Specifying Urgency in Timed /O Automata*

Biniam Gebremichael Frits Vaandrager

Nijmegen Institute for Computing and Information Sciences
Radboud University Nijmegen, The Netherlands
{B.Gebremichael,F.Vaandrager}@cs.ru.nl

Abstract

Sifakis et al advocate the use of deadline predicates for the spec-
ification of progress properties of Alur-Dill style timed automata. In
this article, we extend these ideas to a more general setting, which may
serve as a basis for deductive verification techniques. More specifically,
we extend the TIOA framework of Lynch et al with urgency predicates.
We identify a suitable language to describe the resulting timed I/0 au-
tomata with urgency and show that for this language time reactivity
holds by construction. We also establish that the class of timed I/O au-
tomata with urgency is closed under composition. The use of urgency
predicates is compared with three alternative approaches to specifying
progress properties that have been advocated in the literature: invari-
ants, stopping conditions and deadlines predicates. We argue that in
practice the use of urgency predicates leads to shorter and more natu-
ral specifications than any of the other approaches. Some preliminary
results on proving invariant properties of timed (I/O) automata with
urgency are presented.

1 Introduction

In the literature on real-time systems there appears to be broad consensus
on how to express quantitative timing constraints in state based modeling
formalisms. Following the approach advocated by Alur and Dill [1], the
idea is to designate certain state variables as clock variables. The values of
these clock variables change as time advances. Also, clocks may be reset
when discrete events occur. Timing constraints can be expressed, then, by
conditions on clock values.

One issue on which there is no general consensus yet is how to specify
progress properties, that is, properties which assert that a system must
perform a certain action before a certain point in time. Merritt et al. in [17]

*This work was supported by the European Community Project IST-2001-35304 Ad-
vanced Methods for Timed Systems (AMETIST), http://ametist.cs.utwente.nl.

propose a model with upper and lower bounds associated with tasks (that is,
sets of system actions). In the work of Alur and Dill [1], progress is enforced
via a Biichi style acceptance criterion: by requiring that some (sets of)
locations are visited infinitely often the possibility is ruled out that a system
stays in certain locations forever. A popular approach, which is advocated in
[9, 2] and implemented in the tool UPPAAL [13], is to use (state) invariants.
An invariant typically enforces a system action by limiting the amount by
which time may advance in a given state. A related approach that is pursued
in [11] is to use stopping conditions. Here the idea is that when a system
reaches a state in which a stopping condition holds, time may not progress
any further and a system action has to occur immediately. Sifakis and his
colleagues [20, 4, 19] advocate the use of deadlines for the specification of
progress properties. Each transition of an Alur-Dill style timed automaton
is decorated with an additional deadline predicate, which specifies when the
transition becomes urgent. An advantage of deadline approach (which can
be viewed as a generalization of the approach of [17]) is that under some
reasonable assumptions, it ensures what is called time reactivity in [19] and
timelock freedom in [5], that is, whenever time progress stops there exists
at least one enabled transition. Under certain conditions, time reactivity is
even preserved by parallel composition of automata [5, 19, 3]. The notion
of deadlines has been incorporated in several modeling frameworks, see for
instance [5, 7, 21], and it has been implemented as part of the IF toolset [6].
The work of Sifakis et al [20, 4, 19] takes place in a setting of Alur-
Dill style timed automata, a system model that has limited expressivity in
order to enable automatic state space exploration and model checking. In
this article, we study the specification of progress properties in the much
more general model of timed I/O automata (TIOA) of Lynch et al [11].
Even though fragments of the TIOA framework can be translated into timed
automata [18], analysis of general TIOA models requires the use of deductive
verification techniques and theorem provers such as PVS [10]. Inspired by
the work of Sifakis et al, we introduce a similar notion of urgency predicates
within the TIOA framework, both at the semantic level where we have
infinite sets of states, transitions and trajectories, and at the syntactic level
where system behavior is described finitely in terms of a logical language.
In the I/O automaton framework, transitions are typically specified using
precondition/effect notation, that is, some type of guarded commands. This
means that, for a given action name b with parameters h a precondition
predicate pre(7, k) is given that defines from which states @ action b(h) is
enabled, and an effect predicate eff (¥, f_i, ©") that defines to which states ¢’
one may jump after doing action b(ﬁ) in state ¥. For the specification of
timed systems we add a third predicate, the urgency predicate urg(v, i_i), to
every transition definition. The meaning of the urgency predicate is that if,

for some E, the state predicate
pre(T, h) A urg(T, h) (1)

becomes true at a time point ¢ in a trajectory, then ¢t must be the limit time
of that trajectory. Intuitively, the precondition specifies when a transition
may occur, and the urgency predicate specifies when the transition becomes
urgent, that is, either this or some other enabled discrete transition must
occur immediately. A small but significant difference between our approach
and the one of Sifakis et al [20, 19] is that Sifakis et al require that a deadline
predicate implies the precondition predicate, whereas we achieve a similar
effect by conjoining the urgency predicate with the precondition.
The main contributions of this article are:

1. Extension of the work of [20, 19, 3] on deadline predicates to a much
more expressive setting, which may serve as a basis for deductive veri-
fication techniques. More specifically, we extend the TIOA framework
of [11] with urgency predicates at the semantic level, and define a
suitable language to describe the resulting timed I/0 automata with
urgency. For this language, time reactivity holds by construction. We
also establish that the class of TIOAs with urgency is closed under
composition.

2. A comparison of urgency predicates with three alternative ways to
specifying progress properties: invariants [9, 2], stopping conditions
[11] and deadlines [20, 19, 3]. Deadlines, stopping conditions and
urgency predicates are shown to be (essentially) equally expressive.
Invariants are slightly more expressive since they allow to bound the
time at which an action occurs by a right open interval. Only use of
urgency and deadline predicates gives time reactivity by construction.
We argue that in practice the use of urgency predicates leads to shorter
and more natural specifications than any of the other methods.

