
Development of Reactive

Programs Using Upp

aa

l

L3
L2
y<=5

L0
y<=2 L4

L1
y<=4

L1’
y<=4

L2’
y<=5

L2’’
y<=5

L1’’
y<=4

L0’

y>3
y:=0
y>=3 z>=LARGE

y:=0y>=1 y:=0

y>=1

y>=3
y:=0y:=0

y>=1

y>=3
y:=0

Martijn Hendriks

Development of Reactive Programs

Using Uppaal

A master’s thesis

Martijn Hendriks

Department of Computer Science, University of Nijmegen
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

Date:

February 14, 2002

Supervisors:

Dr. Jozef Hooman (University of Nijmegen)
Prof. dr. Frits Vaandrager (University of Nijmegen)

Prof. dr. Kim G. Larsen (University of Aalborg, Denmark)

Thesis number:

498

Acknowledgements

I thank Jozef Hooman, Frits Vaandrager and Kim Larsen for their enthusi-
astic and fine guidance. I also thank the people in Aalborg for the pleasant
month, and in particular Carsten Stiborg for his help with the LEGO Pro-
duction Cell.

v

vi

Contents

1 Introduction 1
1.1 Model checking and system development 2
1.2 Objectives . 3
1.3 General outline . 5

2 Setting and tools 7
2.1 The hardware platform . 7

2.1.1 The firmware and byte code 8
2.1.2 LegOS . 9

2.2 The model checker . 10
2.2.1 Timed automata . 11
2.2.2 Symbolic model checking 13
2.2.3 The model checker Uppaal 14

2.3 Summary . 15

3 Case studies: the conceptual designs 17
3.1 A communication protocol . 17

3.1.1 Encoding of packets on the RCX platform 18
3.1.2 Modeling the communication channels 18
3.1.3 The sender . 19
3.1.4 The receiver . 20
3.1.5 The tester . 21
3.1.6 Validation of the protocol 22

3.2 The Level Crossing . 22
3.2.1 The physical gate and the physical train 23
3.2.2 The gate controller . 25
3.2.3 The train controller 27
3.2.4 The hurry dummy: urgent edges 27
3.2.5 Validation of the Level Crossing 27

3.3 The Production Cell . 28
3.3.1 The physical robot arm 29
3.3.2 The brick template . 30
3.3.3 The robot arm controller 31
3.3.4 The belt controller . 34
3.3.5 Validation of the Production Cell 35

3.4 Summary . 36

vii

4 Compiling conceptual designs 39
4.1 Extra information in conceptual designs 39

4.1.1 Only a Uppaal model is not enough 39
4.1.2 The type mappings . 40

4.2 Definition of the translation 42
4.2.1 Generating the byte code program 42
4.2.2 Generating the Uppaal model of the run-time behavior 46
4.2.3 Relation between the input and output of the translation 49
4.2.4 Restrictions introduced by the translation 49

4.3 The implementation . 51
4.3.1 Adding the type mappings to a Uppaal model 52
4.3.2 A small example . 53

4.4 Experimental results . 54
4.4.1 Testing the generated byte code of the Level Crossing 55
4.4.2 Testing the generated byte code of the Production Cell 57
4.4.3 Verifying the Level Crossing 58
4.4.4 Verifying the Production Cell 59
4.4.5 Discussion . 60

4.5 Summary . 61

5 Exact acceleration of real-time model checking 63
5.1 Exact acceleration . 65

5.1.1 An introduction to cycles 66
5.1.2 Acceleratable cycles 67
5.1.3 Acceleration . 69
5.1.4 Experimental results 71

5.2 Acceleration of Uppaal models 72
5.2.1 Does equivalence of reachability disappear? 72
5.2.2 Automatic application of acceleration 76
5.2.3 Experimental results 78

5.3 Summary . 80

6 Conclusion 83

References 87

Appendix A 91

viii

Chapter 1

Introduction

An embedded real-time system is a computer system that has been embedded
in, and interacts with the environment and with the continuous elapse of
time. These systems are called “reactive”, since they must react to changes
in the environment and to the passage of time. A typical example of an
embedded real-time system is an airbag control system found in most newer
cars. This system has to monitor the environment and inflate the airbag
when the car crashes. In general, time plays a crucial role in these systems.
It is not enough for the airbag to start inflating if the car crashes. An
additional property should, e.g., be that the airbag has been inflated within
0.01 seconds after the start of the crash.

The importance of the correct functioning of many embedded real-time
systems is clear. The name of a company may suffer severe damage if that
company delivers an elevator system that ignores people waiting on the 13th
floor. More dramatically, an error in the software for the airbag system
could cost human lives. Besides being inconvenient or dangerous, errors in
software are often very expensive to repair. Investigations show that most of
the errors in software systems are introduced during the conceptual design
phase and the programming phase [LRRA98]. In order to minimize the cost
of repairing these, techniques to reveal errors must be integrated into the
development process.

Validation and verification are techniques that ensure that software sat-
isfies its specification and meets the needs of the software consumer. The
difference between them is neatly summarized by Boehm [Boe79].

Validation: “Are we building the right product?”

Verification: “Are we building the product right?”

Both validation and verification are needed in the software development
process. A program that meets its specification, but that is not useful to
the customer is as bad as a program that is useful, but that sometimes
displays unwanted behavior.

Nowadays, testing is the most widely used technique for validation and
verification [Som96]. This involves exercising the realized system using data
like the real data processed by the system. Another important technique is
peer reviewing or program inspection [Fag86]. This is a completely manual

2 Introduction

activity in which the design is reviewed by a team of developers that have
not been involved in the design of that particular part. Both methods have
clear disadvantages. Since testing can – in general – only cover a small
subset of the possible system behaviour, it can only show the presence of
an error and not its absence. Moreover, this technique needs executable
code. Finding an error means rewriting the code and new tests, which both
are very time consuming. It is clear that peer reviewing also is very time
consuming and error prone due to the “human factor” and the increasing
complexity of modern designs. It seems that these techniques are only useful
for validation purposes. As for verification, one cannot rely on testing and
peer reviewing.

Formal methods, like model checking and formal verification are already
successfully applied in the area of hardware and protocol verification. How-
ever, their use in software engineering is still limited. In this project we focus
on the use and integration of model checking – as a means to validation and
verification – in the software development process of reactive programs for
embedded real-time systems.

1.1 Model checking and system development

Among others, model checking has emerged as a practical tool for the val-
idation and verification of systems [CK96]. In this approach, the system
is modeled as a (possibly) infinite state machine. The state space of this
model can be (symbolically) explored to discover whether or not the model
satisfies some given specification.

Nowadays, model checking might typically be applied at two different
phases of system development. First, model checking can be used to detect
conceptual design errors in an early stage of system development. A model
of the system and its environment can be constructed to obtain confidence in
the correctness of the conceptual design. Since only the conceptual design is
modeled, no assumptions about the real run-time behaviour should be made
based on this model. Thus, the correctness of the implementation cannot
be assured. Typical examples include the verification of the design of a gear
box controller [LPY].

Second, a model of the run-time behaviour of the system can be con-
structed during or after the implementation. Typically, all hardware details
and parameters must be present in this model. One disadvantage of this ap-
proach is that these models tend to become very large and difficult to verify.
Another disadvantage is that this approach must be applied after (part of)
the development process since it needs executable code. Discovering an er-
ror means that (part of) the development process must be passed through
again. This is, of course, a time and money consuming business. The Ban-
dera project aims at a general and automated realization of this approach.
It provides tools to verify Java source code by the extraction of finite-state
models that can be feeded into various model checkers [CDH+00]. Another

1.2. Objectives 3

example is the translation from LEGO RCX byte code to a Uppaal model
[IKL+00]. Using this translation, one can model-check the real run-time
behaviour of the programs running on the RCX.

1.2 Objectives

In section 1.1 we described two separate phases of the development process
in which model checking might be applied. In general, no formal relation
exists between the models in these separate phases. By establishing this
relation, some of the mentioned disadvantages can be avoided. In our ap-
proach, the relation consists of a translation from the models that occur in
the conceptual design phase to executable code. However, this translation
cannot preserve all properties of the conceptual design. For example, a con-
ceptual design – in general – abstracts from the hardware on which it is
to be implemented. As a result, it is very likely that properties concerning
timing and duration of events are different in the actual executable code.
To support the verification of the run-time behaviour of the generated ex-
ecutable code, we also generate a model of this code. Figure 1.1 depicts
this approach. The oval boxes contain the models that can be used for val-

�
�

�
�Conceptual design

?

Compiler

? ?

Executable code

'
&

$
%

Model of
executable code

used for validation

used for verification

Figure 1.1: The proposed technique.

idation and verification purposes using the associated model checker. The
dashed box contains the translation. Such a translation has the following
advantages:

• It enables the automated generation of executable code and a model
of the executable code from the conceptual design. The automated
process saves implementation time and it minimizes the risk of errors
during the implementation.

4 Introduction

• The system developer can concentrate on the conceptual design. The
exact relation between the conceptual design and the implementation
is provided by the translation.

Despite these advantages, the practical benefits of such a translation are not
clear. The translation might be very restrictive in the sense that only a very
limited subset of the modeling language can be translated. Moreover, the
translation is very dependent on the target platform of the system. It is not
clear whether or not a translation can be constructed for every platform. We
investigate the practical benefits of the translation in one particular setting.
The main question we seek an answer to is the following.

What are the benefits of a translation from models appearing
in the conceptual design phase to (i) executable code and (ii)
models of that code, for the development of reactive programs
for embedded real-time systems?

One of the disadvantages mentioned in section 1.1 is that the models of
the executable code are in general hard to verify due to their large state
spaces. This is a significant problem for the generality and scalability of our
approach. Thus, a second question we seek an answer to is the following.

How can we accelerate the model checking process of the model
of the executable code?

Possibly, a translation enables the automatic generation of “intermediate”
models, see figure 1.2. These are of a complexity between the model of

�
�

�
�Conceptual design

?

Compiler

?

Executable code

-

�
�

�
�Intermediate

model 1

--

�
�

�
�Intermediate

model n

-

�
�

�
�Model of

executable code

least complex

Figure 1.2: Extending the technique.

the conceptual design and the model of the executable code. These models

1.3. General outline 5

can then be used for certain verification questions and – hopefully – model
checking is accelerated with these intermediate models. Concluding, our
approach to obtain correct reactive programs consists of three steps:

(1) Construction of a model of the conceptual design of the system. The
validation of the design can be obtained using this model.

(2) Compilation of the model of step (1) to executable code and models
of the run-time behaviour of this code.

(3) Verification of the executable code using the models obtained in the
second step.

In this thesis, we construct the techniques to implement this approach for a
fixed model checker and hardware platform. We apply the approach to two
case-studies in an attempt to answer the two questions stated above.

1.3 General outline

In this thesis we implement a technique to obtain correct reactive programs.
In short, this technique consists of a translation from conceptual designs to
(i) executable code and (ii) a model of the run-time behaviour of that code.
The main objective is to answer two questions concerning our technique.
First, we would like to know its benefits and drawbacks. Second, we in-
vestigate the possibilities of accelerating the model checking process of the
generated models, since these tend to become very large.

The first logical step is to choose a testing environment. In chapter
2 we fix and motivate the hardware platform and the model checker. We
summarize the main features of the hardware platform and the language
that we use to program it (which thus is the language of the executable
code that we generate). Moreover, we discuss the theoretical background of
the model checker, which proves to be necessary for our investigation to the
possibilities of acceleration of the model checking process.

The starting-point of our technique is a conceptual design of a reactive
system. In chapter 3 we show and explain the conceptual designs of two
reactive systems: the Level Crossing and the Production Cell. These are
designs for existing hardware, which is required for the testing of the gen-
erated executable code. Of course, we validate our designs using the model
checker.

The core of our technique is the translation from a conceptual design
to executable code and a model of the run-time behavior of that code. We
develop and explain the concepts of this translation in chapter 4. We im-
plement this translation and we illustrate its concepts and operation by
applying it to a small example. Moreover, we apply our compiler to the
conceptual designs of the Level Crossing and the Production Cell. We test

6 Introduction

the resulting executable code on the physical systems, and we try to model
check the executable code, using the generated models.

In chapter 5 we develop theory to accelerate the model checking process
for a certain class of models in an exact way. We illustrate our theory of
exact acceleration with experimental results of a theoretical example. These
results very nicely demonstrate the “mechanics” of a main result, which says
that our exact acceleration technique actually works.

Unfortunately, generalization of our technique to a broader class of mod-
els, which contains the Level Crossing and the Production Cell, seems not
possible without loss of exactness. Instead, our technique becomes an over-
approximation, which can still be used to verify the truth of certain types
of properties. It is easy to apply our technique automatically to the models
of the generated executable code, and we add this feature to the compiler.
Thus, we generate one “intermediate model” as in figure 1.2. Moreover, we
apply our over-approximating acceleration technique to the Level Crossing
and to the Production Cell, and we show the improved performance of the
model checking process.

The last chapter of this thesis, chapter 6, contains the summary and
overall conclusions. We answer the two questions concerning our technique,
and we state possibilities for future work.

Finally, we note that all material that appears in this thesis – the models
and the implemented tools – is available at the web site of this thesis, which
can be found at
http://www.cs.kun.nl/ita/publications/mastertheses/200202 martijn hendriks.

Chapter 2

Setting and tools

In the introduction we explained the technique that we use to develop re-
active programs that function correctly (see figure 1.2 on page 4). The
first part of this technique consists of the construction and validation of a
conceptual design using some model checker. The second step is to gener-
ate executable code and one or more models of the run-time behavior of
that code. These generated models are used for the verification of the real
executable code.

To answer the main question stated in the introduction, we implement
the aforementioned translation for a fixed model checker and hardware plat-
form. In section 2.1 we introduce the LEGO RCX hardware platform that
is used and we motivate this choice. In section 2.2 we explain why the
model checker Uppaal is very well suited to our end. Finally, we explain
the theoretical background – timed automata – of this model checker.

2.1 The hardware platform

We consider a special class of embedded real-time systems, namely those
controlled by micro controllers. These are computation devices consisting
of a CPU, ROM and RAM and an A/D converter with I/O ports. All these
subsystems are integrated in order to make development easy and to achieve
a low selling price. More specifically, we use the LEGO RCX brick (or RCX
for short) as the control center of our embedded real-time systems [Nie00].
This big LEGO brick has an Hitachi H8/3292 micro controller inside that
runs with a clock speed of 16 MHz. The 16 kB of ROM on the CPU has
been extended with 32 kB of external RAM.

The RCX has the possibility to use three sensors, e.g., light sensors and
touch sensors, and three actuators, e.g., motors and lights. Moreover, it
possesses an infrared port that can be used for communication with other
RCX bricks and for downloading programs to the RCX. Finally, the RCX
has a notion of time for it has two timer modules. We use this hardware
platform for the following reasons.

• Availability. This “toy” is widely available. In particular, it is available
at the university of Nijmegen and at the university of Aalborg, which
was visited during this project.

