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Abstract

Tools and techniques based on timed automata (such
as Uppaal and the timed I/O automata framework) have
proven to be extremely useful for the analysis of protocols
and control software for real-time systems. However, a sig-
nificant limitation of these approaches is that, due to the
expressiveness of the modeling languages, timelocks — de-
generate states in which time is unable to pass — can freely
arise and cannot, in the general case, be detected. As a
remedy to this problem Sifakis et al. advocate the use of
deadlinepredicates for the specification of progress proper-
ties of Alur-Dill style timed automata. In this article, we
extend these ideas to a more general setting, which may
serve as a basis for deductive verification techniques. More
specifically, we extend the TIOA framework of Lynch et al
with urgencypredicates. We identify a suitable language
to describe the resultingtimed I/O automata with urgency
and show that for this language time reactivity holds by
construction. We also establish that the class of timed I/O
automata with urgency is closed under composition. The
use of urgency predicates is compared with three alterna-
tive approaches to specifying progress properties that have
been advocated in the literature: invariants, stopping con-
ditions and deadline predicates. We argue that in practice
the use of urgency predicates leads to shorter and more nat-
ural specifications than any of the other approaches. Some
preliminary results on proving invariant properties of timed
(I/O) automata with urgency are presented.

1. Introduction

In the literature on real-time systems there appears to be
broad consensus on how to express quantitative timing con-
straints in state based modeling formalisms. Following the
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approach advocated by Alur and Dill [1], the idea is to des-
ignate certain state variables as clock variables. The val-
ues of these clock variables change as time advances. Also,
clocks may be reset when discrete events occur. Timing
constraints can be expressed, then, by conditions on clock
values.

One issue on which there is no general consensus yet is
how to specify progress properties, that is, properties which
assert that a system must perform a certain action before
a certain point in time. Merritt et al. in [22] propose a
model with upper and lower bounds associated with tasks
(that is, sets of system actions). In the work of Alur and
Dill [1], progress is enforced via a B̈uchi style acceptance
criterion: by requiring that some (sets of) locations are vis-
ited infinitely often the possibility is ruled out that a sys-
tem stays in certain locations forever. A popular approach,
which is advocated in [14, 2] and implemented in the tool
UPPAAL [18], is to use (state) invariants. An invariant typ-
ically enforces a system action by limiting the amount by
which time may advance in a given state. A related ap-
proach that is pursued in [16] is to use stopping conditions.
Here the idea is that when a system reaches a state in which
a stopping condition holds, time may not progress any fur-
ther and a system action has to occur immediately. Sifakis
and his colleagues [4, 24] advocate the use of deadlines for
the specification of progress properties. Each transition of
an Alur-Dill style timed automaton is decorated with an ad-
ditional deadline predicate, which specifies when the tran-
sition becomes urgent. An advantage of deadline approach
(which can be viewed as a generalization of the approach of
[22]) is that under some reasonable assumptions, it ensures
what is called time reactivity in [4] and timelock freedom in
[5], that is, whenever time progress stops there exists at least
one enabled transition. Under certain conditions, time reac-
tivity is even preserved by parallel composition of automata
[5, 4, 3]. The notion of deadlines has been incorporated in
several modeling frameworks, see for instance [5, 13], and
it has been implemented as part of the IF toolset [6] and
MoDeST [8].

The work of Sifakis et al [24, 4] takes place in a setting



of Alur-Dill style timed automata, a system model that has
limited expressivity in order to enable automatic state space
exploration and model checking. In this article, we study
the specification of progress properties in the much more
general model of timed I/O automata (TIOA) of Lynch et
al [16]. Even though fragments of the TIOA framework
can be translated into timed automata [23], analysis of gen-
eral TIOA models requires the use of deductive verification
techniques and theorem provers such as PVS [15]. Inspired
by the work of Sifakis et al, we introduce a similar notion of
urgencypredicates within the TIOA framework, both at the
semantic level where we have infinite sets of states, transi-
tions and trajectories, and at the syntactic level where sys-
tem behavior is described finitely in terms of a logical lan-
guage.

In the I/O automaton framework, transitions are typically
specified using precondition/effect notation, that is, some
type of guarded commands. This means that, for a given
action nameb with parameters~h a precondition predicate
pre(~v,~h) is given that defines from which states~v action
b(~h) is enabled, and an effect predicateeff (~v,~h,~v′) that
defines to which states~v′ one may jump after doing ac-
tion b(~h) in state~v. For the specification of timed systems
we add a third predicate, theurgencypredicateurg(~v,~h),
to every transition definition. The meaning of the urgency
predicate is that if, for some~h, the state predicate

pre(~v,~h) ∧ urg(~v,~h) (1)

becomes true at a time pointt in a trajectory, thent must
be the limit time of that trajectory. Intuitively, the precondi-
tion specifies when a transitionmayoccur, and the urgency
predicate specifies when the transition becomes urgent, that
is, either this or some other enabled discrete transitionmust
occur immediately. A small but significant difference be-
tween our approach and the one of Sifakis et al [24, 4] is
that Sifakis et al require that a deadline predicateimpliesthe
precondition predicate, whereas we achieve a similar effect
by conjoiningthe urgency predicate with the precondition.