3. Some preliminary results on proving invariant properties of timed
(I/0) automata with urgency.

2 Timed (I/O) Automata with Urgency

In this section, we describe our extension of the timed I/O automata frame-
work of Lynch et al [11, 12] with urgency. In Subsections 2.1 and 2.2 we
begin with recalling some definitions from [11, 12]: we introduce a basic
vocabulary for describing timed behaviors and recall the notion of a timed
automaton. In Subsection 2.3, we add a notion of urgent transitions to
timed automata, both at the semantic and at the syntactic level. Next, in
Subsection 2.4, an input /output distinction is added. Subsection 2.5, finally,

defines a parallel composition operator and establishes that both the class
of timed automata and the class of timed I/O automata with urgency are
closed under composition. An example is presented that shows that timed
automata with urgency are not closed under composition, in general.

2.1 Describing Timed System Behavior

In this section, we list the basic notions that are used in describing the
behavior of a timed system, including both discrete and continuous changes.
We simply sketch this material, leaving the reader to consult [11, 12] for the
details.

The time domains we use is the set R of real numbers (in [11, 12] also
other time domains are considered). States of automata will consist of val-
uations of wvariables. Each variable has both a static type, which defines
the set of values it may assume, and a dynamic type, which gives the set of
trajectories it may follow. We assume that dynamic types are closed under
some simple operations: shifting the time domain, taking subintervals and
pasting together intervals. We call a variable discrete if its dynamic type
equals the pasting-closure of a set of constant-valued functions (i.e., the
step-functions), and analog if its dynamic type equals the pasting-closure of
a set of continuous functions (i.e., the piecewise-continuous functions).

A wvaluation for a set V of variables is a function that associates with each
variable v € V' a value in its static type. We write val(V') for the set of all
valuations for V. A trajectory for a set V of variables describes the evolution
of the variables in V' over time; formally, it is a function from a time interval
that starts with 0 to valuations of V', that is, a trajectory defines a value for
each variable at each time in the interval. We write dom(7) for the domain
of trajectory 7. A point trajectory is one with the trivial domain {0}. We
write p(x) for the point trajectory for valuation x. The limit time of a
trajectory 7, 7.ltime, is the supremum of the times in its domain. 7.fval is
defined to be the first valuation of 7, and if 7 is right-closed, 7.lval is the
last valuation. Suppose T and 7/ are trajectories for V', with 7 closed. The
concatenation of 7 and 7/, denoted by 7~ 7/, is the trajectory obtained by
taking the union of the first trajectory and the function obtained by shifting
the domain of the second trajectory until the start time agrees with the limit
time of the first trajectory; the last valuation of the first trajectory, which
may not be the same as the first valuation of the second trajectory, is the
one that appears in the concatenation. Trajectory 7 is a prefix of trajectory
7/, denoted 7 < 7/, if 7 can be obtained by restricting 7’ to a subset of its
domain. For every ¢ € dom(7), we define 7>t to be the trajectory obtained
by taking the part of 7 from ¢ onwards, and then shifting the domain so that
it starts with 0 again. Formally, dom(7>t) = {u € R|u+t € dom(7)} and
for all u in the domain, 7> t(u) = 7(u + ¢).

2.2 Timed Automata

A timed automaton in the sense of [11, 12] is a state machine whose states
are divided into wvariables and that has a set of discrete actions. The state
of a timed automaton may change in two ways: by discrete transitions,
which change the state atomically, and by trajectories, which describe the
evolution of the state over intervals of time. Discrete transitions are labeled
with actions, which are classified as either external or internal. The external
actions are used to synchronize with the automaton’s environment, while the
internal actions are only visible to the automaton itself.
Formally, a timed automaton is a tuple A = (X,Q,0, E, H,D,T) with

o A set X of internal variables.

A set Q C val(X) of states.
e A nonempty set © C @ of start state.

e A set E of external actions and a set H of internal actions, disjoint
from each other. We write A = E U H.

A set D C Q x AxQ of discrete transition. An edge e = (x,a,x) € D,
also written as x — x/, represent a transition from state x to x’ labeled
with action a. We say that @ is enabled in x if x = x’ for some x’.

A set T of trajectories for X such that 7(t) € @ for each 7 € 7 and
t € dom(7). We require that the following axioms hold:

TO (Ezistence of point trajectories)
If x € Q then p(x) € 7.

T1 (Prefiz closure)
For every 7 € 7 and every 7/ < 7,7 € T.

T2 (Suffix closure)
For every 7 € T and every t € dom(7), 7>t € T.

T3 (Concatenation closure)
Let 79T 72 ... be a sequence of trajectories in 7 such that, for
each non final index, i, 7; is closed and 7;.lval = 7;41.fval. Then
T T To... eT.

A trajectory 7 is maximal in 7T if there exists no 7/ € 7 with 7 < 7/. The
following lemma (which as far as we know is new) states that each trajectory
can be extended into a maximal one. Intuitively this is an obvious property,
but the proof requires some work due to the fact that we know so little
about 7.

Lemma 1 Let A be a timed automaton and let T be its set of trajectories.
Then each trajectory in T is a prefix of a trajectory that is mazximal in T .

Proof: Let 7 € 7 be a trajectory. Suppose that 7 can not be extended into
a maximal trajectory. We derive a contradiction. Let 79 = 7, tg = 79.ltime
and let ug be the supremum of the limit times of the trajectories in 7 that
extend 7. Suppose ty = ug. Since 7y is not maximal, this implies that it is
right-open, and can be extended with a single state. But then the extended
trajectory is maximal again, which is a contradiction. Hence ¢y < ug. Let
71 be a trajectory that extends 7y such that if ug = oo then t1 = 71.ltime =
to + 1 else t1 = 7y.ltime > tOJrT“O. Let u; be the supremum of the limit
times of the trajectories in 7 that extend 7. Then u; < ug. Continuing
the construction, we find an infinite chain of trajectories 1o < 7 < 19 < -+
and real numbers t¢;, u; such that

to <t1 <tg <---uz <u <u; < ug.