8 Setting and tools

• Flexibility. The LEGO system enables the construction of various
different embedded systems in an easy way. Thus, case-studies are
easy to come up with.

• Realism. The hardware specifications of the RCXs micro controller
are very similar to those encountered in the real live, e.g. electronics
in washing machines, cars and microwave ovens.

• Simplicity. This toy is easy to use.

The RCX is standard equipped with firmware that contains a byte code
interpreter, and consequently the programs for the RCX must be written
in the byte code language. Normally, RCX programs are developed on a
personal computer. When finished, the programs can be transferred to the
RCX using an infrared tower that is connected to a serial port of the personal
computer. Running of the programs is easily done by pressing a button on
the RCX brick.

2.1.1 The firmware and byte code

This section gives a brief introduction to the firmware of the RCX; for de-
tailed information about the internals of the RCX, its firmware and the byte
code language, we refer to the web site RCX internals [Pro99].

The firmware with which the RCX is standard equipped contains an
interpreter for programs written in a byte code language. It leaves only 6
kB of memory for user programs. These programs consist of at least one
and at most ten tasks which can use up to eight subroutines. Each program
can use 32 16-bit regular variables for computation purposes. The firmware
employs a simple round robin scheduler to interleave the active tasks of a
running program; each task may execute one byte code instruction before
control is transferred to the next active task.

The byte code language contains approximately 100 instructions that
can be divided into “management” instructions for communication between
the personal computer and the RCX, and into “normal” instructions for the
actual programs. The language offers an extended set of instructions for
conditional branching, manipulation of sensors and actuators, and manipu-
lation of regular variables.

As an example, consider figure 2.1 which contains a very simple program
for the RCX in pseudo code. It consists of one task that uses one regular
variable a. The while loop increments the value of a until it is equal to or
greater than 100. Figure 2.2 shows the three symbolic byte code instructions
(on the left) and the actual array of bytes (on the right) that implement this
simple program. The first instruction is a “branch always far” instruction
that transfers control to instruction at address 8. This third instruction is a
“test and branch far” instruction that tests whether or not a<100. If not,
then control is transfered to the instruction with address 3. This instruction
just adds 1 to variable a. Otherwise, the program halts.

2.1. The hardware platform 9

task main

{

int a;

while(a<100)

a=a+1;

}

Figure 2.1: Small pro-
gram in pseudo code.

000 baf 8 72 07 00

003 add v[0], 1 24 00 02 01 00

008 tbf 99>=var[0], 3 95 42 00 63 00 00 f5 ff

Figure 2.2: The equivalent symbolic byte code
(left) and the actual byte code (right).

There exists an alternative for the standard firmware, being LegOS. In
the next subsection we explain why we do not use this more advanced op-
erating system.

2.1.2 LegOS

LegOS implements a real embedded operation system featuring pre-emptive
scheduling and dynamic loading of programs [Nie00]. Using this operating
system instead of the standard firmware has the following advantages:

• There is more memory available for user programs.

• Since this is a real OS and not an interpreter, the executable code
is the native machine language of the micro controller. An adapted
version of the GNU C cross-compiler exists such that programs can
be written in plain C. Typically, these programs run 5-10 times faster
than byte code programs for the interpreter.

• Using LegOS and C is slightly more expressive than the byte code and
the interpreter.

Despite all these advantages we do not use LegOS. In the introduction we ex-
plained that we automatically generate executable code and an exact model
of that code. Since this model is intended for the final verification of the
system, it must be very accurate. Using LegOS means that the model should
cover the complete program with the single native instructions, these are the
atomic units of execution for the scheduler, as building elements. Moreover,
the relevant parts of the OS – like the system interrupts, the scheduler and
other kernel tasks – must also be modeled, including timing parameters, as
they significantly direct the execution of the program.

In comparison to the very detailed and low-level model that should be
used for the LegOS, the model for byte code programs for the original
firmware is fairly simple. Moreover, such a model, including timing pa-
rameters, already exists and – we think – is accurate enough [IKL+00]. The
difference in need for detail is made by the virtual machine of the firmware.
It “shields” the program from the real hardware and the byte code instruc-
tion is the atomic unit of execution.

10 Setting and tools

Concluding, the models of the executable code of LegOS programs will
probably be much more complicated than those of byte code programs. This
increased complexity decreases the chances for systems to be practically
verifiable, which is a main feature of our technique.

2.2 The model checker

To design the reactive programs for the RCX, we use the timed automata of
Alur and Dill [AD90]. Several case-studies have shown that these timed au-
tomata are suitable for modeling a large class of real-time systems. Since we
only want to develop relatively small and simple programs, the expressivity
of timed automata probably suffices to use them as a design tool. However,
if our approach is applied in a more complicated (realistic) setting, then the
need for more powerful design tools arises.

A more general class of systems can be modeled using linear hybrid au-
tomata, or the equivalent stopwatch automata [Hen96, CL00]. However,
the reachability question for hybrid and stopwatch automata is undecidable
[HKPV98]. Still, a model checker for linear hybrid systems has been imple-
mented, namely HyTech [HHWT97]. Due to the undecidability, the model
checking procedure used in this tool may not terminate.

Fortunately, the reachability question and, more general, the question
whether or not a TCTL formula is satisfied, are decidable for timed automata
and various model checkers exist, e.g. Kronos and Uppaal [ACD93, Yov97,
LPY98]. We use the model checker Uppaal for the following reasons.

• Uppaal uses only a subset of the logic that Kronos uses. However,
Uppaal can use more efficient algorithms to explore the state space.
In this project, the efficiency of model checking is the most important
of the two.

• Uppaal can use bounded integer variables and Kronos cannot use
integer variables at all. This feature is very convenient and almost
necessary for the modeling of larger systems.

• Uppaal has a nice graphical user interface, whereas Kronos uses a
“textual” interface. Therefore, Uppaal is easier to use.

• Finally, there is a historical argument: Uppaal is often used in Ni-
jmegen and we were already familiar with this tool. Moreover, it is
developed in Aalborg, which has been visited for this thesis.

In the next subsections we explain the theoretical background of Uppaal.
We first summarize a theory of timed automata, then we focus on the sym-
bolic model checking techniques for timed automata, and finally we briefly
introduce Uppaal.

2.2. The model checker 11

2.2.1 Timed automata

This section has been based on the work of Alur and Dill [AD90, Alu99]. In
order to define finite automata that use real valued clocks, the set of clock
constraints over a set of clock variables is defined. Let X be a set of clock
variables, then the set Φ(X) of clock constraints φ is defined by the following
grammar, where x ∈ X, c ∈ N, and ∼ denotes one of the binary relations
<,≤,=,≥ or >.

φ := true |x ∼ c |φ1 ∧ φ2

A clock interpretation ν for a set X is a mapping from X to R+, where R+

denotes the set of nonnegative real numbers. A clock interpretation ν for
X satisfies a clock constraint φ over X, denoted by ν |= φ, if and only if
φ evaluates to true with the values for the clocks given by ν. For δ ∈ R+,
ν+ δ denotes the clock interpretation which maps every clock x to the value
ν(x) + δ. For a set Y ⊆ X, ν[Y := 0] denotes the clock interpretation for X
which assigns 0 to each x ∈ Y and agrees with ν over the rest of the clocks.
We let Γ(X) denote the set of all clock interpretations for X.

Definition 2.1 (Timed automaton) The tuple (L, l0,Σ, X, I, E) defines
a timed automaton, where

• L is a finite set of locations,

• l0 ∈ L is the initial location,

• Σ is a finite set of labels,

• X is a finite set of clocks,

• I is a mapping that labels each location l ∈ L with some clock constraint
in Φ(X) and

• E ⊆ L × Σ × Φ(X) × 2X × L is a set of edges. An edge (l, a, φ, λ, l′)
represents a transition from location l to location l′ on the symbol a.
The clock constraint φ specifies when the edge is enabled and the set
λ ⊆ X gives the clocks to be reset with this edge.

Example 2.1 Consider the timed automaton depicted in figure 2.3. The
locations are depicted as vertices labeled with the name of the location.
Location L3 is the initial location. The set of labels consists only of the
empty label τ , that is not depicted. The clocks are y and z. The invariant
mapping I is given by the bold clock constraints depicted at the locations. If
a location has no clock constraint associated with it, then we assume that
the invariant for that location is true. The edges may be labeled with a clock
constraint and a set of clock resets. If an edge is not labeled with a clock
constraint, then the guard of this edge is true. If an edge is not labeled with
a set of clocks, then no clocks are reset on the edge, i.e. λ = ∅ for that
edge. Finally, the object LARGE that appears in a clock guard on the edge
from location L0 to L4 is a constant natural number.

12 Setting and tools

L3
L2
y<=5

L0
y<=2 L4

L1
y<=4

y>3
y:=0
y>=3 z>=LARGE

y:=0y>=1

Figure 2.3: Timed automaton P .

The semantics of a timed automaton A is defined by associating a transition
system SA with it. A state of SA is a pair (l, ν), where l is a location of A
and ν is a clock interpretation for X such that ν satisfies I(l). There are
two types of transitions in SA:

• Let δ ∈ R+. We say ((l, ν), (l′, ν ′)) is a δ-delay transition, iff l = l′ and
ν ′ = ν + δ.

• Let a ∈ Σ. We say ((l, ν), (l′, ν ′)) is an a-action transition, iff an edge
(l, a, φ, λ, l′) exists such that ν |= φ and ν ′ = ν[λ := 0].

Using this transition system, we can define the traces of a timed automaton.

Definition 2.2 ((l, ν)-trace) Let M = (L, l0,Σ, X, I, E) be a timed au-
tomaton. We say that a finite or infinite sequence ((l0, ν0), (l1, ν1), ...) is a
(l, ν)-trace of M , if

• l0 = l and ν0 = ν, and

• ((li, νi), (li+1, νi+1)) is an a-action transition for some a ∈ Σ or a δ-
delay transition for some δ ∈ R+, for all i ≥ 0 that appear in the
sequence.

We call a (l, ν)-trace compressed, if that (l, ν)-trace starts with a delay tran-
sition, and it does not contain two consecutive action or delay transitions.
Thus, after every action transition follows a delay transition and after every
delay transition follows an action transition. Finally, we let Tr(M) denote
the set of all (l0, νinit)-traces of a timed automaton M , where l0 is the initial
location of M and νinit(x) = 0 for all clocks x of M .

We are primarily concerned with reachability properties of timed au-
tomata. A reachability property φ of a timed automaton M is of the form
∃3(P), where P is a state property of M . The state properties P are in-
terpreted over the states of M , whereas the reachability properties φ are

2.2. The model checker 13

interpreted over M . For example, a reachability property for automaton P
of example 2.1 is the following:

∃3(L2 ∧ (y<=4 ∨ z>20))

Informally this property means that a state (l, ν), such that l = L2, and
ν(y) ≤ 4 or ν(z) > 20, is reachable. This example also demonstrates the
straightforward satisfaction relation that is used to interpret state formulas
over the states of a timed automaton.

Using the traces of a timed automaton and the satisfaction relation for
the state properties, we can define the satisfaction relation for the reacha-
bility properties.

Definition 2.3 (Reachability) For a timed automaton M and a property
φ = ∃3(P), we say that M satisfies φ, denoted by M |= φ, if a trace
((l0, ν0), (l1, ν1), ...) ∈ Tr(M) exists, such that (li, νi) |= P for some i ≥ 0.

Note that we can express safety or invariance properties with reachabil-
ity. The state property P is an invariant – P always holds – if and only if
¬∃3(¬P). We will use the abbreviation ∀2(P) for such invariance proper-
ties.

In the next section we will explain forward symbolic reachability analysis
that is used by Uppaal and Kronos.

2.2.2 Symbolic model checking

The transition system defined by a timed automaton has uncountable many
states. This renders the straightforward application of traditional finite-
state model-checking algorithms impossible. However, Alur et al introduced
the so-called regions as a finite-state symbolic technique for proving decid-
ability of reachability as well as model-checking for TCTL [ACD93].

Unfortunately, the number of regions grows exponentially in the size of
the constants used in the model, and are therefore not particularly useful
when constructing efficient model-checking tools. Instead, real-time model-
checkers such as Uppaal and Kronos are based on so-called zones, which
provide a representation of convex sets of clock interpretations as constraints
on (lower and upper) bounds on individual clocks and clock differences. As
an example consider the set of clock interpretations for the two clocks x and
y described by the following constraints:

0 ≤ x ≤ 5
7 ≤ y ≤ 12
y − x = 7

Zones may efficiently be represented as Difference Bounded Matrices [Bel57,
Dil89], which offers a canonical representation for constraint systems. Fur-
thermore, the canonical form allows inclusion-check as well as the effect of

14 Setting and tools

action and delay transitions to be computed efficiently (i.e. time complexity
mostly quadratic and in worst case cubic in the number of clocks)

The model-checking engine of Uppaal performs a symbolic exploration
of the reachable symbolic state space on-the-fly, starting with an initial state.
For each unexplored symbolic state, its successors due to delay and action
transitions are computed, and compared to already explored states. If a
successor has already been seen in the past, it is discarded. On the other
hand, if a successor has not yet been seen, it is added to the list of states
waiting to be further explored.

To illustrate forward symbolic exploration consider the timed automaton
of figure 2.3 on page 12. Depending on the value of LARGE, the cycle in
automaton P must be executed a certain (large) number of times before the
edge to location L4 is enabled. In table 2.1 we show the symbolic states
that result from one execution of the cycle starting in the initial state. This

State # Location Zone
1 L3 y = 0 z = 0 z − y = 0
2 L2 3 < y ≤ 5 3 < z ≤ 5 z − y = 0
3 L0 0 ≤ y ≤ 2 3 < z ≤ 7 3 < z − y ≤ 5
4 L1 0 ≤ y ≤ 4 3 < z ≤ 11 3 < z − y ≤ 7
5 L2 1 ≤ y ≤ 5 4 < z ≤ 12 3 < z − y ≤ 7
6 L0 0 ≤ y ≤ 2 6 < z ≤ 14 6 < z − y ≤ 12

Table 2.1: Simulation data of P .

simulation data shows that the sixth symbolic state is not contained in the
third, since the zone of the sixth symbolic state contains clock interpretations
that are not in the zone of the third symbolic state, and therefore this state
is explored further. In general, every new execution of the cycle gives rise
to new symbolic states.

2.2.3 The model checker Uppaal

The tool Uppaal is a model checker for networks of timed automata that
can use (arrays of) bounded integer variables and binary synchronizations.
A small subset of the temporal logic TCTL can be used for specification.
In this section we briefly introduce Uppaal; for a detailed description we
refer to the paper “Uppaal in a Nutshell” [LPY98] and to the web site
http://www.uppaal.com/.

An Uppaal model consists of a bounded number of concurrent processes,
each of which is described by a timed automaton. Each process may have
local clocks and variables, that can only be used by itself, and it can use all
global clocks and variables. The processes can communicate by the global
variables and by binary synchronizations.