The main contributions of this article are:

1. Extension of the work of [24, 4, 3] on deadline pred-
icates to a much more expressive setting, which may
serve as a basis for deductive verification techniques.
More specifically, we extend the TIOA framework of
[16] with urgency predicates at the semantic level, and
define a suitable language to describe the resulting
timed I/O automata with urgency. For this language,
time reactivity holds by construction. We also estab-
lish that the class of TIOAs with urgency is closed un-
der composition. In general, under the usual seman-
tics, timed automata with urgency and timed automata
with deadlines are not closed under composition, this
problem has been studied in [7], where an alternative
semantics is given that preserves compositionality.

2. A comparison of urgency predicates with three alter-
native ways to specifying progress properties: invari-
ants [14, 2], stopping conditions [16] and deadlines
[24, 4, 3]. Deadlines, stopping conditions and urgency
predicates are shown to be (essentially) equally expres-
sive. Invariants are slightly more expressive since they
allow to bound the time at which an action occurs by a
right open interval. Only use of urgency and deadline
predicates gives time reactivity by construction. We ar-
gue that in practice the use of urgency predicates leads
to shorter and more natural specifications than any of
the other methods.

3. Some preliminary results on proving invariant proper-
ties of timed (I/O) automata with urgency. A similar
approach for discrete time can also be found in [11].

The full version of the present paper appears as [10]. The
proofs which have been omitted here, due to space limita-
tion, are available in this technical report.

2. Timed (I/O) Automata with Urgency

In this section, we describe our extension of the timed
I/O automata framework of Lynch et al [16, 17] with ur-
gency. In Subsections 2.1 and 2.2 we begin with recalling
some definitions from [16, 17]: we introduce a basic vocab-
ulary for describing timed behaviors and recall the notion
of a timed automaton. In Subsection 2.3, we add a notion
of urgent transitions to timed automata, both at the semantic
and at the syntactic level. The class of timed automata with
urgency is not closed under composition, in general. In or-
der to obtain compositionality, we add, in Subsection 2.4,
an input/output distinction. Subsection 2.5, finally, defines
a parallel composition operator and establishes that both the
class of timed automata and the class of timed I/O automata
with urgency are closed under composition.

2.1. Describing Timed System Behavior

In this section, we list the basic notions that are used in
describing the behavior of a timed system, including both
discrete and continuous changes. We simply sketch this ma-
terial, leaving the reader to consult [16, 17] for the details.

The time domains we use is the setR of real numbers (in
[16, 17] also other time domains are considered). States of
automata will consist of valuations ofvariables. Each vari-
able has both astatic type, which defines the set of values
it may assume, and adynamic type, which gives the set of
trajectories it may follow. We assume that dynamic types
are closed under some simple operations: shifting the time
domain, taking subintervals and pasting together intervals.
We call a variablediscreteif its dynamic type equals the
pasting-closure of a set of constant-valued functions (i.e.,



the step-functions), andanalog if its dynamic type equals
the pasting-closure of a set of continuous functions (i.e., the
piecewise-continuous functions).

A valuationfor a setV of variables is a function that as-
sociates with each variablev ∈ V a value in its static type.
We writeval(V ) for the set of all valuations forV . A tra-
jectory for a setV of variables describes the evolution of
the variables inV over time; formally, it is a function from
a time interval that starts with0 to valuations ofV , that is,
a trajectory defines a value for each variable at each time in
the interval. We writedom(τ) for the domain of trajectory
τ . A point trajectory is one with the trivial domain{0}.
We write℘(x) for the point trajectory for valuationx. The
limit time of a trajectoryτ , τ.ltime, is the supremum of the
times in its domain.τ.fval is defined to be the first valua-
tion of τ , and ifτ is right-closed,τ.lval is the last valuation.
Supposeτ andτ ′ are trajectories forV , with τ closed. The
concatenationof τ andτ ′, denoted byτ _ τ ′, is the trajec-
tory obtained by taking the union of the first trajectory and
the function obtained by shifting the domain of the second
trajectory until the start time agrees with the limit time of
the first trajectory; the last valuation of the first trajectory,
which may not be the same as the first valuation of the sec-
ond trajectory, is the one that appears in the concatenation.
Trajectoryτ is a prefix of trajectoryτ ′, denotedτ ≤ τ ′, if
τ can be obtained by restrictingτ ′ to a subset of its domain.
For everyt ∈ dom(τ), we defineτ � t to be the trajectory
obtained by taking the part ofτ from t onwards, and then
shifting the domain so that it starts with0 again. Formally,
dom(τ � t) = {u ∈ R | u + t ∈ dom(τ)} and for allu in
the domain,τ � t(u) = τ(u + t).

2.2. Timed Automata

A timed automaton in the sense of [16, 17] is a state ma-
chine whose states are divided intovariablesand that has a
set of discreteactions. The state of a timed automaton may
change in two ways: bydiscrete transitions, which change
the state atomically, and bytrajectories, which describe the
evolution of the state over intervals of time. Discrete tran-
sitions are labeled with actions, which are classified as ei-
ther externalor internal. The external actions are used to
synchronize with the automaton’s environment, while the
internal actions are only visible to the automaton itself.

Formally, a timed automaton is a tuple A =
(X, Q, Θ, E, H,D, T ) with

• A setX of internal variables.

• A setQ ⊆ val(X) of states.

• A nonempty setΘ ⊆ Q of start states.

• A set E of external actionsand a setH of internal
actions, disjoint from each other. We writeA

∆= E∪H.

