1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008 | # -----------------------------------------------------------------------------
# Copyright (c) 2015 Ralph Hempel <rhempel@hempeldesigngroup.com>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
# -----------------------------------------------------------------------------
import sys
import math
import select
import time
import _thread
# python3 uses collections
# micropython uses ucollections
try:
from collections import OrderedDict
except ImportError:
from ucollections import OrderedDict
from logging import getLogger
from os.path import abspath
from ev3dev2 import get_current_platform, Device, list_device_names, DeviceNotDefined, ThreadNotRunning
from ev3dev2.stopwatch import StopWatch
# OUTPUT ports have platform specific values that we must import
platform = get_current_platform()
if platform == 'ev3':
from ev3dev2._platform.ev3 import OUTPUT_A, OUTPUT_B, OUTPUT_C, OUTPUT_D # noqa: F401
elif platform == 'evb':
from ev3dev2._platform.evb import OUTPUT_A, OUTPUT_B, OUTPUT_C, OUTPUT_D # noqa: F401
elif platform == 'pistorms':
from ev3dev2._platform.pistorms import OUTPUT_A, OUTPUT_B, OUTPUT_C, OUTPUT_D # noqa: F401
elif platform == 'brickpi':
from ev3dev2._platform.brickpi import OUTPUT_A, OUTPUT_B, OUTPUT_C, OUTPUT_D # noqa: F401
elif platform == 'brickpi3':
from ev3dev2._platform.brickpi3 import ( # noqa: F401
OUTPUT_A, OUTPUT_B, OUTPUT_C, OUTPUT_D, OUTPUT_E, OUTPUT_F, OUTPUT_G, OUTPUT_H, OUTPUT_I, OUTPUT_J, OUTPUT_K,
OUTPUT_L, OUTPUT_M, OUTPUT_N, OUTPUT_O, OUTPUT_P)
elif platform == 'fake':
from ev3dev2._platform.fake import OUTPUT_A, OUTPUT_B, OUTPUT_C, OUTPUT_D # noqa: F401
else:
raise Exception("Unsupported platform '%s'" % platform)
if sys.version_info < (3, 4):
raise SystemError('Must be using Python 3.4 or higher')
log = getLogger(__name__)
# The number of milliseconds we wait for the state of a motor to
# update to 'running' in the "on_for_XYZ" methods of the Motor class
WAIT_RUNNING_TIMEOUT = 100
class SpeedInvalid(ValueError):
pass
class SpeedValue(object):
"""
A base class for other unit types. Don't use this directly; instead, see
:class:`SpeedPercent`, :class:`SpeedRPS`, :class:`SpeedRPM`,
:class:`SpeedDPS`, and :class:`SpeedDPM`.
"""
def __eq__(self, other):
return self.to_native_units() == other.to_native_units()
def __ne__(self, other):
return not self.__eq__(other)
def __lt__(self, other):
return self.to_native_units() < other.to_native_units()
def __le__(self, other):
return self.to_native_units() <= other.to_native_units()
def __gt__(self, other):
return self.to_native_units() > other.to_native_units()
def __ge__(self, other):
return self.to_native_units() >= other.to_native_units()
def __rmul__(self, other):
return self.__mul__(other)
class SpeedPercent(SpeedValue):
"""
Speed as a percentage of the motor's maximum rated speed.
"""
def __init__(self, percent, desc=None):
if percent < -100 or percent > 100:
raise SpeedInvalid("invalid percentage {}, must be between -100 and 100 (inclusive)".format(percent))
self.percent = percent
self.desc = desc
def __str__(self):
return "{} ".format(self.desc) if self.desc else "" + str(self.percent) + "%"
def __mul__(self, other):
assert isinstance(other, (float, int)), "{} can only be multiplied by an int or float".format(self)
return SpeedPercent(self.percent * other)
def to_native_units(self, motor):
"""
Return this SpeedPercent in native motor units
"""
return self.percent / 100 * motor.max_speed
class SpeedNativeUnits(SpeedValue):
"""
Speed in tacho counts per second.
"""
def __init__(self, native_counts, desc=None):
self.native_counts = native_counts
self.desc = desc
def __str__(self):
return "{} ".format(self.desc) if self.desc else "" + "{:.2f}".format(self.native_counts) + " counts/sec"
def __mul__(self, other):
assert isinstance(other, (float, int)), "{} can only be multiplied by an int or float".format(self)
return SpeedNativeUnits(self.native_counts * other)
def to_native_units(self, motor=None):
"""
Return this SpeedNativeUnits as a number
"""
if self.native_counts > motor.max_speed:
raise SpeedInvalid("invalid native-units: {} max speed {}, {} was requested".format(
motor, motor.max_speed, self.native_counts))
return self.native_counts
class SpeedRPS(SpeedValue):
"""
Speed in rotations-per-second.
"""
def __init__(self, rotations_per_second, desc=None):
self.rotations_per_second = rotations_per_second
self.desc = desc
def __str__(self):
return "{} ".format(self.desc) if self.desc else "" + str(self.rotations_per_second) + " rot/sec"
def __mul__(self, other):
assert isinstance(other, (float, int)), "{} can only be multiplied by an int or float".format(self)
return SpeedRPS(self.rotations_per_second * other)
def to_native_units(self, motor):
"""
Return the native speed measurement required to achieve desired rotations-per-second
"""
if abs(self.rotations_per_second) > motor.max_rps:
raise SpeedInvalid("invalid rotations-per-second: {} max RPS is {}, {} was requested".format(
motor, motor.max_rps, self.rotations_per_second))
return self.rotations_per_second / motor.max_rps * motor.max_speed
class SpeedRPM(SpeedValue):
"""
Speed in rotations-per-minute.
"""
def __init__(self, rotations_per_minute, desc=None):
self.rotations_per_minute = rotations_per_minute
self.desc = desc
def __str__(self):
return "{} ".format(self.desc) if self.desc else "" + str(self.rotations_per_minute) + " rot/min"
def __mul__(self, other):
assert isinstance(other, (float, int)), "{} can only be multiplied by an int or float".format(self)
return SpeedRPM(self.rotations_per_minute * other)
def to_native_units(self, motor):
"""
Return the native speed measurement required to achieve desired rotations-per-minute
"""
if abs(self.rotations_per_minute) > motor.max_rpm:
raise SpeedInvalid("invalid rotations-per-minute: {} max RPM is {}, {} was requested".format(
motor, motor.max_rpm, self.rotations_per_minute))
return self.rotations_per_minute / motor.max_rpm * motor.max_speed
class SpeedDPS(SpeedValue):
"""
Speed in degrees-per-second.
"""
def __init__(self, degrees_per_second, desc=None):
self.degrees_per_second = degrees_per_second
self.desc = desc
def __str__(self):
return "{} ".format(self.desc) if self.desc else "" + str(self.degrees_per_second) + " deg/sec"
def __mul__(self, other):
assert isinstance(other, (float, int)), "{} can only be multiplied by an int or float".format(self)
return SpeedDPS(self.degrees_per_second * other)
def to_native_units(self, motor):
"""
Return the native speed measurement required to achieve desired degrees-per-second
"""
if abs(self.degrees_per_second) > motor.max_dps:
raise SpeedInvalid("invalid degrees-per-second: {} max DPS is {}, {} was requested".format(
motor, motor.max_dps, self.degrees_per_second))
return self.degrees_per_second / motor.max_dps * motor.max_speed
class SpeedDPM(SpeedValue):
"""
Speed in degrees-per-minute.
"""
def __init__(self, degrees_per_minute, desc=None):
self.degrees_per_minute = degrees_per_minute
self.desc = desc
def __str__(self):
return "{} ".format(self.desc) if self.desc else "" + str(self.degrees_per_minute) + " deg/min"
def __mul__(self, other):
assert isinstance(other, (float, int)), "{} can only be multiplied by an int or float".format(self)
return SpeedDPM(self.degrees_per_minute * other)
def to_native_units(self, motor):
"""
Return the native speed measurement required to achieve desired degrees-per-minute
"""
if abs(self.degrees_per_minute) > motor.max_dpm:
raise SpeedInvalid("invalid degrees-per-minute: {} max DPM is {}, {} was requested".format(
motor, motor.max_dpm, self.degrees_per_minute))
return self.degrees_per_minute / motor.max_dpm * motor.max_speed
def speed_to_speedvalue(speed, desc=None):
"""
If ``speed`` is not a ``SpeedValue`` object, treat it as a percentage.
Returns a ``SpeedValue`` object.
"""
if isinstance(speed, SpeedValue):
return speed
else:
return SpeedPercent(speed, desc)
class Motor(Device):
"""
The motor class provides a uniform interface for using motors with
positional and directional feedback such as the EV3 and NXT motors.
This feedback allows for precise control of the motors. This is the
most common type of motor, so we just call it ``motor``.
"""
SYSTEM_CLASS_NAME = 'tacho-motor'
SYSTEM_DEVICE_NAME_CONVENTION = '*'
__slots__ = [
'_address',
'_command',
'_commands',
'_count_per_rot',
'_count_per_m',
'_driver_name',
'_duty_cycle',
'_duty_cycle_sp',
'_full_travel_count',
'_polarity',
'_position',
'_position_p',
'_position_i',
'_position_d',
'_position_sp',
'_max_speed',
'_speed',
'_speed_sp',
'_ramp_up_sp',
'_ramp_down_sp',
'_speed_p',
'_speed_i',
'_speed_d',
'_state',
'_stop_action',
'_stop_actions',
'_time_sp',
'_poll',
'max_rps',
'max_rpm',
'max_dps',
'max_dpm',
]
#: Run the motor until another command is sent.
COMMAND_RUN_FOREVER = 'run-forever'
#: Run to an absolute position specified by ``position_sp`` and then
#: stop using the action specified in ``stop_action``.
COMMAND_RUN_TO_ABS_POS = 'run-to-abs-pos'
#: Run to a position relative to the current ``position`` value.
#: The new position will be current ``position`` + ``position_sp``.
#: When the new position is reached, the motor will stop using
#: the action specified by ``stop_action``.
COMMAND_RUN_TO_REL_POS = 'run-to-rel-pos'
#: Run the motor for the amount of time specified in ``time_sp``
#: and then stop the motor using the action specified by ``stop_action``.
COMMAND_RUN_TIMED = 'run-timed'
#: Run the motor at the duty cycle specified by ``duty_cycle_sp``.
#: Unlike other run commands, changing ``duty_cycle_sp`` while running *will*
#: take effect immediately.
COMMAND_RUN_DIRECT = 'run-direct'
#: Stop any of the run commands before they are complete using the
#: action specified by ``stop_action``.
COMMAND_STOP = 'stop'
#: Reset all of the motor parameter attributes to their default value.
#: This will also have the effect of stopping the motor.
COMMAND_RESET = 'reset'
#: Sets the normal polarity of the rotary encoder.
ENCODER_POLARITY_NORMAL = 'normal'
#: Sets the inversed polarity of the rotary encoder.
ENCODER_POLARITY_INVERSED = 'inversed'
#: With ``normal`` polarity, a positive duty cycle will
#: cause the motor to rotate clockwise.
POLARITY_NORMAL = 'normal'
#: With ``inversed`` polarity, a positive duty cycle will
#: cause the motor to rotate counter-clockwise.
POLARITY_INVERSED = 'inversed'
#: Power is being sent to the motor.
STATE_RUNNING = 'running'
#: The motor is ramping up or down and has not yet reached a constant output level.
STATE_RAMPING = 'ramping'
#: The motor is not turning, but rather attempting to hold a fixed position.
STATE_HOLDING = 'holding'
#: The motor is turning, but cannot reach its ``speed_sp``.
STATE_OVERLOADED = 'overloaded'
#: The motor is not turning when it should be.
STATE_STALLED = 'stalled'
#: Power will be removed from the motor and it will freely coast to a stop.