As with timed automata, the semantics of an Uppaal model is defined
by the underlying transition system. A state in the transition system is a

2.3. Summary 15

vector (~l, ν, v), where ~l is a vector that contains the current location for each
process, ν is a clock interpretation and v is a variable interpretation. We
do not explicitly define the transition system here, since it is very similar to
the transition system of regular timed automata. However, we explain the
largest differences:

• Blocking binary synchronizations. The synchronization labels on edges
are τ or (b, !) or (b, ?), where b is a label or channel. In the first case, the
edge does not synchronize and it is executed alone. In the last cases,
the edge must synchronize with a matching edge of another process
and the action transition thus involves both edges (a ? side matches
with a ! side). The assignments on the ! side of a synchronization are
executed first.

• Urgency of synchronizations and locations. If some channel a is de-
clared as urgent, then if an action transition is enabled that synchro-
nizes over a, then no delay transition may take place. The same holds
for the situation where the location vector contains a location l that
has been declared urgent.

• Commitment of locations. If the location vector contains a location l
that has been declared committed, then no delay may take place and
the next action transition must involve a process that is in a committed
location.

The model checking engine of Uppaal version 3.2 can not only check reach-
ability – and thereby invariance – properties as in definition 2.3 on page 13,
but also the TCTL formulas ∀3(P) and ∃2(P), where P is a state prop-
erty. Informally, the first property means that for all traces P will eventually
hold. The second property means that there exists a trace on which P al-
ways holds. There also exists a special predicate deadlock that can be used
to detect situations in which no action transition is enabled.

The model checking engine of Uppaal has some useful features. First,
it is possible to choose the search order: breadth-first (default) or depth-
first. Second, it supports the so-called convex hull approximation, which is
an over-approximation of the symbolic state space. Typically, explorations
using this approximation are finished faster than normal explorations. How-
ever, only the truth of invariance and the untruth of reachability properties
can be verified, since it is an over-approximation.

2.3 Summary

This chapter introduced the setting in which we implement and test our
technique for obtaining correct reactive programs by using a model checker
in the development process. Recalling figure 1.2 on page 4, we use a model
checker to construct a conceptual design, automatically translate this design
to executable code and one or more models of the run-time behavior of the

16 Setting and tools

code. The model of the conceptual design is for validation purposes and the
other models are intended for verification purposes.

In this chapter we decided to use the LEGO RCX as target platform of
the translation for its availability, flexibility and – last but not least – its
realism. We use the formalism of timed automata, in the shape of the model
checker Uppaal, for the conceptual modeling and for the modeling of the
run-time behavior of the system.

The next chapter describes two case-studies that we use to evaluate our
technique. We explain the Level Crossing and the Production Cell and give
the conceptual designs of these systems.

Chapter 3

Case studies: the conceptual
designs

This chapter contains two case-studies that we use to evaluate our technique
for obtaining correct reactive programs for the RCX using the model checker
Uppaal.

In section 3.1 we discuss our conceptual design of a communication pro-
tocol. We need this protocol to implement reliable communication between
RCXs, since the standard firmware of the RCX only offers unreliable com-
munication primitives. Both case studies – the Production Cell and the
Level Crossing – use this protocol.

Section 3.2 describes the conceptual design of a LEGO Level Crossing
with two RCXs. Finally, section 3.3 contains the conceptual design of a
LEGO Production Cell, also consisting of two RCXs. For all three systems,
we state and check properties in order to validate the conceptual designs.

The descriptions of the Uppaal models are not complete since we only
explain the concepts and omit the details. For the exact models we refer to
the web site of this thesis.

3.1 A communication protocol

Our communication protocol is based on the alternating bit protocol that
provides reliable data transfer over an unreliable channel, such as the air
between two RCX bricks [Tan96]. The main goal of the protocol is to provide
an ordered data-stream from a sender to a receiver. The two main problems
are that packets may get lost and must be retransmitted by the sender, and
that the order of the packets must be preserved. The detection of the loss of
a packet is achieved by a time-out strategy, while preservation of the order
is achieved by the use of an alternating bit attached to each packet.

The ultimate goal of our model of the protocol is to implement it on the
RCX platform. Therefore, the next section describes how we can encode the
packets, including their alternating bits, in such a way that the RCX can
support their sending. Next, we describe how we modeled the lossy channel
between the RCXs, the sender and the receiver of the protocol. Finally, we

18 Case studies: the conceptual designs

describe a test process that provides input to the sender and that reads the
output of the receiver. This process is used for validation purposes only.

3.1.1 Encoding of packets on the RCX platform

We modeled the protocol with the intent to implement it on the RCX plat-
form, which supports an unreliable infrared communication channel. The
byte code language offers an instruction to broadcast a number between 0
and 255 to all other RCX bricks in range. A natural choice is to let these
numbers be the packets. However, each packet must have an “alternating”
bit attached to it. It is clear that the only way to achieve this, is to encode
this bit in the number that is broadcasted.

Each packet is a number between 0 and 125. This enables us to encode
the alternating bit in the following way: r = 2p + b + 3, where r is the
real value transmitted by the RCX hardware, p is the packet and b is the
alternating bit. We can decode the bit and the packet from the real value
as follows: b = 1− (r mod 2) and p = (r − b− 3)/2.

This scheme does not make use of the real values 0 to 2 and 255. The
reason for this is that the receiver needs to acknowledge the reception of a
packet. This acknowledgement must include the bit that has been attached
to the packet. Thus, we have two separate acknowledgements: ACK0 and
ACK1. The first acknowledgement is implemented by sending a real value of
2, and the second acknowledgement is implemented by sending a real value
of 1.

3.1.2 Modeling the communication channels

The infrared communication between RCX bricks is facilitated by one byte
code instruction that broadcasts a number to all RCXs in the area, excluding
itself! This number is stored on each RCX and can be used for computation.
For each RCX, we used a variable to model the content of this infrared buffer.
In our case we have two RCXs: one contains the sender of the protocol and
the other contains the receiver. The variable irs_buf models the infrared
buffer of the sender, and irr_buf models the infrared buffer of the receiver.

As the send instruction does not update the local infrared buffer, we
use a separate variable for each RCX to model the value that is passed to
this instruction. The variable irs_val models this value for the sender and
the variable irr_val models this value for the receiver. Initially, all four
variables, irs_buf, irr_buf, irs_val and irr_val, are zero.

The sender and receiver now can access the content of the infrared buffer
and read the last received value. We model the sending of a value by as-
signing that value to irs_val or irr_val. Of course, this sending possibly
updates the infrared buffer of the other RCXs in the system. To model the
two lossy channels (sender to receiver and vice versa), we used two channel
processes, see figure 3.1. Let us consider the left channel process that mod-

3.1. A communication protocol 19

idle sending
sendSR?

irr_buf:=irs_val
idle sending

sendRS?

irs_buf:=irr_val

Figure 3.1: channelSR on the left and channelRS on the right.

els the channel from the sender to the receiver. The channel is activated by
synchronization over the urgent channel sendSR. Then, the channel process
arrives in a committed location in which it can choose to loose the value, or
to deliver the value stored in irs_val to the other RCX by the assignment
irr_buf:=irs_val.

Concluding, we use synchronization over the sendSR channel in combi-
nation with an assignment to irs_val to model the broadcast of the value
assigned to irs_val. For example, the effect of an edge labeled with sendSR!
and with irs_val:=5 is that (i) the value of irs_val is updated to 5, and
(ii) the value of irr_buf is maybe updated to 5. Note that this scheme
indeed ensures that the infrared buffer of the sender is not updated to 5.
Also note that the commitment of the second location of the channel pro-
cess renders the sending atomic. A similar mechanism is used to model the
broadcast of the receiver.

3.1.3 The sender

Figure 3.2 depicts the sender of the protocol. It has been designed to send
a packet whose value is stored in the variable in to the receiver. It has an

idle send wait
x<=T1

start?
b:=1-b

sendSR!
irs_val:=2*in+3+b,
x:=0

x>=T1
x:=0

irs_buf==ACK0,
b==0
ok!

irs_buf==ACK1,
b==1
ok!

Figure 3.2: The sender: process S.

internal clock x and one internal variable b, the alternating bit of the next
packet, that is initialized to 0.

The sender can be started by synchronization over the channel start
from its initial location idle, which flips the alternating bit. In location
send the sender can synchronize over the urgent channel sendSR. Due tot the

20 Case studies: the conceptual designs

urgency and the fact that the channel processes are input enabled, this take
place without delay. With this edge, the packet is encoded and broadcasted
and clock x is reset.

In location wait the sender waits for a response of the receiver or for a
timeout. If an acknowledgment is received that matches the current value
of the alternating bit, then the packet has been received. Therefore, the
next packet can be send and control is transferred to idle by one of the two
lower edges.

If a timeout occurs in location wait, then the sender assumes that the
packet has been lost and retransmits it by entering location send again. The
timeout constant is fixed by the constant T1, which equals 1000000 time
units. This large value originates from our time scale: we use one million
Uppaal time units to model one second. Thus, our timeout constant equals
1 second. Note that the sender cannot guarantee the arrival of a packet,
since the channel may loose all packets.

3.1.4 The receiver

Figure 3.3 depicts the receiver. It has one internal variable b, the expected
value of the alternating bit of the next packet, that is initialized to 1. In

idle wait

irr_buf>ACK0,
irr_buf-((irr_buf/2)*2)==1-b
sendRS!
out:=(irr_buf-3-b)/2,
irr_val:=(b==0?ACK0:ACK1)

rec!

b:=1-b, irr_buf:=0

irr_buf>ACK0, irr_buf-((irr_buf/2)*2)==b
sendRS!
irr_val:=(b==1?ACK0:ACK1), irr_buf:=0

Figure 3.3: The receiver: process R.

the location idle it waits until the value of its infrared buffer, modeled by
irr_val, becomes larger than ACK0. Our encoding scheme of packets and
acknowledgements guarantees that a packet has been transmitted by the
sender. However, if the alternating bit of this packet does not match the
expected bit, an acknowledgement with a flipped bit is send back. This has
been modeled by the edge from idle to itself.

If the alternating bit of the packet matches the expected bit, then the
packet is decoded and assigned to variable out. Moreover, an acknowledge-
ment is send back and control is transferred to location wait.

In location wait the receiver just waits for another process to use the
received packet. This is necessary to prevent packet loss: the variable out
may not be overwritten until the packet in it has been processed. In other
words, the receiver has a buffer with size one.

3.1. A communication protocol 21

Whenever the receiver synchronizes over channel rec it assumes that the
packet has been processed. Now it toggles the value of the expected bit and
transfers control to location idle: it is ready to receive another packet and
to place it in out.

In the literature, the receiver sends an acknowledgement after the pro-
cessing of the packet (thus after the rec! synchronization). This prevents
the behavior that the sender must resend a packet despite correct delivery
of all packets/acknowledgements, which is present in our model. Our choice
originates from a specific property of the translation – which we explain
in chapter 4 – namely that every location introduces extra overhead in the
generated byte code. Thus, if we follow the more logical scheme of the lit-
erature, then we would need three locations instead of two, with the result
of additional overhead in the generated code.

3.1.5 The tester

Figure 3.4 depicts a test process for the protocol. It uses two arrays, input
and output, both with length N. Moreover, it has two internal array indices:
i is used for the input array and j is used for the output array. The purpose

construct

send check

OK

error

i==N
i:=0

i<N
input[i]:=((i/2)+4)*3,
i:=i+1

i<N
start!
in:=input[i]

i:=i+1
ok?

rec?
output[j]:=out, j:=j+1

rec?
output[j]:=out,
j:=j+1

j==N
i:=0

i<N,
input[i]!=output[i]

i==N

i<N,
input[i]==output[i]
i:=i+1

Figure 3.4: A tester for the protocol: process Tester.

of the tester is to send several packets and check (i) whether or not the input
is equal to the output, and (ii) whether or not the order is preserved.

In location construct the tester fills the input array with some pre-
determined values greater than zero, and transfers control to location send.
From this location, the tester starts the protocol N times, using the values
of the input array as input for the sender. Each time the receiver has
successfully received a packet, it can synchronize over the rec channel, filling
the next entry in the output array of the tester.

Finally, if all packets have successfully been received, control is trans-
ferred to location check. This location compares the input and output
arrays. If they differ, then the location error is reachable.

22 Case studies: the conceptual designs

Note that our tester does not test all possible ways to use the protocol
due to two issues. First, the number of consecutive runs of the protocol is
fixed by the constant N. Second, the values of the input array are also fixed.
To gain trust in the protocol, we set N to 5 and as a consequence the values
in the input array are 12, 12, 15, 15 and 18. This input array tests two equal
packets after each other and two different packets after each other.

3.1.6 Validation of the protocol

The protocol must provide a reliable and in-order data-stream over an un-
reliable channel. As mentioned in the previous section, we can only validate
this for the tester, and not in general. However, we are confident that our
tester gives a good representation of the context in which we will use the
protocol.

As a first requirement, we want that the protocol actually delivers pack-
ets: the input array of the tester can be transferred to the output array
using the protocol. This is expressed by property (3.1).

∃3(Tester.OK) (3.1)

This is not enough, however, since executions may exist such that the in-
put array does not match the output array. We require that this does not
happen: the location error of the tester must be unreachable, which is
expressed by property (3.2).

∀2(¬Tester.error) (3.2)

Fortunately, both properties are satisfied by the model; model checking is a
matter of tenths of a second.

It is not very difficult to use the design of the protocol as a part of other
designs, since the sender and the receiver have clearly defined interfaces. The
sender uses the channels start and ok and the variable in. The receiver uses
the channel rec and the variable out. In sections 3.2 and 3.3 we demonstrate
how we can easily use this protocol in other designs.

3.2 The Level Crossing

The level crossing consists of a railroad track with a train and a gate, both
controlled by RCX bricks. The main idea is that if the train is at the
gate, then the gate must have been lowered. Moreover, we want the gate
sometimes to be raised to let other traffic cross the railroad.

The RCX of the gate can lower and raise the gate and it can control
warning lights. It is clear that the gate controller must react to the position
of the train in order to achieve the sketched goals. The gate controller uses
three sensors to that end. First, a touch sensor that senses if the gate has
been completely lowered or not. Second, a light sensor positioned before

3.2. The Level Crossing 23

the gate along the railroad track that senses the approach of a train. Third,
a light sensor positioned after the gate along the railroad track that senses
the departure of a train.

The RCX of the train uses only one actuator: the engine of the train. It
can be switched on and off to start or stop the movement of the train.

The difficulty in this scenario is that the gates may not lower correctly.
If that happens, then the gate controller must send a message to the train
such that it can take the appropriate action of halting. The communication
between the gate and the train is facilitated by the communication protocol
explained in the previous section.

In the next section we first introduce a very simple process, called the
hurry dummy, that enables us to make edges “urgent”. Next, we describe
the models of the physical gate and the physical train. Finally, we describe
the models of the controllers for these physical processes, and we state the
validation properties.