• A setD ⊆ Q×A×Q of discrete transitions. An edge
e = (x, a,x′) ∈ D, also written asx a→ x′, represent a
transition from statex to x′ labeled with actiona. We
say thata is enabledin x if x a→ x′ for somex′.

• A setT of trajectories forX such thatτ(t) ∈ Q for
eachτ ∈ T and t ∈ dom(τ). We require that the
following axioms hold:

T0 (Existence of point trajectories)If x ∈ Q then
℘(x) ∈ T .

T1 (Prefix closure)For everyτ ∈ T and everyτ ′ ≤
τ, τ ′ ∈ T .

T2 (Suffix closure)For everyτ ∈ T and everyt ∈
dom(τ), τ � t ∈ T .

T3 (Concatenation closure)Let τ0τ1τ2 . . . be a se-
quence of trajectories inT such that, for each
non final index,i, τi is closed andτi.lval =
τi+1.fval . Thenτ0

_ τ1
_ τ2 . . . ∈ T .

A trajectoryτ is maximalin T if there exists noτ ′ ∈ T
with τ < τ ′. The following lemma (which as far as we
know is new) states that each trajectory can be extended
into a maximal one. Intuitively this is an obvious property,
but the proof requires some work due to the fact that we
know so little aboutT .

Lemma 1 LetA be a timed automaton and letT be its set
of trajectories. Then each trajectory inT is a prefix of a
trajectory that is maximal inT .

2.3. Adding Urgency

We now extend timed automata with extra state predi-
cates,urgency predicates, one for each action.

A timed automaton with urgencyis a pair(A, U) of a
timed automatonA = (X, Q, Θ, E, H,D, T ) and anur-
gency predicateU : Q × A → Bool. If U(x, a) = true
then we say that actiona is potentially urgentin a statex.
Action a is urgentin statex if it is potentially urgent and in
addition enabled. We require that the following two axioms
hold:

T4 (Urgency)For everyτ ∈ T , t ∈ dom(τ) anda ∈ A:
if a is urgent inτ(t) thent = τ.ltime.

T5 (Maximality) For everyτ ∈ T , if τ is maximal and
finite thenτ is right-closed and somea ∈ A is urgent
in τ.lval .

Axiom T4 states that as soon as an action becomes urgent,
this action or some other action that is enabled has to oc-
cur immediately1. Axiom T5 states that each maximal and
finite trajectory enables an urgent action at the end.

1The reader may wonder why we do not impose a stronger axiom stat-
ing that if an action becomes urgent this action or some otherurgentaction
has to occur immediately. Such an approach, which involves the use of



Timed automata with urgency can be conveniently spec-
ified in a slight variation of the TIOA language [15].

Example 1 To illustrate this language, we consider the
simple model of a train displayed in Figure 1. The automa-
ton runs cyclically through statesstart , light andgate. Af-
ter spending between(2, 5] time units instart the automa-
ton jumps tolight , then within(5, 10] time units after ar-
rival in light the automaton jumps togate, and after exactly
2 time units ingate the automaton returns to the initial state
start .

type controlType = enumeration of start , light , gate
automatonTrain

states control : controlType initially start
clock x initially 0

signature externalcoming , approaching , passing
transitions external coming

pre x > 2 ∧ control = start
urgent when x ≥ 5
eff control := light ;x := 0

external approaching
pre x > 5 ∧ control = light
urgent when x ≥ 10
eff control := gate;x := 0

external passing
pre x = 2 ∧ control = gate
urgent when true
eff control := start ;x := 0

Figure 1. A simple model of a train.

The definitions of the signature, state variables, initial
states, and transition in our language are similar to their
counterparts in the IOA language. We refer to the IOA user
guide and reference manual [9] for additional information
on this part of the language.2 In this article, we consider
only two types of state variables, which differ in their dy-
namic types:discretevariables (such ascontrol ), whose
value remains unchanged along a trajectory, andclocks
(such asx), which are real-valued variables whose value
increases with rate1 along a trajectory.3 The set of states
consists of all valuations of the state variables~v. At the syn-
tactic level, we have a finite number of action namesb and

priorities, has been studied in [12]. It is well-known that priorities are in-
compatible with a trace based semantics. We feel that, for all practical
purposes, axiomT4 allows us to specify the desired urgency properties,
while it is still fully compatible with the trace based semantics which has
been the preferred semantic model for (timed) I/O automata since the first
paper from 1987 [20].

2Since the emphasis in this article is on urgency we decided not to
present all datatype definitions. At this point, our specifications are (delib-
erately) a bit sloppy.

3Our results easily generalize to more general dynamic types and con-
tinuous behavior defined by arbitrary differential equations and inclusions,
such as studied e.g. in [16, 19].

each action name comes with a list~h of formal parameters.
At the semantic level, the set of actions consists of pairs
of an action nameb and a valuationh of the parameters~h.
The transition relation is defined via a finite number of tran-
sition definitions. Each transition definition consists of an
action nameb, a list~h of formal parameters, aprecondition
predicatepre(~v,~h) that defines from which states an action
b(~h) is enabled, anurgent when predicateurg(~v,~h) that
specifies when that action becomes urgent, and aneffect
predicateeff (~v,~h,~v′) specifying to which states~v′ one may
jump after doing actionb(~h) in state~v. If no parameters are
mentioned then the parameter list is assumed to be empty, if
no precondition is mentioned then it is implicitly assumed
to equaltrue, and if no urgency predicate is mentioned this
is assumed to equalfalse. We further assume that the effect
relation is total, in the sense that for each statex and pa-
rameter valuationh such thatpre(x,h) holds, there exists
at least one statex′ such thateff (x,h,x′) holds. If the ef-
fect predicate is defined using (deterministic) assignments,
such as in Figure 1, this property trivially holds. The set
of trajectories is defined implicitly. Forx a state andt a
non-negative real number, letx⊕ t be the state given by

x⊕ t(v) ∆=
{

x(v) if v is discrete
x(v) + t if v is a clock.

