
Adding Symmetry Reduction to Uppaal�

Martijn Hendriks1, Gerd Behrmann2, Kim Larsen2,
Peter Niebert3��, and Frits Vaandrager1

1 Nijmeegs Instituut voor Informatica en Informatiekunde
University of Nijmegen

The Netherlands
{martijnh,fvaan}@cs.kun.nl

2 Department of Computing Science
Aalborg University

Denmark
{behrmann,kgl}@cs.auc.dk

3 Laboratoire d’Informatique Fondementale, CMI
Université de Provence

France
peter.niebert@lif.univ-mrs.fr

Abstract. We describe a prototype extension of the real-time model
checking tool Uppaal with symmetry reduction. The symmetric data
type scalarset, which is also used in the Murϕ model checker, was added
to Uppaal’s system description language to support the easy static de-
tection of symmetries. Our prototype tool uses state swaps, described
and proven sound earlier by Hendriks, to reduce the space and memory
consumption of Uppaal. Moreover, the reduction strategy is canonical,
which means that the symmetries are optimally used. For all examples
that we experimented with (both academic toy examples and industrial
cases), we obtained a drastic reduction of both computation time and
memory usage, exponential in the size of the scalar sets used.

1 Introduction

Model checking is a semi-automated technique for the validation and verification
of all kinds of systems [8]. The approach requires the construction of a model of
the system and the definition of a specification for the system. A model check-
ing tool then computes whether the model satisfies its specification. Nowadays,
model checkers are available for many application areas, e.g., hardware systems
[10, 22], finite-state distributed systems [17], and timed and hybrid systems
[21, 27, 25, 16].

� Supported by the European Community Project IST-2001-35304 (AMETIST),
http://ametist.cs.utwente.nl.

�� Peter Niebert suggested the method for efficient computation of canonical represen-
tatives at an AMETIST project meeting, and was therefore invited to join the list
of authors after acceptance of the paper.

K.G. Larsen and P. Niebert (Eds.): FORMATS 2003, LNCS 2791, pp. 46–59, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Adding Symmetry Reduction to Uppaal 47

Despite the fact that model checkers are relatively easy to use compared to
manual verification techniques or theorem provers, they are not being applied on
a large scale. An important reason for this is that they must cope with the state
space explosion problem, which is the problem of the exponential growth of the
state space as models become larger. This growth often renders the mechanical
verification of realistic systems practically impossible: there just is not enough
time or memory available. As a consequence, much research has been directed
at finding techniques to fight the state space explosion. One such a technique is
the exploitation of behavioral symmetries [18, 23, 20, 19, 12, 7]. The exploitation
of full symmetries can be particularly profitable, since its gain can approach a
factorial magnitude.

There are many timed systems which clearly exhibit full symmetry, e.g., Fis-
cher’s mutual exclusion protocol [1], the CSMA/CD protocol [24, 27], industrial
audio/video protocols [13], and distributed algorithms, for instance [4].

Motivated by these examples, the work presented in [14] describes how Up-
paal, a model checker for networks of timed automata [21, 3, 2], can be enhanced
with symmetry reduction. The present paper puts this work to practice: a proto-
type of Uppaal with symmetry reduction has been implemented. The symmetric
data type scalarset, which was introduced in the Murϕ model checker [10], was
added to Uppaal’s system description language to support the easy static detec-
tion of symmetries. Furthermore, the state swaps described and proven sound
in [14] are optimally used to reduce the space and time consumption of the
model checking algorithm. Run-time data is reported for the examples men-
tioned above, showing that symmetry reduction in a timed setting can be very
effective.

Related work. Symmetry reduction is a well-known technique to reduce the
resource requirements for model checking algorithms, and it has been successfully
implemented in model checkers such as Murϕ [10, 19], SMV [22], and Spin
[17, 6]. As far as we know, the only model checker for timed systems that exploits
symmetry is Red [25, 26]. The symmetry reduction technique used in Red,
however, gives an over approximation of the reachable state space (this is called
the anomaly of image false reachability by the authors). Therefore, Red can only
be used to ensure that a state is not reachable when it is run with symmetry
reduction, whereas symmetry enhanced Uppaal can be used to ensure that a
state is reachable, or that it is not reachable.

