Exclusion

IDLE

?
O

Process 1 Process 2

CRITICAL
SECTION

CRITICAL
SECTION

[
e (l)m
—@

=» Both processes should not be in their critical section at the same time

=» A process must be allowed to enter its critical section

BINIAM GEBREMICHAEL, MODEL CHECKING WITH SMV, 2006

Mutual Exclusion (the controller)

MODULE main(){

turn : boolean;
prO : process prc(turn, 0);

prl : process prc(turn, 1);

init (turn) := 0;
next (turn) := case {
(prl.control = critical || pr0O.control = critical) : turn;
default : {0,1};
s
--safety
SPEC AG " ((prO.control = critical) & (prl.control = critical));
--liveness
SPEC AG((prl.control = ready) -> AF (prl.control = critical));
}

BINIAM GEBREMICHAEL, MODEL CHECKING WITH SMV, 2006 10

Mutual Exclusion (the processes)

MODULE prc(turn, myID){

control : {idle, ready,

init (control) := idle;
next (control) := case
(control =
(control =
(control =
default
}s

FAIRNESS running;

FAIRNESS ~(control = critical);

critical}l;

{
idle)
ready) & (turn

critical)

myID)

{ready, idle};
critical;
{critical, idle};

control;

-- allow this process to run infinitely often

-- do not stay in critical section forever

BINIAM GEBREMICHAEL, MODEL CHECKING WITH SMV, 2006

11

Application of Model cheking

Verification Controller or Scheduler
Synthesis

Given a controlled plant
(Plant "P" and Controller "C") Given uncontolled plant "P"

does P||C satisify a property K does P satisify (negation of) K

SMV SMV
4 N\ 4
(" h - ~ NO. YES
YES NO P does satisfy K : ;
use the counter— y It is not possible
the controller , use the counterexample to control P in such a
, example to fix C/P P su -
is good for K as a controller ("C") away that K will be satisified
Or there is modeling PIIC satisifies K
~ 7 _ error J IC satisifies) | Or there is modeling error

BINIAM GEBREMICHAEL, MODEL CHECKING WITH SMV, 2006 12

Case Study

Smart Card Personalisation System — Cybernetics, France

Personalisation Stations

% % % % % % % % Lifting and Dropping
e HE B .
Input Output

Conveyor belt =
Forward move

BINIAM GEBREMICHAEL, MODEL CHECKING WITH SMV, 2006 13

Personalizing a card
1. New card inserted through INPUT
2. belt moves forward one step from left to right
3. card is lifted to any idle station

4. card spend at least S time units in the station to be personalised (with
arbitrary value). Belt moves during this time as well.

5. personalized card is dropped to a slot beneath the station. This slot
should be empty

6. The personalized card reaches the output position.

BINIAM GEBREMICHAEL, MODEL CHECKING WITH SMV, 2006

14

Problem Definition

Given M personalisation stations find a scheduler/controller that produce
personalised cards

1. in the right order and

2. with optimal throughput

Trivial solution: one mode approach

BINIAM GEBREMICHAEL, MODEL CHECKING WITH SMV, 2006

15

Modeling
=¥» Model the machine as an uncontrolled plant. (any thing that is physically
allowed should also be allowed by the model).
=» Model the negation of the properties that need to be satisfied (or called the

observer)
I M I
. b 1%
b A 4 A A Liccing and propping
= EE] Il Bl I
I N I

—
Forward move

BINIAM GEBREMICHAEL, MODEL CHECKING WITH SMV, 2006 16

state variables

Plant parameters

b|M]|: personalisation stations.
x|M]: clocks for each of the p.stations.
a|N|: slots in the conveyor belt.

Property/Observer parameters

out: the next expected value in OUTPUT
t1l: blank space tolerance.

Where
=» 11 is the number of personalization stations
=» N is the number of slots in the conveyor belt. N =M + 2
=» K is the number of different personalisations
=» S is the number of time units needed to personalise a card.

one time unit is defined as equal to one step move of the belt.