In addition, we know that (1) there exists a k such that for all j > k,
uj < oo (otherwise it would be possible to extend 7y into an infinite and
hence maximal trajectory), (2) ¢/ = lim; oo t; = lim; oo u;. Let 7/ be the
limit of the trajectories 7;. Then t' = 7’.ltime. We know that 7/ € T
by axiom T3 (concatenation closure). By assumption, since 7 < 7/, 7/ is
not maximal in 7. Hence there exists a trajectory 7 with 7/ < 7”7 and
t'" < 7”.ltime = t”. But this contradicts the fact that, for sufficiently large
k, the supremum of the limit times of the trajectories that extend 7 is
strictly less than ¢”. [

2.3 Adding Urgency

We now extend timed automata extra state predicates, urgency predicates,
one for each action.

A timed automaton with urgency is a pair (A,U) of a timed automaton
A= (X,Q,0,E,H,D,T) and an urgency predicate U : @ x A — Bool.
If U(x,a) = true then we say that action a is potentially urgent in a state
x. Action a is urgent in state x if it is potentially urgent and in addition
enabled. We require that the following two axioms hold:

T4 (Urgency)
For every 7 € 7, t € dom(7) and a € A: if a is urgent in 7(¢) then
t = 7.ltime.

T5 (Maximality)
For every 7 € 7, if 7 is maximal and finite then 7 is right-closed and
some a € A is urgent in 7.lval.

Axiom T4 states that as soon as an action becomes urgent, this action or
some other action that is enabled has to occur immediately. Axiom T5
states that each maximal and finite trajectory enables an urgent action at
the end.

Timed automata with urgency can be conveniently specified in a slight
variation of the TIOA language [10].

Example 1 To illustrate this language, we consider the simple model of a
train displayed in Figure 1. The automaton runs cyclically through states
start, light and gate. After spending between (2,5] time units in start the
automaton jumps to light, then within (5,10] time units after arrival in
light the automaton jumps to gate, and after exactly 2 time units in gate
the automaton returns to the initial state start.

type controlType = enumeration of start, light, gate

automaton Train
states control : controlType initially start

clock x initially 0
signature external coming, approaching, passing
transitions external coming
pre © > 2 A control = start
urgent when = > 5
eff control := light; x :=0
external approaching
pre x > 5 A control = light
urgent when z > 10
eff control := gate;z := 0
external passing
pre T = 2 A control = gate
urgent when true
eff control := start;x .= 0

Figure 1: A simple model of a train.

The definitions of the signature, state variables, initial states, and tran-
sition in our language are similar to their counterparts in the IOA language.
We refer to the IOA user guide and reference manual [8] for additional in-
formation on this part of the language.! In this article, we consider only
two types of state variables, which differ in their dynamic types: discrete
variables (such as control), whose value remains unchanged along a trajec-
tory, and clocks (such as x), which are real-valued variables whose value
increases with rate 1 along a trajectory.? The set of states consists of all
valuations of the state variables ¥. At the syntactic level, we have a finite

1Since the emphasis in this article is on urgency we decided not to present all datatype
definitions. At this point, our specifications are (deliberately) a bit sloppy.

2Qur results easily generalize to more general dynamic types and continuous behavior
defined by arbitrary differential equations and inclusions, such as studied e.g. in [11, 14].

number of action names b and each action name comes with a list & of for-
mal parameters. At the semantic level, the set of actions consists of pairs
of an action name b and a valuation h of the parameters h. The transition
relation is defined via a finite number of transition definitions. Each tran-
sition definition consists of an action name b, a list h of formal parameters,
a precondition predicate pre(v, ﬁ) that defines from which states an action
b(h) is enabled, an urgent when predicate urg(%,h) that specifies when
that action becomes urgent, and an effect predicate eff (7, E,U’) specifying
to which states ¥’ one may jump after doing action b(l_i) in state ¢. If no
parameters are mentioned then the parameter list is assumed to be empty,
if no precondition is mentioned then it is implicitly assumed to equal true,
and if no urgency predicate is mentioned this is assumed to equal false. We
further assume that the effect relation is total, in the sense that for each
state x and parameter valuation h such that pre(x,h) holds, there exists
at least one state x’ such that eff (x,h,x’) holds. If the effect predicate is
defined using (deterministic) assignments, such as in Figure 1, this property
trivially holds.

The set of trajectories is defined implicitly. For x a state and ¢ a non-
negative real number, let x & ¢ be the state given by

x®t(v) = { x(v) if v is discrete

x(v) +t if vis a clock.

The state x © t is defined similarly: replace + by — in the definition of ®.
For x a state and I a time interval that starts with 0, a pretrajectory from
x over [is a function 7 : I — @ such that for each t € I, 7(t) = x @ t. The
set of trajectories is defined to be the set of all pretrajectories 7 satisfying
that if some action a is urgent in some state 7(t), for ¢ in the domain of 7,
t = 7.ltime.