STOP_ACTION_COAST = 'coast'
#: Power will be removed from the motor and a passive electrical load will
#: be placed on the motor. This is usually done by shorting the motor terminals
#: together. This load will absorb the energy from the rotation of the motors and
#: cause the motor to stop more quickly than coasting.
STOP_ACTION_BRAKE = 'brake'
#: Does not remove power from the motor. Instead it actively try to hold the motor
#: at the current position. If an external force tries to turn the motor, the motor
#: will ``push back`` to maintain its position.
STOP_ACTION_HOLD = 'hold'
def __init__(self, address=None, name_pattern=SYSTEM_DEVICE_NAME_CONVENTION, name_exact=False, **kwargs):
if platform in ('brickpi', 'brickpi3') and type(self).__name__ != 'Motor' and not isinstance(self, LargeMotor):
raise Exception("{} is unaware of different motor types, use LargeMotor instead".format(platform))
if address is not None:
kwargs['address'] = address
super(Motor, self).__init__(self.SYSTEM_CLASS_NAME, name_pattern, name_exact, **kwargs)
self._address = None
self._command = None
self._commands = None
self._count_per_rot = None
self._count_per_m = None
self._driver_name = None
self._duty_cycle = None
self._duty_cycle_sp = None
self._full_travel_count = None
self._polarity = None
self._position = None
self._position_p = None
self._position_i = None
self._position_d = None
self._position_sp = None
self._max_speed = None
self._speed = None
self._speed_sp = None
self._ramp_up_sp = None
self._ramp_down_sp = None
self._speed_p = None
self._speed_i = None
self._speed_d = None
self._state = None
self._stop_action = None
self._stop_actions = None
self._time_sp = None
self._poll = None
self.max_rps = float(self.max_speed / self.count_per_rot)
self.max_rpm = self.max_rps * 60
self.max_dps = self.max_rps * 360
self.max_dpm = self.max_rpm * 360
@property
def address(self):
"""
Returns the name of the port that this motor is connected to.
"""
self._address, value = self.get_attr_string(self._address, 'address')
return value
@property
def command(self):
"""
Sends a command to the motor controller. See ``commands`` for a list of
possible values.
"""
raise Exception("command is a write-only property!")
@command.setter
def command(self, value):
self._command = self.set_attr_string(self._command, 'command', value)
@property
def commands(self):
"""
Returns a list of commands that are supported by the motor
controller. Possible values are ``run-forever``, ``run-to-abs-pos``, ``run-to-rel-pos``,
``run-timed``, ``run-direct``, ``stop`` and ``reset``. Not all commands may be supported.
- ``run-forever`` will cause the motor to run until another command is sent.
- ``run-to-abs-pos`` will run to an absolute position specified by ``position_sp``
and then stop using the action specified in ``stop_action``.
- ``run-to-rel-pos`` will run to a position relative to the current ``position`` value.
The new position will be current ``position`` + ``position_sp``. When the new
position is reached, the motor will stop using the action specified by ``stop_action``.
- ``run-timed`` will run the motor for the amount of time specified in ``time_sp``
and then stop the motor using the action specified by ``stop_action``.
- ``run-direct`` will run the motor at the duty cycle specified by ``duty_cycle_sp``.
Unlike other run commands, changing ``duty_cycle_sp`` while running *will*
take effect immediately.
- ``stop`` will stop any of the run commands before they are complete using the
action specified by ``stop_action``.
- ``reset`` will reset all of the motor parameter attributes to their default value.
This will also have the effect of stopping the motor.
"""
(self._commands, value) = self.get_cached_attr_set(self._commands, 'commands')
return value
@property
def count_per_rot(self):
"""
Returns the number of tacho counts in one rotation of the motor. Tacho counts
are used by the position and speed attributes, so you can use this value
to convert rotations or degrees to tacho counts. (rotation motors only)
"""
(self._count_per_rot, value) = self.get_cached_attr_int(self._count_per_rot, 'count_per_rot')
return value
@property
def count_per_m(self):
"""
Returns the number of tacho counts in one meter of travel of the motor. Tacho
counts are used by the position and speed attributes, so you can use this
value to convert from distance to tacho counts. (linear motors only)
"""
(self._count_per_m, value) = self.get_cached_attr_int(self._count_per_m, 'count_per_m')
return value
@property
def driver_name(self):
"""
Returns the name of the driver that provides this tacho motor device.
"""
(self._driver_name, value) = self.get_cached_attr_string(self._driver_name, 'driver_name')
return value
@property
def duty_cycle(self):
"""
Returns the current duty cycle of the motor. Units are percent. Values
are -100 to 100.
"""
self._duty_cycle, value = self.get_attr_int(self._duty_cycle, 'duty_cycle')
return value
@property
def duty_cycle_sp(self):
"""
Writing sets the duty cycle setpoint. Reading returns the current value.
Units are in percent. Valid values are -100 to 100. A negative value causes
the motor to rotate in reverse.
"""
self._duty_cycle_sp, value = self.get_attr_int(self._duty_cycle_sp, 'duty_cycle_sp')
return value
@duty_cycle_sp.setter
def duty_cycle_sp(self, value):
self._duty_cycle_sp = self.set_attr_int(self._duty_cycle_sp, 'duty_cycle_sp', value)
@property
def full_travel_count(self):
"""
Returns the number of tacho counts in the full travel of the motor. When
combined with the ``count_per_m`` atribute, you can use this value to
calculate the maximum travel distance of the motor. (linear motors only)
"""
(self._full_travel_count, value) = self.get_cached_attr_int(self._full_travel_count, 'full_travel_count')
return value
@property
def polarity(self):
"""
Sets the polarity of the motor. With ``normal`` polarity, a positive duty
cycle will cause the motor to rotate clockwise. With ``inversed`` polarity,
a positive duty cycle will cause the motor to rotate counter-clockwise.
Valid values are ``normal`` and ``inversed``.
"""
self._polarity, value = self.get_attr_string(self._polarity, 'polarity')
return value
@polarity.setter
def polarity(self, value):
self._polarity = self.set_attr_string(self._polarity, 'polarity', value)
@property
def position(self):
"""
Returns the current position of the motor in pulses of the rotary
encoder. When the motor rotates clockwise, the position will increase.
Likewise, rotating counter-clockwise causes the position to decrease.
Writing will set the position to that value.
"""
self._position, value = self.get_attr_int(self._position, 'position')
return value
@position.setter
def position(self, value):
self._position = self.set_attr_int(self._position, 'position', value)
@property
def position_p(self):
"""
The proportional constant for the position PID.
"""
self._position_p, value = self.get_attr_int(self._position_p, 'hold_pid/Kp')
return value
@position_p.setter
def position_p(self, value):
self._position_p = self.set_attr_int(self._position_p, 'hold_pid/Kp', value)
@property
def position_i(self):
"""
The integral constant for the position PID.
"""
self._position_i, value = self.get_attr_int(self._position_i, 'hold_pid/Ki')
return value
@position_i.setter
def position_i(self, value):
self._position_i = self.set_attr_int(self._position_i, 'hold_pid/Ki', value)
@property
def position_d(self):
"""
The derivative constant for the position PID.
"""
self._position_d, value = self.get_attr_int(self._position_d, 'hold_pid/Kd')
return value
@position_d.setter
def position_d(self, value):
self._position_d = self.set_attr_int(self._position_d, 'hold_pid/Kd', value)
@property
def position_sp(self):
"""
Writing specifies the target position for the ``run-to-abs-pos`` and ``run-to-rel-pos``
commands. Reading returns the current value. Units are in tacho counts. You
can use the value returned by ``count_per_rot`` to convert tacho counts to/from
rotations or degrees.
"""
self._position_sp, value = self.get_attr_int(self._position_sp, 'position_sp')
return value
@position_sp.setter
def position_sp(self, value):
self._position_sp = self.set_attr_int(self._position_sp, 'position_sp', value)
@property
def max_speed(self):
"""
Returns the maximum value that is accepted by the ``speed_sp`` attribute. This
may be slightly different than the maximum speed that a particular motor can
reach - it's the maximum theoretical speed.
"""
(self._max_speed, value) = self.get_cached_attr_int(self._max_speed, 'max_speed')
return value
@property
def speed(self):
"""
Returns the current motor speed in tacho counts per second. Note, this is
not necessarily degrees (although it is for LEGO motors). Use the ``count_per_rot``
attribute to convert this value to RPM or deg/sec.
"""
self._speed, value = self.get_attr_int(self._speed, 'speed')
return value
@property
def speed_sp(self):
"""
Writing sets the target speed in tacho counts per second used for all ``run-*``
commands except ``run-direct``. Reading returns the current value. A negative
value causes the motor to rotate in reverse with the exception of ``run-to-*-pos``
commands where the sign is ignored. Use the ``count_per_rot`` attribute to convert
RPM or deg/sec to tacho counts per second. Use the ``count_per_m`` attribute to
convert m/s to tacho counts per second.
"""
self._speed_sp, value = self.get_attr_int(self._speed_sp, 'speed_sp')
return value
@speed_sp.setter
def speed_sp(self, value):
self._speed_sp = self.set_attr_int(self._speed_sp, 'speed_sp', value)
@property
def ramp_up_sp(self):
"""
Writing sets the ramp up setpoint. Reading returns the current value. Units
are in milliseconds and must be positive. When set to a non-zero value, the
motor speed will increase from 0 to 100% of ``max_speed`` over the span of this
setpoint. The actual ramp time is the ratio of the difference between the
``speed_sp`` and the current ``speed`` and max_speed multiplied by ``ramp_up_sp``.
"""
self._ramp_up_sp, value = self.get_attr_int(self._ramp_up_sp, 'ramp_up_sp')
return value
@ramp_up_sp.setter
def ramp_up_sp(self, value):
self._ramp_up_sp = self.set_attr_int(self._ramp_up_sp, 'ramp_up_sp', value)
@property
def ramp_down_sp(self):
"""
Writing sets the ramp down setpoint. Reading returns the current value. Units
are in milliseconds and must be positive. When set to a non-zero value, the
motor speed will decrease from 0 to 100% of ``max_speed`` over the span of this
setpoint. The actual ramp time is the ratio of the difference between the
``speed_sp`` and the current ``speed`` and max_speed multiplied by ``ramp_down_sp``.
"""
self._ramp_down_sp, value = self.get_attr_int(self._ramp_down_sp, 'ramp_down_sp')
return value
@ramp_down_sp.setter
def ramp_down_sp(self, value):
self._ramp_down_sp = self.set_attr_int(self._ramp_down_sp, 'ramp_down_sp', value)
@property
def speed_p(self):
"""
The proportional constant for the speed regulation PID.
"""
self._speed_p, value = self.get_attr_int(self._speed_p, 'speed_pid/Kp')
return value
@speed_p.setter
def speed_p(self, value):
self._speed_p = self.set_attr_int(self._speed_p, 'speed_pid/Kp', value)
@property
def speed_i(self):
"""
The integral constant for the speed regulation PID.
"""
self._speed_i, value = self.get_attr_int(self._speed_i, 'speed_pid/Ki')
return value
@speed_i.setter
def speed_i(self, value):
self._speed_i = self.set_attr_int(self._speed_i, 'speed_pid/Ki', value)
@property
def speed_d(self):
"""
The derivative constant for the speed regulation PID.
"""
self._speed_d, value = self.get_attr_int(self._speed_d, 'speed_pid/Kd')
return value
@speed_d.setter
def speed_d(self, value):
self._speed_d = self.set_attr_int(self._speed_d, 'speed_pid/Kd', value)
@property
def state(self):
"""
Reading returns a list of state flags. Possible flags are
``running``, ``ramping``, ``holding``, ``overloaded`` and ``stalled``.
"""
self._state, value = self.get_attr_set(self._state, 'state')
return value
@property
def stop_action(self):
"""
Reading returns the current stop action. Writing sets the stop action.
The value determines the motors behavior when ``command`` is set to ``stop``.
Also, it determines the motors behavior when a run command completes. See
``stop_actions`` for a list of possible values.