3.2.1 The physical gate and the physical train

Our design contains processes that model the physical gate and the physical
train. These processes provide the input for the three sensors of the gate. As
in the conceptual design of the communication protocol we use one million
Uppaal time units to model one second.

The physical gate, depicted in figure 3.5, models the behavior of the
gate. It has an internal clock x. Its behavior depends on whether the engine
of the gate is on or off and on the direction of the engine. The operational
mode of the engine is modeled by the variable gm, that either has the value
ON or OFF with the obvious meaning. The direction of the engine is modeled
by the variable gd, that either has the value REV or FWD.

All edges to the distinct error location are reactions to unwanted situ-
ations. For example, the edge from the initial location up to the location
error is taken if the direction of the engine is such that the gate will be
raised even further, which is physically impossible, and the engine is turned
on.

In the location lowering, the physical gate can choose to lower with
success, or to fail. If it failed – control is in the location failure – then
the physical gate can at any moment choose to repair the gate and transfer
control to location down_off. In this location the gate has been lowered and
its engine is switched off. If the engine has the appropriate direction and its
is switched on again, the gate is raised, and control can eventually return to
the initial location up.

Note the updates of the sensor value of the touch sensor, modeled by
assignments to sns1. The edges from lowering to down_on and the edge
from failure to down_off both increase the pressure on the sensor, since
the physical gate is pushing on it. If the gate is raised again, then the edge

24 Case studies: the conceptual designs

up
lowering
x<3000000

down_on

raising
x<2000000

error

down_off failure

gm==ON,
gd==REV
hurry!
x:=0

x>2000000
sns1:=100, x:=0

x>1000000,
gm==ON

gm==OFF
hurry!

gm==ON,
gd==FWD
hurry!
sns1:=0, x:=0

gm==OFF
hurry!

gd==FWD
hurry!

gd==FWD
hurry!

x>1000000
x:=0

gm==OFF

hurry!

gm==OFF
hurry!

gd==REV
hurry!

gd==REV
hurry!

x>1000000,
gm==ON

x>2000000
x:=0

sns1:=100,
x:=0

gm==OFF

x>5000000,
gm==ON

gm==ON,
gd==FWD
hurry!

gm==ON,
gd==REV
hurry!

Figure 3.5: The physical gate.

from down_off to raising is taken and the pressure is relieved.

The physical train, depicted in figure 3.6, models the position of the
train using an internal clock x. Its behavior depends on whether or not the
the engine of the train is on or off. The operational mode of the engine is
modeled by the variable engine.

The basic idea is that the physical train just drives in circles and halts
whenever the engine is turned off. If the engine is turned on again, the
train resumes its journey. The physical train updates the values of the light
sensors, modeled by sns2 and sns3, when it passes them.

Note that this model of the physical train is not very accurate. This is
due to the fact that whenever the train halts, the position – modeled by
the clock x – cannot be remembered, since clocks cannot be stopped and
their value cannot be assigned to an integer variable. Of course, we could
create multiple “halting” locations for each “driving” location to remember
the interval in which x was at the halting time. However, this can also never
be exact, and it creates a large(r) model. Hybrid or stopwatch automata
would be very suitable to model the movement of the train.

3.2. The Level Crossing 25

far
x<100000000

at_sns2
x<5000000

near
x<11000000

at_sns3
x<5000000

gone
x<11000000

at_gate
x<50000000

x>30000000,
engine==ON
sns2:=0, x:=0

x>3000000,
engine==ON
sns2:=100, x:=0

x>3000000,
engine==ON
sns3:=100, x:=0

x>9000000,
engine==ON
x:=0

x>3000000,
engine==ON
x:=0

x>9000000,
engine==ON
sns3:=0, x:=0

engine==OFF
hurry!

engine==ON
hurry!
x:=0

engine==OFF
hurry!

engine==ON
hurry!
x:=0

engine==OFF
hurry!

engine==ON
hurry!
x:=0

engine==OFF
hurry!

engine==ON
hurry!
x:=0

engine==OFF
hurry!

engine==ON
hurry!
x:=0

engine==OFF
hurry!

engine==ON
hurry!
x:=0

Figure 3.6: The physical train.

The constants that appear in clock guards and invariants of the models
of the physical train and gate result from experiments with the actual LEGO
systems.

3.2.2 The gate controller

The gate controller actually consists of two processes: the sender of the
communication protocol, depicted in figure 3.2 on page 19, and a main
controller, depicted in figure 3.7. This main controller has one internal
clock t. It uses the two light sensors, whose values are modeled by sns2

idle
wait_for_car
t<=5000000

wait_to_lower
t<=3000000

wait_to_raise
t<=2000000

send_alarm
t<=4000000

transmission_failure

send_ok

sns2<TR_AP
hurry!
lights:=ON, t:=0

t==5000000
gd:=REV,
gm:=ON,
t:=0

sns1<GATE_CL,
t==3000000
gm:=OFF

sns1>=GATE_CL
hurry!
gm:=OFF

sns3<TR_AP

gd:=FWD,
gm:=ON, t:=0

hurry!

t==2000000
gm:=OFF,
lights:=OFF

start!
in:=ALARM,
t:=0

ok?

t>=4000000

sns1>=GATE_CL
start!
in:=OK

ok?

ok?

Figure 3.7: The main controller of the gate.

and sns3, and the touch sensor, modeled by sns1. The actuators used by

26 Case studies: the conceptual designs

the gate are warning lights, whose operational mode is modeled by lights,
and the gate engine, whose operational mode is modeled by gm and whose
direction is modeled by gd.

The constant TR_AP is a threshold value for the light sensors. If the
value of a light sensor is smaller that this threshold, then the train is at
that light sensor. Similarly, the constant GATE_CL is a threshold value for
the touch sensor. If its value is larger than this threshold, then the gate has
been lowered successfully. Again, these thresholds have been determined by
experiment.

Normally, the operation of the gate starts in the location idle and is as
follows. Whenever it senses the approach of a train (the guard sns2<TR_AP
is satisfied), the gate turns on its warning lights and waits 5 seconds to
let traffic pass that is on the track (location wait_for_car). After these
5 seconds, it starts lowering the gate (location wait_to_lower). If the
gate senses the successful lowering of the gate (the guard sns1>=GATE_CL is
satisfied), it takes the lower edge and waits for the departure of the train.
After this signal has been received (the guard sns3<TR_AP is satisfied), the
gate is raised (location wait_to_raise). Finally, the gate turns off its
warning lights and returns to the initial location.

The previous scenario assumed that the lowering of the gate is success-
ful. However, the engine of the lowering and raising mechanism might
fail. To detect this, the gate uses a timeout. If the gate is in the loca-
tion wait_to_lower and the signal from the touch sensor is not received
within 3 seconds, then the gate assumes failure of the engine and starts an
emergency scenario.

The emergency scenario consists of three steps. First the gate sends,
using the sender of the communication protocol, an alarm message to the
train to inform the train about the situation. If the train receives this alarm
message, it should halt to guarantee that it will not arrive at the gate when
the gate has not been lowered. However, the communication is unreliable
and the communication protocol that we discussed earlier cannot guarantee
that a message eventually arrives. Thus, if the message is not successfully
delivered within four seconds, then a transmission failure occurred and the
gate enters an emergency location (transmission_failure) that cannot be
left.

If the alarm message has been delivered, then the gate knows that the
train has been halted and it waits for the repair of the engine (which is
modeled by the process of the physical gate). If the engine has been repaired
and the gate has been lowered, then it sends an ok message to the train to
signal that it can start moving again. The main controller waits until it
knows that the train has received the message, after which the operation of
the gate controller continues as normal.

3.2. The Level Crossing 27

3.2.3 The train controller

The train controller consists of two processes: the receiver of the communi-
cation protocol, depicted in figure 3.3 on page 20, and a controller, depicted
in figure 3.8. In the previous section we mentioned that the train should

moving halted

out==ALARM
rec?
engine:=OFF

out==OK
rec?
engine:=ON

out!=ALARM
rec?

out!=OK
rec?

Figure 3.8: The main controller of the train.

halt if it receives an alarm message and that it may resume its journey if
it receives an ok message. It is easy to map this behavior to the process in
figure 3.8. Note that the train controller is input enabled with respect to
the synchronizations of the receiver of the communication protocol.

As mentioned in this and the previous section, we use the communication
protocol described in section 3.1. Therefore, the channel processes are also
present in this system. The tester, however, is not present since the main
controllers of the train and the gate interface with the receiver respectively
sender.

3.2.4 The hurry dummy: urgent edges

The hurry dummy process has been depicted in figure 3.9. The only use of
this process is to create urgent edges. Since the channel hurry is an urgent

hurry?

Figure 3.9: The hurry dummy.

channel and synchronization over it is always enabled, any edge that has
been labeled with hurry! is taken as soon as possible: no time may elapse
if such an edge is enabled.

3.2.5 Validation of the Level Crossing

We verified some properties of our conceptual design of the Level Crossing.
Property (3.3) ensures that if a deadlock occurs, then the main controller of

28 Case studies: the conceptual designs

the gate is in the location transmission_failure.

∀2(deadlock⇒ GateController.transmission failure) (3.3)

Thus, if the main controller of the gate is not in this location, then no
deadlock occurs.

Property (3.4) ensures that whenever the train arrives at the gate, the
gate has been lowered or a transmission failure has occurred.

∀2(PhysicalTrain.at gate⇒
(PhysicalGate.down off∨
GateController.transmission failure))

(3.4)

It is noteworthy that this property is not satisfied if the main controller of
the gate is allowed to wait for six seconds in location send_alarm.

However, this property is meaningless if the location at_gate of the
physical train is not reachable. Therefore, we need property (3.5) that states
that this location is reachable.

∃3(PhysicalTrain.at gate) (3.5)

The last property that we verified, property (3.6), ensures that the physical
gate is treated well by the main controller of the gate.

∀2(¬PhysicalGate.error) (3.6)

Fortunately, all four properties are satisfied by our conceptual design of the
level crossing. The model checking did not take long on a standard desktop
computer: properties (3.3), (3.4) and (3.6) can be checked within a few
seconds with the convex hull approximation. Property (3.5) can be checked
within one second without the convex hull approximation.

Note that we cannot ensure that the gate is raised after it has been
lowered. This is due to the fact that there is no way of ensuring that the
messages of the gate to the train eventually arrive at the train. In section
3.2.2 we mentioned that – after failure and repair of the gate – the gate
controller tries to send the ok message to the train controller until it is
received correctly. It is possible that all tries of the sender fail due to loss
of messages.

3.3 The Production Cell

The production cell is slightly more complicated than the level crossing of
the previous section. It is schematically depicted in figure 3.10. The purpose
of the production cell is to transport all bricks, that arrive by belt B, to the
container using a rotating robot arm. The robot arm can rotate, from its
depicted position, 180 degrees in a counter clockwise direction. The robot
arm can pickup a brick by activating a magnet that is positioned above the
brick. Magnet 1 is used to transport bricks from the pickup point above

3.3. The Production Cell 29

�������
�������
�������
�������

�������
�������
�����
�����

�������
�������
�������

�����
�����
�����

���
���
���
���

���
���
���
���

	�	�	�	
	�	�	�	
	�	�	�	

�
�

�
�

�
�

Magnet 2

Pit

Magnet 1

Belt A

Light sensor 1 Light sensor 2

A brick

Belt B

Robot arm

Belt C

Container

Rotation sensor

Figure 3.10: The production cell.

belt A to the pit. Magnet 2 is used to transport bricks from the pit to the
delivery point above belt C.

The system is controlled by two RCX bricks. The first RCX controls the
robot arm. It uses a rotation sensor to determine the position of the robot
arm. It uses three actuators: one engine to rotate the robot arm and two
magnets. The second RCX controls the three belts in the system and it uses
the two light sensors to detect bricks.

3.3.1 The physical robot arm

Figure 3.11 depicts our model of the physical robot arm. It has an internal
clock x that is used to model the rotation by updating the value of the
rotation sensor, modeled by the variable rotation_sensor, of the robot
arm in discrete steps. The relative speed of the robot arm is fixed by the
constant SPEED, which has a value of 333333 time units. Again, this large
constant is due to our time scale: one second equals one million time units.
The behavior of the process depends on the operational mode of the engine
of the robot arm, which is modeled by the variable arm, and on the direction
of this engine, which is modeled by the variable arm_dir.

Note that many edges have been labeled with hurry! to ensure imme-
diate reaction to change of, e.g., engine modes and directions. Thus, the
hurry dummy process is also a part of the system, but we do not depict it
again.

30 Case studies: the conceptual designs

moving_backward
x<=SPEED

moving_forward
x<=SPEED

arm==ON,
arm_dir==REV
hurry! x:=0

arm==OFF
hurry!

arm==ON,
arm_dir==FWD
hurry! x:=0

rotation_sensor:=rotation_sensor+1,
x:=0

x==SPEED
rotation_sensor:=rotation_sensor-1,
x:=0

x==SPEED

arm==OFF
hurry!

arm_dir==FWD
hurry!
x:=0

arm_dir==REV
hurry!
x:=0

Figure 3.11: The physical robot arm.

3.3.2 The brick template

Figure 3.12 depicts the template which models how a brick passes through
the system. For validation purposes, an arbitrary number of bricks may be
present in the system. However, the laws of physics prevent these bricks
from taking up the same space. As a result, they cannot arrive at light
sensor 2 at the same moment. To avoid this behavior, the bricks all share
and use the semaphore s for arriving at this light sensor.

Note that the belt controller ensures that there is at most one brick on
belt A. The robot arm controller ensures that there is at most one brick on
a magnet and in the pit. Therefore, belt B was the only place where our
model allows bricks to take up the same space, and we do not need to apply
the semaphore trick anywhere else.

The behavior of a brick depends on many variables. First there are beltA
and beltB that model the operational modes of the engines that move belt
A and belt B. Then there are mag1 and mag2 that model the operational
modes of the magnets on the robot arm. For example, consider the location
at_sensor_1_safe. The brick can move to location on_mag1, if the robot
arm is placed above the end of belt A (modeled by the guards concerning
the variable rotation_sensor), and the magnet must of course be switched
on.

The constant deliver, pit and pickup are used in combination with the
rotation sensor to determine the position of the physical robot arm. Again,
the values have been experimentally determined.

