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Abstract. We apply three different modeling frameworks — timed au-
tomata (UPPAAL), colored Petri nets and synchronous data flow — to
model a challenging industrial case study that involves an existing state-
of-the-art image processing pipeline. Each of the resulting models is used
to derive schedules for multiple concurrent jobs in the presence of lim-
ited resources (processing units, memory, USB bandwidth,..). The three
models and corresponding analysis results are compared.

1 Introduction

The Octopus project is a cooperation between Océ Technologies, the Embedded
Systems Institute and several academic research groups in the Netherlands. The
aim of Octopus is to define new techniques, tools and methods for the design
of electromechanical systems like printers, which react in an adaptive way to
changes during usage. One of the topics studied is the design of the datapath
of printers/copiers. The datapath encompasses the complete trajectory of the
image data from source (for example the network) to target (the imaging unit).
Runtime changes in the environment (such as the observed image quality) may
require the use of different algorithms in the datapath, deadlines for comple-
tion of computations may change, new jobs may suddenly arrive, and resource
availability may change. To realize this type of behavior in a predictable way
is a major challenge. In this paper, we report on the first phase of the project
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in which we studied a slightly simplified version of an existing state-of-the-art
image processing pipeline that has been implemented in hardware, in particular
the scheduling of multiple concurrent data flows.

1.1 The Case Study

Océ systems perform a variety of image processing functions on digital docu-
ments in addition to scanning, copying and printing. Apart from local use for
scanning and copying, users can also remotely use the system for image process-
ing and printing. A generic architecture of the system studied in this paper is
shown in Fig. [

Controller

UsSB
client

<§::::i:>USB

MEMORY

|Scanner|—i| ScanlP I—o —il PrintlP |—>| Printerl

IP1 P2
Fig. 1. Architecture of Océ system

The system has two ports for input: Scanner and Controller. Users locally
come to the system to submit jobs at the Scanner and remote jobs enter the
system via the Controller. These jobs use the image processing (IP) components
(ScanIP, IP1, IP2, PrintIP), and system resources such as memory and a USB
bus for executing the jobs. Finally, there are two places where the jobs leave the
system: Printer and Controller.

The IP components can be used in different combinations depending on how
a document is requested to be processed by the user. Hence this gives rise to
different use cases of the system, that is, each job may use the system in a
different way. The list of components used by a job defines the datapath for that
job. Some examples of datapaths are:

— DirectCopy: Scanner ~» ScanlP ~» IP1 ~» IP2 ~» USBClient, PrintIP[]
ScanToStore: Scanner ~ ScanIP ~» IP1 ~» USBClient

— ScanToEmail: Scanner ~» ScanIP ~» IP1 ~» IP2 ~» USBClient

— ProcessFromStore: USBClient ~» IP1 ~» IP2 ~» USBClient

LIf A ~ B occurs in a datapath, then the start of the processing by A should precede
the start of the processing by B.
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— SimplePrint: USBClient ~» PrintIP
— PrintWithProcessing: USBClient ~» IP2 ~» PrintIP

In the DirectCopy datapath, a job is processed in order by the components Scan-
ner, ScanlP, IP1, and IP2, and then simultaneously sent to the Controller via
the USBClient and to the printer through PrintIP. In the case of the Process-
FromStore datapath, a remote job is sent by the Controller to the USBClient
for processing by IP1 and IP2, after which the result is returned to the remote
user via the USBClient and the Controller. The interpretation of the remaining
datapaths is similar.

It is not mandatory that the components in the datapath process the job
sequentially: the design of the system allows for a certain degree of parallelism.
Scanner and ScanIP, for instance, may process a page in parallel. This is be-
cause ScanlP works fully streaming and has the same throughput as the Scanner.
However, due to the characteristics of the different components, some additional
constraints are imposed. Due to the nature of the image processing function
that IP2 performs, IP2 can start processing a page only after IP1 has completed
processing it. The dependency between ScanIP and IP1 is different. IP1 works
streaming and has a higher throughput than ScanIP. Hence IP1 may start pro-
cessing the page while ScanlP is processing it, with a certain delay due to the
higher throughput of IP1.