"""
self._stop_action, value = self.get_attr_string(self._stop_action, 'stop_action')
return value
@stop_action.setter
def stop_action(self, value):
self._stop_action = self.set_attr_string(self._stop_action, 'stop_action', value)
@property
def stop_actions(self):
"""
Returns a list of stop actions supported by the motor controller.
Possible values are ``coast``, ``brake`` and ``hold``. ``coast`` means that power will
be removed from the motor and it will freely coast to a stop. ``brake`` means
that power will be removed from the motor and a passive electrical load will
be placed on the motor. This is usually done by shorting the motor terminals
together. This load will absorb the energy from the rotation of the motors and
cause the motor to stop more quickly than coasting. ``hold`` does not remove
power from the motor. Instead it actively tries to hold the motor at the current
position. If an external force tries to turn the motor, the motor will 'push
back' to maintain its position.
"""
(self._stop_actions, value) = self.get_cached_attr_set(self._stop_actions, 'stop_actions')
return value
@property
def time_sp(self):
"""
Writing specifies the amount of time the motor will run when using the
``run-timed`` command. Reading returns the current value. Units are in
milliseconds.
"""
self._time_sp, value = self.get_attr_int(self._time_sp, 'time_sp')
return value
@time_sp.setter
def time_sp(self, value):
self._time_sp = self.set_attr_int(self._time_sp, 'time_sp', value)
def run_forever(self, **kwargs):
"""
Run the motor until another command is sent.
"""
for key in kwargs:
setattr(self, key, kwargs[key])
self.command = self.COMMAND_RUN_FOREVER
def run_to_abs_pos(self, **kwargs):
"""
Run to an absolute position specified by ``position_sp`` and then
stop using the action specified in ``stop_action``.
"""
for key in kwargs:
setattr(self, key, kwargs[key])
self.command = self.COMMAND_RUN_TO_ABS_POS
def run_to_rel_pos(self, **kwargs):
"""
Run to a position relative to the current ``position`` value.
The new position will be current ``position`` + ``position_sp``.
When the new position is reached, the motor will stop using
the action specified by ``stop_action``.
"""
for key in kwargs:
setattr(self, key, kwargs[key])
self.command = self.COMMAND_RUN_TO_REL_POS
def run_timed(self, **kwargs):
"""
Run the motor for the amount of time specified in ``time_sp``
and then stop the motor using the action specified by ``stop_action``.
"""
for key in kwargs:
setattr(self, key, kwargs[key])
self.command = self.COMMAND_RUN_TIMED
def run_direct(self, **kwargs):
"""
Run the motor at the duty cycle specified by ``duty_cycle_sp``.
Unlike other run commands, changing ``duty_cycle_sp`` while running *will*
take effect immediately.
"""
for key in kwargs:
setattr(self, key, kwargs[key])
self.command = self.COMMAND_RUN_DIRECT
def stop(self, **kwargs):
"""
Stop any of the run commands before they are complete using the
action specified by ``stop_action``.
"""
for key in kwargs:
setattr(self, key, kwargs[key])
self.command = self.COMMAND_STOP
def reset(self, **kwargs):
"""
Reset all of the motor parameter attributes to their default value.
This will also have the effect of stopping the motor.
"""
for key in kwargs:
setattr(self, key, kwargs[key])
self.command = self.COMMAND_RESET
@property
def is_running(self):
"""
Power is being sent to the motor.
"""
return self.STATE_RUNNING in self.state
@property
def is_ramping(self):
"""
The motor is ramping up or down and has not yet reached a constant output level.
"""
return self.STATE_RAMPING in self.state
@property
def is_holding(self):
"""
The motor is not turning, but rather attempting to hold a fixed position.
"""
return self.STATE_HOLDING in self.state
@property
def is_overloaded(self):
"""
The motor is turning, but cannot reach its ``speed_sp``.
"""
return self.STATE_OVERLOADED in self.state
@property
def is_stalled(self):
"""
The motor is not turning when it should be.
"""
return self.STATE_STALLED in self.state
def wait(self, cond, timeout=None):
"""
Blocks until ``cond(self.state)`` is ``True``. The condition is
checked when there is an I/O event related to the ``state`` attribute.
Exits early when ``timeout`` (in milliseconds) is reached.
Returns ``True`` if the condition is met, and ``False`` if the timeout
is reached.
"""
tic = time.time()
if self._poll is None:
if self._state is None:
self._state = self._attribute_file_open('state')
self._poll = select.poll()
self._poll.register(self._state, select.POLLPRI)
# Set poll timeout to something small. For more details, see
# https://github.com/ev3dev/ev3dev-lang-python/issues/583
if timeout:
poll_tm = min(timeout, 100)
else:
poll_tm = 100
while True:
# This check is now done every poll_tm even if poll has nothing to report:
if cond(self.state):
return True
self._poll.poll(poll_tm)
if timeout is not None and time.time() >= tic + timeout / 1000:
# Final check when user timeout is reached
return cond(self.state)
def wait_until_not_moving(self, timeout=None):
"""
Blocks until ``running`` is not in ``self.state`` or ``stalled`` is in
``self.state``. The condition is checked when there is an I/O event
related to the ``state`` attribute. Exits early when ``timeout``
(in milliseconds) is reached.
Returns ``True`` if the condition is met, and ``False`` if the timeout
is reached.
Example::
m.wait_until_not_moving()
"""
return self.wait(lambda state: self.STATE_RUNNING not in state or self.STATE_STALLED in state, timeout)
def wait_until(self, s, timeout=None):
"""
Blocks until ``s`` is in ``self.state``. The condition is checked when
there is an I/O event related to the ``state`` attribute. Exits early
when ``timeout`` (in milliseconds) is reached.
Returns ``True`` if the condition is met, and ``False`` if the timeout
is reached.
Example::
m.wait_until('stalled')
"""
return self.wait(lambda state: s in state, timeout)
def wait_while(self, s, timeout=None):
"""
Blocks until ``s`` is not in ``self.state``. The condition is checked
when there is an I/O event related to the ``state`` attribute. Exits
early when ``timeout`` (in milliseconds) is reached.
Returns ``True`` if the condition is met, and ``False`` if the timeout
is reached.
Example::
m.wait_while('running')
"""
return self.wait(lambda state: s not in state, timeout)
def _speed_native_units(self, speed, label=None):
speed = speed_to_speedvalue(speed, label)
return speed.to_native_units(self)
def _set_rel_position_degrees_and_speed_sp(self, degrees, speed):
degrees = degrees if speed >= 0 else -degrees
speed = abs(speed)
position_delta = int(round((degrees * self.count_per_rot) / 360))
speed_sp = int(round(speed))
self.position_sp = position_delta
self.speed_sp = speed_sp
def _set_brake(self, brake):
if brake:
self.stop_action = self.STOP_ACTION_HOLD
else:
self.stop_action = self.STOP_ACTION_COAST
def on_for_rotations(self, speed, rotations, brake=True, block=True):
"""
Rotate the motor at ``speed`` for ``rotations``
``speed`` can be a percentage or a :class:`ev3dev2.motor.SpeedValue`
object, enabling use of other units.
"""
speed_sp = self._speed_native_units(speed)
self._set_rel_position_degrees_and_speed_sp(rotations * 360, speed_sp)
self._set_brake(brake)
self.run_to_rel_pos()
if block:
self.wait_until('running', timeout=WAIT_RUNNING_TIMEOUT)
self.wait_until_not_moving()
def on_for_degrees(self, speed, degrees, brake=True, block=True):
"""
Rotate the motor at ``speed`` for ``degrees``
``speed`` can be a percentage or a :class:`ev3dev2.motor.SpeedValue`
object, enabling use of other units.
"""
speed_sp = self._speed_native_units(speed)
self._set_rel_position_degrees_and_speed_sp(degrees, speed_sp)
self._set_brake(brake)
self.run_to_rel_pos()
if block:
self.wait_until('running', timeout=WAIT_RUNNING_TIMEOUT)
self.wait_until_not_moving()
def on_to_position(self, speed, position, brake=True, block=True):
"""
Rotate the motor at ``speed`` to ``position``
``speed`` can be a percentage or a :class:`ev3dev2.motor.SpeedValue`
object, enabling use of other units.
"""
speed = self._speed_native_units(speed)
self.speed_sp = int(round(speed))
self.position_sp = position
self._set_brake(brake)
self.run_to_abs_pos()
if block:
self.wait_until('running', timeout=WAIT_RUNNING_TIMEOUT)
self.wait_until_not_moving()
def on_for_seconds(self, speed, seconds, brake=True, block=True):
"""
Rotate the motor at ``speed`` for ``seconds``
``speed`` can be a percentage or a :class:`ev3dev2.motor.SpeedValue`
object, enabling use of other units.
"""
if seconds < 0:
raise ValueError("seconds is negative ({})".format(seconds))
speed = self._speed_native_units(speed)
self.speed_sp = int(round(speed))
self.time_sp = int(seconds * 1000)
self._set_brake(brake)
self.run_timed()
if block:
self.wait_until('running', timeout=WAIT_RUNNING_TIMEOUT)
self.wait_until_not_moving()
def on(self, speed, brake=True, block=False):
"""
Rotate the motor at ``speed`` for forever
``speed`` can be a percentage or a :class:`ev3dev2.motor.SpeedValue`
object, enabling use of other units.
Note that ``block`` is False by default, this is different from the
other ``on_for_XYZ`` methods.
"""
speed = self._speed_native_units(speed)
self.speed_sp = int(round(speed))
self._set_brake(brake)
self.run_forever()
if block:
self.wait_until('running', timeout=WAIT_RUNNING_TIMEOUT)
self.wait_until_not_moving()
def off(self, brake=True):
self._set_brake(brake)
self.stop()
@property
def rotations(self):
return float(self.position / self.count_per_rot)
@property
def degrees(self):
return self.rotations * 360
def list_motors(name_pattern=Motor.SYSTEM_DEVICE_NAME_CONVENTION, **kwargs):
"""
This is a generator function that enumerates all tacho motors that match
the provided arguments.
Parameters:
name_pattern: pattern that device name should match.
For example, 'motor*'. Default value: '*'.
keyword arguments: used for matching the corresponding device
attributes. For example, driver_name='lego-ev3-l-motor', or
address=['outB', 'outC']. When argument value
is a list, then a match against any entry of the list is
enough.
"""
class_path = abspath(Device.DEVICE_ROOT_PATH + '/' + Motor.SYSTEM_CLASS_NAME)
return (Motor(name_pattern=name, name_exact=True) for name in list_device_names(class_path, name_pattern, **kwargs))
class LargeMotor(Motor):
"""
EV3/NXT large servo motor.
Same as :class:`Motor`, except it will only successfully initialize if it finds a "large" motor.
"""
SYSTEM_CLASS_NAME = Motor.SYSTEM_CLASS_NAME
SYSTEM_DEVICE_NAME_CONVENTION = '*'
__slots__ = []
def __init__(self, address=None, name_pattern=SYSTEM_DEVICE_NAME_CONVENTION, name_exact=False, **kwargs):
super(LargeMotor, self).__init__(address,
name_pattern,
name_exact,
driver_name=['lego-ev3-l-motor', 'lego-nxt-motor'],
**kwargs)
class MediumMotor(Motor):
"""
EV3 medium servo motor.
Same as :class:`Motor`, except it will only successfully initialize if it finds a "medium" motor.
"""
SYSTEM_CLASS_NAME = Motor.SYSTEM_CLASS_NAME
SYSTEM_DEVICE_NAME_CONVENTION = '*'
__slots__ = []
def __init__(self, address=None, name_pattern=SYSTEM_DEVICE_NAME_CONVENTION, name_exact=False, **kwargs):
super(MediumMotor, self).__init__(address, name_pattern, name_exact, driver_name=['lego-ev3-m-motor'], **kwargs)
class ActuonixL1250Motor(Motor):
"""
Actuonix L12 50 linear servo motor.