We noted that the belt controller sees bricks using the light sensors.
Therefore, bricks “update” the values of these light sensors, that are modeled
by the variables light_sensor_1 and light_sensor_2. For example, if a
brick enters the location at_sensor_2, then it updates the value of the
corresponding sensor. When it has completely passed light sensor 2, it
updates the sensor value again. This happens on the edge from location

3.3. The Production Cell 31

on_belt_B

y<=1000000

end_belt_B
y<=10000

between_belts
y<1000000

on_belt_A
y<5000000

at_sensor1_unsafe
y<=250000

at_sensor1_safe

error

at_sensor2_safe

on_mag1

in_pit

at_destination

on_mag2
at_sensor2
y<=10000

beltA==ON,
beltB==ON

y:=0
hurry!

y>500000
y:=0, s:=0,
light_sensor_2:=100

y>4000000
y:=0,
light_sensor_1:=0

beltA==OFF
hurry!

beltB==OFF
hurry!

hurry!
beltA==OFF

beltA==OFF
hurry!

beltA==ON
hurry!

y==250000,
beltA==ON

beltB==OFF
hurry!

y==10000,
beltB==ON,
beltA==OFF

beltA==ON,
beltB==ON
hurry!
y:=0

hurry!
light_sensor_1:=100

mag1==ON,
rotation_sensor - 2 <= pickup,
rotation_sensor >= pickup

hurry!

mag1==OFF,
rotation_sensor - 2 <= deliver,
rotation_sensor >= deliver

hurry!

mag2==ON,
rotation_sensor - 2 <= pit,
rotation_sensor >= pit

hurry!

mag2==OFF,
rotation_sensor - 2 <= deliver,
rotation_sensor >= deliver

y:=0,
light_sensor_2:=0

y==1000000

y==10000
y:=0

s==0, beltB==ON
s:=1, y:=0
hurry!

beltA==OFF,
beltB==ON
hurry!
y:=0

Figure 3.12: A brick.

between_belts to on_belt_A.

Again, there exists a distinct error location that is reachable if bricks are
maltreated. For example, if a brick is between belt A and belt B (location
between_belts), then both belts must keep moving.

3.3.3 The robot arm controller

The robot arm controller consists of three processes: the receiver of the com-
munication protocol, depicted in figure 3.3 on page 20, a message handler,
and the main controller. We start with the message handler, depicted in
figure 3.13. Whenever the receiver synchronizes over the channels rec, the
message handler updates the variable brick_ready that signals the presence

32 Case studies: the conceptual designs

rec?
brick_ready:=True

Figure 3.13: The message handler of the robot arm controller.

of a brick at the end of belt A. This synchronization is not guarded, since
the sender of the protocol transmits only one “type” of packet.

Figure 3.14 depicts the main controller. Its only function is to pick
bricks up at belt A and deliver them to belt C. It uses three internal vari-
ables, brick_on_mag1, brick_on_mag2 and bricks_in_pit, all with obvi-
ous meaning. The first two variables are initialized to False, whereas the
last variable is initialized to zero. We sketch the operation of the main con-

DELIVER

REST

to_rest

PIT

to_pit

to_pickup

to_deliver

PICKUP

Init

arm := ON,
arm_dir := REV

hurry!
brick_ready==True rotation_sensor - 2 <= pickup,

rotation_sensor >= pickup

arm := OFF

hurry!

arm := ON,
arm_dir := REV

rotation_sensor - 2 <= pit,
rotation_sensor >= pit

arm := OFF
hurry!

arm := ON,
arm_dir := REV

brick_ready==False,
brick_on_mag1==False,
bricks_in_pit==0
hurry!

rotation_sensor - 2 <= rest,
rotation_sensor >= rest

arm := OFF
hurry!

arm := ON,
arm_dir := FWD

bricks_in_pit>0,
brick_ready==False

mag2 := ON,
arm := ON,
arm_dir := FWD,
brick_on_mag2:=True,
bricks_in_pit := bricks_in_pit - 1

hurry!

mag1 := ON,
arm := ON,
arm_dir := FWD,
brick_on_mag1 := True,
brick_ready:=False

bricks_in_pit==0,
brick_on_mag1==True

arm_dir := FWD,
arm := ON

hurry!

brick_ready==True,
brick_on_mag1==False
hurry!
arm:=ON,
arm_dir:=REV

rotation_sensor - 2 <= deliver,
rotation_sensor >= deliver
hurry!
arm:=OFF

brick_on_mag1==True,
brick_on_mag2==True
mag1:=OFF,
mag2:=OFF,
brick_on_mag1:=False,
brick_on_mag2:=False,
bricks_in_pit:=bricks_in_pit+1

mag2:=OFF,
brick_on_mag2:=False

brick_on_mag2==True,
brick_on_mag1==False

mag1:=OFF,
brick_on_mag1:=False,
bricks_in_pit:=bricks_in_pit+1

brick_on_mag1==True,
brick_on_mag2==False

Figure 3.14: The main controller of the robot arm.

troller by paths through the process. We start with an explanation of the
position of the robot arm with respect to the locations in the process:

• REST: When in this location, the position of the robot arm is obtained

3.3. The Production Cell 33

by a counter clockwise rotation of about 45 degrees of the position of
the robot arm in figure 3.10.

• PICKUP: The arm with magnet 1 is above belt A, as depicted in figure
3.10.

• PIT: The arm with magnet 2 is above the pit.

• DELIVER: The arm with magnet 1 is above the pit and the arm with
magnet 2 is above belt C.

Before the system can be started, the robot arm must be placed in the
position as in figure 3.10. The transition from Init to to_rest is taken
immediately due to the urgency of Init and the engine is started. The
robot arm rotates about 45 degrees in the counter clockwise direction. As
soon as this resting position is reached, the transition to REST is taken and
the engine is turned off.

In the location REST, the robot arm controller waits for the BRICK_READY
message from the belt controller, which means that a brick is positioned
at the end of belt A. As soon as this message is received, the robot arm
controller moves to the pickup point and enters location PICKUP. In this
location, magnet 1 is hovering above the brick and when it is switched on
the brick will stick to it. Next, the robot arm must move the brick on magnet
1 to the pit and it switches on its engine and enters location to_pit.

When the value of the rotation sensor is such that the robot arm con-
troller may conclude that magnet 2 is above the pit, the engine of the robot
arm is switched off and the location PIT is entered. Now there are four
possibilities:

• If there is no brick on magnet 1 and there is no brick in the pit, then
the robot arm controller returns to its resting position.

• If a brick is ready for pickup and there is no brick on magnet 1, then
the robot arm starts moving to the pickup position.

• If no brick is ready and there is a brick in the pit, then this brick is
picked up by magnet 2 and the robot arm starts moving to the delivery
position.

• If there is no brick in the pit, but there is a brick on magnet 1, then
the robot arm also starts moving to the delivery position.

When the robot arm arrives at the delivery position, there are three possi-
bilities: there is a brick on magnet 1, there is a brick on magnet 2, or there
are bricks on both magnets. In all cases, the bricks are dropped by switching
off the magnets and the robot arm starts moving back to the pit position.

34 Case studies: the conceptual designs

3.3.4 The belt controller

The belt controller consists of two processes: the sender of the communi-
cation protocol, depicted in figure 3.2 on page 19, and a main controller,
depicted in figure 3.15. For a correct functioning of the system, the belt
controller must ensure that at any time at most one brick is on belt A.
Moreover, when a brick arrives at light sensor 1, belt A must be stopped
and the robot arm controller must be informed that a brick is ready for
pickup. The belt controller has an internal clock t and an internal boolean

transfer
t<=1500000

t<=5000000error

light_sensor_2<50
hurry!
beltA:=ON,
t:=0

t==1500000

light_sensor_2<50,
waiting==False
hurry!
beltB:=OFF,
waiting:=True

light_sensor_2<50,
waiting==False
hurry!
beltB:=OFF,
waiting:=True

light_sensor_1>=50,
waiting==False
hurry!

light_sensor_1>=50,
waiting==True
hurry!

beltA:=ON,
beltB:=ON,
waiting:=False,
t:=0

light_sensor_1<50
start!
in:=BRICK_READY,
beltA:=OFF,
t:=0

ok?

light_sensor_2<50,
waiting==False
hurry!
beltB:=OFF,
waiting:=True

t>=5000000

ok?

Figure 3.15: The main controller of the belts.

variable waiting that is initialized to False. This boolean indicates whether
or not a brick is waiting at light sensor 2.

In the initial location, belt A has been stopped and belt B and C are
running. When the controller sees a brick pass light sensor 2, belt A is
started and the brick is transfered from belt B to belt A. After this transfer,
belt B must be stopped if another brick arrives at light sensor 2. If the first
brick arrives at light sensor 1, then belt A is stopped and synchronization
over the channel start starts the sender of the communication protocol to

3.3. The Production Cell 35

inform the robot arm controller of the presence of the brick. Clock t is
reset with this transition. If the transmission is not successful within five
seconds, then the belt controller enters the location error. Otherwise, it
resumes with waiting for the robot arm to pickup the brick.

3.3.5 Validation of the Production Cell

We used two instances of the brick template in the validation. Property
(3.7) assures that the bricks always arrive at their destinations or that a
transmission failure put the belt controller in the error location.

∀3((Brick1.at destination ∧ Brick2.at destination)∨
BeltController.error)

(3.7)

Note that this is a very expensive property to check, which we only added
to show the expressiveness of the ∀3 path property.

Property (3.7), however, does not guarantee that the bricks arrive at
their destination, since it could be the case that there is a transmission
error for all paths. To ensure that this is not true, we also state property
(3.8) that means that at least one trace exists that leads to the situation
where both bricks are at their destinations.

∃3(Brick1.at destination ∧ Brick2.at destination) (3.8)

It is interesting to derive an upper bound on the time it takes to transport
the bricks to their destinations. Property (3.9) specifies this upper bound
as 48 seconds. This property is not satisfied for a value of 47 seconds.

∀2(rt>=48000000⇒
(Brick1.at destination ∨ BeltController.error))

(3.9)

Note that there is no need to include the second brick in this property, since
the bricks behave exactly the same. So if this property is satisfied for the
first brick, then it is also satisfied for the second brick.

Property (3.10) ensures that the bricks are not maltreated. This property
also holds for all other bricks in the system by symmetry.

∀2(¬Brick1.error) (3.10)

The magnets on the robot arm can only carry one brick at a time. The
properties in equation (3.11) assure that this also is the case for our model.

∀2(¬(Brick1.on mag1 ∧ Brick2.on mag1))
∀2(¬(Brick1.on mag2 ∧ Brick2.on mag2))

(3.11)

The pit also has a capacity of one brick. The robot arm controller has an
local variable that counts the number of bricks in the pit. Property (3.12)
assures that this number does not exceed one.

∀2(RobotarmController.bricks in pit ≤ 1) (3.12)

36 Case studies: the conceptual designs

Property (3.13) guarantees that our production cell keeps working until
either the belt controller is unable to transmit a message to the robot arm
controller within 5 seconds, or all bricks are at their destinations and the
robot arm is in the resting position.

∀2(deadlock⇒ (BeltController.error ∨
(RobotarmController.REST ∧
Brick1.at destination ∧ Brick2.at destination)))

(3.13)

Finally, we mentioned that there must never be two bricks on belt A at the
same time, since this would lead to collisions due to the rotational arc of
the robot arm. Property (3.14) assures this mutual exclusion on belt A.

∀2(¬(Brick1.on beltA ∧ Brick2.on beltA)) (3.14)

All properties are satisfied by our design and we conclude that the sys-
tem functions as required. The model checking did not take long on a
standard desktop computer. Properties (3.10)-(3.14) can be checked within
one minute with the convex hull approximation. For some unknown rea-
son, model-checking of property (3.9) takes more time: about five minutes.
Model-cheking property (3.8) takes less than a minute with a depth-first
search order and without the convex hull approximation. The only remain-
ing property, property (3.7), is very expensive: We terminated the model
checking after 18 hours of computation time and a memory usage of 2289
MB.

3.4 Summary

This chapter introduced two case-studies that are used to evaluate our tech-
nique for obtaining correct reactive programs for the RCX using the model
checker Uppaal.

We started with the conceptual design of a communication protocol that
is very similar to the alternating bit protocol. This “stop-and-wait” protocol
provides a reliable data stream over a lossy channel. Therefore, it is very
well suited for the communication between different RCX bricks, since the
byte code language – the language used to program the RCX – only offers
an unreliable send primitive that cannot tell whether or not the message has
been received by other RCXs.

The two real case studies, the Level Crossing and the Production Cell,
each consist of a LEGO setup with two RCXs. In both systems the RCXs
must communicate with each other and that is where our communication
protocol appeared again. We globally described the Uppaal models that
constitute the conceptual designs of the systems and we stated our require-
ments on the systems in terms of the Uppaal specification language. For-
tunately, all our requirements on the conceptual designs are satisfied and
the model checking of the invariance and reachability properties took little
time on a standard desktop computer.

3.4. Summary 37

The conceptual design of the systems took experiments with the actual
LEGO setups to measure timing parameters for the processes of the physical
world. For example, the value of SPEED, used in the process of the physical
robot arm, originates from measurement of the real rotation speed of the
arm. As for the construction of the control processes, the simulator in
Uppaal proved to be very helpful. Also the option to generate diagnostic
traces that disprove properties is useful: it enabled us to quickly debug the
communication protocol.

In the next chapter we describe our translation from the conceptual de-
signs in the Uppaal modeling language to executable byte code for the
RCX and to another Uppaal model of the run-time behavior of the gener-
ated byte code. This second model can be used to check whether or not the
implementation of our conceptual design functions as we expect.

38 Case studies: the conceptual designs

Chapter 4

Compiling conceptual designs

This chapter describes the heart of our technique for obtaining correct re-
active programs for the RCX using the model checker Uppaal. We define a
translation from Uppaal models to RCX byte code and an Uppaal model
of the run-time behavior of that byte code.

In section 4.1 we discuss why additional information must be present in
an Uppaal model to support the implementation on the RCX. Moreover,
we define what this additional information should be. In section 4.2 we
first discuss how we generate executable byte code and the model of that
byte code. Next, we link the input and the output of the translation and we
discuss the restrictions that result from our choices. In section 4.3 we discuss
our implementation of the translation – the compiler uppaal2rcx – and give
a small illustrative example. Finally, in section 4.4 we apply our compiler
to the Level Crossing and the Production Cell. We test the generated byte
code on the physical LEGO setups and we try to model check it.

4.1 Extra information in conceptual designs

In this section we discuss the extra information that must be present in Up-

paal models to support their implementation. This need originates from
the fact that modeling tools in general, and Uppaal in particular, are not
specifically designed to model reactive programs for some platform. There-
fore, the models that can be constructed with these tools must explicitly be
mapped to the target platform and this is, in general, not possible without
additional information.

4.1.1 Only a Uppaal model is not enough

A Uppaal model that is a conceptual design of a system for the RCX con-
tains aspects that model specific properties of the RCX, e.g., a sensor value
of the RCX might be modeled by an integer variable in the Uppaal model.
Moreover, the Uppaal model might contain control programs for more than
one RCX brick. This is clearly illustrated by the case study of the Produc-
tion Cell. Both RCX bricks should be modeled, since the correct functioning
of the system depends heavily on the interaction between the RCX bricks.