Contribution. We have added symmetry reduction as used within Murϕ,
a well-established technique to combat the state space explosion problem, to
the real-time model checking tool Uppaal. For researchers familiar with model
checking it will come as no surprise that this combination can be made and
indeed leads to a significant gain in performance. Still, the effort required to
actually add symmetry reduction to Uppaal turned out to be substantial.

The soundness of the symmetry reduction technique that we developed for
Uppaal does not follow trivially from the work of Ip and Dill [19] since the de-
scription languages of Uppaal and Murϕ, from which symmetries are extracted

48 Martijn Hendriks et al.

(1) passed := ∅
(2) waiting := Q0

(3) while waiting �= ∅ do
(4) get q from waiting
(5) if q |= φ then return YES
(6) else if q /∈ passed then
(7) add q to passed
(8) waiting := waiting ∪ { q′ ∈ Q | (q, q′) ∈ ∆ }
(9) fi
(10) od
(11) return NO

Fig. 1. A general forward reachability analysis algorithm

automatically, are quite different. In fact, the proof that symmetry reduction for
Uppaal is sound takes up more than 20 pages in [14].

The main theoretical contribution of our work is an efficient algorithm for the
computation of a canonical representative. This is not trivial due to Uppaal’s
symbolic representation of sets of clock valuations.

Many timed systems exhibit symmetries that can be exploited by our meth-
ods. For all examples that we experimented with, we obtained a drastic reduction
of both computation time and memory usage, exponential in the size of the scalar
sets used.

Outline. Section 2 presents a very brief summary of model checking and
symmetry reduction in general, while Sections 3 and 4 introduce symmetry re-
duction for the Uppaal model checker in particular. In Section 5, we present
run-time data of Uppaal’s performance with and without symmetry reduction,
and Section 6 summarizes and draws conclusions.

A full version of the present paper including proofs of lemma 1 and of theorem
2 is available as [15].

2 Model Checking and Symmetry Reduction

This section briefly summarizes the theory of symmetry presented in [19], which
is reused in a timed setting since (i) it has proven to be quite successful, and (ii)
it is designed for reachability analysis, which is the main purpose of the Uppaal
model checker. We simplify (and in fact generalize) the presentation of [19] using
the concept of bisimulations.

In general, a transition system is a tuple (Q, Q0, ∆), where Q is a set of
states, Q0 ⊆ Q is a set of initial states, and ∆ ∈ Q × Q is a transition relation
between states. Figure 1 depicts a general forward reachability algorithm which,
under the assumption that Q is finite, computes whether there exists a reachable
state q that satisfies some given property φ (denoted by q |= φ).

Due to the state space explosion problem, the number of states of a transition
system frequently gets too big for the above algorithm to be practical. We would

Adding Symmetry Reduction to Uppaal 49

like to exploit structural properties of transition systems (in particular symme-
tries) to improve its performance. Here the well-known notion of bisimulation
comes in naturally:

Definition 1 (Bisimulation). A bisimulation on some transition system, say
(Q, Q0, ∆), is a relation R ⊆ Q × Q such that, for all (q, q′) ∈ R,

1. q ∈ Q0 if and only if q′ ∈ Q0,
2. if (q, r) ∈ ∆ then there exists an r′ such that (q′, r′) ∈ ∆ and (r, r′) ∈ R,
3. if (q′, r′) ∈ ∆ then there exists an r such that (q, r) ∈ ∆ and (r, r′) ∈ R.