Same as :class:`Motor`, except it will only successfully initialize if it finds an
Actuonix L12 50 linear servo motor
"""
SYSTEM_CLASS_NAME = Motor.SYSTEM_CLASS_NAME
SYSTEM_DEVICE_NAME_CONVENTION = 'linear*'
__slots__ = []
def __init__(self, address=None, name_pattern=SYSTEM_DEVICE_NAME_CONVENTION, name_exact=False, **kwargs):
super(ActuonixL1250Motor, self).__init__(address,
name_pattern,
name_exact,
driver_name=['act-l12-ev3-50'],
**kwargs)
class ActuonixL12100Motor(Motor):
"""
Actuonix L12 100 linear servo motor.
Same as :class:`Motor`, except it will only successfully initialize if it finds an
Actuonix L12 100linear servo motor
"""
SYSTEM_CLASS_NAME = Motor.SYSTEM_CLASS_NAME
SYSTEM_DEVICE_NAME_CONVENTION = 'linear*'
__slots__ = []
def __init__(self, address=None, name_pattern=SYSTEM_DEVICE_NAME_CONVENTION, name_exact=False, **kwargs):
super(ActuonixL12100Motor, self).__init__(address,
name_pattern,
name_exact,
driver_name=['act-l12-ev3-100'],
**kwargs)
class DcMotor(Device):
"""
The DC motor class provides a uniform interface for using regular DC motors
with no fancy controls or feedback. This includes LEGO MINDSTORMS RCX motors
and LEGO Power Functions motors.
"""
SYSTEM_CLASS_NAME = 'dc-motor'
SYSTEM_DEVICE_NAME_CONVENTION = 'motor*'
__slots__ = [
'_address',
'_command',
'_commands',
'_driver_name',
'_duty_cycle',
'_duty_cycle_sp',
'_polarity',
'_ramp_down_sp',
'_ramp_up_sp',
'_state',
'_stop_action',
'_stop_actions',
'_time_sp',
]
def __init__(self, address=None, name_pattern=SYSTEM_DEVICE_NAME_CONVENTION, name_exact=False, **kwargs):
if address is not None:
kwargs['address'] = address
super(DcMotor, self).__init__(self.SYSTEM_CLASS_NAME, name_pattern, name_exact, **kwargs)
self._address = None
self._command = None
self._commands = None
self._driver_name = None
self._duty_cycle = None
self._duty_cycle_sp = None
self._polarity = None
self._ramp_down_sp = None
self._ramp_up_sp = None
self._state = None
self._stop_action = None
self._stop_actions = None
self._time_sp = None
@property
def address(self):
"""
Returns the name of the port that this motor is connected to.
"""
self._address, value = self.get_attr_string(self._address, 'address')
return value
@property
def command(self):
"""
Sets the command for the motor. Possible values are ``run-forever``, ``run-timed`` and
``stop``. Not all commands may be supported, so be sure to check the contents
of the ``commands`` attribute.
"""
raise Exception("command is a write-only property!")
@command.setter
def command(self, value):
self._command = self.set_attr_string(self._command, 'command', value)
@property
def commands(self):
"""
Returns a list of commands supported by the motor
controller.
"""
self._commands, value = self.get_attr_set(self._commands, 'commands')
return value
@property
def driver_name(self):
"""
Returns the name of the motor driver that loaded this device. See the list
of [supported devices] for a list of drivers.
"""
self._driver_name, value = self.get_attr_string(self._driver_name, 'driver_name')
return value
@property
def duty_cycle(self):
"""
Shows the current duty cycle of the PWM signal sent to the motor. Values
are -100 to 100 (-100% to 100%).
"""
self._duty_cycle, value = self.get_attr_int(self._duty_cycle, 'duty_cycle')
return value
@property
def duty_cycle_sp(self):
"""
Writing sets the duty cycle setpoint of the PWM signal sent to the motor.
Valid values are -100 to 100 (-100% to 100%). Reading returns the current
setpoint.
"""
self._duty_cycle_sp, value = self.get_attr_int(self._duty_cycle_sp, 'duty_cycle_sp')
return value
@duty_cycle_sp.setter
def duty_cycle_sp(self, value):
self._duty_cycle_sp = self.set_attr_int(self._duty_cycle_sp, 'duty_cycle_sp', value)
@property
def polarity(self):
"""
Sets the polarity of the motor. Valid values are ``normal`` and ``inversed``.
"""
self._polarity, value = self.get_attr_string(self._polarity, 'polarity')
return value
@polarity.setter
def polarity(self, value):
self._polarity = self.set_attr_string(self._polarity, 'polarity', value)
@property
def ramp_down_sp(self):
"""
Sets the time in milliseconds that it take the motor to ramp down from 100%
to 0%. Valid values are 0 to 10000 (10 seconds). Default is 0.
"""
self._ramp_down_sp, value = self.get_attr_int(self._ramp_down_sp, 'ramp_down_sp')
return value
@ramp_down_sp.setter
def ramp_down_sp(self, value):
self._ramp_down_sp = self.set_attr_int(self._ramp_down_sp, 'ramp_down_sp', value)
@property
def ramp_up_sp(self):
"""
Sets the time in milliseconds that it take the motor to up ramp from 0% to
100%. Valid values are 0 to 10000 (10 seconds). Default is 0.
"""
self._ramp_up_sp, value = self.get_attr_int(self._ramp_up_sp, 'ramp_up_sp')
return value
@ramp_up_sp.setter
def ramp_up_sp(self, value):
self._ramp_up_sp = self.set_attr_int(self._ramp_up_sp, 'ramp_up_sp', value)
@property
def state(self):
"""
Gets a list of flags indicating the motor status. Possible
flags are ``running`` and ``ramping``. ``running`` indicates that the motor is
powered. ``ramping`` indicates that the motor has not yet reached the
``duty_cycle_sp``.
"""
self._state, value = self.get_attr_set(self._state, 'state')
return value
@property
def stop_action(self):
"""
Sets the stop action that will be used when the motor stops. Read
``stop_actions`` to get the list of valid values.
"""
raise Exception("stop_action is a write-only property!")
@stop_action.setter
def stop_action(self, value):
self._stop_action = self.set_attr_string(self._stop_action, 'stop_action', value)
@property
def stop_actions(self):
"""
Gets a list of stop actions. Valid values are ``coast``
and ``brake``.
"""
self._stop_actions, value = self.get_attr_set(self._stop_actions, 'stop_actions')
return value
@property
def time_sp(self):
"""
Writing specifies the amount of time the motor will run when using the
``run-timed`` command. Reading returns the current value. Units are in
milliseconds.
"""
self._time_sp, value = self.get_attr_int(self._time_sp, 'time_sp')
return value
@time_sp.setter
def time_sp(self, value):
self._time_sp = self.set_attr_int(self._time_sp, 'time_sp', value)
#: Run the motor until another command is sent.
COMMAND_RUN_FOREVER = 'run-forever'
#: Run the motor for the amount of time specified in ``time_sp``
#: and then stop the motor using the action specified by ``stop_action``.
COMMAND_RUN_TIMED = 'run-timed'
#: Run the motor at the duty cycle specified by ``duty_cycle_sp``.
#: Unlike other run commands, changing ``duty_cycle_sp`` while running *will*
#: take effect immediately.
COMMAND_RUN_DIRECT = 'run-direct'
#: Stop any of the run commands before they are complete using the
#: action specified by ``stop_action``.
COMMAND_STOP = 'stop'
#: With ``normal`` polarity, a positive duty cycle will
#: cause the motor to rotate clockwise.
POLARITY_NORMAL = 'normal'
#: With ``inversed`` polarity, a positive duty cycle will
#: cause the motor to rotate counter-clockwise.
POLARITY_INVERSED = 'inversed'
#: Power will be removed from the motor and it will freely coast to a stop.
STOP_ACTION_COAST = 'coast'
#: Power will be removed from the motor and a passive electrical load will
#: be placed on the motor. This is usually done by shorting the motor terminals
#: together. This load will absorb the energy from the rotation of the motors and
#: cause the motor to stop more quickly than coasting.
STOP_ACTION_BRAKE = 'brake'
def run_forever(self, **kwargs):
"""
Run the motor until another command is sent.
"""
for key in kwargs:
setattr(self, key, kwargs[key])
self.command = self.COMMAND_RUN_FOREVER
def run_timed(self, **kwargs):
"""
Run the motor for the amount of time specified in ``time_sp``
and then stop the motor using the action specified by ``stop_action``.
"""
for key in kwargs:
setattr(self, key, kwargs[key])
self.command = self.COMMAND_RUN_TIMED
def run_direct(self, **kwargs):
"""
Run the motor at the duty cycle specified by ``duty_cycle_sp``.
Unlike other run commands, changing ``duty_cycle_sp`` while running *will*
take effect immediately.
"""
for key in kwargs:
setattr(self, key, kwargs[key])
self.command = self.COMMAND_RUN_DIRECT
def stop(self, **kwargs):
"""
Stop any of the run commands before they are complete using the
action specified by ``stop_action``.
"""
for key in kwargs:
setattr(self, key, kwargs[key])
self.command = self.COMMAND_STOP
class ServoMotor(Device):
"""
The servo motor class provides a uniform interface for using hobby type
servo motors.
"""
SYSTEM_CLASS_NAME = 'servo-motor'
SYSTEM_DEVICE_NAME_CONVENTION = 'motor*'
__slots__ = [
'_address',
'_command',
'_driver_name',
'_max_pulse_sp',
'_mid_pulse_sp',
'_min_pulse_sp',
'_polarity',
'_position_sp',
'_rate_sp',
'_state',
]
def __init__(self, address=None, name_pattern=SYSTEM_DEVICE_NAME_CONVENTION, name_exact=False, **kwargs):
if address is not None:
kwargs['address'] = address
super(ServoMotor, self).__init__(self.SYSTEM_CLASS_NAME, name_pattern, name_exact, **kwargs)
self._address = None
self._command = None
self._driver_name = None
self._max_pulse_sp = None
self._mid_pulse_sp = None
self._min_pulse_sp = None
self._polarity = None
self._position_sp = None
self._rate_sp = None
self._state = None
@property
def address(self):
"""
Returns the name of the port that this motor is connected to.
"""
self._address, value = self.get_attr_string(self._address, 'address')
return value
@property
def command(self):
"""
Sets the command for the servo. Valid values are ``run`` and ``float``. Setting
to ``run`` will cause the servo to be driven to the position_sp set in the
``position_sp`` attribute. Setting to ``float`` will remove power from the motor.
"""
raise Exception("command is a write-only property!")
@command.setter
def command(self, value):
self._command = self.set_attr_string(self._command, 'command', value)
@property
def driver_name(self):
"""
Returns the name of the motor driver that loaded this device. See the list
of [supported devices] for a list of drivers.
"""
self._driver_name, value = self.get_attr_string(self._driver_name, 'driver_name')
return value
@property
def max_pulse_sp(self):
"""
Used to set the pulse size in milliseconds for the signal that tells the
servo to drive to the maximum (clockwise) position_sp. Default value is 2400.
Valid values are 2300 to 2700. You must write to the position_sp attribute for
changes to this attribute to take effect.
"""
self._max_pulse_sp, value = self.get_attr_int(self._max_pulse_sp, 'max_pulse_sp')
return value
@max_pulse_sp.setter
def max_pulse_sp(self, value):
self._max_pulse_sp = self.set_attr_int(self._max_pulse_sp, 'max_pulse_sp', value)
@property
def mid_pulse_sp(self):
"""
Used to set the pulse size in milliseconds for the signal that tells the
servo to drive to the mid position_sp. Default value is 1500. Valid
values are 1300 to 1700. For example, on a 180 degree servo, this would be
90 degrees. On continuous rotation servo, this is the 'neutral' position_sp
where the motor does not turn. You must write to the position_sp attribute for
changes to this attribute to take effect.