The statex 	 t is defined similarly: replace+ by− in the
definition of⊕. For x a state andI a time interval that
starts with0, a pretrajectory from x over I is a function
τ : I → Q such that for eacht ∈ I, τ(t) = x ⊕ t. The set
of trajectories is defined to be the set of all pretrajectoriesτ
satisfying that if some actiona is urgent in some stateτ(t),
for t in the domain ofτ , t = τ.ltime.

Example 2 Figure 2 gives another example of a specifica-
tion in our language. It is a model of a reliable FIFO chan-
nel that delivers its messages within a certain time bound,
represented by the automaton parameterb, which is a posi-
tive real number.

The other automaton parameterM represents the type of
messages communicated by the channel. The states of the
automaton are valuations of the state variablesqueue and
now. The discrete variablequeue holds a finite sequence of
pairs consisting of a message that has been sent and its de-
livery deadline. The clock variablenow records the current
real time. Asend(m) action, which is always enabled and
never becomes urgent, adds to the queue a new pair whose
first component ism and whose second component is the
deadlinenow + b. A receive(m) action can occur when
m is the first message in the queue and it results in the re-
moval of the first message from the queue. Thereceive(m)
action becomes urgent when the delivery deadlineu of the
first message equals the current timenow.



automaton Channel(b, M) where b∈R+

states queue ∈ (M × R)∗ initially empty

clock now initially 0
signature externalsend(m), receive(m) where m ∈ M
transitions external send(m)

eff add(m,now + b) to the end ofqueue
external receive(m)

pre ∃u : (m,u) is first element ofqueue
urgent when∃u:(m,u)∈queue andnow≥u
eff remove first element ofqueue

Figure 2. Time-bounded channel.

By construction the set of trajectories denoted by a speci-
fication in our language satisfies axiomsT0-T4. However,
the example below shows that axiomT5 does not need to
hold in general.

Example 3 The timed automaton specified in Figure 3 has
a transition with preconditionx > 4∧b = false and urgency
predicatetrue. AxiomT5 does not hold, since time can only
advance up tox = 4 but at that time the transition is not
(yet) enabled.

automatonA
states b : Bool initially false

clock x initially 0
signature externala
transitions external a

pre x > 4 ∧ b = false
urgent when true
eff b := true

Figure 3. A counterexample to axiom T5.

In order to avoid the counterexample of Figure 3, it is
sufficient that certain predicates derived from the transition
definitions are left-closed in the sense of [3]. For each tran-
sition definitiontr

b(~h) pre pre(~v,~h)
urgent whenurg(~v,~h)
eff eff (~v,~h,~v′)

let predicateUrg(tr) be given by

Urg(tr)(~v,~h) ∆= ∃~h : pre(~v,~h) ∧ urg(~v,~h) (2)

Following [3], we define a state predicateϕ to beleft-closed
if, for all ~v,

¬ϕ(~v) =⇒ ∃ε > 0 ∀ε′ ≤ ε : ¬ϕ(~v ⊕ ε′) (3)

In practice, left-closedness can be easily obtained by only
using non-strict lower bounds on clocks. For instance,x ≥
4 ∧ b = false is left-closed butx > 4 ∧ b = false is not. We
can now formally state the following theorem.

Theorem 1 If the predicate
∨

tr Urg(tr) is left-closed then
axiomT5 holds.

Proof: Suppose thatτ is a maximal and finite trajectory.
Assume that the domain ofτ is right-open. Then, byT4,
nowhere onτ an action becomes urgent. But this means
that the extension ofτ with a single state at the end gives
a legal trajectory, thus contradicting the assumption thatτ
is maximal. Hence, without loss of generality, we may as-
sume that the domain ofτ is right-closed. Assume that no
actiona is urgent inτ.lval . This means that the disjunc-
tion

∨
tr Urg(tr) does not hold inx. But this means that

there exists a smallε-extension ofτ in which no actiona
is urgent. This extension is then a legal trajectory, which
contradicts with the (assumed) maximality ofτ .

2.4. Adding an I/O Distinction

In this section, we further refine the model of timed au-
tomata by distinguishing between input and output actions
as in [16].

A timed I/O automaton with urgencyis a quadruple
(A, U, I,O) where(A, U) is a timed automaton with ur-
gency, withA = (X, Q, Θ, E, H,D, T ). I andO partition
E into input and output actions, that isE = I ∪ O and
I ∩O = ∅. Actions inH ∪O are called locally controlled.
We writeL

∆= H ∪O andA
∆= E ∪H. We require that the

following axiom holds:

E0 (Inputs not urgent)For everyx ∈ Q and everya ∈ I,
U(x, a) = false.