Suppose that, before starting the reachability analysis of a transition system,
we know that a certain equivalence relation ≈ is a bisimulation and respects the
predicate φ in the sense that either all states in an equivalence class satisfy φ or
none of them does. Then, when doing reachability analysis, it suffices to store
and explore only a single element of each equivalence class. To implement the
state space exploration, a representative function θ may be used that converts a
state to a representative of the equivalence class of that state:

∀q∈Q (q ≈ θ(q)) (1)

Using θ, we may improve the algorithm in Figure 1 by replacing lines 2 and 8,
respectively, by:

(2) waiting := { θ(q) | q ∈ Q0 }

(8) waiting := waiting ∪ { θ(q′) | (q, q′) ∈ ∆ }
It can easily be shown that the adjusted algorithm remains correct: for all (finite)
transition systems the outcomes of the original and the adjusted algorithm are
equal. If the representative function is “good”, which means that many equiva-
lent states are projected onto the same representative, then the number of states
to explore, and consequently the size of the passed set, may decrease dramati-
cally. However, in order to apply the approach, the following two problems need
to be solved:

– A suitable bisimulation equivalence that respects φ needs to be statically
derived from the system description.

– An appropriate representative function θ needs to be constructed that sat-
isfies formula (1). Ideally, θ satisfies q ≈ q′ ⇒ θ(q) = θ(q′), in which case it
is called canonical.

In this paper, we use symmetries to solve these problems. As in [19], the
notion of automorphism is used to characterize symmetry within a transition
system. This is a bijection on the set of states that (viewed as a relation) is a
bisimulation. Phrased alternatively:

Definition 2 (Automorphism). An automorphism on a transition system
(Q, Q0, ∆) is a bijection h : Q → Q such that

50 Martijn Hendriks et al.

1. q ∈ Q0 if and only if h(q) ∈ Q0 for all q ∈ Q, and
2. (q, q′) ∈ ∆ if and only if (h(q), h(q′)) ∈ ∆ for all q, q′ ∈ Q.

Let H be a set of automorphisms, let id be the identity function on states,
and let G(H) be the closure of H∪{id} under inverse and composition. It can be
shown that G(H) is a group, and it induces a bisimulation equivalence relation
≈ on the set of states as follows:

q ≈ q′ ⇐⇒ ∃h∈G(H) (h(q) = q′) (2)

We introduce a symmetric data type to let the user explicitly point out the
symmetries in the model. Simple static checks can ensure that the symmetry that
is pointed out is not broken. Our approach to the second problem of coming up
with good representative functions consists of “sorting the state” w.r.t. some
ordering relation on states using the automorphisms. For instance, given a state
q and a set of automorphisms, find the smallest state q′ that can be obtained
by repeatedly applying automorphisms and their inverses to q. It is clear that
such a θ satisfies the correctness formula (1), since it is constructed from the
automorphisms only.

3 Adding Scalarsets to Uppaal

The tool Uppaal is a model checker for networks of timed automata extended
with discrete variables (bounded integers, arrays) and blocking, binary synchro-
nization as well as non-blocking broadcast communication (see for instance [21]).
In the remainder of this section we illustrate by an example Uppaal’s descrip-
tion language extended with a scalarset type constructor allowing symmetric
data types to be syntactically indicated. Our extension is based on the notion of
scalarset first introduced by Ip and Dill in the finite-state model checking tool
Murϕ [10, 19]. Also our extension is based on the C-like syntax to be introduced
in the forthcoming version 4.0 of Uppaal.

To illustrate our symmetry extension of Uppaal we consider Fischer’s mutual
exclusion protocol. This protocol consists of n process identical up to their unique
process identifiers. The purpose of the protocol is to insure mutual exclusion
on the critical sections of the processes. This is accomplished by letting each
process write its identifier (pid) in a global variable (id) before entering its
critical section. If after some given lower time bound (say 2) id still contains the
pid of the process, then it may enter its critical section.

A scalarset of size n may be considered as the subrange {0, 1, . . . , n − 1}
of the natural numbers. Thus, the n process identifiers in the protocol can be
modeled using a scalarset with size n. In addition to the global variable id,
we use the array active to keep track of all active locations of the processes1.
Global declarations are the following:
1 This array is actually redundant and not present in the standard formulations of the

protocol. However, it is useful for showing important aspects of our extension.