"""
self._mid_pulse_sp, value = self.get_attr_int(self._mid_pulse_sp, 'mid_pulse_sp')
return value
@mid_pulse_sp.setter
def mid_pulse_sp(self, value):
self._mid_pulse_sp = self.set_attr_int(self._mid_pulse_sp, 'mid_pulse_sp', value)
@property
def min_pulse_sp(self):
"""
Used to set the pulse size in milliseconds for the signal that tells the
servo to drive to the miniumum (counter-clockwise) position_sp. Default value
is 600. Valid values are 300 to 700. You must write to the position_sp
attribute for changes to this attribute to take effect.
"""
self._min_pulse_sp, value = self.get_attr_int(self._min_pulse_sp, 'min_pulse_sp')
return value
@min_pulse_sp.setter
def min_pulse_sp(self, value):
self._min_pulse_sp = self.set_attr_int(self._min_pulse_sp, 'min_pulse_sp', value)
@property
def polarity(self):
"""
Sets the polarity of the servo. Valid values are ``normal`` and ``inversed``.
Setting the value to ``inversed`` will cause the position_sp value to be
inversed. i.e ``-100`` will correspond to ``max_pulse_sp``, and ``100`` will
correspond to ``min_pulse_sp``.
"""
self._polarity, value = self.get_attr_string(self._polarity, 'polarity')
return value
@polarity.setter
def polarity(self, value):
self._polarity = self.set_attr_string(self._polarity, 'polarity', value)
@property
def position_sp(self):
"""
Reading returns the current position_sp of the servo. Writing instructs the
servo to move to the specified position_sp. Units are percent. Valid values
are -100 to 100 (-100% to 100%) where ``-100`` corresponds to ``min_pulse_sp``,
``0`` corresponds to ``mid_pulse_sp`` and ``100`` corresponds to ``max_pulse_sp``.
"""
self._position_sp, value = self.get_attr_int(self._position_sp, 'position_sp')
return value
@position_sp.setter
def position_sp(self, value):
self._position_sp = self.set_attr_int(self._position_sp, 'position_sp', value)
@property
def rate_sp(self):
"""
Sets the rate_sp at which the servo travels from 0 to 100.0% (half of the full
range of the servo). Units are in milliseconds. Example: Setting the rate_sp
to 1000 means that it will take a 180 degree servo 2 second to move from 0
to 180 degrees. Note: Some servo controllers may not support this in which
case reading and writing will fail with ``-EOPNOTSUPP``. In continuous rotation
servos, this value will affect the rate_sp at which the speed ramps up or down.
"""
self._rate_sp, value = self.get_attr_int(self._rate_sp, 'rate_sp')
return value
@rate_sp.setter
def rate_sp(self, value):
self._rate_sp = self.set_attr_int(self._rate_sp, 'rate_sp', value)
@property
def state(self):
"""
Returns a list of flags indicating the state of the servo.
Possible values are:
* ``running``: Indicates that the motor is powered.
"""
self._state, value = self.get_attr_set(self._state, 'state')
return value
#: Drive servo to the position set in the ``position_sp`` attribute.
COMMAND_RUN = 'run'
#: Remove power from the motor.
COMMAND_FLOAT = 'float'
#: With ``normal`` polarity, a positive duty cycle will
#: cause the motor to rotate clockwise.
POLARITY_NORMAL = 'normal'
#: With ``inversed`` polarity, a positive duty cycle will
#: cause the motor to rotate counter-clockwise.
POLARITY_INVERSED = 'inversed'
def run(self, **kwargs):
"""
Drive servo to the position set in the ``position_sp`` attribute.
"""
for key in kwargs:
setattr(self, key, kwargs[key])
self.command = self.COMMAND_RUN
def float(self, **kwargs):
"""
Remove power from the motor.
"""
for key in kwargs:
setattr(self, key, kwargs[key])
self.command = self.COMMAND_FLOAT
class MotorSet(object):
def __init__(self, motor_specs, desc=None):
"""
motor_specs is a dictionary such as
{
OUTPUT_A : LargeMotor,
OUTPUT_C : LargeMotor,
}
"""
self.motors = OrderedDict()
for motor_port in sorted(motor_specs.keys()):
motor_class = motor_specs[motor_port]
self.motors[motor_port] = motor_class(motor_port)
self.motors[motor_port].reset()
self.desc = desc
def __str__(self):
if self.desc:
return self.desc
else:
return self.__class__.__name__
def set_args(self, **kwargs):
motors = kwargs.get('motors', self.motors.values())
for motor in motors:
for key in kwargs:
if key != 'motors':
try:
setattr(motor, key, kwargs[key])
except AttributeError as e:
# log.error("%s %s cannot set %s to %s" % (self, motor, key, kwargs[key]))
raise e
def set_polarity(self, polarity, motors=None):
valid_choices = (LargeMotor.POLARITY_NORMAL, LargeMotor.POLARITY_INVERSED)
assert polarity in valid_choices,\
"%s is an invalid polarity choice, must be %s" % (polarity, ', '.join(valid_choices))
motors = motors if motors is not None else self.motors.values()
for motor in motors:
motor.polarity = polarity
def _run_command(self, **kwargs):
motors = kwargs.get('motors', self.motors.values())
for motor in motors:
for key in kwargs:
if key not in ('motors', 'commands'):
# log.debug("%s: %s set %s to %s" % (self, motor, key, kwargs[key]))
setattr(motor, key, kwargs[key])
for motor in motors:
motor.command = kwargs['command']
# log.debug("%s: %s command %s" % (self, motor, kwargs['command']))
def run_forever(self, **kwargs):
kwargs['command'] = LargeMotor.COMMAND_RUN_FOREVER
self._run_command(**kwargs)
def run_to_abs_pos(self, **kwargs):
kwargs['command'] = LargeMotor.COMMAND_RUN_TO_ABS_POS
self._run_command(**kwargs)
def run_to_rel_pos(self, **kwargs):
kwargs['command'] = LargeMotor.COMMAND_RUN_TO_REL_POS
self._run_command(**kwargs)
def run_timed(self, **kwargs):
kwargs['command'] = LargeMotor.COMMAND_RUN_TIMED
self._run_command(**kwargs)
def run_direct(self, **kwargs):
kwargs['command'] = LargeMotor.COMMAND_RUN_DIRECT
self._run_command(**kwargs)
def reset(self, motors=None):
motors = motors if motors is not None else self.motors.values()
for motor in motors:
motor.reset()
def off(self, motors=None, brake=True):
"""
Stop motors immediately. Configure motors to brake if ``brake`` is set.
"""
motors = motors if motors is not None else self.motors.values()
for motor in motors:
motor._set_brake(brake)
for motor in motors:
motor.stop()
def stop(self, motors=None, brake=True):
"""
``stop`` is an alias of ``off``. This is deprecated but helps keep
the API for MotorSet somewhat similar to Motor which has both ``stop``
and ``off``.
"""
self.off(motors, brake)
def _is_state(self, motors, state):
motors = motors if motors is not None else self.motors.values()
for motor in motors:
if state not in motor.state:
return False
return True
@property
def is_running(self, motors=None):
return self._is_state(motors, LargeMotor.STATE_RUNNING)
@property
def is_ramping(self, motors=None):
return self._is_state(motors, LargeMotor.STATE_RAMPING)
@property
def is_holding(self, motors=None):
return self._is_state(motors, LargeMotor.STATE_HOLDING)
@property
def is_overloaded(self, motors=None):
return self._is_state(motors, LargeMotor.STATE_OVERLOADED)
@property
def is_stalled(self, motors=None):
return self._is_state(motors, LargeMotor.STATE_STALLED)
def wait(self, cond, timeout=None, motors=None):
motors = motors if motors is not None else self.motors.values()
for motor in motors:
motor.wait(cond, timeout)
def wait_until_not_moving(self, timeout=None, motors=None):
motors = motors if motors is not None else self.motors.values()
for motor in motors:
motor.wait_until_not_moving(timeout)
def wait_until(self, s, timeout=None, motors=None):
motors = motors if motors is not None else self.motors.values()
for motor in motors:
motor.wait_until(s, timeout)
def wait_while(self, s, timeout=None, motors=None):
motors = motors if motors is not None else self.motors.values()
for motor in motors:
motor.wait_while(s, timeout)
def _block(self):
self.wait_until('running', timeout=WAIT_RUNNING_TIMEOUT)
self.wait_until_not_moving()
# follow gyro angle classes
class FollowGyroAngleErrorTooFast(Exception):
"""
Raised when a gyro following robot has been asked to follow
an angle at an unrealistic speed
"""
pass
# line follower classes
class LineFollowErrorLostLine(Exception):
"""
Raised when a line following robot has lost the line
"""
pass
class LineFollowErrorTooFast(Exception):
"""
Raised when a line following robot has been asked to follow
a line at an unrealistic speed
"""
pass
# line follower functions
def follow_for_forever(tank):
"""
``tank``: the MoveTank object that is following a line
"""
return True
def follow_for_ms(tank, ms):
"""
``tank``: the MoveTank object that is following a line
``ms`` : the number of milliseconds to follow the line
"""
if not hasattr(tank, 'stopwatch') or tank.stopwatch is None:
tank.stopwatch = StopWatch()
tank.stopwatch.start()
if tank.stopwatch.value_ms >= ms:
tank.stopwatch = None
return False
else:
return True
class MoveTank(MotorSet):
"""
Controls a pair of motors simultaneously, via individual speed setpoints for each motor.
Example:
.. code:: python
tank_drive = MoveTank(OUTPUT_A, OUTPUT_B)
# drive in a turn for 10 rotations of the outer motor
tank_drive.on_for_rotations(50, 75, 10)
"""
def __init__(self, left_motor_port, right_motor_port, desc=None, motor_class=LargeMotor):
motor_specs = {
left_motor_port: motor_class,
right_motor_port: motor_class,
}
MotorSet.__init__(self, motor_specs, desc)
self.left_motor = self.motors[left_motor_port]
self.right_motor = self.motors[right_motor_port]
self.max_speed = self.left_motor.max_speed
self._cs = None
self._gyro = None
# color sensor used by follow_line()
@property
def cs(self):
return self._cs
@cs.setter
def cs(self, cs):
self._cs = cs
# gyro sensor used by follow_gyro_angle()
@property
def gyro(self):
return self._gyro
@gyro.setter
def gyro(self, gyro):
self._gyro = gyro
def _unpack_speeds_to_native_units(self, left_speed, right_speed):
left_speed = self.left_motor._speed_native_units(left_speed, "left_speed")
right_speed = self.right_motor._speed_native_units(right_speed, "right_speed")
return (left_speed, right_speed)
def on_for_degrees(self, left_speed, right_speed, degrees, brake=True, block=True):
"""
Rotate the motors at 'left_speed & right_speed' for 'degrees'. Speeds
can be percentages or any SpeedValue implementation.
If the left speed is not equal to the right speed (i.e., the robot will
turn), the motor on the outside of the turn will rotate for the full
``degrees`` while the motor on the inside will have its requested
distance calculated according to the expected turn.
"""
(left_speed_native_units,
right_speed_native_units) = self._unpack_speeds_to_native_units(left_speed, right_speed)
# proof of the following distance calculation: consider the circle formed by each wheel's path
# v_l = d_l/t, v_r = d_r/t
# therefore, t = d_l/v_l = d_r/v_r
if degrees == 0 or (left_speed_native_units == 0 and right_speed_native_units == 0):
left_degrees = degrees
right_degrees = degrees
# larger speed by magnitude is the "outer" wheel, and rotates the full "degrees"
elif abs(left_speed_native_units) > abs(right_speed_native_units):
left_degrees = degrees
right_degrees = abs(right_speed_native_units / left_speed_native_units) * degrees
else:
left_degrees = abs(left_speed_native_units / right_speed_native_units) * degrees
right_degrees = degrees
# Set all parameters
self.left_motor._set_rel_position_degrees_and_speed_sp(left_degrees, left_speed_native_units)
self.left_motor._set_brake(brake)
self.right_motor._set_rel_position_degrees_and_speed_sp(right_degrees, right_speed_native_units)
self.right_motor._set_brake(brake)
# Start the motors
self.left_motor.run_to_rel_pos()
self.right_motor.run_to_rel_pos()
if block:
self._block()
def on_for_rotations(self, left_speed, right_speed, rotations, brake=True, block=True):
"""
Rotate the motors at 'left_speed & right_speed' for 'rotations'. Speeds
can be percentages or any SpeedValue implementation.