40 Compiling conceptual designs

A last point concerns the fact that the Uppaal model contains processes
that should not be translated. In the Production Cell for example, the chan-
nel processes model the behavior of the lossy communication between RCX
bricks and the hurry dummy is a helper process, which provides an urgent
synchronization channel that is always available. It is clear that these pro-
cesses should not be implemented. The following problems thus occur when
we want to translate some Uppaal model to RCX byte code [Hen01]:

• Distribution. We must be able to tell which processes should be im-
plemented, and on which RCX brick they should be implemented.

• We must be able to tell how the implementation details of the RCX
are modeled in the Uppaal model. For example, a user may model
a sensor type by a Uppaal variable. To be able to translate these
additional “semantics” of the variable, the user must explicitly tell
that the variable models a sensor type.

Note that these problems also occur when other target platforms or model
checkers are used. To solve these problems, a model should contain more
information, namely so-called type mappings. The next subsection explains
this more carefully.

4.1.2 The type mappings

The RCX can use four timers, 32 integer variables, one infrared communi-
cation channel, three sensors and three actuators. It is a natural choice to
model the timers of the RCX with Uppaal clocks, and the RCX integer
variables with the Uppaal bounded integer variables.

Each sensor is defined by a tuple (t,m, v), where t is the sensor type, m is
the sensor mode and v is the value of the sensor, all integers. Similarly, each
actuator is defined by a tuple (m, d, p), where m is the operational mode, d
is the direction and p is the power of the actuator. Therefore, it is natural to
model these sensor and actuator attributes with Uppaals bounded integer
variables.

Modeling the infrared communication channel is a bit complicated due
to the possibilities of the byte code language. As already mentioned in
section 3.1.2, the byte code language only supports a broadcast instruction
that excludes the sending RCX. It also contains an instruction to update
the infrared buffer of the RCX. It may seem that a “total” broadcast can
be achieved by the combination of these two instructions. However, the
argument for the first instruction may be computed at run-time, whereas
the argument for the second instruction must be known at compile-time.
Therefore, we model this infrared communication using two integer variables.
Broadcasting is modeled by assigning a value (that may be computed at run-
time) to the first variable. This variable may not be used in guards, as it is
not stored on the RCX. The second variable models the actual local infrared

4.1. Extra information in conceptual designs 41

buffer, which can be used in guards and in assignments. However, if it is
the target of an assignment, then the assigned value should be constant.

Summarizing, we assume the following concerning the Uppaal model:

• The timers of the RCX are modeled by clocks.

• The sensor and actuator attributes and regular variables of the RCX
are modeled by integer variables.

• The IR communication is modeled by reading from and writing to two
integer variables.

We do not think that these assumptions are limiting, which is motivated by
the case-studies of the Level Crossing and the Production Cell.

As explained in the previous section, we must map parts of the Uppaal

model to details of the RCX (e.g. sensor values, actuator modes etcetera),
which are covered by the set TRCX :

TRCX = { sns 1 type, sns 1 mode, sns 1 val, sns 2 type, sns 2 mode,
sns 2 val, sns 3 type, sns 3 mode, sns 3 val, out 1 mode,
out 1 dir, out 1 power, out 2 mode, out 2 dir, out 2 power,
out 3 mode, out 3 dir, out 3 power, ir buffer, ir value,
regular }

Moreover, the Uppaal model has to be distributed over the various RCXs,
and processes that model the environment should not be implemented. The
mapping of RCX details and the distribution of processes are facilitated by
three type mappings, which we define next.

Let V denote the set of bounded integer variables of a Uppaal model,
and let N denote a set of names. A partial mapping must exist that maps
a subset of the variables in the model to an RCX brick and a RCX detail:

TypeV : V ↪→ N × TRCX

Variables that are not mapped to a type, are part of the environment. For
example, consider the infrared buffer variable irr_buf of the Production
Cell: TypeV (irr buf) = (RobotarmController, ir buffer).

A similar partial mapping must be present for the clocks, denoted by X,
that are used in the model:

TypeC : X ↪→ N

Again, clocks that are not mapped to a RCX are part of the environment.

To distribute the various processes over the RCXs and the environment,
there must be a final mapping that directs each Uppaal process in the model
to some RCX, or to the environment. Let A denote the set of processes in
the following definition:

TypeA : A→ {environment } ∪ { (rcx, n) |n ∈ N }

42 Compiling conceptual designs

For example, the three processes that constitute the robot arm controller all
have the same type, e.g., (rcx, RobotarmController). On the other hand,
the hurry dummy has type environment. From now on, we call a process that
has type (rcx, n) a control program process. A process with type environment
is called an environmental process.

Note that the inclusion of the name of the target RCX in the type map-
ping TypeV and the existence of TypeC both are redundant, since all vari-
ables and clocks are automatically associated with one or more Uppaal

process (namely those who use the variable or clock in assignments, guards
or invariants), and each process is already associated with a RCX or the en-
vironment by TypeA. However, including the names in TypeV and requiring
the existence of TypeC is convenient for implementation reasons.

4.2 Definition of the translation

In this section we define the translation from a Uppaal model to RCX byte
code program(s), in section 4.2.1, and to an Uppaal model of the run-time
behavior of the byte code, in section 4.2.2. Moreover, in section 4.2.3 we
discuss the relation between the conceptual design and the generated byte
code and model of that byte code. Finally, in section 4.2.4 we discuss our
translation and the restrictions it imposes. We assume that the Uppaal

model has type mappings as explained in the previous section.

4.2.1 Generating the byte code program

This section describes how we translate a given Uppaal model to one or
more RCX byte code programs. We assume that the model consists of
the set of processes A. Using the type mappings, we first determine which
processes must be used for which byte code program:

Rn = { a ∈ A | TypeA(a) = (rcx, n) }

The set Rn contains all control program processes that must be combined
to RCX byte code program with name n. The sets Rn that are not empty
can be straightforward computed from the model.

All processes in a set Rn must be compiled into one byte code program. If
all resulting byte code programs are run simultaneously on the RCX bricks,
then the behavior of this LEGO system should ideally resemble the behavior
of the original Uppaal model.

We explain our translation in a top-down manner, using pseudo code
instead of actual byte code. This is easier to understand and it is straight-
forward translatable to byte code. We start with an explanation of the main
control structure of the byte code programs that simulates the interleaving
of the various processes. Next, we explain how we translate the control
structure of each process. Finally, we explain our translation of the edges
that appear in the processes.

4.2. Definition of the translation 43

The main control structure

All processes in the set Rn are control program processes that must be
combined to one byte code program. The semantics of Uppaal interleaves
the execution of all processes in the model in all possible ways. This behavior
should as close as possible be simulated in the byte code program. However,
we must choose one specific interleaving of the processes in Rn, since the
scheduler of the firmware and the byte code language are deterministic. We
distinguish two possibilities for the main control structure of the byte code
program:

• A dedicated task for each process. The scheduler of the firmware takes
care of interleaving the processes. One disadvantage is that a compli-
cated mechanism is necessary to guarantee the atomicity of assign-
ments on edges, which we want to preserve. Another disadvantage is
that the number of control program processes for one RCX is bounded,
since the firmware can handle at most 10 tasks.

• One large task that contains all processes. The scheduling is done by
the control structure of this task. A disadvantage is that the processor
is used less efficiently.

We choose for the second option, since we want atomicity of edges, but we
do not want to complicate matters. Another reason to use one large task
is that we do not need to construct a separate process for the scheduler of
the firmware in the model of the run-time behavior of the byte code. The
advantage of this will become clear in the next chapter. As a result, we use
the main control structure for the byte code program as depicted in figure
4.1. As can be seen in the pseudo code, first the regular variables, sensors

task main()

{

/* Declarations and initializations of program counters,

variables, sensors and actuators. */

while(1)

{

/* Translation of process 0 */

/* Translation of process 1 */

:

/* Translation of process n */

}

}

Figure 4.1: The main control structure.

and actuators that appear in the processes in Rn are declared and initialized.
Moreover, we declare and initialize |Rn| program counters, that are used to
translate the control structures of the individual processes in Rn. Next, an
infinite while loop is started that schedules the processes in a fixed order.

44 Compiling conceptual designs

As we will see below, the atomic units of execution of the processes will be
action and – implicitly – delay transitions, as is the case in Uppaal.

Translation of the processes

For each process we have to keep track of the current location. This is done
by a program counter, which is declared and initialized to the initial location
before the infinite while loop. We construct one large if-then-else structure
in order to simulate the execution of the process, as depicted in figure 4.2.

if (pc_P == 0)

{

/* Translation of edges from location 0 */

}

else if (pc_P == 1)

{

/* Translation of edges from location 1 */

}

:

else

{

/* Translation of edges from location n */

}

Figure 4.2: Simulation of the execution of a process.

The variable pc_P is a program counter that is compared to integers
that represent the locations of the process. If this structure has been added
for every process, then the action transitions of the processes of Rn are
interleaved in a fixed order. First process 0 can (try to) execute an action
transition, then process 1 can attempt this, etcetera. Note that there is
always an implicit time delay between the execution of edges due to the
overhead of the control structure.

The possible location invariants in the control program processes are
ignored by the translation. Location invariants are of the form x ≤ c where
x is a clock and c is a constant. They ensure progress: control can only
remain in the location for a bounded amount of time. As we will see in
our explanation of the translation of edges below, the generated byte code
approximates this progress automatically.

We also ignore the possible urgency or commitment of a location in the
generated byte code. The semantics of urgency – if control is in an urgent
location, then no time may elapse – are expressible with an extra clock and
location invariant. As explained above, this urgency thus ensures progress,
which is automatically approximated by the generated byte code.

The reason why we do not translate the semantics of commitment is
that this would involve a complicated mechanism: different RCX bricks
must let each other know whether or not some control program process is
in a committed location. For example, if some process on RCX 1 is in a
committed location, then a process on RCX 2 may only execute an action
transition if it also is in a committed location.

4.2. Definition of the translation 45

Translation of edges

Above we explained how we simulate the interleaving of various processes
by an infinite while loop that contains an if-then-else structure for every
process. Now we explain the translation of the outgoing edges of each loca-
tion to replace the comments in figure 4.2. Again, we use a large if-then-else
structure to translate all outgoing edges for a given location. We distinguish
two situations concerning the synchronization of the edge.

First, let us consider the situation where an edge does not synchronize
with another process in Rn. Then, we use a scheme as depicted in figure

(else) if (guard)

{

update pc_i

assignments

}

Figure 4.3: Translation
of an edge without syn-
chronization.

(else) if (guard_i && pc_j==n && guard_j)

{

update pc_i

update pc_j

assignments ! side

assignments ? side

}

Figure 4.4: Translation of an edge with
synchronization.

4.3. We use the (translation of) the guard of the edge as the guard of our if-
case. The body of the if-case consists of the (translation of) the assignments
on the edge and of an update of the program counter, to reflect a possible
location switch. Of course, if a synchronization is present, then this must
be taken into account. There are two possibilities:

• Synchronization with a process on another RCX brick. This is ex-
cluded by our translation. A sensible translation would involve much
overhead and negotiation between different RCX bricks using the in-
frared channel.

• Synchronization with an environmental process. In this case, we mark
the last byte code instruction that results from translation of the as-
signments of the edge with the synchronization label. We use this label
for the generation of the model of the run-time behavior of the byte
code, described in section 4.2.2.

Second, let us consider the the situation where an edge i does synchronize
with an edge j of another process in Rn. Then, we use a scheme as depicted
in figure 4.4. We check if both guards of the edges are satisfied, and if
the other process is in the right location (denoted by pc_j==n). If this is
true, then the synchronization can occur and the assignments are executed
in the order that Uppaal specifies. Finally, the program counters of both
processes are updated.

Note that this scheme introduces a fixed preference for edges. If two
outgoing edges of some location are enabled, then the edge that appears

46 Compiling conceptual designs

first in the large if-then-else structure, of which one element is depicted in
the figures 4.3 and 4.4, is taken. Besides, this scheme ensures that an edge
is taken if it is enabled, thus as soon as possible. This ensurance of progress
is the reason why we do not explicitly translate the location invariants and
urgency of locations of control program processes.

The translation of the guards and assignments is straightforward, using
the types of the variables. The firmware does not support arrays and our
translation does not use a mechanism to convert arrays to normal variables.
Therefore, the use of arrays by control program processes is not allowed.
For details about the translation, we refer to the implementation, that is
described in section 4.3.

4.2.2 Generating the Uppaal model of the run-time behavior

We partially follow the approach of Iversen et al for the generation of the Up-

paal model for the run-time behavior of the generated byte code [IKL+00].
They have a timed automaton model for each kind of instruction, and con-
struct the Uppaal model of the program by “concatenation” of these indi-
vidual instruction models. Moreover, they explicitly include a process that
models the simple round robin scheduler of the firmware. This is necessary,
since a program may consist of multiple tasks in their approach.

Modeling the individual instructions

In the previous section we explained that our translation results in byte code
programs of exactly one task and no subroutines. This enables us to include
the model of the scheduler into the model of the program.

The scheduler checks the ten tasks in a cyclic, or round-robin, fashion.
If a task is active, then it may execute one byte code instruction before the
scheduler goes to the next task. Logically, the scheduler introduces some
time overhead: it must check if a task is active and it must do some internal
work to proceed to the next task. Since our generated byte code programs
consists of only one task, this time overhead can be implictely modeled in
the duration of byte code instructions.

We model every byte code instruction by one location, in which control
can remain for the duration of the instruction plus ten times the overhead
of the scheduler. This reflects the fact that the scheduler checks the other
nine tasks between two instructions of the only active task of the program.
For example, consider figure 4.5 that models a set instruction that assigns
the value 5 to the variable a. Actually, the instruction is modeled by the left
location and the edge. The right location is part of the model of the next
instruction. The clock x is used to model the duration of the instruction,
including the overhead of the scheduler. The instruction itself takes at least
L1 and at most U1 time units. Similarly, the overhead of the scheduler is at
least 10*SL and at most 10*SU time units. Note that clock x is reset for the
next instruction.

4.2. Definition of the translation 47

x<=U1+10*SU

x>=L1+10*SL
a:=5, x:=0

Figure 4.5: A model of the set
instruction.

x<=U2+10*SU

x>=L2+10*SL,
a<=5
x:=0

x>=L2+10*SL,
a>5
x:=0

Figure 4.6: A model of the tbf
instruction.

Figure 4.6 models a “test and branch far” instruction that is used to
implement the if-then-else structures explained in the previous section. In
this case, the test is whether or not variable a is less than or equal to 5. If
this is true, then control is transferred to an instruction whose address is
given in the tbf instruction. Otherwise, control is transferred to the next
instruction. Note that the tbf instruction probably has another duration,
expressed by L2 and U2, than the set instruction, but the same scheduler
overhead.

Construction of the complete model

Let us consider an Uppaal model whose processes can be divided into the
sets R1 to Rn and E. The set Ri contains the processes that constitute the
byte code program i, and the set E contains the environmental processes.
In section 4.2.1 we explained how we can compile the sets R1, .., Rn to byte
code programs, denoted by B1, .., Bn. This section explains how we can
generate byte code processes P1, .., Pn from the byte code programs. The
generated model contains these byte code processes and the environment E
of the source model.