Adding Symmetry Reduction to Uppaal 51

process Fischer (const proc id pid)

wait

req
x<=2

idle

cs

set==0

active[pid]:=1,
x:=0

x:=0,
id:=pid,
set:=1,
active[pid]:=2

set==0
x:=0,
active[pid]:=1

x>2,id==pid
active[pid]:=3

set:=0.
active[pid]:=0

Fig. 2. The template for Fischer’s protocol

typedef scalarset[3] proc_id; // a scalarset type with size 3
proc_id id; // declaration of a proc_id

// variable
bool set; // declaration of a boolean
int active[proc_id]; // declaration of an array

// indexed by proc_id

The first line defines proc id to be a scalarset type of size 3, and the second line
declares id to be a variable over this type. Thus scalarset is in our extension
viewed as a type constructor. In the last line we show a declaration of an array
indexed by elements of the scalarset proc id.

At this point the only thing missing is the declaration of the actual processes
in the system. In the description language of Uppaal, processes are obtained as
instances of parameterized process templates. In general, templates may contain
several different parameters (e.g. bounded integers, clocks, and channels). In our
extension we allow in addition the use of scalarsets as parameters. In the case
of Fischer’s protocol the processes of the system are given as instances of the
template depicted in Figure 2. The template has one local clock, x, and no local
variables. Note that the header of the template defines a (constant) scalarset
parameter pid of type proc id. Access to the critical section cs is governed
by suitable updates and tests of the global scalarset variable id together with
upper and lower bound time constraints on when to proceed from requesting
access (req) respectively proceed from waiting for access (wait). Note that all
transitions update the array active to reflect the current active location of the
process. The instantiation of this template and declaration of all three process
in the system can be done as follows:

FischerProcs = forall i in proc_id : Fischer(i);
system FischerProcs;

52 Martijn Hendriks et al.

The forall construct iterates over all elements of a declared scalarset type. In
this case the iteration is over proc id and a set of instances of the template
Fischer is constructed and bound to FischerProcs. In the second line the final
system is defined to be precisely this set.

4 Using Scalarsets for Symmetry Reduction

As a preliminary to this section we briefly mention the state representation of
Uppaal. A state is a tuple (l, v, Z), where l is the location vector, v is the integer
variable valuation, and Z is a zone, which is a convex set of clock valuations that
can efficiently be represented by a difference bounded matrix (DBM) [5, 9].

4.1 Extraction of Automorphisms

This subsection is a very brief summary of [14], to which we refer for further
details. The new syntax described in the previous section enables us to derive
the following information from a system description:

– A set Ω of scalarset types.
– For each α ∈ Ω: (i) a set Vα of variables of type α, and (ii) a set Dα of pairs

(a, n) where a is an array and n is a dimension of a that must be indexed
by variables of type α to ensure soundness. We assume that arrays that are
indexed by scalarsets do not contain elements of scalarsets. The reason is
that this would make computation of a canonical representative as hard as
testing for graph isomorphism.

– A partial mapping γ : P ×Ω ↪→ N that gives for each process p and scalarset
α the element of α with which p is instantiated. This mapping is defined by
quantification over scalarsets in the process definition section.

This information enables us to derive so-called state swaps. Let Q be the set
of states of some Uppaal model, and let α be a scalarset type in the model with
size n. A state swap swapα

i,j : Q → Q can be defined for all 0 ≤ i < j < n, and
consists of two parts:

– The multiple process swap swaps the contributions to the state of all pairs of
processes p and p′ if they originate from the same template and γ(p, α) = i,
γ(p′, α) = j and γ(p, β) = γ(p′, β) for all β �= α ∈ Ω. Swapping such a pair
of symmetric processes consists of interchanging the active locations and the
values of the local variables and clocks (note that this is not a problem since
the processes originate from the same template).

– The data swap swaps array entries i and j of all dimensions that are indexed
by scalarset α (these are given by the set Dα). Moreover, it swaps the value
i with the value j for all variables in Vα.