Example 2 Figure 2 gives another example of a specification in our lan-
guage. It is a model of a reliable FIFO channel that delivers its messages
within a certain time bound, represented by the automaton parameter b,
which is a positive real number. The other automaton parameter M repre-
sents the type of messages communicated by the channel. The states of the
automaton are valuations of the state variables queue and now. The dis-
crete variable queue holds a finite sequence of pairs consisting of a message
that has been sent and its delivery deadline. The clock variable now records
the current real time. A send(m) action, which is always enabled and never
becomes urgent, adds to the queue a new pair whose first component is m
and whose second component is the deadline now + b. A receive(m) action
can occur when m is the first message in the queue and it results in the re-
moval of the first message from the queue. The receive(m) action becomes
urgent when the delivery deadline u of the first message equals the current
time now.

automaton Channel(b, M) where b € R
states queue € (M x R)* initially empty
clock now initially 0
signature external send(m), receive(m) where m € M
transitions external send(m)
eff add (m,now + b) to the end of the queue
external receive(m, local u)
pre (m,u) is first element of queue
urgent when now > u
eff remove first element of queue

Figure 2: Time-bounded channel.

By construction the set of trajectories denoted by a specification in our
language satisfies axioms T0-T4. However, the example below shows that
axiom T5 does not need to hold in general.

Example 3 The timed automaton specified in Figure 3 has a transition with
precondition x > 4 A b = false and urgency predicate true. Aziom TS5 does
not hold, since time can only advance up to x = 4 but at that time the
transition is not (yet) enabled.

automaton A
states b : Bool initially false

clock x initially 0
signature external a
transitions external a
pre r > 4 A b = false
urgent when true
eff b := true

Figure 3: A counterexample to axiom T5.

In order to avoid the counterexample of Figure 3, it is sufficient that
certain predicates derived from the transition definitions are left-closed in
the sense of [3]. For each transition definition ¢r

b(h)
pre pre(7, i_i)
urgent when urg(7, f_i)
eff eff (7, h,7)
let predicate Urg(tr) be given by

A

Urg(tr)(7,h) = 3h: pre(@, h) A urg(7, h) (2)

Following [3], we define a state predicate ¢ to be left-closed if, for all ¥,
—p(7) = Je>0Ve <e:—p(TD€) (3)

In practice, left-closedness can be easily obtained by only using non-strict
lower bounds on clocks. For instance, x > 4 A b = false is left-closed but
x >4 A b= false is not. We can now formally state the following theorem.

Theorem 1 If the predicate \/,. Urg(tr) is left-closed then axiom T5 holds.

Proof: Suppose that 7 is a maximal and finite trajectory.

Assume that the domain of 7 is right-open. Then, by T4, nowhere on
7 an action becomes urgent. But this means that the extension of 7 with
a single state at the end gives a legal trajectory, thus contradicting the
assumption that 7 is maximal. Hence, without loss of generality, we may
assume that the domain of 7 is right-closed.

Assume that no action a is urgent in 7.lval. This means that the dis-
junction \/,, Urg(tr) does not hold in x. But this means that there exists
a small e-extension of 7 in which no action a is urgent. This extension is
then a legal trajectory, which contradicts again our assumption that 7 is
maximal. [

2.4 Adding an I/0O Distinction

In this section, we further refine the model of timed automata by distin-
guishing between input and output actions as in [11].
A timed I/0 automaton with urgency is a quadruple (A, U, I, O) where

e (A, U)is atimed automaton with urgency, with A = (X,Q,0,E, H,D,T).

e [and O partition E into input and output actions, that is £ =T U O
and I N O = (). Actions in H U O are called locally controlled. We
write L= HUO and A= EUH.

We require that the following axiom holds:

EO (Inputs not urgent)
For every x € Q and every a € I, U(x,a) = false.

E1 (Input action enabling)
For every x € Q and every a € I, there exists x’ € @ such that
(x,a,x') € D.

The input actions are assumed not to be under the automaton’s control—
they just arrive from the outside—while the automaton itself specifies what
output and internal actions should be performed. In line with these intu-
itions, axiom EO states that input actions never become urgent. Axiom E1

10

is the usual input enabling condition of ordinary I/O automata [15]; it says
that a TIOA with urgency is able to accomodate an input action whenever
it arrives. At the syntactic level, a sufficient condition for axioms EOQ and
E1 to hold is that, in each transition definition for an input action, the
precondition is true and the urgency predicate is false.

A desirable property for models of real-time systems is time reactivity.
This means that in each state, either time is allowed to advance forever, or
time may advance for a while up to a point where the system is prepared to
react with some locally controlled action. In [11], an axiom E2 is required
for timed I/O automata which captures this property:

E2 (Time-passage enabling)
For every x € @, there exists 7 € 7 such that 7.fval = x and
either

e T.ltime = oo, or

e 7 is right-closed and some locally controlled action [€ L is
enabled in 7.lval.

For a TIOA with urgency, time reactivity is implied by the other axioms.
Theorem 2 FEach timed I/O automaton with urgency satisfies axiom E2.

Proof: Assume that x is a state. Then, by axiom T1, p(x) is a trajectory
in 7. By Lemma 1 there exists a maximal trajectory 7 that extends p(x).
By construction, 7.fval = x. By axiom TS either

e 7.ltlime = oo which completes the proof, or

e 7 is right-closed and there is an action a that is urgent in x’ = 7.lval.
By axiom EO this cannot be an input action. Hence x’ enables a
locally controlled action, as required.

2.5 Composition

We say that timed automata A; and Ao are compatible if they have no state
variables in common, and if neither automaton has an internal action that
is an action of the other automaton. If A; and As are compatible then
their composition A;||Az is defined formally to be the timed automaton.
A=(X,Q,0,E,H,D,T) where

e X =X;UXo.

o Q= {xeval(X)x[X; € Qiie{1,2}}.

11

0 ={xeQx[X; €0;,ic{1,2}}.

E=F UEFEs; and H = H{ U H>.

For each x,x’ € Q and each a € A, x % 4 x' iff for i € {1,2}, either
(1) a € A; and x[X; 5, X'[X;, or (2) a ¢ A; and x[X; = X[X;.

ercT &7 | X, €T,ie{l,2}.