E1 (Input action enabling)For everyx ∈ Q and every
a ∈ I, there existsx′ ∈ Q such that(x, a,x′) ∈ D.

The input actions are assumed not to be under the automa-
ton’s control—they just arrive from the outside—while the
automaton itself specifies what output and internal actions
should be performed. In line with these intuitions, axiom
E0 states that input actions never become urgent. Axiom
E1 is the usual input enabling condition of ordinary I/O au-
tomata [20]; it says that a TIOA with urgency is able to
accomodate an input action whenever it arrives. At the syn-
tactic level, a sufficient condition for axiomsE0 andE1 to
hold is that, in each transition definition for an input action,
the precondition istrue and the urgency predicate isfalse.

A desirable property for models of real-time systems is
time reactivity. This means that in each state, either time
is allowed to advance forever, or time may advance for a
while up to a point where the system is prepared to react
with some locally controlled action. In [16], an axiomE2 is
required for timed I/O automata which captures this prop-
erty:



E2 (Time-passage enabling)For everyx ∈ Q, there exists
τ ∈ T such thatτ.fval = x and either (1)τ.ltime =
∞, or (2)τ is right-closed and some locally controlled
actionl ∈ L is enabled inτ.lval .

For a TIOA with urgency, time reactivity is implied by the
other axioms.

Theorem 2 Each timed I/O automaton with urgency satis-
fies axiomE2.

2.5. Composition

We say that timed automataA1 andA2 arecompatible
if they have no state variables in common, and if neither au-
tomaton has an internal action that is an action of the other
automaton. IfA1 andA2 are compatible then theircompo-
sitionA1||A2 is defined formally to be the timed automaton
A = (X, Q, Θ, E, H,D, T ) where

• X = X1 ∪X2.
• Q = {x ∈ val(X)|xdXi ∈ Qi, i ∈ {1, 2}}.
• Θ = {x ∈ Q|xdXi ∈ Θi, i ∈ {1, 2}}.
• E = E1 ∪ E2 andH = H1 ∪H2.
• For eachx,x′ ∈ Q and eacha ∈ A, x a→A x′ iff for

i ∈ {1, 2}, either (1)a ∈ Ai andxdXi
a→i x′dXi, or

(2) a /∈ Ai andxdXi = x′dXi.
• τ ∈ T ⇔ τ ↓ Xi ∈ Ti, i ∈ {1, 2}.

We refer to [17] for a proof thatA1||A2 is a timed automa-
ton, that is, the above structure satisfies axiomsT0-T3.

Two timed automata with urgency,(A1, U1) and
(A2, U2), arecompatibleif the underlying timed automata
A1 andA2 are compatible. In this case, thecompositionis
defined to be the structure(A, U), whereA = A1||A2 and
U is given by

U((x1,x2), a) = U1(x1, a) ∨ U2(x2, a),

where by conventionUi(xi, a) = false if a is not in the
signature ofAi. So an action is urgent in a state of the com-
posed system iff it is urgent in one of the component states.
In general, the composition is not a timed automaton with
urgency. The problem is due to axiomT5: if, for instance,
we compose a system in which actiona becomes urgent at
time 1 with a system that hasa in its signature but without
anya-transition, then the composed system has a maximal
trajectory of length1 in which no transition is enabled. Sev-
eral papers address the issue of how timelock freedom (or
more generally, liveness) can be preserved by composition,
see for instance [5, 4, 3]. In this article, we present one sim-
ple but useful result along these lines: the class of timed I/O
automata with urgencyis closed under composition.

We say that two timed I/O automata with urgency,
(A1, U1, I1, O1) and (A2, U2, I2, O2), are compatible if

the underlying timed automataA1 andA2 are compati-
ble, and also they have no output actions in common. A
consequence of these conditions is that each action is con-
trolled by at most one component. In this case, thecom-
position is defined to be the structure(A, U, I,O), where
(A, U) is the composition of(A1, U1) and(A2, U2), I =
(I1 ∪ I2) − (O1 ∪ O2), andO = O1 ∪ O2. That is, an ex-
ternal action of the composition is classified as an output if
it is an output of one of the component automata, otherwise
it is classified as an input.

Theorem 3 The composition of two compatible timed I/O
automata with urgency is again a timed I/O automaton with
urgency.

3. Expressivity

In this section, we compare the expressivity of urgency
predicates with that of the deadline predicates of [24, 4], the
stopping conditions of [16], and the invariants as used e.g.
in [14, 2, 18].

3.1. Deadline Predicates

Instead of using urgency predicates, we could follow the
approach of Sifakis et al [24, 4] even more closely by us-
ing deadline predicates. This would mean that, for a given
action nameb with parameters~h, besides the precondition
pre(~v,~h) and the effecteff (~v,~v′,~h), also adeadlinepredi-
catedl(~v,~h) is specified such thatdl(~v,~h) =⇒ pre(~v,~h)
holds. The semantics of a deadline predicate is that if, for
some~h, the state predicate

dl(~v,~h) (4)

becomes true at a time pointt in a trajectory, thent must be
the limit time of that trajectory.

Clearly, any definition of a timed automaton with ur-
gency predicates can be transformed into an equivalent
(in the sense that the defined automata are semantically
equal) definition with deadline predicates by replacing
each urgency predicateurg(~v,~h) by a deadline predicate
pre(~v,~h)∧urg(~v,~h). Conversely, any definition with dead-
line predicates can be transformed into an equivalent def-
inition with urgency predicates by replacing each dead-
line predicatedl(~v,~h) by an identical urgency predicate
dl(~v,~h). Studying the examples in Figure 1 and Figure 2,
and the examples in [17] indicates that the use of urgency
predicates leads to slightly shorter specifications than the
use of deadlines.