Consider the instance of Fischer’s mutual exclusion protocol (as described
in the previous section) with three processes. There are three swap functions:

Adding Symmetry Reduction to Uppaal 53

swapproc id

0,1 , swapproc id

0,2 and swapproc id

1,2 . Now consider the following state of the model
(the active location of the i-th process is given by li and the local clock of this
process is given by xi):

l : l0 = idle, l1 = wait, l2 = cs
v : id = 2, set = 1
Z : x0 = 4, x1 = 3, x2 = 2.5
active ; active[0] = 0, active[1] = 2, active[2] = 3

When we apply swapproc id

0,2 to this state, the result is the following state:

l : l0 = cs, l1 = wait, l2 = idle
v : id = 0, set = 1
Z : x0 = 2.5, x1 = 3, x2 = 4
active ; active[0] = 3, active[1] = 2, active[2] = 0

The process swap swaps l0 with l2, and x0 with x2. The data swap first changes
the value of the variable id from 2 to 0, since id ∈ Vproc id, and then swaps the
values of active[0] and active[2]. Applying swapproc id

1,2 to this state gives the
following state:

l : l0 = cs, l1 = idle, l2 = wait
v : id = 0, set = 1
Z : x0 = 2.5, x1 = 4, x2 = 3
active ; active[0] = 3, active[1] = 0, active[2] = 2

Note that this swap does not change the value of id, since the scalarset elements
1 and 2 are interchanged and id contains scalarset element 0.

A number of syntactic checks have been identified that ensure that the sym-
metry suggested by the scalarsets is not broken. These checks are very similar to
those originally identified for the Murϕ verification system [19]. For instance,
it is not allowed to use variables of a scalarset type for arithmetical operations
such as addition. The next soundness theorem has been proven in [14]:

Theorem 1 (Soundness). Every state swap is an automorphism.

As a result, the representative function θ can be implemented by minimiza-
tion of the state using the state swaps. Note that every state swap resembles a
transposition of the state. Hence, the equivalence classes induced by the state
swaps originating from a scalarset with size n consist of at most n! states. The
maximal theoretical gain that can be achieved using this set of automorphisms
is therefore in the order of a factor n!.

4.2 Computation of Representatives

The representative of a state is defined as the minimal element of the symmetry
class of that state w.r.t. a total order ≺ on the symmetry class. In general,

54 Martijn Hendriks et al.

the DBM representation of zones renders an efficient canonical minimization
algorithm impossible, since minimization of a general DBM for any given total
order using state swaps is at least as difficult as testing for graph isomorphism for
strongly regular graphs [14]. If we assume, however, that the timed automaton
that is analyzed resets its clocks to zero only, then the zones (DBMs) that
are generated by the forward state space exploration satisfy the nice diagonal
property. This property informally means that the individual clocks can always
be ordered using the order in which they were reset. To formalize this, three
binary relations on the set of clocks parameterized by a zone Z are defined:

x �Z y ⇐⇒ ∀ν∈Z ν(x) ≤ ν(y) (3)
x ≈Z y ⇐⇒ ∀ν∈Z ν(x) = ν(y) (4)
x ≺Z y ⇐⇒ (x �Z y ∧ ¬(x ≈Z y)) (5)

The diagonal property is then defined as follows.

Lemma 1 (Diagonal Property). Consider the state space exploration algo-
rithm described in figure 6 of [21]. Assume that the clocks are reset to the value
0 only. For all states (l, v, Z) stored in the waiting and passed list and for all
clocks x and y holds that either x ≺Z y, or x ≈Z y or y ≺Z x.

Using the reset order on clocks and the diagonal property, we can define a
total order, say ≺, on all states within a symmetry class whose minimal element
can be computed efficiently. To this end we first assume a fixed indexing of the
set of clocks X : a bijection ρ : X → {1, 2, . . . , |X |}. Now note that ≈Z is an
equivalence relation that partitions X in P = {X1, X2, . . . , Xn}. We define a
relation on the cells of P as follows:

Xi ≤ Xj ⇐⇒ (∀x∈Xi,y∈Xj x �Z y
)

(6)

Clearly this is a total order on P . Let Xi be a cell of P . The code of Xi,
denoted by C∗(Xi), then is the lexicographically sorted sequence of the indices
of the clocks in Xi (the set {ρ(x) |x ∈ Xi}). The zone code of the zone which
induced P is then defined as follows.