We refer to [12] for a proof that A;||.A2 is a timed automaton indeed, that
is, the above structure satisfies axioms T0-T3.

Two timed automata with urgency, (A1, U;) and (Ag, Us), are compatible
if the underlying timed automata A; and Ay are compatible. In this case,
the composition is defined to be the structure (A,U), where A = A;|| Ay
and U is given by

U((x1,%x2),a) = Ui(xy,a)V Us(xz,a),

where by convention U;(x;,a) = false if a is not in the signature of 4;. So an
action is urgent in a state of the composed system iff it is urgent in one of
the component states. In general, the composition is not a timed automaton
with urgency. The problem is due to axiom T5: if, for instance, we compose
a system in which action a becomes urgent at time 1 with a system that has
a in its signature but without any a-transition, then the composed system
has a maximal trajectory of length 1 in which no transition is enabled.
Several papers address the issue of how timelock freedom (or more generally,
liveness) can be preserved by composition, see for instance [5, 19, 3]. In this
article, we present one simple but useful result along these lines: the class
of timed I/O automata with urgency is closed under composition.

We say that two timed I/O automata with urgency, (A;, Uy, I1,01) and
(Ag,Us, Iy, 03), are compatible if the underlying timed automata A; and
As are compatible, and also they have no output actions in common. A
consequence of these conditions is that each action is controlled by at most
one component. In this case, the composition is defined to be the structure
(A,U,I,0), where (A,U) is the composition of (Ay,U;) and (Ag,Us), I =
(I1 Ul2) — (O3 UOy), and O = O; U Oy. That is, an external action of
the composition is classified as an output if it is an output of one of the
component automata, otherwise it is classified as an input.

Theorem 3 The composition of two compatible timed 1/0 automata with
urgency is again a timed I/0 automaton with urgency.

Proof: Straightforward from the definitions. Axiom T5 holds because if
T is a maximal and finite trajectory of the composition there exists at least
one component such that the projection of 7 on that component is maximal.
Using T5 for the component gives that the projection is right-closed and

12

that some action a of the component is urgent in the final state. By axiom
EO we know that a is a locally controlled action. We infer that 7 is right-
closed and (by axiom E1 for the other component) that a is urgent in the
composed system in the final state of . [

3 Expressivity

In this section, we compare the expressivity of urgency predicates with that
of the deadline predicates of [20, 19], the stopping conditions of [11], and
the invariants as used e.g. in [9, 2, 13].

3.1 Deadline Predicates

Instead of using urgency predicates, we could follow the approach of Sifakis
et al [20, 19] even more closely by using deadline predicates. This would
mean that, for a given action name b with parameters f_i, besides the precon-
dition pre(%, k) and the effect eff (7,7, 1), also a deadline predicate di(7, h)
is specified such that di(7,h) = pre(7, k) holds. The semantics of a
deadline predicate is that if, for some I_i, the state predicate

di(T, h) (4)

becomes true at a time point ¢ in a trajectory, then ¢t must be the limit time
of that trajectory.

Clearly, any definition of a timed automaton with urgency predicates can
be transformed into an equivalent (in the sense that the defined automata
are semantically equal) definition with deadline predicates by replacing each
urgency predicate urg(7, E) by a deadline predicate pre(v, i_i) A urg (7, ﬁ)
Conversely, any definition with deadline predicates can be transformed into
an equivalent definition with urgency predicates by replacing each deadline
predicate d(%, 1) by an identical urgency predicate di(7,h).

Study of the examples in Figure 1 and Figure 2, and the examples in
[12] indicates that the use of urgency predicates leads to slightly shorter
specifications than the use of deadlines.

3.2 Stopping Conditions

Another alternative for urgency predicates are the stopping conditions as
used in [11]. A stopping condition is a state predicate sc(¥/) such that if
sc(U) becomes true at a time point ¢ in a trajectory, then ¢ must be the limit
time of that trajectory.

We again checked the examples from Figure 1, Figure 2 and [12], and in
each case urgency predicates lead to shorter and (in our view) more natural
specifications than stopping conditions. Figure 4, for instance, shows how

13

the transitions and trajectories of the example of Figure 1 can be rewrit-
ten using a stopping condition. The disadvantages should be clear: upper
bounds are no longer specified next to the corresponding lower bounds, and
parts of the preconditions have to be repeated in the stopping condition.

transitions external coming
pre x > 2 A control = start
eff control := light;x := 0
external approaching
pre x > 5 A control = light
eff control := gate;x :=0
external passing
pre x = 2 A control = gate
eff control := start;x :=0
trajectories stops when
(control = start Nz > 5)V
(control = light AN x > 10)V
(control = gate N x = 2)

Figure 4: The train model defined using a stopping condition.

Any definition of a timed automaton with urgency predicates can be
transformed into an equivalent definition with stopping conditions by re-
placing the urgency predicates by a single stopping condition that is the
disjunction of the formula pre (7, h) A urg (7, h) for all transition definitions.

Stopping conditions are more expressive than urgency predicates since
they allow one to define timed automata that are not time reactive and in
which “the universe” may come to a halt. Figure 5 gives an example. Of

automaton Doomsday
states clock x initially 0
trajectories stops when
z=1

Figure 5: A time deadlock.

course this is a form of additional expressivity that we would rather not
have! For a timed automaton definition with a stopping condition sc(%) it
seems reasonable to require that the following variation of axiom T5 holds:
T5 (Mazimality)
For every 7 € 7, if 7 is maximal and finite then 7 is right-closed,
sc(1.lwal) and some (locally controlled) a € A is enabled in 7.lval.