In addition to the image processing components, two other system resources
that may be scarce are memory and USB bandwidth. Execution of a job is only
allowed if the entire memory required for completion of the job is available (and
allocated) before its execution commences. Each component requires a certain
amount of memory for its task and this can be released once computation has
finished and no other component needs the information. Availability of memory
is a critical factor in determining the throughput and efficiency of the system.
Another critical resource is the USB. This bus has limited bandwidth and serves
as a bridge between the USBClient and the memory. The bus may be used both
for uploading and for downloading data. At most one job may upload data at
any point in time, and similarly at most one job may download data. Uploading
and downloading may take place concurrently. If only one job is using the bus,
transmission takes place at a rate of high MByte/s. If two processes use the bus
then transmission takes place at a slightly lower rate of low MByte/sH This is
referred to as the dynamic USB behavior. The static USB behaviour is the one
in which the transmission rate is always high MByte/s.

The main challenge that we addressed in this case study was to compute
efficient schedules that minimize the execution time for jobs and realize a good
throughput. A related problem was to determine the amount of memory and
USB bandwidth required, so that these resources would not become bottlenecks
in the performance of the system.

2 Approximately, low is 75% of high. The reason why it is not 50% is that the USB
protocol also sends acknowledgment messages, and the acknowledgment for upward
data can be combined with downward data, and vice versa.
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1.2 Modelling and Analysis Approaches

We have applied and compared three different modeling methods: Timed Au-
tomata (TA), Colored Petri Nets (CPN), and Synchronous Data Flow (SDF).
These methods are known to serve the purpose of investigating throughput and
schedulability issues. The objective of our research was to see whether the three
methods can handle this industrial case study, and to compare the quality, ease
of construction, analysis efficiency, and predictive power of the models.

Timed Automata. A number of mature model checking tools, in particular Up-
PAAL [4], are by now available and have been applied to the quantitative analysis
of numerous industrial case studies [3]. In particular, timed automata technol-
ogy has been applied successfully to optimal planning and scheduling problems
[7/1], and performance analysis of distributed real-time systems [812]. A timed
automaton is a finite automaton extended with clock variables, which are con-
tinuous variables with rate 1. A model consists of a network of timed automata.
Each automaton has a set of nodes called locations connected by edges. A new lo-
cation is reached after a condition, called guard, is satisfied or a synchronization
with another automaton takes place via a channel. Another way to communicate
in the network is by using shared variables.

Petri Nets. are used for modeling concurrent systems. They allow to both explore
the state space and to simulate the behavior of the models created. We have
used CPN Tools [TTJTI0] as the sofware tool for the present case study and for
performance analysis using simulation. Petri Nets are graphs with two types
of nodes: places that are circular, and transitions that are rectangular. Directed
arcs are used to connect places to transitions and vice versa. Objects or resources
are modelled by tokens, which are distributed across the places representing a
state of the system. The occurrence of events corresponds to firing a transition,
consuming tokens from its input places and producing tokens at its output places.
CPN (Colored Petri nets) is an extension where tokens have a value (color) and a
time stamp. A third extension is hierarchy, with subnets depicted as transitions
in nets higher in the hierarchy.

Synchronous Data Flow Graphs (SDFG). are widely used to model concurrent
streaming applications on parallel hardware. An SDFG is a directed graph in
which nodes are referred to as actors and edges are referred to as channels. Ac-
tors model individual tasks in an application and channels model communicated
data or other dependencies between actors. When an actor fires, it consumes
a fixed number of tokens (data samples) from all of its input channels (the
consumption rates) and produces a fixed number of tokens on all of its output
channels (the production rates). For the purpose of timing analysis, each actor
in an SDFG is also annotated with a fixed (worst-case) execution time. A timed
SDF specification of an application can be analyzed efficiently for many perfor-
mance metrics, such as maximum throughput [6], latency or minimum buffer
sizes. Analysis tools, like the freely available SDF3 [13], allow users to formally
analyze the performance of those applications.
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Outline of the Paper. In Sect. 2, the three models are explained. In Sect. 3, the
analysis results are presented and compared. Sect. 4 gives conclusions and some
directions for future research.