We construct a new Uppaal process Pi for each byte code program Bi
by concatenation of the individual models of the byte code instructions. The
resulting processes must then be “plugged back” into the environment, that
is given by the set E of the original (or source) Uppaal model. This is easy,
except for the fact that the processes in Ri might synchronize with processes
on other RCX bricks, or with environmental processes, as described in sec-
tion 4.2.1 on page 45. We excluded the first case, but in the second case
we attached the synchronization label, say (a, !), to the last instruction that
results from the translation of the assignment of the synchronizing edge in
Ri. Thus an instruction in Bi has been labeled with (a, !).

The translation of such a labeled instruction is the same as described
above, except that we now also label the edge(s) of the instruction model
with the synchronization label. For example, the edge of the set instruction

48 Compiling conceptual designs

model, depicted in figure 4.5, is labeled with (a, !), if this instruction is the
last instruction that results from translation of an edge labeled with (a, !).
As a result, this label (or channel) may not be declared as urgent, since
there certainly is a clock guard present on the edge.

This scheme assures that the model of the byte code approaches the
model of the conceptual design in its behavior with respect to synchro-
nization with the environment. To illustrate the use of this, consider the
conceptual design of the communication protocol as described in section 3.1
on page 17. The lossy infrared channels (the air) between the two RCXs
in the system are modeled by two environmental processes. The control
program processes “start” these channels by a synchronization. After the
translation, the byte code processes must of course still be able to use these
channels, and therefore the synchronization labels in the conceptual control
program processes are transferred to the model of the run-time behavior of
the byte code.

Translation of properties of the conceptual design

A conceptual design should, in general, satisfy some validation properties.
When Uppaal is used as the design tool, then these properties are invariance
and/or reachability properties over state formulas, as described in section
2.2.1. These state properties can contain names of locations, clocks and
variables. Thus, a problem arises when the properties of the original model
are tested in the model of the generated byte code, since, e.g., the location
names of control program automata are replaced by guards on program
counters.

Another practical issue concerns the local objects of control program
processes. Due to their locality, two processes in Ri may both have a local
clock called x. When these two processes must be compiled into one byte
code program, this may cause difficulties. A logical choice is to make these
local objects global by replacing them by unique and global equivalents.
Again, this influences the correctness of the original properties with respect
to the generated model.

To overcome the sketched problems, we should also translate the original
properties. As for the location names of control program processes, this is
not difficult. Consider a control program process C and one of its locations
L. Every appearance of this location, say C.L, in the original properties is
replaced by the expression pc_C==n, where pc_C is the program counter of
C and n is the integer that represents location L.

To translate the references to the local objects of the conceptual design
in the original properties, we should of course know the renaming of the local
objects. If we know this, then every appearance of a local object p of control
program process C, e.g., C.p<=6, is replaced by its renaming, e.g., C___p<=6.
This scheme assures that the translated properties are syntactically correct
with respect to the generated model of the byte code.

4.2. Definition of the translation 49

4.2.3 Relation between the input and output of the transla-
tion

The byte code that is generated from a conceptual design does not com-
pletely resemble the behavior of that design. This is due to the fact that
the semantics of Uppaal is not completely realizable by physical machines.

Probably the best example of unrealizable semantics is that Uppaal

allows action transitions “with infinite speed”. However, the RCX can cer-
tainly never execute a byte code instruction in zero time. It is clear that our
translation allows conceptual designs with control program processes that
exhibit this behavior: we allow urgent locations and channels, and location
invariants (that can say x ≤ 0).

We have a good reason for allowing unrealizable conceptual designs. If
we did not allow them, then the conceptual design of a byte code program
should include all implementation details, like the durations of byte code
instructions, the scheduler, etcetera. Thus, the conceptual design should
be very close to the model of the behavior of the generated byte code.
Of course, this invalidates the approach of a relative simple and abstract
conceptual design.

Other concepts that are difficult to realize in practice are the concurrency
and non-determinism of Uppaal. Due to the facts that the RCX has only
one processor and that it cannot execute instructions in zero time, concur-
rency of control program processes on the same RCX cannot be realized. As
explained in section 4.2.1, the generated byte code introduces priorities for
the outgoing edges of each location. If two edges of a location are enabled at
the same moment, then the byte code always executes a fixed edge. More-
over, the fact that every action transition is taken as soon as possible in the
generated byte code, lets action transitions prevail over delay transitions.

Concluding, we allow idealized conceptual designs in which control pro-
gram processes can execute action transitions infinitely fast and in which
control program processes are completely concurrent. The generated byte
code, however, is not infinitely fast and only approximates one execution of
the conceptual design. The behavior of the generated byte code is modeled
by the other product of our translation. We believe that this generated
model is fairly accurate. However, good care should be taken with the
translated properties. For example, multiple assignments on one edge of
a conceptual design are translated to multiple byte code instructions, and
thus to multiple edges in the generated model. As a result, properties which
assume that the atomicity of edges in the conceptual design is preserved,
are probably not satisfied by the model of the generated byte code.

4.2.4 Restrictions introduced by the translation

Our translation imposes a number of restrictions on Uppaal models that
we describe next. First, there are the straightforward restrictions that come
forth from the RCX firmware.

50 Compiling conceptual designs

• There are strict bounds on the number of variables and clocks that
are used by a set of control program processes, denoted by Ri. As
can be read in section 2.1, the firmware supports up to 32 integer
variables and 4 timers for one program. Thus, the set of processes in
Ri may at most use these numbers of variables and clocks. Note that
there are temporary variables needed for the computation of arithmetic
expressions.

• The firmware does not support arrays and we noted that our trans-
lation does not convert arrays to normal variables. Therefore, the
control program processes are not allowed to use arrays.

The second type of restriction has to do with the shared use of variables,
clocks and channels between sets of control program processes, denoted byRi
and Rj , and between a control program process and the set of environmental
processes, denoted by E.

• The processes in Ri are not allowed to share clocks or variables with
the processes in Rj . Since our translation does not support a sensible
translation of such sharing – it is ignored – the behavior of the gen-
erated byte code differs too much from the conceptual design. Note
that this requirement is automatically satisfied by the inclusion of the
target RCX in the type mappings TypeV and TypeC .

• We assumed that the only communication between the control pro-
gram processes and their environment is through the sensors and actu-
ators. We refine this by requiring that environment processes may only
use untyped variables, or variables with type ir buffer or sns x value,
where x ∈ {1, 2, 3} as targets for assignments. They are allowed,
however, to use all variables and clocks in their guards. Similarly,
environment processes may only reset untyped clocks.

• Our translation of synchronizations, described in section 4.2.1 on page
45, does not support synchronizations between processes in Ri and
Rj . Therefore, we forbid these synchronizations. However, synchro-
nizations between a process in Ri and and a process in E are allowed.
Our assumption about the communication between a control program
and the environment, results in our requirement that the environment
must be input enabled with respect to these synchronizations. More-
over, since the last instruction of the edge is labeled with the syn-
chronization label, we require that the control program process always
uses the ! side. Finally, we explained that the channel is declared as
non-urgent in the model of the generated byte code. If it was already
non-urgent, then this poses no problems. Otherwise, it can, but we
prevent them by requiring that only control program processes may
use this channel.

Summarizing this last point, a control program process C is allowed to
synchronize with an environmental process E using channel a, if (i) C only

4.3. The implementation 51

uses the label (a, !), (ii) every non-committed location of E is the source
of an unguarded edge labeled with (a, ?), and (iii) if a is urgent, then no
edge of any other environmental process is labeled with (a, !). The channel
processes in the communication protocol, depicted in figure 3.1 on page 19,
illustrates these three requirements. First, the sender and receiver only use
the ! side. Second, the commitment of the non-initial location assures that
in any state the possibility exists for a synchronization. Third, the channels
sendSR and sendRS are urgent, but no environmental process uses them.

Finally, we require the absence of committed locations in control program
processes, since the semantics of committed locations – if some process is in
a committed location then no time may elapse and the next action transition
involves a process that is in a committed location – is not expressed in the
byte code by our translation.

4.3 The implementation

In the sections 4.2.1 and 4.2.2 we explained the translation of a Uppaal

model, that is a conceptual design, to byte code that implements this de-
sign and to another Uppaal model of the run-time behavior of the gener-
ated byte code. We implemented this translation, resulting in the compiler
uppaal2rcx, which is available at the web site of this thesis.

Figure 4.7 depicts the input and output of the compiler. The dashed
box at the left contains the Uppaal model of the conceptual design: a .xml
and a .q file. The .xml file must first be exported as a .ta file, using the
save as option in Uppaal. The .ta and .q file can then serve as input to

.xml file

.q file

- .ta file

durations file

-
�
�
�
�uppaal2rcx

- new .ta file

- new .q file

- .rcx file(s)

- .byte file(s)

Figure 4.7: Input and output of uppaal2rcx.

the compiler. Moreover it is possible to specify the lower and upper bounds
on the durations of the individual byte code instructions in a “duration
file”, which may also serve as input to the compiler. Due to the fact that
the generated Uppaal model must contain these durations, which typically

52 Compiling conceptual designs

lie in the range of 10 to 100 microseconds, the compiler assumes a fixed
time scale: one million Uppaal time units model one second. Note that we
were far-seeing during the conceptual design of the Level Crossing and the
Production Cell: the time scale of these designs matches the time scale of
the compiler.

If the model satisfies the requirements stated in section 4.2.4, then the
compiler generates a new Uppaal model, a set of .rcx files that are the
actual byte code programs, and optionally a set of .byte files that contain
symbolic byte code.

The reason why we use the ta file-format is that it is easier to parse and
process than the xml file-format. This choice is not limiting since both the
graphical front-end of and the stand-alone verifier of Uppaal are capable of
reading ta files.

Please note that we did also implement a download tool, called rcxdownload,
which is available at the thesis’ web site. This tool can be used to download
the generated executable byte code to the RCXs using the IR tower of the
LEGO Mindstorms set.

4.3.1 Adding the type mappings to a Uppaal model

In section 4.1.2 we argued that extra information should be present in a
Uppaal model to facilitate the translation to executable code. We explained
the type mappings that map variables, clocks and processes to the various
RCX bricks in the system.

The type mappings can be added to the Uppaal model by prefixing a
declaration of a clock or variable with a comment. Consider for example
the variable sns2 that appears in the main controller of the train in figure
3.8 on page 27. The following combination of a comment and declaration
of this variable maps the variable to the RCX with name Gate and sets its
type to sns 1 type.

// RCX Gate sns_1_value

int sns1:=0;

Similarly, we can map clocks to RCXs in the following manner:

// RCX brick Gate

clock t;

This combination of a special comment with the declaration of clock t, maps
the clock to the program for the RCX with name Gate. Finally, mapping the
processes to RCXs or to the environment is done in the system description
section of the Uppaal model:

system

// RCX brick Train

TrainController, R,

// RCX environment

PhysicalTrain,

4.3. The implementation 53

The first declaration maps the processes TrainController and R to the
program for the RCX with name Train. The second declaration tells the
compiler that the process PhysicalTrain is an environmental process, which
should not be implemented.

If a model satisfies the requirements defined in section 4.2.4, then com-
pilation of this model should result in byte code and a new Uppaal model
of the run-time behavior of the byte code. In the next section we give a
small example of the translation.

4.3.2 A small example

To illustrate the translation we constructed a very small example for one
RCX. Consider the processes P0 and P1 in figures 4.8 and 4.9. These pro-
cesses model a reactive program, called B, which controls two actuators and
uses two sensors. Process P0 uses sensor 1 (whose value is modeled by the

S1S0
in1<10,in1>5
hurry! a:=ON

in1>=10 hurry! a:=OFF

in1<=5 hurry! a:=OFF

Figure 4.8: Process P0.

S1S0

in2<3 hurry! b:=OFF

in2>=3 hurry! b:=ON

Figure 4.9: Process P1.

variable in1) and actuator A (whose mode is modeled by the variable a).
Similarly, process P1 uses sensor 2 and actuator B.

Initially, both actuators are off. If the sensor value of sensor 1 becomes
between 5 and 10, process P0 switches actuator A on. If the sensor value
leaves this region, then process P0 switches actuator A off again. Process
P1 functions in a similar manner.

Figures 4.10 and 4.11 are the environmental processes. The hurry dummy
provides an always enabled synchronization over the urgent channel hurry,
which creates urgent edges. Note that all edges of P0 and P1 use this channel,
with the result that they are taken as soon as possible. The environment
periodically updates both sensor values with a “speed” expressed by the
constant LARGE.

The type mappings are straightforward, and compilation of the model
results in byte code that has been depicted as pseudo code in figure 4.12 and
as symbolic byte code in figure 4.13. As the actual byte code is unreadable,
we do not depict it here. Especially note the implementation of the main
control structure and of the transitions.

Besides the byte code, the compiler also constructs a Uppaal model of
the byte code program in its environment. This model contains the hurry
dummy and the environment as above, and the process of the actual byte

54 Compiling conceptual designs

S0

hurry?

Figure 4.10: The hurry
dummy.

S3
x<=LARGE

S2
x<=LARGE

S1
x<=LARGE

S0
x<=LARGE

x==LARGE
in1:=7, x:=0

x==LARGE
in2:=5, x:=0

x==LARGE
in1:=0, x:=0

x==LARGE
in2:=0, x:=0

Figure 4.11: The environment.

code, depicted in figure 4.14 on page 56. There is a one-to-one mapping of
locations to instructions: location Sn maps to the n+ 1-th instruction.

The keen reader probably has noted that the byte code process of figure
4.14 does not contain any synchronizations over the channel hurry, whereas
its source processes, P0 and P1, use this channel on every edge. In section
4.2.2 on page 47 we explained that if some control program process syn-
chronizes with the environment, then this synchronization is also present
in the generated model. Following this scheme, the outgoing transitions of
locations S8, S14, S19, S26 and S31 of the byte code process should have
been labeled with hurry!.

Our implementation of the translation makes an exception for the case
of synchronization over the channel hurry. It assumes that this channel is
only used to create urgent edges. Since this urgency of edges is automatically
(approximately) implemented by the byte code, these synchronizations are
ignored by our compiler.

To motivate our choice of making an exception for the channel hurry
in our translation of synchronization with the environment, consider the
situation where we do not make the exception. Then the aforementioned
edges in the byte code process would be labeled with hurry!, and this
channel is necessarily declared as non-urgent, due to the clock guards one
every edge of the byte code process. It is easy to see that this would not
have any effect, but unnecessary overhead for the verification engine.

4.4 Experimental results

In this section we discuss experimental results of compiling the case studies.
We discuss the behavior of the generated byte code on the physical LEGO
setups, and the verification of the byte code using the generated models.