Definition 3 (Zone Code). Let Z be a zone and let P = {X1, X2, . . . , Xn} be
the partitioning of the set of clocks X under ≈Z such that i ≤ j ⇒ Xi ≤ Xj (we
can assume this since ≤ is a total order on P). The zone code of Z, denoted by
C(Z), is the sequence (C∗(X1), C∗(X2), . . . , C∗(Xn)).

Note that every zone has exactly one zone code since the indices of equivalent
clocks are sorted. Moreover, zone codes can lexicographically be ordered, since
they are sequences of number sequences. This order is then used in the following
way to define a total order on the states in a symmetry class (the orders on
the location vectors and variable valuations are just the lexicographical order on
sequences of numbers):

Adding Symmetry Reduction to Uppaal 55

(1) for all α ∈ Ω do
(2) for i = 1 to |α| do
(3) for j = 1 to |α| − i do
(4) if swapα

j−1,j(q) ≺ q then
(5) q := swapα

j−1,j(q)
(6) od
(7) od
(8) od

Fig. 3. Minimization of state q using the bubble-sort algorithm. The size of scalarset
type α is denoted by |α|

(l, v, Z) ≺ (l′, v′, Z ′)
⇐⇒

(l < l′) ∨ (l = l′ ∧ v < v′) ∨ (l = l′ ∧ v = v′ ∧ C(Z) < C(Z ′))
(7)

We minimize the state w.r.t. the order of equation (7) using the state swaps
by applying the bubble-sort algorithm to it, see Figure 3. It is clear that this
representative computation satisfies the soundness equation (1), since states are
transformed using the state swaps only, which are automorphisms by Theorem
1. We note that swapα

j−1,j(q) is not computed explicitly for the comparison in
the fourth line of the algorithm; using the statically derived γ, Dα and Vα (see
section 4.1) we are able to tell whether swapping results in a smaller state.

The following theorem states the main technical contribution of our work.
Informally, it means that the detected symmetries are optimally used.

Theorem 2 (Canonical Representative). The algorithm in Figure 3 com-
putes a canonical representative.

Note that we assumed that arrays that are indexed by scalarsets do not con-
tain elements of scalarsets. Otherwise, computation of a canonical representative
is as hard as graph isomorphism, but this is entirely due to the discrete part of
the model, and not to the clock part.

5 Experimental Results

This section presents and discusses experimental data that was obtained by the
Uppaal prototype on a dual Athlon 2000+ machine with 3 GB of RAM. The
measurements were done using the tool memtime, for which a link can be found
at the Uppaal website http://www.uppaal.com/.

In order to demonstrate the effectiveness of symmetry reduction, the resource
requirements for checking the correctness of Fischer’s mutual exclusion protocol
were measured as a function of the number of processes for both regular Uppaal
and the prototype, see Figure 4. A conservative extrapolation of the data shows
that the verification of the protocol for 20 processes without symmetry reduction
would take 115 days and 1000 GB of memory, whereas this verification can be

56 Martijn Hendriks et al.

0.01

0.1

1

10

100

1000

10000

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
1

10

100

1000

T
im

e
[s

]

M
em

or
y

[M
B

]

Processes

Time
Memory

Time (prototype)
Memory (prototype)

Fig. 4. Run-time data for Fischer’s mutual exclusion protocol showing the enormous
gain of symmetry reduction. The step in the graph of the memory usage is probably
due to the the fact that Uppaal allocates memory in chunks of a few megabyte at a
time

done within approximately one second using less than 10 MB of memory with
symmetry reduction.

Similar results have been obtained for the CSMA/CD protocol ([24, 27])
and for the timeout task of a distributed agreement algorithm2 [4]. To be more
precise, regular Uppaal’s limit for the CSMA/CD protocol is approximately
10 processes, while the prototype can easily handle 50 processes. Similarly, the
prototype can easily handle 30 processes for the model of the timeout task,
whereas regular Uppaal can only handle 6.