If the left speed is not equal to the right speed (i.e., the robot will
turn), the motor on the outside of the turn will rotate for the full
``rotations`` while the motor on the inside will have its requested
distance calculated according to the expected turn.
"""
MoveTank.on_for_degrees(self, left_speed, right_speed, rotations * 360, brake, block)
def on_for_seconds(self, left_speed, right_speed, seconds, brake=True, block=True):
"""
Rotate the motors at 'left_speed & right_speed' for 'seconds'. Speeds
can be percentages or any SpeedValue implementation.
"""
if seconds < 0:
raise ValueError("seconds is negative ({})".format(seconds))
(left_speed_native_units,
right_speed_native_units) = self._unpack_speeds_to_native_units(left_speed, right_speed)
# Set all parameters
self.left_motor.speed_sp = int(round(left_speed_native_units))
self.left_motor.time_sp = int(seconds * 1000)
self.left_motor._set_brake(brake)
self.right_motor.speed_sp = int(round(right_speed_native_units))
self.right_motor.time_sp = int(seconds * 1000)
self.right_motor._set_brake(brake)
log.debug("%s: on_for_seconds %ss at left-speed %s, right-speed %s" % (self, seconds, left_speed, right_speed))
# Start the motors
self.left_motor.run_timed()
self.right_motor.run_timed()
if block:
self._block()
def on(self, left_speed, right_speed):
"""
Start rotating the motors according to ``left_speed`` and ``right_speed`` forever.
Speeds can be percentages or any SpeedValue implementation.
"""
(left_speed_native_units,
right_speed_native_units) = self._unpack_speeds_to_native_units(left_speed, right_speed)
# Set all parameters
self.left_motor.speed_sp = int(round(left_speed_native_units))
self.right_motor.speed_sp = int(round(right_speed_native_units))
# Start the motors
self.left_motor.run_forever()
self.right_motor.run_forever()
def follow_line(self,
kp,
ki,
kd,
speed,
target_light_intensity=None,
follow_left_edge=True,
white=60,
off_line_count_max=20,
sleep_time=0.01,
follow_for=follow_for_forever,
**kwargs):
"""
PID line follower
``kp``, ``ki``, and ``kd`` are the PID constants.
``speed`` is the desired speed of the midpoint of the robot
``target_light_intensity`` is the reflected light intensity when the color sensor
is on the edge of the line. If this is None we assume that the color sensor
is on the edge of the line and will take a reading to set this variable.
``follow_left_edge`` determines if we follow the left or right edge of the line
``white`` is the reflected_light_intensity that is used to determine if we have
lost the line
``off_line_count_max`` is how many consecutive times through the loop the
reflected_light_intensity must be greater than ``white`` before we
declare the line lost and raise an exception
``sleep_time`` is how many seconds we sleep on each pass through
the loop. This is to give the robot a chance to react
to the new motor settings. This should be something small such
as 0.01 (10ms).
``follow_for`` is called to determine if we should keep following the
line or stop. This function will be passed ``self`` (the current
``MoveTank`` object). Current supported options are:
- ``follow_for_forever``
- ``follow_for_ms``
``**kwargs`` will be passed to the ``follow_for`` function
Example:
.. code:: python
from ev3dev2.motor import OUTPUT_A, OUTPUT_B, MoveTank, SpeedPercent, follow_for_ms
from ev3dev2.sensor.lego import ColorSensor
tank = MoveTank(OUTPUT_A, OUTPUT_B)
tank.cs = ColorSensor()
try:
# Follow the line for 4500ms
tank.follow_line(
kp=11.3, ki=0.05, kd=3.2,
speed=SpeedPercent(30),
follow_for=follow_for_ms,
ms=4500
)
except LineFollowErrorTooFast:
tank.stop()
raise
"""
if not self._cs:
raise DeviceNotDefined(
"The 'cs' variable must be defined with a ColorSensor. Example: tank.cs = ColorSensor()")
if target_light_intensity is None:
target_light_intensity = self._cs.reflected_light_intensity
integral = 0.0
last_error = 0.0
derivative = 0.0
off_line_count = 0
speed = speed_to_speedvalue(speed)
speed_native_units = speed.to_native_units(self.left_motor)
while follow_for(self, **kwargs):
reflected_light_intensity = self._cs.reflected_light_intensity
error = target_light_intensity - reflected_light_intensity
integral = integral + error
derivative = error - last_error
last_error = error
turn_native_units = (kp * error) + (ki * integral) + (kd * derivative)
if not follow_left_edge:
turn_native_units *= -1
left_speed = SpeedNativeUnits(speed_native_units - turn_native_units)
right_speed = SpeedNativeUnits(speed_native_units + turn_native_units)
# Have we lost the line?
if reflected_light_intensity >= white:
off_line_count += 1
if off_line_count >= off_line_count_max:
self.stop()
raise LineFollowErrorLostLine("we lost the line")
else:
off_line_count = 0
if sleep_time:
time.sleep(sleep_time)
try:
self.on(left_speed, right_speed)
except SpeedInvalid as e:
log.exception(e)
self.stop()
raise LineFollowErrorTooFast("The robot is moving too fast to follow the line")
self.stop()
def follow_gyro_angle(self,
kp,
ki,
kd,
speed,
target_angle=0,
sleep_time=0.01,
follow_for=follow_for_forever,
**kwargs):
"""
PID gyro angle follower
``kp``, ``ki``, and ``kd`` are the PID constants.
``speed`` is the desired speed of the midpoint of the robot
``target_angle`` is the angle we want to maintain
``sleep_time`` is how many seconds we sleep on each pass through
the loop. This is to give the robot a chance to react
to the new motor settings. This should be something small such
as 0.01 (10ms).
``follow_for`` is called to determine if we should keep following the
desired angle or stop. This function will be passed ``self`` (the current
``MoveTank`` object). Current supported options are:
- ``follow_for_forever``
- ``follow_for_ms``
``**kwargs`` will be passed to the ``follow_for`` function
Example:
.. code:: python
from ev3dev2.motor import OUTPUT_A, OUTPUT_B, MoveTank, SpeedPercent, follow_for_ms
from ev3dev2.sensor.lego import GyroSensor
# Instantiate the MoveTank object
tank = MoveTank(OUTPUT_A, OUTPUT_B)
# Initialize the tank's gyro sensor
tank.gyro = GyroSensor()
# Calibrate the gyro to eliminate drift, and to initialize the current angle as 0
tank.gyro.calibrate()
try:
# Follow the target_angle for 4500ms
tank.follow_gyro_angle(
kp=11.3, ki=0.05, kd=3.2,
speed=SpeedPercent(30),
target_angle=0,
follow_for=follow_for_ms,
ms=4500
)
except FollowGyroAngleErrorTooFast:
tank.stop()
raise
"""
if not self._gyro:
raise DeviceNotDefined(
"The 'gyro' variable must be defined with a GyroSensor. Example: tank.gyro = GyroSensor()")
integral = 0.0
last_error = 0.0
derivative = 0.0
speed = speed_to_speedvalue(speed)
speed_native_units = speed.to_native_units(self.left_motor)
while follow_for(self, **kwargs):
current_angle = self._gyro.angle
error = current_angle - target_angle
integral = integral + error
derivative = error - last_error
last_error = error
turn_native_units = (kp * error) + (ki * integral) + (kd * derivative)
left_speed = SpeedNativeUnits(speed_native_units - turn_native_units)
right_speed = SpeedNativeUnits(speed_native_units + turn_native_units)
if sleep_time:
time.sleep(sleep_time)
try:
self.on(left_speed, right_speed)
except SpeedInvalid as e:
log.exception(e)
self.stop()
raise FollowGyroAngleErrorTooFast("The robot is moving too fast to follow the angle")
self.stop()
def turn_degrees(self, speed, target_angle, brake=True, error_margin=2, sleep_time=0.01):
"""
Use a GyroSensor to rotate in place for ``target_angle``
``speed`` is the desired speed of the midpoint of the robot
``target_angle`` is the number of degrees we want to rotate
``brake`` hit the brakes once we reach ``target_angle``
``error_margin`` is the +/- angle threshold to control how accurate the turn should be
``sleep_time`` is how many seconds we sleep on each pass through
the loop. This is to give the robot a chance to react
to the new motor settings. This should be something small such
as 0.01 (10ms).
Rotate in place for ``target_degrees`` at ``speed``
Example:
.. code:: python
from ev3dev2.motor import OUTPUT_A, OUTPUT_B, MoveTank, SpeedPercent
from ev3dev2.sensor.lego import GyroSensor
# Instantiate the MoveTank object
tank = MoveTank(OUTPUT_A, OUTPUT_B)
# Initialize the tank's gyro sensor
tank.gyro = GyroSensor()
# Calibrate the gyro to eliminate drift, and to initialize the current angle as 0
tank.gyro.calibrate()
# Pivot 30 degrees
tank.turn_degrees(
speed=SpeedPercent(5),
target_angle=30
)
"""
# MoveTank does not have information on wheel size and distance (that is
# MoveDifferential) so we must use a GyroSensor to control how far we rotate.
if not self._gyro:
raise DeviceNotDefined(
"The 'gyro' variable must be defined with a GyroSensor. Example: tank.gyro = GyroSensor()")
speed = speed_to_speedvalue(speed)
speed_native_units = speed.to_native_units(self.left_motor)
target_angle = self._gyro.angle + target_angle
while True:
current_angle = self._gyro.angle
delta = abs(target_angle - current_angle)
if delta <= error_margin:
self.stop(brake=brake)
break
# we are left of our target, rotate clockwise
if current_angle < target_angle:
left_speed = SpeedNativeUnits(speed_native_units)
right_speed = SpeedNativeUnits(-1 * speed_native_units)
# we are right of our target, rotate counter-clockwise
else:
left_speed = SpeedNativeUnits(-1 * speed_native_units)
right_speed = SpeedNativeUnits(speed_native_units)
self.on(left_speed, right_speed)
if sleep_time:
time.sleep(sleep_time)
def turn_right(self, speed, degrees, brake=True, error_margin=2, sleep_time=0.01):
"""
Rotate clockwise ``degrees`` in place
"""
self.turn_degrees(speed, abs(degrees), brake, error_margin, sleep_time)
def turn_left(self, speed, degrees, brake=True, error_margin=2, sleep_time=0.01):
"""
Rotate counter-clockwise ``degrees`` in place
"""
self.turn_degrees(speed, abs(degrees) * -1, brake, error_margin, sleep_time)
class MoveSteering(MoveTank):
"""
Controls a pair of motors simultaneously, via a single "steering" value and a speed.
steering [-100, 100]:
* -100 means turn left on the spot (right motor at 100% forward, left motor at 100% backward),
* 0 means drive in a straight line, and
* 100 means turn right on the spot (left motor at 100% forward, right motor at 100% backward).
"steering" can be any number between -100 and 100.
Example:
.. code:: python
steering_drive = MoveSteering(OUTPUT_A, OUTPUT_B)
# drive in a turn for 10 rotations of the outer motor
steering_drive.on_for_rotations(-20, SpeedPercent(75), 10)
"""
def on_for_rotations(self, steering, speed, rotations, brake=True, block=True):
"""
Rotate the motors according to the provided ``steering``.
The distance each motor will travel follows the rules of :meth:`MoveTank.on_for_rotations`.