If this property holds, the specification can be transformed into an equivalent
specification with urgency predicates: in case there is no I/O distinction we

14

just add an urgency predicate sc(¥) to each transition definition, if there is
an I/0 distinction we add urgency predicate sc(¥) to each locally controlled
transition and urgency predicate false to each input transition.

3.3 Invariants

A popular way to specify progress properties, which has been advocated
in [9, 2] and implemented in UPPAAL [13], is the use of invariants. An
invariant is a state predicate inv(¥) that is required to hold for all states
along all trajectories. Figure 6 shows how the transitions and trajectories of
the example of Figure 1 look with invariants. Like stopping conditions also

transitions external coming
pre x > 2 A control = start
eff control := light;x := 0
external approaching
pre x > 5 A control = light
eff control := gate;x :=0
external passing
pre x = 2 A control = gate
eff control := start;x :=0
trajectories invariant
(control = start Nz < 5)V
(control = light A x < 10)V
(control = gate Nz < 2)

Figure 6: The train model defined with an invariant.

invariants allow one to define timed automata that are not time reactive,
a clear disadvantage of these specification styles. The example of Figure 5,
for instance, can easily be encoded using invariants (replace the stopping
condition by an invariant z < 1).

Invariants also allow one to specify strict upper bounds on the timing
of events, as illustrated in Figure 7. The same timed automaton can not
be specified using urgency predicates, for the simple reason that it has a
maximal trajectory that is right-open, which is in violation with axiom T5.
If we are willing to consider timed automata up to some suitable equivalence
(for instance, the trace equivalence defined in [11]) then it is possible to
specify strict upper bounds with urgency predicates, but this requires the use
of auxiliary variables and unbounded nondeterminism. Figure 8 illustrates
the specification of a strict upper bound with an urgency predicate. The idea
is to choose nondeterministically a value in the interval [0, 1) and then make
a urgent when time has reached this value. Apart from the fact that the
second specification is less intuitive, the use of unbounded nondeterminism

15

automaton BeforeOne
states discrete b : Bool initially false
clock x initially 0
signature external a
transitions external a
pre b = false
eff b := true
trajectories invariant r < 1V b = true

Figure 7: Specification of a strict upper bound on timing with an invariant.

automaton BeforeOne’
states b : Bool initially false
t: R initially 0 <t < 1
clock x initially 0
signature external a
transitions external a
pre b = false
urgent when x =1¢
eff b := true

Figure 8: Specification of a strict upper bound on timing with urgency.

will constitute a serious obstacle for automatic verification methods. In all
practical applications of timed automata that we are aware of, the use of
only non strict upper bounds on timing is not a restriction. For applications
where use of strict upper bounds is essential, use of invariants is probably
more appropriate than use of urgency predicates.

Timed automata with urgency predicates can (in many cases) be trans-
lated to equivalent timed automata with invariants. Robson [18] describes
how a fragment of TIOA with urgency predicates can be translated to the
input language of UPPAAL.> Below we discuss a more general translation
scheme. We say that a state predicate ¢(v) is stable (under time progress)
if

—

p(V) = Vd>0:p(Udd) (5)

Typically, a predicate will be stable if it only involves lower bounds on clocks

—

and no upper bounds. The lower hull of state predicate ¢(¥) is the set of

3The UPPAAL syntax for invariant predicates is rather restricted. For each individual
location the invariant is a conjunction of conditions of the form z < e or z < e where z is
a clock and e is an expression that evaluates to an integer. This restriction forces Robson
to split locations as part of her translation.

16

valuations given by
LH(p) 2 {x|ex)ATe>0V0< e <e:—pxoe)} (6)

The upper hull of a state predicate can be defined similarly, just replace ©
by @ in the above definition. If ¢ only involves (non-strict) lower bounds
on clocks then the lower hull can easily be expressed again as a predicate by
replacing the > signs with =.

Now consider a definition of a timed automaton with urgency predicates
such that all predicates Urg(tr) are left-closed and stable. An equivalent
timed automaton with invariants can be obtained by replacing the urgency
predicates with the invariant

inv = -~ (\/ Urg(tr)) vV LH (\/ Urg(tr)) ,

tr

provided that the state predicate inv holds initially and after each discrete
transition, i.e.,
pre(U,h) A eff (U, h,T) = inv(7).

The proof of the equivalence is straightforward and left to the reader.

Any timed automaton definition with right-closed invariants can be eas-
ily translated to a timed automaton with stopping conditions: the stopping
condition is defined to be (a predicate denoting) the upper hull of the in-
variant. The translation scheme of Section 3.2 can then be used (provided
axiom T5’ holds) to translate the resulting timed automaton with stopping
conditions to a timed automaton with urgency.

4 Proving Invariant Properties

In this section, we discuss how to establish invariant properties for spec-
ifications that involve urgency predicates. It is important to distinguish
invariant properties from the invariant assertions that were discussed in the
previous section as a construct to specify progress. An invariant property is
a state predicate that holds for all reachable states of a given system. An
invariant in the sense of previous section is an assertion that is actually used
to define (the trajectories of) a system. Any invariant in the sense of the
previous section is actually an invariant property of the system that it helps
to define. The converse implication typically does not hold.

An ezecution fragment of a timed automaton A is a sequence o =
To @1 T1 a2 T2 ..., where each a; is an action of A, each 7; is a trajectory
of A, and for every i, 7;.lval A Ti+1-fval. An execution fragment records
what happens during a particular run of a system, including all the discrete
state changes and all the changes that occur while time advances. An ez-
ecution is an execution fragment whose first state is a start state of A. A

17

state is reachable in A if it is the last state of the last trajectory of a finite
execution of A. A state predicate ¢ is an invariant of A if it holds for all
reachable states of A.

In order to prove that an assertion ¢ is an invariant of A, it suffices to
prove that it holds initially and is preserved by all discrete transitions as
well as by all time(d) steps defined by

fme(d) o & 3T T.fval = x A T.ltime = d A 7.lval = x'.