2 DModelling Approaches

2.1 Timed Automata

In the timed automata approach, each use case and each resource is described by
an automaton, except for memory which is simply modelled as a shared variable.

All image processing components follow the same behavioral pattern, dis-
played in Fig. 2l Initially a component is in idle mode. As soon as the component
is claimed by a job, it enters the running mode. A variable ezecution_time spec-
ifies how long the automaton stays in this mode. After this period has elapsed,
the automaton jumps to the recovery mode, and stays there for recover_time time
units. The template of Fig. 2] is parametrized by channel names start_resource
and end_resource, which mark the start and termination of a component, and
integer variables execution_time and recover_time, which describe the timing be-
havior.

x:=0
start_resource?

IDLE

RUNNING
X <= execution_time

X >= execution_time
x:=0

end_resource!
X >= recover_time

RECOVERING

x:=0,
setScannerAndScanlpTime()
memory-=memory_ip2+memoy_usb

start_scan_ip!

X <= scan_time-getip1Time()

X >= scan_time - getlp1Time()

start_ip1!
setlp1Time()

© x <= arrivalTime
start_ip2!
x>=arrivalTime setlp2Time()
memory>=memory_ip2+memoy_usb printing_claimed[i]!
start_scanner! setPrintipTime()

usb_transfer_claimed[i]!

end_ip2?
memory+=memory_ip2

printing_finished[i]?

usb_transfer_finished[i]?
memory+=memoy_usb

X <= recover_time

end_ip1? DONE

Fig. 2. Component template Fig. 3. DirectCopy template

Each use case has been modeled using a separate automaton. As an example,
the automaton for the DirectCopy use case is depicted in Fig. Bl A job may
only claim the first component from its datapath after its arrival and when
enough memory is available for all the processing in the datapath. This figure
shows the way memory allocation and release is modelled. At the moment a
component is claimed, the use case automaton specifies its execution time. The
figure illustrates, also, the way we modelled the parallel activities done by IP2,
USBClient and PrintIP.

USB. A challenging aspect in modelling the datapath was the USB because of
its dynamic behaviour. Firstly we modelled this like a linear hybrid automaton
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down =0
end_down!

end down!

Fig. 4. Linear hybrid automaton model of USB bus

as can be seen in Fig. @ Linear hybrid automata [2], are a slight extension
of timed automata in which besides clocks, also other continuous variables are
allowed with rates that may depend on the location. In the automaton of Fig. [4]
there are two continuous variables: up and down, modeling the amount of data
that needs to be uploaded and downloaded, respectively. In the initial state the
bus is idle (derivatives up and down are equal to 0) and there are no data
to be transmitted (up = down = 0). When uploading starts (event start_up?),
variable up is set to U, the number of MBytes to be transmitted, and derivative
up is set to —high. Uploading ends (end_up!) when there are no more data to be
transmitted, that is, up has reached value 0. If during uploading via the USB, a
download transfer is started, the automaton jumps to a new location in which
down is set to D and both up and down are set to —low. The problem we face is
that this type of hybrid behavior cannot be modeled directly in UPPAAL. There
are dedicated model checkers for linear hybrid automata, such as HyTech [9],
but the modeling languages supported by these tools are rather basic and the
verification engine is not sufficiently powerful to synthesize schedules for our case
study.