Besides the three models discussed above, we also investigated the gain of
symmetry reduction for two more complex models. First, we experimented with
the previously mentioned agreement algorithm, of which we are unable to verify
an interesting instance even with symmetry reduction due to the size of the state
space. Nevertheless, symmetry reduction showed a very significant improvement.
Second, we experimented with a model of Bang & Olufsen’s audio/video proto-
col [13]. The mentioned paper describes how Uppaal is used to find a bug in the
protocol, and it describes the verification of the corrected protocol for two (sym-
metric) senders. Naturally, we added another sender – verification of the model
2 Models of the agreement algorithm and its timeout task are available through the

URL http://www.cs.kun.nl/∼martijnh/

Adding Symmetry Reduction to Uppaal 57

Table 1. Comparing the time and memory consumption of the relations for the
agreement algorithm and for Bang & Olufsen’s audio/video protocol with two and
three senders. The exact parameters of the agreement model are the following: n =
2, f = 1, ones = 0, c1 = 1, c2 = 2 and d varied (the value is written between
the brackets). Furthermore, the measurements were done for the verification of the
agreement invariant only. Three verification runs were measured for each model and
the best one w.r.t. time is shown

Model Time [s] Memory [MB]

Agreement (0)
Agreement (1)
Agreement (2)
Agreement (3)

B&O (2)
B&O (3)

No reduction Reduction

1 3
21 16
80 23
231 32

2 1
265 36

No reduction Reduction

33 45
294 180
905 245
2126 321

16 10
1109 181

for three senders was impossible at the time of the first verification attempt –
and we found another bug, whose source and implications we are investigating
at the time of this writing. Table 1 shows run-time data for these models.

6 Conclusions

The results we obtained with our prototype are clearly quite promising: with
relatively limited changes/extensions of the Uppaal code we obtain a rather
drastic improvement of performance for systems with symmetry that can be
expressed using scalarsets.

An obvious next step is to do experiments concerning profiling where compu-
tation time is spent, and in particular how much time is spent on computing rep-
resentatives. In the tool Design/CPN [18, 20, 11] (where symmetry reduction is
a main reduction mechanism) there have been interesting prototype experiments
with an implementation in which the (expensive) computations of representa-
tives were launched as tasks to be solved in parallel with the main exploration
algorithm.

The scalarset approach that we follow in this paper only allows one to express
total symmetries. An obvious direction for future research will be to study how
other types of symmetry (for instance as we see it in a token ring) can be
exploited.

References

[1] M. Abadi and L. Lamport. An old-fashioned recipe for real time. ACM Transac-
tions on Programming Languages and Systems, 16(5):1543–1571, September 1994.
47

58 Martijn Hendriks et al.

[2] R. Alur, C. Courcoubetis, and D.L. Dill. Model checking in dense real time.
Information and Computation, 104:2–34, 1993. 47

[3] R. Alur and D.L. Dill. Automata for modeling real-time systems. In 17th Inter-
national Colloquium on Automata, Languages, and Programming, pages 322–335,
1990. 47

[4] H. Attiya, C. Dwork, N. Lynch, and L. Stockmeyer. Bounds on the time to reach
agreement in the presence of timing uncertainty. Journal of the ACM, 41(1):122–
152, 1994. 47, 56

[5] R. Bellman. Dynamic Programming. Princeton University Press, 1957. 52
[6] D. Bosnacki, D. Dams, and L. Holenderski. A heuristic for symmetry reductions

with scalarsets. In J.N. Oliveira and P. Zave, editors, FME 2001, number 2021 in
LNCS, pages 518–533. Springer–Verlag, 2001. 47

[7] E. M. Clarke, S. Jha, R. Enders, and T. Filkorn. Exploiting symmetry in temporal
logic model checking. Formal Methods in System Design, 9(1/2):77–104, 1996. 47

[8] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT Press,
2000. 46

[9] D. Dill. Timing assumptions and verification of finite-state concurrent systems.
In J. Sifakis, editor, Proc. of Automatic Verification Methods for Finite State
Systems, number 407 in LNCS, pages 197–212. Springer–Verlag, 1989. 52