"""
(left_speed, right_speed) = self.get_speed_steering(steering, speed)
MoveTank.on_for_rotations(self, SpeedNativeUnits(left_speed), SpeedNativeUnits(right_speed), rotations, brake,
block)
def on_for_degrees(self, steering, speed, degrees, brake=True, block=True):
"""
Rotate the motors according to the provided ``steering``.
The distance each motor will travel follows the rules of :meth:`MoveTank.on_for_degrees`.
"""
(left_speed, right_speed) = self.get_speed_steering(steering, speed)
MoveTank.on_for_degrees(self, SpeedNativeUnits(left_speed), SpeedNativeUnits(right_speed), degrees, brake,
block)
def on_for_seconds(self, steering, speed, seconds, brake=True, block=True):
"""
Rotate the motors according to the provided ``steering`` for ``seconds``.
"""
(left_speed, right_speed) = self.get_speed_steering(steering, speed)
MoveTank.on_for_seconds(self, SpeedNativeUnits(left_speed), SpeedNativeUnits(right_speed), seconds, brake,
block)
def on(self, steering, speed):
"""
Start rotating the motors according to the provided ``steering`` and
``speed`` forever.
"""
(left_speed, right_speed) = self.get_speed_steering(steering, speed)
MoveTank.on(self, SpeedNativeUnits(left_speed), SpeedNativeUnits(right_speed))
def get_speed_steering(self, steering, speed):
"""
Calculate the speed_sp for each motor in a pair to achieve the specified
steering. Note that calling this function alone will not make the
motors move, it only calculates the speed. A run_* function must be called
afterwards to make the motors move.
steering [-100, 100]:
* -100 means turn left on the spot (right motor at 100% forward, left motor at 100% backward),
* 0 means drive in a straight line, and
* 100 means turn right on the spot (left motor at 100% forward, right motor at 100% backward).
speed:
The speed that should be applied to the outmost motor (the one
rotating faster). The speed of the other motor will be computed
automatically.
"""
assert steering >= -100 and steering <= 100,\
"{} is an invalid steering, must be between -100 and 100 (inclusive)".format(steering)
# We don't have a good way to make this generic for the pair... so we
# assume that the left motor's speed stats are the same as the right
# motor's.
speed = self.left_motor._speed_native_units(speed)
left_speed = speed
right_speed = speed
speed_factor = (50 - abs(float(steering))) / 50
if steering >= 0:
right_speed *= speed_factor
else:
left_speed *= speed_factor
return (left_speed, right_speed)
class MoveDifferential(MoveTank):
"""
MoveDifferential is a child of MoveTank that adds the following capabilities:
- drive in a straight line for a specified distance
- rotate in place in a circle (clockwise or counter clockwise) for a
specified number of degrees
- drive in an arc (clockwise or counter clockwise) of a specified radius
for a specified distance
Odometry can be use to enable driving to specific coordinates and
rotating to a specific angle.
New arguments:
wheel_class - Typically a child class of :class:`ev3dev2.wheel.Wheel`. This is used to
get the circumference of the wheels of the robot. The circumference is
needed for several calculations in this class.
wheel_distance_mm - The distance between the mid point of the two
wheels of the robot. You may need to do some test drives to find
the correct value for your robot. It is not as simple as measuring
the distance between the midpoints of the two wheels. The weight of
the robot, center of gravity, etc come into play.
You can use utils/move_differential.py to call on_arc_left() to do
some test drives of circles with a radius of 200mm. Adjust your
wheel_distance_mm until your robot can drive in a perfect circle
and stop exactly where it started. It does not have to be a circle
with a radius of 200mm, you can test with any size circle but you do
not want it to be too small or it will be difficult to test small
adjustments to wheel_distance_mm.
Example:
.. code:: python
from ev3dev2.motor import OUTPUT_A, OUTPUT_B, MoveDifferential, SpeedRPM
from ev3dev2.wheel import EV3Tire
STUD_MM = 8
# test with a robot that:
# - uses the standard wheels known as EV3Tire
# - wheels are 16 studs apart
mdiff = MoveDifferential(OUTPUT_A, OUTPUT_B, EV3Tire, 16 * STUD_MM)
# Rotate 90 degrees clockwise
mdiff.turn_right(SpeedRPM(40), 90)
# Drive forward 500 mm
mdiff.on_for_distance(SpeedRPM(40), 500)
# Drive in arc to the right along an imaginary circle of radius 150 mm.
# Drive for 700 mm around this imaginary circle.
mdiff.on_arc_right(SpeedRPM(80), 150, 700)
# Enable odometry
mdiff.odometry_start()
# Use odometry to drive to specific coordinates
mdiff.on_to_coordinates(SpeedRPM(40), 300, 300)
# Use odometry to go back to where we started
mdiff.on_to_coordinates(SpeedRPM(40), 0, 0)
# Use odometry to rotate in place to 90 degrees
mdiff.turn_to_angle(SpeedRPM(40), 90)
# Disable odometry
mdiff.odometry_stop()
"""
def __init__(self,
left_motor_port,
right_motor_port,
wheel_class,
wheel_distance_mm,
desc=None,
motor_class=LargeMotor):
MoveTank.__init__(self, left_motor_port, right_motor_port, desc, motor_class)
self.wheel = wheel_class()
self.wheel_distance_mm = wheel_distance_mm
# The circumference of the circle made if this robot were to rotate in place
self.circumference_mm = self.wheel_distance_mm * math.pi
self.min_circle_radius_mm = self.wheel_distance_mm / 2
# odometry variables
self.x_pos_mm = 0.0 # robot X position in mm
self.y_pos_mm = 0.0 # robot Y position in mm
self.odometry_thread_run = False
self.theta = 0.0
def on_for_distance(self, speed, distance_mm, brake=True, block=True):
"""
Drive in a straight line for ``distance_mm``
"""
rotations = distance_mm / self.wheel.circumference_mm
log.debug("%s: on_for_rotations distance_mm %s, rotations %s, speed %s" % (self, distance_mm, rotations, speed))
MoveTank.on_for_rotations(self, speed, speed, rotations, brake, block)
def _on_arc(self, speed, radius_mm, distance_mm, brake, block, arc_right):
"""
Drive in a circle with 'radius' for 'distance'
"""
if radius_mm < self.min_circle_radius_mm:
raise ValueError("{}: radius_mm {} is less than min_circle_radius_mm {}".format(
self, radius_mm, self.min_circle_radius_mm))
# The circle formed at the halfway point between the two wheels is the
# circle that must have a radius of radius_mm
circle_outer_mm = 2 * math.pi * (radius_mm + (self.wheel_distance_mm / 2))
circle_middle_mm = 2 * math.pi * radius_mm
circle_inner_mm = 2 * math.pi * (radius_mm - (self.wheel_distance_mm / 2))
if arc_right:
# The left wheel is making the larger circle and will move at 'speed'
# The right wheel is making a smaller circle so its speed will be a fraction of the left motor's speed
left_speed = speed
right_speed = float(circle_inner_mm / circle_outer_mm) * left_speed
else:
# The right wheel is making the larger circle and will move at 'speed'
# The left wheel is making a smaller circle so its speed will be a fraction of the right motor's speed
right_speed = speed
left_speed = float(circle_inner_mm / circle_outer_mm) * right_speed
log.debug("%s: arc %s, radius %s, distance %s, left-speed %s, right-speed %s" %
(self, "right" if arc_right else "left", radius_mm, distance_mm, left_speed, right_speed))
log.debug("%s: circle_outer_mm %s, circle_middle_mm %s, circle_inner_mm %s" %
(self, circle_outer_mm, circle_middle_mm, circle_inner_mm))
# We know we want the middle circle to be of length distance_mm so
# calculate the percentage of circle_middle_mm we must travel for the
# middle of the robot to travel distance_mm.
circle_middle_percentage = float(distance_mm / circle_middle_mm)
# Now multiple that percentage by circle_outer_mm to calculate how
# many mm the outer wheel should travel.
circle_outer_final_mm = circle_middle_percentage * circle_outer_mm
outer_wheel_rotations = float(circle_outer_final_mm / self.wheel.circumference_mm)
outer_wheel_degrees = outer_wheel_rotations * 360
log.debug("%s: arc %s, circle_middle_percentage %s, circle_outer_final_mm %s, " %
(self, "right" if arc_right else "left", circle_middle_percentage, circle_outer_final_mm))
log.debug("%s: outer_wheel_rotations %s, outer_wheel_degrees %s" %
(self, outer_wheel_rotations, outer_wheel_degrees))
MoveTank.on_for_degrees(self, left_speed, right_speed, outer_wheel_degrees, brake, block)
def on_arc_right(self, speed, radius_mm, distance_mm, brake=True, block=True):
"""
Drive clockwise in a circle with 'radius_mm' for 'distance_mm'
"""
self._on_arc(speed, radius_mm, distance_mm, brake, block, True)
def on_arc_left(self, speed, radius_mm, distance_mm, brake=True, block=True):
"""
Drive counter-clockwise in a circle with 'radius_mm' for 'distance_mm'
"""
self._on_arc(speed, radius_mm, distance_mm, brake, block, False)
def turn_degrees(self, speed, degrees, brake=True, block=True, error_margin=2, use_gyro=False):
"""
Rotate in place ``degrees``. Both wheels must turn at the same speed for us
to rotate in place. If the following conditions are met the GryoSensor will
be used to improve the accuracy of our turn:
- ``use_gyro``, ``brake`` and ``block`` are all True
- A GyroSensor has been defined via ``self.gyro = GyroSensor()``
"""
def final_angle(init_angle, degrees):
result = init_angle - degrees
while result <= -360:
result += 360
while result >= 360:
result -= 360
if result < 0:
result += 360
return result
# use the gyro to check that we turned the correct amount?
use_gyro = bool(use_gyro and block and brake)
if use_gyro and not self._gyro:
raise DeviceNotDefined(
"The 'gyro' variable must be defined with a GyroSensor. Example: tank.gyro = GyroSensor()")
if use_gyro:
angle_init_degrees = self._gyro.circle_angle()
else:
angle_init_degrees = math.degrees(self.theta)
angle_target_degrees = final_angle(angle_init_degrees, degrees)
log.info("%s: turn_degrees() %d degrees from %s to %s" %
(self, degrees, angle_init_degrees, angle_target_degrees))
# The distance each wheel needs to travel
distance_mm = (abs(degrees) / 360) * self.circumference_mm
# The number of rotations to move distance_mm
rotations = distance_mm / self.wheel.circumference_mm
# If degrees is positive rotate clockwise
if degrees > 0:
MoveTank.on_for_rotations(self, speed, speed * -1, rotations, brake, block)
# If degrees is negative rotate counter-clockwise
else:
MoveTank.on_for_rotations(self, speed * -1, speed, rotations, brake, block)
if use_gyro:
angle_current_degrees = self._gyro.circle_angle()
# This can happen if we are aiming for 2 degrees and overrotate to 358 degrees
# We need to rotate counter-clockwise
if 90 >= angle_target_degrees >= 0 and 270 <= angle_current_degrees <= 360:
degrees_error = (angle_target_degrees + (360 - angle_current_degrees)) * -1
# This can happen if we are aiming for 358 degrees and overrotate to 2 degrees
# We need to rotate clockwise
elif 360 >= angle_target_degrees >= 270 and 0 <= angle_current_degrees <= 90:
degrees_error = angle_current_degrees + (360 - angle_target_degrees)
# We need to rotate clockwise
elif angle_current_degrees > angle_target_degrees:
degrees_error = angle_current_degrees - angle_target_degrees
# We need to rotate counter-clockwise
else:
degrees_error = (angle_target_degrees - angle_current_degrees) * -1
log.info("%s: turn_degrees() ended up at %s, error %s, error_margin %s" %
(self, angle_current_degrees, degrees_error, error_margin))
if abs(degrees_error) > error_margin:
self.turn_degrees(speed, degrees_error, brake, block, error_margin, use_gyro)
def turn_right(self, speed, degrees, brake=True, block=True, error_margin=2, use_gyro=False):
"""
Rotate clockwise ``degrees`` in place
"""
self.turn_degrees(speed, abs(degrees), brake, block, error_margin, use_gyro)
def turn_left(self, speed, degrees, brake=True, block=True, error_margin=2, use_gyro=False):
"""
Rotate counter-clockwise ``degrees`` in place
"""
self.turn_degrees(speed, abs(degrees) * -1, brake, block, error_margin, use_gyro)
def turn_to_angle(self, speed, angle_target_degrees, brake=True, block=True, error_margin=2, use_gyro=False):
"""
Rotate in place to ``angle_target_degrees`` at ``speed``
"""
if not self.odometry_thread_run:
raise ThreadNotRunning("odometry_start() must be called to track robot coordinates")
# Make both target and current angles positive numbers between 0 and 360
while angle_target_degrees < 0:
angle_target_degrees += 360
angle_current_degrees = math.degrees(self.theta)
while angle_current_degrees < 0:
angle_current_degrees += 360
# Is it shorter to rotate to the right or left
# to reach angle_target_degrees?
if angle_current_degrees > angle_target_degrees:
turn_right = True
angle_delta = angle_current_degrees - angle_target_degrees
else:
turn_right = False
angle_delta = angle_target_degrees - angle_current_degrees
if angle_delta > 180:
angle_delta = 360 - angle_delta
turn_right = not turn_right
log.debug("%s: turn_to_angle %s, current angle %s, delta %s, turn_right %s" %
(self, angle_target_degrees, angle_current_degrees, angle_delta, turn_right))
self.odometry_coordinates_log()
if turn_right:
self.turn_degrees(speed, abs(angle_delta), brake, block, error_margin, use_gyro)
else:
self.turn_degrees(speed, abs(angle_delta) * -1, brake, block, error_margin, use_gyro)
self.odometry_coordinates_log()
def odometry_coordinates_log(self):
log.debug("%s: odometry angle %s at (%d, %d)" % (self, math.degrees(self.theta), self.x_pos_mm, self.y_pos_mm))
def odometry_start(self, theta_degrees_start=90.0, x_pos_start=0.0, y_pos_start=0.0, sleep_time=0.005): # 5ms
"""
Ported from:
http://seattlerobotics.org/encoder/200610/Article3/IMU%20Odometry,%20by%20David%20Anderson.htm
A thread is started that will run until the user calls odometry_stop()
which will set odometry_thread_run to False
"""
def _odometry_monitor():
left_previous = 0
right_previous = 0
self.theta = math.radians(theta_degrees_start) # robot heading
self.x_pos_mm = x_pos_start # robot X position in mm
self.y_pos_mm = y_pos_start # robot Y position in mm
TWO_PI = 2 * math.pi
self.odometry_thread_run = True
while self.odometry_thread_run:
# sample the left and right encoder counts as close together
# in time as possible
left_current = self.left_motor.position
right_current = self.right_motor.position
# determine how many ticks since our last sampling
left_ticks = left_current - left_previous
right_ticks = right_current - right_previous
# Have we moved?
if not left_ticks and not right_ticks:
if sleep_time:
time.sleep(sleep_time)
continue
# update _previous for next time
left_previous = left_current
right_previous = right_current
# rotations = distance_mm/self.wheel.circumference_mm
left_rotations = float(left_ticks / self.left_motor.count_per_rot)
right_rotations = float(right_ticks / self.right_motor.count_per_rot)
# convert longs to floats and ticks to mm
left_mm = float(left_rotations * self.wheel.circumference_mm)
right_mm = float(right_rotations * self.wheel.circumference_mm)
# calculate distance we have traveled since last sampling
mm = (left_mm + right_mm) / 2.0
# accumulate total rotation around our center
self.theta += (right_mm - left_mm) / self.wheel_distance_mm
# and clip the rotation to plus or minus 360 degrees
self.theta -= float(int(self.theta / TWO_PI) * TWO_PI)
# now calculate and accumulate our position in mm
self.x_pos_mm += mm * math.cos(self.theta)
self.y_pos_mm += mm * math.sin(self.theta)
if sleep_time:
time.sleep(sleep_time)
_thread.start_new_thread(_odometry_monitor, ())
# Block until the thread has started doing work
while not self.odometry_thread_run:
pass
def odometry_stop(self):
"""
Signal the odometry thread to exit
"""
if self.odometry_thread_run:
self.odometry_thread_run = False
def on_to_coordinates(self, speed, x_target_mm, y_target_mm, brake=True, block=True):
"""
Drive to (``x_target_mm``, ``y_target_mm``) coordinates at ``speed``
"""
if not self.odometry_thread_run:
raise ThreadNotRunning("odometry_start() must be called to track robot coordinates")
# stop moving
self.off(brake='hold')
# rotate in place so we are pointed straight at our target
x_delta = x_target_mm - self.x_pos_mm
y_delta = y_target_mm - self.y_pos_mm
angle_target_radians = math.atan2(y_delta, x_delta)
angle_target_degrees = math.degrees(angle_target_radians)
self.turn_to_angle(speed, angle_target_degrees, brake=True, block=True)
# drive in a straight line to the target coordinates
distance_mm = math.sqrt(pow(self.x_pos_mm - x_target_mm, 2) + pow(self.y_pos_mm - y_target_mm, 2))
self.on_for_distance(speed, distance_mm, brake, block)
class MoveJoystick(MoveTank):
"""
Used to control a pair of motors via a single joystick vector.
"""
def on(self, x, y, radius=100.0):
"""
Convert ``x``,``y`` joystick coordinates to left/right motor speed percentages
and move the motors.
This will use a classic "arcade drive" algorithm: a full-forward joystick
goes straight forward and likewise for full-backward. Pushing the joystick
all the way to one side will make it turn on the spot in that direction.
Positions in the middle will control how fast the vehicle moves and how
sharply it turns.
``x``, ``y``:
The X and Y coordinates of the joystick's position, with
(0,0) representing the center position. X is horizontal and Y is vertical.
``radius`` (default 100):
The radius of the joystick, controlling the range of the input (x, y) values.
e.g. if "x" and "y" can be between -1 and 1, radius should be set to "1".
"""
# If joystick is in the middle stop the tank
if not x and not y:
self.off()
return
vector_length = math.sqrt((x * x) + (y * y))
angle = math.degrees(math.atan2(y, x))
if angle < 0:
angle += 360
# Should not happen but can happen (just by a hair) due to floating point math
if vector_length > radius:
vector_length = radius
(init_left_speed_percentage, init_right_speed_percentage) = MoveJoystick.angle_to_speed_percentage(angle)
# scale the speed percentages based on vector_length vs. radius
left_speed_percentage = (init_left_speed_percentage * vector_length) / radius
right_speed_percentage = (init_right_speed_percentage * vector_length) / radius
# log.debug("""
# x, y : %s, %s
# radius : %s
# angle : %s
# vector length : %s
# init left_speed_percentage : %s
# init right_speed_percentage : %s
# final left_speed_percentage : %s
# final right_speed_percentage : %s
# """ % (x, y, radius, angle, vector_length,
# init_left_speed_percentage, init_right_speed_percentage,
# left_speed_percentage, right_speed_percentage))
MoveTank.on(self, SpeedPercent(left_speed_percentage), SpeedPercent(right_speed_percentage))
@staticmethod
def angle_to_speed_percentage(angle):
"""
The following graphic illustrates the **motor power outputs** for the
left and right motors based on where the joystick is pointing, of the
form ``(left power, right power)``::
(1, 1)
. . . . . . .
. | .
. | .
(0, 1) . | . (1, 0)
. | .
. | .
. | .
. | .
. | .
. | x-axis .
(-1, 1) .---------------------------------------. (1, -1)
. | .
. | .
. | .
. | y-axis .
. | .
(0, -1) . | . (-1, 0)
. | .
. | .
. . . . . . .
(-1, -1)
The joystick is a circle within a circle where the (x, y) coordinates
of the joystick form an angle with the x-axis. Our job is to translate
this angle into the percentage of power that should be sent to each motor.
For instance if the joystick is moved all the way to the top of the circle
we want both motors to move forward with 100% power...that is represented
above by (1, 1). If the joystick is moved all the way to the right side of
the circle we want to rotate clockwise so we move the left motor forward 100%
and the right motor backwards 100%...so (1, -1). If the joystick is at
45 degrees then we move apply (1, 0) to move the left motor forward 100% and
the right motor stays still.
The 8 points shown above are pretty easy. For the points in between those 8
we do some math to figure out what the percentages should be. Take 11.25 degrees
for example. We look at how the motors transition from 0 degrees to 45 degrees:
- the left motor is 1 so that is easy
- the right motor moves from -1 to 0
We determine how far we are between 0 and 45 degrees (11.25 is 25% of 45) so we
know that the right motor should be 25% of the way from -1 to 0...so -0.75 is the
percentage for the right motor at 11.25 degrees.
"""
if 0 <= angle <= 45:
# left motor stays at 1
left_speed_percentage = 1
# right motor transitions from -1 to 0
right_speed_percentage = -1 + (angle / 45.0)
elif 45 < angle <= 90:
# left motor stays at 1
left_speed_percentage = 1
# right motor transitions from 0 to 1
percentage_from_45_to_90 = (angle - 45) / 45.0
right_speed_percentage = percentage_from_45_to_90
elif 90 < angle <= 135:
# left motor transitions from 1 to 0
percentage_from_90_to_135 = (angle - 90) / 45.0
left_speed_percentage = 1 - percentage_from_90_to_135
# right motor stays at 1
right_speed_percentage = 1
elif 135 < angle <= 180:
# left motor transitions from 0 to -1
percentage_from_135_to_180 = (angle - 135) / 45.0
left_speed_percentage = -1 * percentage_from_135_to_180
# right motor stays at 1
right_speed_percentage = 1
elif 180 < angle <= 225:
# left motor transitions from -1 to 0
percentage_from_180_to_225 = (angle - 180) / 45.0
left_speed_percentage = -1 + percentage_from_180_to_225
# right motor transitions from 1 to -1
# right motor transitions from 1 to 0 between 180 and 202.5
if angle < 202.5:
percentage_from_180_to_202 = (angle - 180) / 22.5
right_speed_percentage = 1 - percentage_from_180_to_202
# right motor is 0 at 202.5
elif angle == 202.5:
right_speed_percentage = 0
# right motor transitions from 0 to -1 between 202.5 and 225
else:
percentage_from_202_to_225 = (angle - 202.5) / 22.5
right_speed_percentage = -1 * percentage_from_202_to_225
elif 225 < angle <= 270:
# left motor transitions from 0 to -1
percentage_from_225_to_270 = (angle - 225) / 45.0
left_speed_percentage = -1 * percentage_from_225_to_270
# right motor stays at -1
right_speed_percentage = -1
elif 270 < angle <= 315:
# left motor stays at -1
left_speed_percentage = -1
# right motor transitions from -1 to 0
percentage_from_270_to_315 = (angle - 270) / 45.0
right_speed_percentage = -1 + percentage_from_270_to_315
elif 315 < angle <= 360:
# left motor transitions from -1 to 1
# left motor transitions from -1 to 0 between 315 and 337.5
if angle < 337.5:
percentage_from_315_to_337 = (angle - 315) / 22.5
left_speed_percentage = (1 - percentage_from_315_to_337) * -1
# left motor is 0 at 337.5
elif angle == 337.5:
left_speed_percentage = 0
# left motor transitions from 0 to 1 between 337.5 and 360
elif angle > 337.5:
percentage_from_337_to_360 = (angle - 337.5) / 22.5
left_speed_percentage = percentage_from_337_to_360
# right motor transitions from 0 to -1
percentage_from_315_to_360 = (angle - 315) / 45.0
right_speed_percentage = -1 * percentage_from_315_to_360
else:
raise Exception(
'You created a circle with more than 360 degrees ({})...that is quite the trick'.format(angle))
return (left_speed_percentage * 100, right_speed_percentage * 100)
|