We experimented with several timed automaton models that approximate
the hybrid model. In the simplest approximation, we postulate that the data
rate is high, independently of the number of users. This behavior can simply
be modelled using two instances of the resource template of Fig. Pl Our second
“dynamic” model, displayed in Fig.[Bl overapproximates the computation times
of the hybrid automaton with arbitrary precision. Clock x records the time
since the start of the last transmission. Integer variables up and down give the
number of MBytes still to be transmitted. If an upward transmission starts in
the initial state, up is set to U and x to 0. Without concurrent downward traffic,
transmission will end at time divide(up, high)@. Now suppose that downward
transmission starts somewhere in the middle of upward transmission, when clock

3 Since in timed automata we may only impose integer bounds on clock variables, we

use a function divide(a,b), which gives the smallest integer greater or equal than .
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end_down!
x==divide(down,high)

down :=0 x<=divide(down,high)

DOWN
start_down? x

down=D,
x :=0

x==divide(up,high)

end_up!
up :=0
i:int[0,n_usb]
x==divide(up,low) && x==i
end_up!

= -(i* ?
start_up? )c<1:c>_wn. (down-(i*low))>? 0,
up:=U, =0

x:=0 up

i:int[0,n_usb]
x>=i && x<(i+1)
start_up?

i:int[0,n_usb]
x==divide(down,low) && x==i
end_down!

up:=U,
down:=(down-(i*high))>? 0,
x:=0

upP
x<=divide(up,high)

UP_AND_DOWN
x<=divide(up,low) &&

izint[O,n_usb] x<=divide(down,low)

start_down?
x>=i && x<(i+1)
down :=D,
up:=(up-(i*high))>? 0,
x:=0

Fig. 5. Second timed automaton model of USB bus

x has value t. At this point still up — high -t MByte needs to be transmitted. In
UPPAAL we cannot refer to the value of clocks in assignments to integer variables.
However, and this is an interesting new trick, using the select statementd we
may infer the largest integer ¢ satisfying ¢ < t. We update up to the maximum
of up — high -7 and 0, which is just a small overapproximation of the amount of
data still to be transmitted, and reset x. The other transitions are specified in a
similar style.

The UPPAAL verification engine is able to compute the fastest schedule for
completing all jobs (without any a priori assumption about the scheduler such
as first come first served). However, for more than 6 jobs, the computation times
increase sharply due to state space explosion. The state explosion problem can
be alleviated by declaring (some of) the start_resource channels to be urgent.
In this way we impose a “non lazy” scheduling strategy in which a resource is
claimed as soon as it has become available and some job needs it. This strategy
reduces UPPAAL computation times from hours to minutes, with a risk of losing
sometimes the optimal schedule.

2.2 CPN

In the Octopus project, the Petri Net approach takes an architecture oriented
perspective to model the Océ system. The model, in addition to the system
characteristics, includes the scheduling rules (First Come First Served is used
when jobs enter the system) and is used to study the performance of the system
through simulation. Each component in the system is modeled as a subnet. Since

* Adding a select statement i : int[0, n_usb] to a transition effectively amounts to
having a different instance of the transition for each integer ¢ in the interval [0, n_usb.
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Fig. 6. Hierarchical subnet for components Scanner, ScanIP, IP1, IP2 and PrintIP

the processing time for all the components, except the USB, can be calculated
before they start processing a job, the subnet for these components looks like
the one shown in Fig. Bl The transitions start and end model the beginning
and completion of processing a job, while the places free and do reflect the
occupancy of the component. In addition, there are two places that characterise
the subnet to each component: compInfo and paperinfo. The place complnfo
contains a token with information about the component, namely the component
ID, processing speed and the recovery time required by the component before
starting the next job. The place paperInfo contains information on the number of
bytes the particular component processes for a specific paper size. The values of
the tokens at places complInfo and paperInfo remain constant after initialisation
and govern the behaviour of the component. Since the behaviour of the USB
is different from the other components, its model is different from the other
components; it is discussed below.