If we manage to give a simple and tractable characterization of the time(d)
predicate, then all the invariant proof techniques which are presented (for
instance) in [16] become available in our setting.

Let tr be a transition definition for an action name b with parameter h
with precondition pre (v, E), urgency predicate urg(7, E), and effect predicate
eff (U, h, ¥"). For d > 0, the time progress predicate tp(¥, tr, d) expresses that
transition ¢r permits time to advance with an amount d from state ¢. The
predicate is formally defined in terms of the Urg(tr) predicate of (2):

tp(V, tr, d) VO<e<d:~Urg(tr)(Ta® e, h) (7)

which is equivalent to

A

tp(T, tr,d) VO<e<dVh:pre(T®eh) = —urg(Tde,h)

Using the time progress predicates, we characterize the time advance steps
time(d) as follows:

time(d)
pre A, tp(v,tr,d)
eff V:=0dd

In many cases it is possible to simplify the time progress predicates, by elim-
inating the universal quantifications from their definition. As an example,
consider the timed automaton of Figure 1. The time progress predicate for
the coming transition is

V0 <e<d:=(z+e>2A control = start Nz + e > 5)
which is equivalent to
V0 < e < d: —(control = start Nz + e > 5)
which is equivalent to
=(control = start Nz +d > 5)
which is equivalent to

control = start = z+d<5

18

Similarly, the time progress predicates for the approaching and passing tran-
sitions can be written resp. as

control = light — z+d <10

control = gate — x+d <2

With these characterizations it is trivial to prove, for example, that
control = start — = <5

is inductive (and hence an invariant): it holds initially, and it is preserved
by all discrete transitions and all time(d) steps.

The above quantifier elimination can be carried in general under some
reasonable assumptions. If p(?) is a state predicate then we write post(¢)(?)
for the state predicate that holds for states that have a time predecessor
satisfying :

post()(B) = 3 3e>0: (=10 e) A () (8)
If ¢ only involves lower bounds on clocks, then post(y) can typically be ob-
tained from ¢ by making these lower bounds strict, so quantifier elimination
from post(yp) is easy. Hence, if preconditions and urgency predicates only in-
volve lower bounds on clocks (which appears to be a good specification style

anyway), then their conjunction is stable one may use the following lemma
to eliminate the quantification over e from the time progress predicate (7).

Lemma 2 Let ¢ be a state predicate that is stable under time progress.
Then
(M0<e<d:—p(U@e)) < post(p)(VEd) 9)

Proof: Equivalence (9) can be rewritten into
(F0<e<d:p(Ude)) < post()(Udd) (10)
We prove both implications:

= Assume (U @ e), for certain e € [0,d). Then post(p)(U @ d) holds
since there is a state, namely U@ e, that is a time predecessor of ¥ @ d
and in which ¢ holds.

< Assume post(p)(U @ d). Then by (8) there exists an ¢/ > 0 and a
state w such that ¢(w) holds and 7@ d = @ @ €. Depending on the
relationship between d and ¢ we have two cases:

1. Case d < ¢/. Then v = wW & (¢’ — d). Since ¢(w) holds and ¢ is
stable under time progress, also ¢(¥) holds. So we may choose
e = 0 to obtain ¢(7 @ e).

2. Case ¢/ < d. Then & (d — ¢’) = w. Choose ¢ = d — ¢'. Then
d € [0,d) and ¢(U @ e), as required.

19

5 Concluding Remarks

In this article, we introduced a notion of urgency predicates and compared
it with three other constructs for specifying progress properties that have
been proposed in the literature: invariants, stopping conditons and dead-
lines. We showed that under some rather realistic assumptions (use of clock
variables, no strict upper bounds on progress, absence of time deadlocks,...)
the four notions are equally expressive. Nevertheless, a clear advantage of
deadlines and urgency predicates in practice is that one gets absence of time
deadlocks (time reactivity) for free. A potential advantage of invariants is
that they allow one to bound the time at which a (locally controlled) action
occurs by a right-open interval. However, we are not aware of practical ap-
plications in which this feature is really needed. We argued that if one uses
a precondition/effect style specification language, urgency predicates lead
to shorter and more natural specifications than any of the other constructs,
in particular invariant. In the graphical syntax used by e.g. UPPAAL, the
use of urgency/deadline predicates would not lead to shorter specifications
than the use of invariants. Typically, in first case one will decorate an edge
of the graph (i.e., a transition) with a label z > 4, and in the second case
a label z < 4 will be attached to a vertex of the graph (i.e., a location).
But whereas the use of invariants may easily lead to time deadlocks, ur-
gency/deadline predicates only stop time if there is a good reason for it,
that is a specific transition that must be taken, and in this manner time
deadlocks are avoided.

Folklore has it that urgency/deadline predicates are more difficult to
implement in model checkers than invariants because they easily lead to
non-convex zones. Non-convex zones indeed arise in the implementation of
timed automata with deadlines in the IF toolset [6]. In particular, time
transitions may lead from one convex zone to several convex zones (not only
one, as in standard timed automata with invariants). When such a situation
arises in IF, the non-convex zone is automatically split in several, possibly
overlapping, convex zones. The main reason why non-convex zones do not
arise in standard timed automata with invariants (such as those implemented
in UPPAAL) is that rather strong restrictions are imposed on the syntax
of invariants. Only conjunctions of upper bounds on clocks—where the
bounds are given by integer expressions—are allowed. If similar restrictions
would be imposed in a syntax for urgency predicates, then no non-convex
zones would arise in that setting either! More specifically, one would have
to require that each urgency predicate is the disjunction of lower bounds
on clocks, where the (non-strict) bounds are given by integer expressions.
In addition, the urgency predicate of an input action a? should always be
false. We think it would be a clear improvement to the current version of
UPPAAL (3.4.7) to add such a restricted notion of urgency predicates to the
syntax, replacing the notion of an urgent channel. Adding general urgency

20

predicates to UPPAAL would of course also be a possibility, but this would
require splitting of zones as in the IF toolset.