3.2. Stopping Conditions

Another alternative for urgency predicates are the stop-
ping conditions as used in [16]. A stopping condition is a



state predicatesc(~v) such that ifsc(~v) becomes true at a
time pointt in a trajectory, thent must be the limit time of
that trajectory.

We again checked the examples from Figure 1, Figure 2
and [17], and in each case urgency predicates lead to shorter
and (in our view) more natural specifications than stopping
conditions. Figure 4, for instance, shows how the transitions
and trajectories of the example of Figure 1 can be rewrit-
ten using a stopping condition. The disadvantages should
be clear: upper bounds are no longer specified next to the
corresponding lower bounds, and parts of the preconditions
have to be repeated in the stopping condition.

transitions external coming
pre x > 2 ∧ control = start
eff control := light ;x := 0

external approaching
pre x > 5 ∧ control = light
eff control := gate;x := 0

external passing
pre x = 2 ∧ control = gate
eff control := start ;x := 0

trajectories stops when
(control = start ∧ x ≥ 5)∨
(control = light ∧ x ≥ 10)∨
(control = gate ∧ x = 2)

Figure 4. The train model defined using a
stopping condition.

Any definition of a timed automaton with urgency pred-
icates can be transformed into an equivalent definition with
stopping conditions by replacing the urgency predicates by
a single stopping condition that is the disjunction of the for-
mulapre(~v,~h) ∧ urg(~v,~h), for all transition definitions.

Stopping conditions are more expressive than urgency
predicates since they allow one to define timed automata
that are not time reactive and in which “the universe” may
come to a halt. Figure 5 gives an example. Of course this

automatonDoomsday
states clockx initially 0
trajectories stops when x = 1

Figure 5. A time deadlock.

is a form of additional expressivity that we would rather
not have! For a timed automaton definition with a stopping
conditionsc(~v) it seems reasonable to require that the fol-
lowing variation of axiomT5 holds:

T5’ (Maximality)For everyτ ∈ T , if τ is maximal and fi-
nite thenτ is right-closed,sc(τ.lval) and some (locally
controlled)a ∈ A is enabled inτ.lval .

If this property holds, the specification can be transformed
into an equivalent specification with urgency predicates: in
case there is no I/O distinction we just add an urgency pred-
icate sc(~v) to each transition definition, if there is an I/O
distinction we add urgency predicatesc(~v) to each locally
controlled transition and urgency predicatefalse to each in-
put transition.

3.3. Invariants

A popular way to specify progress properties, which has
been advocated in [14, 2] and implemented in UPPAAL [18],
is the use of invariants. Aninvariant is a state predicate
inv(~v) that is required to hold for all states along all trajec-
tories. The transitions and trajectories of a timed automa-
ton with invariants looks exactly like the automaton with
stopping condition as shown in Figure 4. Again, like stop-
ping conditions, invariants allow one to define timed au-
tomata that are not time reactive, a clear disadvantage of
these specification styles. The example of Figure 5, for in-
stance, can easily be encoded using invariants (replace the
stopping condition by an invariantx ≤ 1).

Invariants also allow one to specify strict upper bounds
on the timing of events, as illustrated in Figure 6. The same

automatonBeforeOne
states discreteb : Bool initially false

clock x initially 0
signature externala
transitions external a

pre b = false
eff b := true

trajectories invariant x < 1 ∨ b = true

Figure 6. Specification of a strict upper bound
on timing with an invariant.

timed automaton can not be specified using urgency predi-
cates, for the simple reason that it has a maximal trajectory
that is right-open, which is in violation with axiomT5. If
we are willing to consider timed automata up to some suit-
able equivalence (for instance, the trace equivalence defined
in [16]) then it is possible to specify strict upper bounds
with urgency predicates, but this requires the use of auxil-
iary variables and unbounded nondeterminism. Figure 7 il-
lustrates the specification of a strict upper bound with an ur-
gency predicate. The idea is to choose nondeterministically
a value in the interval[0, 1) and then makea urgent when
time has reached this value. Apart from the fact that the
second specification is less intuitive, the use of unbounded
nondeterminism will constitute a serious obstacle for auto-
matic verification methods. In all practical applications of
timed automata that we are aware of, the use of only non



automatonBeforeOne ′
states b : Bool initially false

t : R initially 0 ≤ t < 1
clock x initially 0

signature externala
transitions external a

pre b = false
urgent when x = t
eff b := true

Figure 7. Specification of a strict upper bound
on timing with urgency.

strict upper bounds on timing is not a restriction. For appli-
cations where use of strict upper bounds is essential, use of
invariants is probably more appropriate than use of urgency
predicates.

Timed automata with urgency predicates can (in many
cases) be translated to equivalent timed automata with in-
variants. Robson [23] describes how a fragment of TIOA
with urgency predicates can be translated to the input lan-
guage of UPPAAL.4 Below we discuss a more general trans-
lation scheme. We say that a state predicateϕ(~v) is stable
(under time progress)if ϕ(~v) =⇒ ∀d > 0 : ϕ(~v ⊕ d).