In Fig. 6 the place jobQ@ contains tokens for the jobs that are available for
the components to process at any instance of time. The color of a token of type
Job contains information about the job ID, the use case and paper size of the
job. Hence, the component can calculate the time required to process this job
from the information available in the Job token, and the tokens at the places
complnfo and paperInfo. Once the processing is completed, the transition end
places a token at the place free after a certain delay, governed by the recovery
time specific to each component, thus determining when the component can
begin processing the next available job.

Fig. [ shows an abstract view of the model. New jobs for the system can be
created using the Job Generator subnet, which are placed as input to the Sched-
uler subnet at the place newJob. The Scheduler subnet models the scheduling
rules, memory management rules and routes each job from one component to
the next based on the datapath of the job. In this model, the scheduling rules
are modeled as being global to system and not local to any of the components.

To start with, the Scheduler picks a new job that enters the system from the
place newJob and estimates the amount of total memory required for executing
this job. If enough memory is available, the memory is allocated (the memory
resource is modelled as an integer token in the place memory) and the job is
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Fig. 8. CPN model for the USB

scheduled for the first component in the datapath of this job by placing a to-
ken of type Job in the place job@, which will be consumed by the corresponding
component for processing. When a component starts processing a job, it immedi-
ately places a token in the startedJob place indicating this event. The Scheduler
consumes this token to schedule the job to the next component in its datapath,
adding a delay that depends on the component that just started, the next com-
ponent in the datapath and the dependency explained in Sect. 1.1. Thus the
logic in the Scheduler includes scheduling new jobs entering the system (from
place newJob) and routing the existing jobs through the components according
to the corresponding datapaths. As mentioned above, the Scheduler subnet also
handles the memory management. This includes memory allocation and release
for jobs that are executed.

USB. The USB model is different from that of the other components since the
time required to transmit a job (upstream or downstream) is not constant and
is influenced by other jobs that may be transmitted at the same time. The Petri
Nets approach models the real-time behaviour of the USB explained in Sect. 1.1.

The CPN model of the USB works by monitoring two events observable in the
USB: (1) a new job joining the transmission, and (2) completion of transmission
of a job. Both events influence the transmission rates for any other jobs on
the USB, and hence determine the transmission times for the jobs. In the model
shown in Fig.[§] there are two transitions join and update, and two places trigger
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and USBjobList. The place USBjobList contains the list of jobs that are currently
being transmitted over the USB. Apart from information about each job, it also
contains the transmission rate currently assigned, the number of bytes remaining
to be transmitted and the last time of update for each job. The transition join
adds a new job waiting at the place jobIn that requests use of the USB (if it can
be accommodated) to USBjobList, and places a token at the place trigger. This
enables the transition update that checks the list of jobs at the place USBjobList
and reassigns the transmission rates for all the jobs according to the number
of jobs transmitted over the USB. The update transition also recalculates the
number of bytes remaining to be transmitted for each job since the last update
time, estimates the job that will finish next and places a timed token at trigger,
so that the transition update can remove the jobs whose transmissions have
completed. The jobs whose transmission over the USB is complete are placed in
the place jobOut. Thus the transition join catches the event of new jobs joining
the USB and the transition update catches the event of jobs leaving the USB,
which are critical in determining the transmission time for a single job.

2.3 Synchronous Dataflow Graphs
In the SDF approach, we choose to

model the Océ system from an ap-  [UseCeet] [Usecmez] « « «[usecasen |
plication oriented perspective. In con-
trast to the two earlier approaches, Rl "y Design Time
oy . Analysis
we take a compositional approach = ——
. . Schedule Schedule Schedule
that targets analysis efficiency for ap- and and |, and
. . . . R Resource Resource Resource
plication at runtime. Since SDF is Usagefor | || Usage for Usage for
se Case 1 Use Case 2 Use Case n
particularly well suited to optimize ——
. . Job Conflicts analysis for Arrival| Printer
throughput for streaming applica- Lovel | Resource (Components. 1<) g
tions, we focus on the scheduling Run Time
. . . I
problem for job sequences consisting Scheduing
. . . . C letion Ti
of jobs with many iterations per use e