[10] D. L. Dill, A. J. Drexler, A. J. Hu, and C. Han Yang. Protocol verification as
a hardware design aid. In IEEE International Conference on Computer Design:
VLSI in Computers and Processors, pages 522–525. IEEE Computer Society, 1992.
46, 47, 50

[11] L. Elgaard. The Symmetry Method for Coloured Petri Nets - Theory, Tools,
and Practical Use. PhD thesis, Department of Computing Science, University of
Aarhus, Denmark, July 2002. 57

[12] E.A. Emerson and A.P. Sistla. Symmetry and model checking. In CAV’93, number
697 in LNCS. Springer–Verlag, 1993. 47

[13] K. Havelund, A. Skou, K.G. Larsen, and K. Lund. Formal modelling and analysis
of an audio/video protocol: An industrial case study using uppaal. In 18th IEEE
Real-Time Systems Symposium, pages 2–13, 1997. 47, 56

[14] M. Hendriks. Enhancing uppaal by exploiting symmetry. Technical Report NIII-
R0208, NIII, University of Nijmegen, October 2002. 47, 48, 52, 53, 54

[15] M. Hendriks, G. Behrmann, K. G. Larsen, P. Niebert, and F. W. Vaandrager.
Adding symmetry reduction to uppaal. Technical Report NIII-R03xx, NIII, Uni-
versity of Nijmegen, 2003. To appear. 48

[16] T. A. Henzinger, P. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid
systems. Software Tools for Technology Transfer, 1:110–122, 1997. 46

[17] G. J. Holzmann. The spin model checker. IEEE Transactions on Software Engi-
neering, 23(5):279–295, 1997. 46, 47

[18] P. Huber, A. M. Jensen, L. O. Jepsen, and K. Jensen. Reachability trees for
high-level petri nets. Theoretical Computer Science, 45(3):261–292, 1986. 47, 57

[19] C.N. Ip and D.L. Dill. Better verification through symmetry. In D. Agnew, L.
Claesen, and R. Camposano, editors, Computer Hardware Description Languages
and their Applications, pages 87–100, Ottawa, Canada, 1993. Elsevier Science
Publishers B.V., Amsterdam, The Netherlands. Journal version appeared in For-
mal Methods in System Design, 9(1/2):41–75, 1996. 47, 48, 49, 50, 53

[20] K. Jensen. Condensed state spaces for symmetrical Coloured Petri Nets. Formal
Methods in System Design, 9(1/2):7–40, 1996. 47, 57

Adding Symmetry Reduction to Uppaal 59

[21] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. International
Journal on Software Tools for Technology Transfer, pages 134–152, 1998. 46, 47,
50, 54

[22] K. L. McMillan. Symbolic Model Checking. PhD thesis, Carnegie Mellon Univer-
sity, Pittsburgh, May 1992. 46, 47

[23] P.H. Starke. Reachability analysis of petri nets using symmetries. Syst. Anal.
Model. Simul./5, 8(4):293–303, 1991. 47

[24] A. S. Tanenbaum. Computer Networks. Prentice–Hall, 1996. 47, 56
[25] F. Wang. Efficient data structure for fully symbolic verification of real-time soft-

ware systems. In S. Graf and M. Schwartzbach, editors, TACAS’00, number 1785
in LNCS, pages 157–171. Springer–Verlag, 2000. 46, 47

[26] F. Wang and K. Schmidt. Symmetric symbolic safety-analysis of concurrent
software with pointer data structures. In D.A. Peled and M.Y. Vardi, editors,
FORTE’02, number 2529 in LNCS, pages 50–64. Springer–Verlag, 2002. 47

[27] S. Yovine. Kronos: a verification tool for real-time systems. International Journal
on Software Tools for Technology Transfer, 1(2), 1997. 46, 47, 56

	Adding Symmetry Reduction to Uppaal
	Introduction
	Model Checking and Symmetry Reduction
	Adding Scalarsets to Uppaal
	Using Scalarsets for Symmetry Reduction
	Extraction of Automorphisms
	Computation of Representatives

	Experimental Results
	Conclusions