n

BINIAM GEBREMICHAEL, MODEL CHECKING WITH SMV, 2006

17

Processes

the number of non-determinism

S

1. lifting a card (for each personalisation station),

2. dropping a card (for each personalisation station),
3. moving belt forward,

4. inserting new card,

5. ticking the timer,

6. observing order of delivery and optimality

BINIAM GEBREMICHAEL, MODEL CHECKING WITH SMV, 2006

18

Processes

1. lifting a card (for each personalisation station),

2. dropping a card (for each personalisation station),
3. moving belt forward,

4. inserting new card,

5. ticking the timer,

6. observing order of delivery and optimality

Grouping: decreases the number of non-determinism

=¥ forward: 3,4,5 and 6
=¥ lift_drop: 1 and 2

BINIAM GEBREMICHAEL, MODEL CHECKING WITH SMV, 2006 18-A

SMV model - top level specification

module main(){

a: array 0..N-1 of -3..K; -- conveyor belt
b: array 0..M-1 of -3..K; -- personalisation station
x: array 0..M-1 of -2..S; -- tick counter (discrete clock)
out: -2..K; -- correctness observer
tl: -1..1; -- optimality observer
tk: process forward(a,b,x,out,tl); -- forward process
for(j=0; j<=M-1;j=j+1)

1d[j] :process lift_drop(a,b,x,j); -- lift_drop processes
for(j=0;j<=N-1;j=j+1) init(aljl):=-3; -- initialization

for(j=0;j<=M-1;j=j+1){ init(b[jl) :=-3;
init(x[j]):=0; }
init(out) :=0; init(tl):=0;
}

BINIAM GEBREMICHAEL, MODEL CHECKING WITH SMV, 2006

19

forward

module forward(a,b,x){

-- Input: new card or nothing
next (al[0]) :={NEW,MTY}; -- NEW = -3, MTY = -2

-- move belt forward
for(j=1;j<=N-1;j=j+1) next(aljl):=alj-1];

-- advance the clock of all busy stations
for(j=0;j<=M-1;j=j+1)
if(x[j1<S & b[j1>=0)
next(x[jl):= x[jl+1;

BINIAM GEBREMICHAEL, MODEL CHECKING WITH SMV, 2006

20

lift and drop

module lift_drop(a,b,x,j){

-- 1ift if the station is idle and if there is new card beneath
if(b[j] <= MTY & al[j+1] = NEW){

next(b[j]):= 0..K; -- choose arbitrary

-- personalisation value
next(alj+1]) :=b[jl; -- empty the slot beneath
next(x[j]):=0; -- reset the timer

}

-- drop if the card is fully personalised and
-- 1f the slot beneath is empty
else if(b[j] >= 0 & al[j+1] = MTY & x[j] = S){
next(b[j]):= MTY; -- the station is emptied
next(alj+1]):=b[j]l; -- the card is dropped to the slot

BINIAM GEBREMICHAEL, MODEL CHECKING WITH SMV, 2006 21

Observer

e correctness: produce cards in the right order
If a card is produced non-sequentially, set out to K, otherwise
increment out.

if (out = al[N-1]) next (out) := (out+1l) mod K;
else if(a[N-1]>MTY) next(out):= K; /* error */

e optimization: minimize the number of blank slots
If S cards are produced, increment t 1 by one. If no card is
produce decrement t 1.

if (a[N-1]=MTY) next(tl) :=tl-1;
else if(a[N-1]>=0 & (a[N-1] mod S)=S-1) next(tl) :=tl+1;

e CTL formula: There is no correct and optimal run.
AF “(out < K A t1 > 0).

BINIAM GEBREMICHAEL, MODEL CHECKING WITH SMV, 2006 22

Super Single Mode — a scheduler generated by SMV

in personalisation stations out 4
time put 0 1 2 3 put 8 L] L]
4
1 [9 L]]
0 4
2 L] 10 L]
0

3]] 11 L] 4
0 1 8

4 O] 12]
0 1 8
5 [[13 L] L]
1 2 8
6] 0] 14 O O
4 1 2 8
7 [0 L] 15 L]

BINIAM GEBREMICHAEL, MODEL CHECKING WITH SMV, 2006

The Barbershop Problem

The barber shop has 3 barbers, 3 barber chairs, and a waiting area with a sofa, There is a
limitation of m customers in the shop at a time. The barbers divide their time between cutting
hair, accepting payment, and sleeping in their chair waiting for a customer. A customer will
not enter the shop if it is filled to capacity. Once inside, the customer takes a seat on the sofa
or stands if the sofa is full. When a barber is free, the customer that has been waiting the
longest on the sofa is served and the customer that has been standing the longest takes its
place on the sofa. When a haircut is finished any barber can accept payment, but payment
can be accepted for only one customer at a time as there is only one cash register.

=» List the state variables, their possible values and initial values
=¥ what are actions that define the next value of the state variables

=» give CTL/LTL formula for “A costumer admitted to the shop will be served
eventually”

BINIAM GEBREMICHAEL, MODEL CHECKING WITH SMV, 2006 24