case (i.e., 100 pages of DirectCopy).
The scheduling problem is tackled via
a 2-phase methodology (see Fig. [).
Each use case is modeled as an SDF graph. Architecture information is included
by annotating graph actors with resource usage information. In the design time
analysis phase, we apply SDF3 [13] to generate a throughput-optimal schedule
per use case. In the runtime scheduling phase, the schedule is computed based
on arrival times of jobs. The schedule takes into account constraints (number of
available components, memory amount) of the system. This 2-phase scheduling
approach provides schedules and guaranteed job completion times for arbitrary
job sequences. It avoids the complexity of analyzing all the details of a job se-
quence at runtime, which is infeasible in general, sacrificing some performance
that might be obtainable via global optimization. The method can be seen as
an instance of the Task Concurrency Management method of [14], providing
predictability by the use of SDF as a modeling formalism.

Fig. 9. Job scheduling using SDF models
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Use Case Modeling. In the SDF approach, com-
putations performed by the components of printer
are modeled as actors. Actors are annotated with
execution times and resource usage information.
In order to model the appropriate delays be-
tween two concurrent computations running on
different components of the printer, such delays

usB! Dpwnload usBAUpload

1

are also explicitly modeled by means of actors. N 1 oo

The USB communication is split into two actors:

USB_Download and USB_Upload. The execution =

times of the USB actors are approximated conser-

vatively by always assuming low bandwidth avail-  Fig. 10. ProcessFromStore

ability. Thus, use case analysis can be decoupled

from job scheduling, sacrificing some accuracy in exchange for analysis efficiency.
Fig.IOshows the SDFG of ProcessFromStore, actor production and consump-
tion rates are all 1 in this simple use case.

Job Scheduling and Completion Time Analysis. Using the SDF model to ana-
lyze the performance of a single job is straightforward. By ensuring composability
through virtualization of the resources (every job gets its own, private share of
the resources in system), multiple jobs can also be analyzed efficiently. How-
ever, as the components and memory can be shared between jobs, the existing
techniques to analyze multiple jobs cannot be applied directly to the datapath
analysis of a printer. How to model the behavior of concurrent jobs on the data-
path of the printer in a non-virtualized way and how to calculate the completion
time of those jobs is the challenge faced.

To analyze the datapath without virtualization, we make some assumptions.
We conservatively assume that the resources needed by actors are claimed at
the start of a firing and released at the end of firing, where the claim and re-
lease of a resource like the memory may happen in different actors. A waiting
job can start if all the resources needed according to use case analysis can be
reserved. The reservation of resources ensures that the execution time of all job
tasks are fixed. As already mentioned, USB bandwidth is always assumed to
be low. These assumptions make the system efficiently analyzable by limiting
the dynamism in the datapath behavior, and allow the 2-phase scheduling ap-
proach explained above. The first phase is concerned with the actor level and
uses throughput-optimal self-timed execution (data-driven, every actor fires as
soon as it is enabled) as a scheduling strategy for a single SDF that represents
a printer use case. Resource usage of each use case is calculated using this self-
timed schedule. The second phase concerns job scheduling. Jobs are served in
an FCFS (First Come First Served) way. If the resources required by a new
job cannot be ensured at arrival time, the new job has to be postponed until
the resources are available. Jobs can still be pipelined, overlapping in time, as
illustrated below. Two types of resources, mutual exclusive and cumulative re-
sources, are considered in a bit more detail. IP components are an example of
mutual exclusive resources that can only be used by one job at a time, while
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Fig. 11. Scheduling jobs with a conflict

shared memory is an example of a cumulative resource that can be used by many
jobs as long as the total usage does not exceed the available amount.