Typically, a predicate will be stable if it only involves
lower bounds on clocks and no upper bounds. Thelower
hull of state predicateϕ(~v) is the set of valuations given by

LH (ϕ) ∆= {x | ϕ(x) ∧ ∃ε > 0 ∀0 < ε′ ≤ ε : ¬ϕ(x	 ε′)}

The upper hull of a state predicate can be defined similarly,
just replace	 by ⊕ in the above definition. Ifϕ only in-
volves (non-strict) lower bounds on clocks then the lower
hull can easily be expressed again as a predicate by replac-
ing the≥ signs with=.

Now consider a definition of a timed automaton with ur-
gency predicates such that all predicatesUrg(tr) are left-
closed and stable. An equivalent timed automaton with in-
variants can be obtained by replacing the urgency predicates
with the invariant

inv = ¬

(∨
tr

Urg(tr)

)
∨ LH

(∨
tr

Urg(tr)

)
,

provided that the state predicateinv holds initially and after
each discrete transition, i.e.,

pre(~v,~h) ∧ eff (~v,~h,~v′) =⇒ inv(~v′).

4The UPPAAL syntax for invariant predicates is rather restricted. For
each individual location the invariant is a conjunction of conditions of the
form x ≤ e or x < e wherex is a clock ande is an expression that
evaluates to an integer. This restriction forces Robson to split locations as
part of her translation.

The proof of the equivalence is straightforward and left to
the reader.

Any timed automaton definition with right-closed invari-
ants can be easily translated to a timed automaton with stop-
ping conditions: the stopping condition is defined to be (a
predicate denoting) the upper hull of the invariant. The
translation scheme of Section 3.2 can then be used (pro-
vided axiomT5’ holds) to translate the resulting timed au-
tomaton with stopping conditions to a timed automaton with
urgency.

4. Proving Invariant Properties

In this section, we discuss how to establish invariant
properties for specifications that involve urgency predicates.
It is important to distinguish invariant properties from the
invariant assertions that were discussed in the previous sec-
tion as a construct to specify progress. An invariant prop-
erty is a state predicate thatholdsfor all reachable states of a
given system. An invariant in the sense of previous section
is an assertion that is actually used todefine(the trajecto-
ries of) a system. Any invariant in the sense of the previous
section is actually an invariant property of the system that it
helps to define. The converse implication typically does not
hold.

An execution fragmentof a timed automatonA is a se-
quenceα = τ0 a1 τ1 a2 τ2 . . ., where eachai is an ac-
tion of A, eachτi is a trajectory ofA, and for everyi,
τi.lval

ai+1→ τi+1.fval . An execution fragment records what
happens during a particular run of a system, including all
the discrete state changes and all the changes that occur
while time advances. Anexecutionis an execution fragment
whose first state is a start state ofA. A state isreachablein
A if it is the last state of the last trajectory of a finite execu-
tion ofA. A state predicateϕ is aninvariantofA if it holds
for all reachable states ofA.

In order to prove that an assertionϕ is an invariant of
A, it suffices to prove that it holds initially and is preserved
by all discrete transitions as well as by alltime(d) steps
defined by

x
time(d)−−−−−−→ x′ ∆= ∃τ ∈ T : τ.fval = x ∧

τ.ltime = d ∧ τ.lval = x′.

If we manage to give a simple and tractable characterization
of the time(d) predicate, then all the invariant proof tech-
niques which are presented (for instance) in [21] become
available in our setting.

Let tr be a transition definition for an action nameb with
parameter~h with preconditionpre(~v,~h), urgency predicate
urg(~v,~h), and effect predicateeff (~v,~h,~v′). Ford ≥ 0, the
time progresspredicatetp(~v, tr , d) expresses that transition
tr permits time to advance with an amountd from state~v.



The predicate is formally defined in terms of theUrg(tr)
predicate of (2):

tp(~v, tr , d) ∆= ∀0 ≤ e < d : ¬Urg(tr)(~v ⊕ e,~h) (5)
∆= ∀0 ≤ e < d, ∀h :

pre(~v ⊕ e,~h) =⇒ ¬urg(~v ⊕ e,~h)

Using the time progress predicates, we characterize the time
advance stepstime(d) as follows:

time(d)
pre

∧
tr tp(~v, tr , d)

eff ~v := ~v ⊕ d

In many cases it is possible to simplify the time progress
predicates, by eliminating the universal quantifications from
their definition. As an example, consider the timed automa-
ton of Figure 1. The time progress predicate for thecoming
transition is

∀0 ≤ e < d : ¬(x + e > 2 ∧ control = start ∧ x + e ≥ 5)
⇐⇒ ∀0 ≤ e < d : ¬(control = start ∧ x + e ≥ 5)
⇐⇒ ¬(control = start ∧ x + d > 5)
⇐⇒ control = start =⇒ x + d ≤ 5

Similarly, the time progress predicates for theapproaching
andpassing transitions can be written resp. ascontrol =
light =⇒ x + d ≤ 10 andcontrol = gate =⇒ x +
d ≤ 2 respectively. With these characterizations it is trivial
to prove, for example, thatcontrol = start =⇒ x ≤ 5 is
inductive (and hence an invariant): it holds initially, and it
is preserved by all discrete transitions and alltime(d) steps.