In the setting that we studied, urgency predicates appear to be a very
nice way to specify progress properties, with clear advantages over some
other constructs that have been advocated in the literature. Some remaining
questions for future research are:

1. Exploration of proof rules to reason with urgency predicates in simu-
lations and liveness proofs.

2. Establish versions of the compositionality results of [5, 19, 3] in the
setting of this paper.

3. Extension of our specification language and expressiveness results to a
hybrid setting in which besides clocks also other continuously evolving
variables are allowed.

Acknowledgements

Thanks to Nancy Lynch and Dilsun Kaynar for detailled comments on an
earlier version of this note, and to Marius Bozga for answering some of our
questions about IF.

References

[1] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Com-
puter Science, 126:183-235, 1994.

[2] R. Alur and T.A. Henzinger. Real-time system = discrete system +
clock variables. In T. Rus and C. Rattray, editors, Theories and Ez-
periences for Real-Time System Development — Papers presented at
First AMAST Workshop on Real-Time System Development, lowa City,
Towa, November 1993, pages 1-29. World Scientific, 1994.

[3] S. Bornot, G. GoBler, and J. Sifakis. On the construction of live timed
systems. In Susanne Graf and Michael 1. Schwartzbach, editors, 6th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, volume 1785 of Lecture Notes in Computer
Science, pages 172-202. Springer-Verlag, April 2000.

[4] S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed sys-
tems. In Willem P. de Roever, Hans Langmaack, and Amir Pnueli,
editors, COMPOS, volume 1536 of Lecture Notes in Computer Science,
pages 103-129. Springer, 1998.

21

[5]

[10]

[11]

Howard Bowman. Modelling timeouts without timelocks. In ARTS’99,
th International AMAST Workshop on Real-time and Probabilistic
Systems, LNCS, page 20. Springer-Verlag, May 1999.

M. Bozga, S. Graf, and L. Mounier. IF-2.0: A validation environment
for component-based real-time systems. In K.G. Larsen Ed Brinksma,
editor, Proceedings of CAV’02, volume 2404 of LNCS, pages 343-348,
Copenhagen, Denmark, July 2002. Springer.

Pedro R. D’Argenio. A compositional translation of stochastic au-
tomata into timed automata. Technical report, University of Twente,
2000. CTIT-00-08.

S.J. Garland, N.A. Lynch, J. Tauber, and M. Vaziri. 10A
user guide and reference manual, 2003. Available through URL
http://theory.lcs.mit.edu/tds/ioa.html.

T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model
checking for real-time systems. Information and Computation, 111:193—
244, 1994.

D.K. Kaynar, N.A. Lynch, and S. Mitra. Specifying and proving tim-
ing properties with TIOA tools. In 25th IEEFE International Real-Time
Systems Symposium, Work in Progress Session (RTSS 2004 WIP), De-
cember 5-8, 2004, Lisbon, Portugal, 2004.

D.K. Kaynar, N.A. Lynch, R. Segala, and F.W. Vaandrager. A frame-
work for modelling timed systems with restricted hybrid automata. In
Proceedings of the 24th International IEEE Real-Time Systems Sympo-
sium (RTSS03), December 3-5, 2003, Cancun, Mexico, pages 166—-178.
IEEE Computer Society Press, 2003. Full version available as [12].

D.K. Kaynar, N.A. Lynch, R. Segala, and F.W. Vaandrager. The the-
ory of timed I/O automata. Technical Report MIT-LCS-TR-917, MIT
Laboratory for Computer Science, Cambridge, MA, 2003.

K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Int.
Journal on Software Tools for Technology Transfer, 1(1-2):134-152, Oc-
tober 1997.

N.A. Lynch, R. Segala, and F.W. Vaandrager. Hybrid I/O automata.
Information and Computation, 185(1):105-157, 2003.

N.A. Lynch and M.R. Tuttle. An introduction to input/output au-
tomata. CWI Quarterly, 2(3):219-246, September 1989.

Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems:
Safety. Springer-Verlag, 1995.

22

[17]

[18]

[20]

[21]

M. Merritt, F. Modugno, and M. Tuttle. Time constrained automata.
In J.C.M. Baeten and J.F. Groote, editors, Proceedings CONCUR 91,
Amsterdam, volume 527 of Lecture Notes in Computer Science, pages
408-423. Springer-Verlag, 1991.

C.M. Robson. TIOA and UpPPAAL. Master’s thesis, Depart-
ment of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, May 2004.
http://theory.lcs.mit.edu/tds/papers/Robson/thesis.ps.

J. Sifakis. The compositional specification of timed systems - a tuto-
rial. In N. Halbwachs and D. Peled, editors, Proceedings of the 11th In-
ternational Conference on Computer Aided Verification, Trento, Italy,
volume 1633 of Lecture Notes in Computer Science, pages 2—7. Springer-
Verlag, July 1999.

J. Sifakis and S. Yovine. Compositional specification of timed systems
(extended abstract). In Claude Puech and Ridiger Reischuk, editors,
STACS, volume 1046 of Lecture Notes in Computer Science, pages 347—
359. Springer, 1996.

M.B. van der Zwaag and J. Hooman. A semantics of com-
municating reactive objects with timing. In Proceedings Work-
shop on Specification and Validation of UML models for Real-Time
Embedded Systems (SVERTS 2003), pages 59-67. Verimag, 2003.
http://wuw-omega.imag.fr/doc/d1000209_1/Semantics.pdf.

23