Fig. [[1l shows the scheduling of two jobs (J1 and J2) of different use cases
with a component conflict (ignoring for now memory usage). The self-timed
schedule and its resource usage are computed in phase one using the through-
put analysis algorithm in SDF3. The work is done off-line, avoiding computa-
tion work at runtime. In phase two, the scheduler computes the earliest start
time of the second job based on the phase one results and runtime information.
From Fig. [[Tla), we see that J2 can-

Q4

not start when it arrives at the printer w

due to a resource conflict on IP4. In g Las

order to maximize the resource usage, o *‘ .
J2 has to start at a point that ensures 4 ‘2M9m0:3 Us:eoﬂhe‘; o % t
that IP4 can be used by J2 as soon i

as it is released by J1. Fig[lTl(b) il- ar 8 .
lustrates how to compute this specific i B

-

point. As explained, when J1 starts its i & i K
. Memory Usage of the New Job

execution, all components and mem- =

ory it needs are reserved. A system re-

source usage table is kept to store the

release time of components. When J2

arrives, we initially assume it starts at

the end of the last actor of J1 (t4 of

. . 4 o t'ts b ot ot ta'te ot
Jl m Flgﬂj:Kb)) Then7 we CalCU-la'te Updated Memory Usage of the System
the time distance between the current
release time of components and the Fig. 12. Update memory usage

reservation of those components for

J2. The start point then equals the end time of J1 minus the minimum of the
computed distances (d3 in Fig[ITi(b)). In order to analyze memory conflicts, we
store the memory usage of each use case as a list of time interval-memory quan-
tity pairs. FiglI2] shows how to update system memory usage when a new job
starts (g; represents the amount of memory needed at time ¢;).As a single job
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always fits in the memory, we only need to consider the overlap between a new
job starting and any running jobs using memory.

We define a memory usage interval MI; = (g;, [t;,t;+1)) to represent that
from t; to t;41 the used memory equals g;. We can check those intersecting
intervals iteratively to verify the memory constraint and calculate the time the
job may need to be postponed. Assume that the memory constraint is ¢., and
MI = (q,[t1,t3)) belongs to the system and My = (go, [t2,t4)) to the new
job. If g1 + ¢2 < ¢, we can check the next pair of overlapping intervals; else, we
have to postpone the new job t3 — t5 and recheck all overlapping intervals. We
can repeat these checks until the memory constraint is satisfied.

Observe that other exclusive or cumulative resources, like the USB connection,
can be treated in the same way as outlined here.

3 Comparison

This section presents the results from comparing the analysis results for the
three approaches. For this purpose, we have chosen a common arrival sequence
of 7 one-page jobs shown below:

JobID Use case Arrival time Memory required
a6 PrintWithProcessing 0 12Y
ar ProcessFromStore 0 24Y
a2 Scan2Email 1X 48Y
a3 Scan2Store 1X 36Y
ab  PrintWithProcessing 1X 12Y
al ProcessFromStore 2X 24Y
a4 ProcessFromStore 3X 24Y

The remainder of this section explains the results for both static and dynamic
USB behaviour obtained via the three approaches.

Static USB behavior

CPN approach. Fig.[[3lshows the execution of the jobs by the components with a
total completion time of 24X. Even though jobs a6 and a7 arrive at the same time
and request USBdown simultaneously, job a6 is chosen non-deterministically to
use USBdown first at time 0. Such resource contentions can be observed for the
IP components as well where job ad waits for the PrintIP to become available as
it is processing job a6, even though job a5 can be processed by PrintIP as soon
as the USBdown is completed at 6X. The execution of the jobs is also influenced
by the memory available in the system. Even though job a2 arrives before jobs
a3, ab, al and a4, its execution commences only at time 15X, as shown in Fig.[T3]
because until 15X the memory available is less than that is required for job a2
of use case Scan2Email. This can be observed from Fig. [[3 and Fig. [[6] where

5 Due to space limitations we only present one benchmark here. In fact, we studied
several other benchmarks, for which we obtained similar results. The benchmark
presented in this paper is the most challenging one that we studied thus far.
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at time 15X execution of job a7 is completed, the memory required for job a2 is
available and it is scheduled for processing by the scanner.