The above quantifier elimination can be generalized un-
der some reasonable assumptions. Ifϕ(~v) is a state pred-
icate then we writepost(ϕ)(~v) for the state predicate that
holds for states that have a time predecessor satisfyingϕ:

post(ϕ)(~v) ∆= ∃~w ∃e > 0 : (~v = ~w ⊕ e) ∧ ϕ(~w) (6)

If ϕ only involves lower bounds on clocks, thenpost(ϕ)
can typically be obtained fromϕ by making these lower
bounds strict, so quantifier elimination frompost(ϕ) is
easy. Hence, if preconditions and urgency predicates only
involve lower bounds on clocks (which appears to be a good
specification style anyway), then their conjunction is stable
one may use the following lemma to eliminate the quantifi-
cation overe from the time progress predicate (5).

Lemma 2 Let ϕ be a state predicate that is stable under
time progress. Then

(∀0 ≤ e < d : ¬ϕ(~v ⊕ e)) ⇔ ¬post(ϕ)(~v ⊕ d) (7)

Proof: Equivalence (7) can be rewritten into
(∃0 ≤ e < d : ϕ(~v ⊕ e)) ⇔ post(ϕ)(~v ⊕ d) We prove
both implications:

⇒ Assumeϕ(~v ⊕ e), for certain e ∈ [0, d). Then
post(ϕ)(~v ⊕ d) holds since there is a state, namely
~v ⊕ e, that is a time predecessor of~v ⊕ d and in which
ϕ holds.

⇐ Assumepost(ϕ)(~v ⊕ d). Then by (6) there exists an
e′ > 0 and a state~w such thatϕ(~w) holds and~v⊕ d =
~w ⊕ e′. Depending on the relationship betweend and
e′ we have two cases:

Casee′ ≤ d: Then~v ⊕ (d − e′) = ~w. Choosee =
d− e′. Thend ∈ [0, d) andϕ(~v ⊕ e).

Cased < e′: Then~v = ~w ⊕ (e′ − d). Sinceϕ(~w)
holds andϕ is stable under time progress, also
ϕ(~v) holds. So we may choosee = 0 to obtain
ϕ(~v ⊕ e), as required.

5. Concluding Remarks

In this article, we introduced a notion of urgency predi-
cates and compared it with three other constructs for spec-
ifying progress properties that have been proposed in the
literature: invariants, stopping conditons and deadlines. We
showed that under some rather realistic assumptions (use
of clock variables, no strict upper bounds on progress, ab-
sence of time deadlocks,...) the four notions are equally ex-
pressive. Nevertheless, a clear advantage of deadlines and
urgency predicates in practice is that one gets absence of
time deadlocks (time reactivity) for free. A potential ad-
vantage of invariants is that they allow one to bound the
time at which a (locally controlled) action occurs by a right-
open interval. However, we are not aware of practical ap-
plications in which this feature is really needed. We argued
that if one uses a precondition/effect style specification lan-
guage, urgency predicates lead to shorter and more natural
specifications than any of the other constructs, in particular
invariant. In the graphical syntax used by e.g. UPPAAL, the
use of urgency/deadline predicates would not lead to shorter
specifications than the use of invariants. Typically, in first
case one will decorate an edge of the graph (i.e., a transi-
tion) with a labelx ≥ 4, and in the second case a label
x ≤ 4 will be attached to a vertex of the graph (i.e., a loca-
tion). But whereas the use of invariants may easily lead to
time deadlocks, urgency/deadline predicates only stop time
if there is a good reason for it, that is a specific transition
that must be taken, and in this manner time deadlocks are
avoided.

Folklore has it that urgency/deadline predicates are more
difficult to implement in model checkers than invariants be-
cause they easily lead to non-convex zones. Non-convex
zones indeed arise in the implementation of timed automata
with deadlines in the IF toolset [6]. In particular, time tran-
sitions may lead from one convex zone to several convex



zones (not only one, as in standard timed automata with in-
variants). When such a situation arises in IF, the non-convex
zone is automatically split in several, possibly overlapping,
convex zones. The main reason why non-convex zones do
not arise in standard timed automata with invariants (such
as those implemented in UPPAAL) is that rather strong re-
strictions are imposed on the syntax of invariants. Only con-
junctions of upper bounds on clocks—where the bounds are
given by integer expressions—are allowed. If similar re-
strictions would be imposed in a syntax for urgency predi-
cates, then no non-convex zones would arise in that setting
either! More specifically, one would have to require that
each urgency predicate is the disjunction of lower bounds
on clocks, where the (non-strict) bounds are given by inte-
ger expressions. In addition, the urgency predicate of an in-
put actiona? should always befalse. We think it would be a
clear improvement to the current version of UPPAAL (3.4.7)
to add such a restricted notion of urgency predicates to the
syntax, replacing the notion of an urgent channel. Adding
general urgency predicates to UPPAAL would of course also
be a possibility, but this would require splitting of zones as
in the IF toolset.

In the setting that we studied, urgency predicates ap-
pear to be a very nice way to specify progress properties,
with clear advantages over some other constructs that have
been advocated in the literature. Some remaining questions
for future research are: (1) Exploration of proof rules to
reason with urgency predicates in simulations and liveness
proofs. (2) Establish versions of the compositionality re-
sults of [5, 4, 3] in the setting of this paper. (3) Extension
of our specification language and expressiveness results to
a hybrid setting in which besides clocks also other continu-
ously evolving variables are allowed.
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