SDF approach. In the SDF approach, jobs are served in an FCFS way and are
scheduled based on the strategy described before. The order of jobs is determined
by the arrival time of each job. If jobs arrive at the same time, the order is
determined non-deterministically. For the given arrival sequence, there are 12
possible orders for the 7 jobs (2!-3!-1-1 = 12) and the best schedule has the
shortest completion time, 27X, under 96Y of memory (see Fig. [[4]). From the
figure, we can see that job a2 is postponed due to the memory limit. Since the
static USB model optimistically assumes that USB bandwidth is high, in this
experiment, we align with this assumption.

TA approach. UPPAAL computed an optimal schedule with completion time 22X,
displayed in Fig. The memory chart of Fig. [[6lillustrates the use of the avail-
able memory in this schedule. At 10X memory is released when a2 is completed,
and immediately afterwards, two jobs (a3 and ab) are started. The execution
chart shows that IP2 is the critical resource, which is used optimally.

We conclude that UPPAAL managed to come up with the optimal schedule of
22X, CPN found a schedule of 24X, and SDF came up with a schedule of 27X.
For the simulation based approach followed by the CPNTool, of course the result
depends on the simulation time, and longer simulations lead to better schedules.
The SDF approach follows a strict FIFO scheduling and hence the total comple-
tion time for the jobs is higher than for the optimal schedule. However, it is the
only approach that is compositional, and hence it is expected to scale better to
larger job sequences.

Dynamic USB behavior

CPN approach. As shown in Fig. [T the total execution time is 25.5X as against
24X for the static USB behavior. Analysing the simulation results of the static
and dynamic USB behavior, the difference in completion time is caused by the
change in transmission rates of the USB.

TA approach. The result for the dynamic USB model is depicted in Fig.[I8 The
total completion time is 25X. It is easy to see that the only difference between this
result and the one for the static model is caused by the changes in transmission
rate when an upload and a download transmission occurs simultaneously. We
claim that this is the optimal schedule for this dynamic behavior.

4 Conclusions and Future Work

We have applied three prominent state based modelling frameworks —UPPAAL,
Colored Petri Nets, and Synchronous Data Flow— to a realistic industrial case
study, and managed to compute schedules for a representative benchmark. Our
preliminary conclusion is that Colored Petri Nets provide the most expressive
modeling framework, whereas UPPAAL currently appears to be the most powerful
tool for finding (optimal) schedules. However, this case study pushes UPPAAL to
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its limits and since the SDF approach, which is the only compositional one, is
more scalable it is certainly possible that it will outperform UPPAAL on larger
benchmarks. Such benchmarks can possibly also be tackled using UpPAAL Cora
[5], a variant of UPPAAL that has been constructed to solve scheduling problems.
We consider it too early for a definite comparison of modeling frameworks.

We have not embarked on the enterprise to formally relate the three different
models. However, we can confirm the result of [8] that the construction of models
of the same system using different tools helps to find bugs in the models, and
thus contributes to improving the quality of the models.

From a modelling perspective, a very interesting feature in the Océ case study
is definitely the USB bus. We consider it surprising that timed automata are able
to deal so well with what at first sight appears to be a hybrid phenomenon. The
select statement from UPPAAL is crucial in defining this model.

Future work includes the construction of more refined models of the same
system. We want to develop better sense for what is the right level of modelling.
Notable features that we want to model in more detail are the memory bus and
memory fragmentation. We also want to study more realistic requirements on
system performance such as larger number of use cases (involving for instance
batches of several hundred pages), priorities between use cases, hard constraints
on throughput, and runtime decision making whether new jobs can be accepted
and how they should be scheduled.
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Fig. 14. Execution chart for SDF model with static USB behavior
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Fig. 17. Execution chart for CPN model with dynamic USB behavior

time

2X 4% 10X 12X 14X 16X 18X 20X 22X 24X 26X

components
g

[mac ma2 mal a4 maz a5 wa7|
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