4.4. Experimental results 55

pc_P0 := 0;

pc_P1 := 0;

actmode[A] := off

actmode[B] := off

while (true)

{

if (pc_P0 == 0)

{

if (snsval[0]<10 && snsval[0]>5)

{

pc_P0 := 1

actmode[A] := on

}

}

else

{

if (snsval[0]>=10)

{

pc_P0 := 0

actmode[A] := off

}

else if (snsval[0]<=5)

{

pc_P0 := 0

actmode[A] := off

}

}

if (pc_P1 == 0)

{

if (snsval[1]>=3)

{

pc_P1 := 1

actmode[B] := on

}

}

else

{

if (snsval[1]<3)

{

pc_P1 := 0

actmode[A] := off

}

}

}

Figure 4.12: Pseudo code for the
translation of P0 and P1.

0000 v[0] := 0

0005 v[1] := 0

0010 actmode[A] := off

0012 actmode[B] := off

0014 tbf 0!=v[0], 51

0022 tbf 10<=snsval[0], 48

0030 tbf 5>=snsval[0], 48

0038 v[0] := 1

0043 actmode[A] := on

0045 baf 106

0048 baf 106

0051 tbf 10==snsval[0], 67

0059 tbf 10>=snsval[0], 77

0067 v[0] := 0

0072 actmode[A] := off

0074 baf 106

0077 tbf 5==snsval[0], 93

0085 tbf 5<=snsval[0], 103

0093 v[0] := 0

0098 actmode[A] := off

0100 baf 106

0103 baf 106

0106 tbf 0!=v[1], 143

0114 tbf 3==snsval[1], 130

0122 tbf 3>=snsval[1], 140

0130 v[1] := 1

0135 actmode[B] := on

0137 baf 164

0140 baf 164

0143 tbf 3<=snsval[1], 161

0151 v[1] := 0

0156 actmode[B] := off

0158 baf 164

0161 baf 164

0164 baf 14

Figure 4.13: Symbolic byte code
for the translation of P0 and P1.

4.4.1 Testing the generated byte code of the Level Crossing

The conceptual design of the Level Crossing has been described in section
3.2. It consists of two files: LC.xml and LC.q. Using Uppaal we can export
the model in the ta format, thus creating the file LC.ta. Next, we invoke
the compiler with the command uppaal2rcx -s LC. This results in six files:

• The files LC-bytecode.ta and LC-bytecode.q are the new Uppaal

model.

56 Compiling conceptual designs

S4
x<=160

S3
x<=50 S2

x<=50
S1
x<=50

S0
x<=50

S34
x<=40

S33

x<=40

S32
x<=40

S31
x<=50

S30
x<=50

S29
x<=160

S28
x<=40

S27
x<=40

S26
x<=50

S25
x<=50

S24
x<=160

S23
x<=160

S22
x<=160

S21
x<=40

S20
x<=40

S19
x<=50

S18
x<=50

S17
x<=160

S16
x<=160

S15
x<=40

S14
x<=50

S13
x<=50

S12
x<=160

S11
x<=160

S10
x<=40

S9
x<=40

S8
x<=50

S7
x<=50

S6
x<=160

S5
x<=160

x>=40
x:=0,
pc_P0:=0

x>=40
x:=0,
pc_P1:=0

x>=40
x:=0,
P0___a:=0

x>=40
x:=0,
P1___b:=0

x>=100,
pc_P0!=0
x:=0

x>=100,
pc_P0==0
x:=0

x>=100,
in1>=10
x:=0

x>=100,
in1<10
x:=0

x>=100,
in1<=5
x:=0

x>=100,
in1>5
x:=0

x>=40
x:=0,
pc_P0:=1

x>=40
x:=0,
P0___a:=1

x>=10
x:=0

x>=10
x:=0

x>=100,
in1==10
x:=0

x>=100,
in1!=10
x:=0

x>=100,
in1<=10

x:=0

x>=100,
in1>10
x:=0

x>=40
x:=0,
pc_P0:=0

x>=40
x:=0,
P0___a:=0

x>=10
x:=0

x>=100,
in1==5
x:=0

x>=100,
in1!=5
x:=0

x>=100,
in1>=5
x:=0

x>=100,
in1<5
x:=0

x>=40
x:=0,
pc_P0:=0

x>=40
x:=0,
P0___a:=0

x>=10
x:=0

x>=10
x:=0

x>=100,
pc_P1==0
x:=0

x>=100,
in2==3
x:=0

x>=100,
in2!=3
x:=0

x>=100,
in2<=3
x:=0

x>=100,
in2>3
x:=0

x>=40
x:=0,
pc_P1:=1

x>=40
x:=0,
P1___b:=1

x>=10

x:=0
x>=10
x:=0

x>=100,
in2>=3
x:=0

x>=100,
in2<3
x:=0

x>=40
x:=0,
pc_P1:=0

x>=40
x:=0,
P1___b:=0

x>=10
x:=0

x>=10
x:=0

x>=10
x:=0

x>=100,
pc_P1!=0
x:=0

Figure 4.14: The Uppaal process of byte code program B.

• The files Train.rcx and Gate.rcx are the executable byte code pro-
grams that can be downloaded to the RCXs using the tool rcxdownload.
The file Train.rcx consists of 136 instructions which take 665 bytes.
The file Gate.rcx is somewhat larger: it consists of 203 instructions
which take 1060 bytes.

• The files Train.byte and Gate.byte contain the symbolic bytecode in
ASCII format. They are useful for illustrative purposes and low-level
debugging of the byte code.

It is noteworthy that the first few tests of the generated code for the Level
Crossing, which used an earlier version of the compiler, were not successful.
In this earlier version we used only one type, ir, for the infrared communi-
cation. A broadcast was modeled by assigning a value to the variable with
type ir. At the same time, this variable modeled the local infrared buffer.

4.4. Experimental results 57

The first few tests of the generated byte code on the real LEGO setup
failed when the communication protocol was started. After some low-level
digging we found that the broadcast instruction of the RCX does not update
the local infrared buffer, as we assumed. Thus, there was a fairly large gap
between the conceptual design and the implementation. A broadcast also
updated the local infrared buffer in our conceptual design. The generated
byte code, however, did not do this. This detail caused the receiver to
continuously send acknowledgements to the sender after the reception of
the first message.

The strange behavior of the broadcast instruction made it necessary to
introduce two variable types, ir buffer and ir value, to model the infrared
communication between RCXs. This has been explained in section 4.1.2.

After adaptation of the compiler and the model of the communication
protocol, resulting in the model described in section 3.1, we tested again. We
tried all paths through the control graph of the main controller of the gate,
depicted in figure 3.7 on page 25. The system functioned as we expected:
all delays were approximately as specified in the conceptual design, and the
appropriate actions were taken.

4.4.2 Testing the generated byte code of the Production Cell

The conceptual design of the Production Cell has been described in section
3.3. It consists of two files: PC.xml and PC.q. Using Uppaal we can export
the model in the ta format, thus creating the file PC.ta. Next, we invoke
the compiler with the command uppaal2rcx -s PC. This results in six files:

• The files PC-bytecode.ta and PC-bytecode.q are the new Uppaal

model.

• The files Beltcontroller.rcx and RobotarmController.rcx are the
executable byte code programs. The file Beltcontroller.rcx con-
sists of 166 instructions which take 851 bytes of space. The second
file, RobotarmController.rcx, is somewhat larger: it consists of 215
instructions which take 1044 bytes.

• The files Beltcontroller.byte and RobotarmController.byte con-
tain the symbolic byte code in ASCII format.

The generated code for the belt controller functioned as expected. It pro-
vides the essential mutual exclusion of bricks on belt A, and it transports all
arriving bricks to the end of belt A. The code for the robot arm controller,
however, did not function as we expected. The cause(s) of this erroneous
behaviour have not been discovered due to lack of time (the testing was
conducted in Aalborg).

58 Compiling conceptual designs

4.4.3 Verifying the Level Crossing

The model of the Level Crossing contains processes for the train controller
and processes for the gate controller. To avoid large models, we map either
the gate controller processes or the train controller processes to the environ-
ment. Application of the compiler then results in one byte code program
and in a model that only contains one byte code process. The other control
program processes are regarded as the environment and are the same as in
the source model.

First, we mapped the control program processes of the gate controller to
the environment. Thus, the process of the main controller of the train and
the process of the receiver of the communication protocol are combined to
one bytecode process.

We tried to verify the four properties which we stated with our concep-
tual design, see table 4.1. All runs of the model checker use a breadth-first
search order. We use a threshold time of 4 hours to classify properties as
practical verifiable or not. If we halted the model checking process, then
there is a question mark in the “Satisfied?” field. The verdict “maybe” can
appear when the convex-hull approximation is used. This approximation
can only be used to verify the truth of invariance and untruth of reacha-
bility properties. For example, if an invariance property is “maybe” true,
then the model checker found a counter example. However, without the
approximation, the property still could hold.

Property Time [h:m:s] Mem [MB] Options Satisfied?
(3.3) 16 : 50 : 33 6 -A ?

(3.4)
19 : 55

5 : 42 : 49
3

105
-A maybe

?

(3.5)
19 : 54

20 : 54 : 11
3

287
-A maybe

?
(3.6) 6 : 46 : 35 5 -A ?

Table 4.1: Model checking the implementation of the train controller.

We first tried to check the properties using the convex-hull approxima-
tion (-A option), which is a safe over-approximation. If the model checking
process terminated within four hours, and if it did not give an exact answer,
then we also tried a run without the approximation.

The results are not very encouraging since we have no conclusive answers
about the truth of our properties. From our results we can conclude that
the reachable state space – even with the convex hull approximation – is too
large to explore within 16 hours.

Table 4.2 shows the results for the model that is generated when only the
processes of the gate controller are implemented. Again, the results show us
that practical verification is at least very time consuming. Moreover, we do

4.4. Experimental results 59

Property Time [h:m:s] Mem [MB] Options Satisfied?
(3.3) 16 : 51 : 50 5 -A ?

(3.4)
26 : 28

5 : 57 : 30
3
93

-A maybe
?

(3.5)
26 : 25

20 : 54 : 52
3

290
-A maybe

?

(3.6)
32 : 47

5 : 56 : 53
3
92

-A maybe
?

Table 4.2: Model checking the implementation of the gate controller.

not get any conclusive answers about the truth of our properties.

4.4.4 Verifying the Production Cell

We split the verification of the Production Cell in two parts as with the
Level Crossing. First, we consider the implementation of the belt controller.
Fortunately, the correct functioning of the belt controller does not depend
heavily on the actions of the robot arm controller. Therefore, we remove the
processes concerning the robot arm from the model. In order to verify that
the belt controller brings the bricks to the pickup position, we introduce
property (4.1).

∃3(Brick1.at sensor1 safe) (4.1)

The second measure to make the model as small as possible is to remove
a brick from the system, leaving one brick in the system. The only useful
property that remains from those stated with the conceptual design, is prop-
erty (3.10). Table 4.3 shows that we cannot obtain any conclusive answers

Property Time [h:m:s] Mem [MB] Options Satisfied?

(4.1)
18

4 : 52 : 35
3
97

-A maybe
?

(3.10)
27

4 : 27 : 17
3
93

-A maybe
?

Table 4.3: Model checking the implementation of the belt controller.

about the truth of these two properties.

In order to check the implementation of the robot arm controller, we
need the belt controller, since it must transport the brick to the end of belt
A, and signal the robot arm controller that the brick is ready. Therefore,
we map the processes that compose the belt controller to the environment.
Again, we leave only one brick in the system. Table 4.4 shows that we were
not able to obtain conclusive answers about the truth of our properties.

60 Compiling conceptual designs

Property Time [h:m:s] Mem [MB] Options Satisfied?
(3.8) 5 : 17 : 42 17 -A ?
(3.9) 5 : 17 : 34 17 -A ?
(3.10) 5 : 17 : 36 14 -A ?

(3.13)
2 : 39

5 : 08 : 27
5

282
-A maybe

?

Table 4.4: Model checking the implementation of the robot arm controller.

4.4.5 Discussion

It seems that the practical use of models of the byte code is neglectable, since
model checking takes very much time. We believe that the main reason for
the large symbolic state spaces is the difference in time scale between the
byte code process and the environment. The durations of the byte code
instructions lie in the range of 10 to 200 microseconds, whereas the delays
in the environment are often specified in terms of seconds.

The timed automaton of example 2.1 on page 11 might help to explain
the effect of different time scales. This automaton can be regarded as a par-
allel composition between a control program process and the environment.
The cycle L0, L1, L2 corresponds to cyclic execution of a control program
consisting of three atomic instructions with the invariants and guards on the
clock y providing execution time information. Whenever the control cycle
is in location L0, the environment (modeled by the clock z) is consulted
potentially leading to an exit of the control cycle. The size of the thresh-
old constant LARGE determines how slow the environment is relative to the
execution time of control program instructions: the larger the constant the
slower.

Table 2.1 on page 14 shows the symbolic states of the first execution of
the cycle. It is clear that every new execution of the cycle gives rise to new
symbolic states, until the values of the clock(s) exceed the largest constant
in the model. Therefore, the number of reachable symbolic states increases
with the value of LARGE, which we call the fragmentation problem.

A similar fragmentation of the reachable symbolic state space occurs with
our Level Crossing and Production Cell. The byte code processes display
busy-waiting behavior: control just cycles through the various “test and
branch” and “branch always far” instructions until a guard is satisfied and
an action transition can be executed. This unnecessary cycling is very fast
in comparison with the environment and fragments the symbolic state space
in a dramatic way, as can be seen in the previous sections with experimental
results.

4.5. Summary 61

4.5 Summary

This large chapter described the heart of our technique for obtaining correct
reactive programs for the RCX using the model checker Uppaal. We defined
a translation from Uppaal models to RCX byte code and a new Uppaal

model of the run-time behavior of that byte code.

We argued that a bare Uppaal model does not contain enough infor-
mation to implement it on an arbitrary hardware platform. Before one can
think of implementation, one must know which processes are the control
program processes and which are the environmental process. Moreover, for
each variable in a control program process, one must know whether it mod-
els a sensor value, or a sensor mode, etcetera. These matters of distribution
and mapping of implementation details have been solved by annotating the
Uppaal model with three type mappings.

Next, we explained how we generate executable byte code from a Up-

paal model with type mappings. We discussed the main control structure
and the interleaving of the various control program processes. Due to the
physical abilities of the RCX and the nature of the firmware, concepts like
concurrency and non-determinism, which are part of Uppaal’s semantics,
are lost in the byte code.

In the same section, we explained how we can easily construct a fairly
accurate Uppaal model of the run-time behavior of the generated byte code.
Moreover, we have shown how the verification properties of the source model
can be translated in such a way that they are syntactically correct for the
generated model. The semantics of the generated properties lie very close
to those of the source properties.

We concluded the explanation of the translation with some requirements
that conceptual designs should satisfy. First, the conceptual design should
“fit” on the target platform. For example, the firmware of the RCX can
only use 3 sensors; a conceptual design should respect this. The second
type of requirements originates from the need to keep the implementation
close to the conceptual design. For example, processes mapped to different
RCX bricks are not allowed to synchronize, since our translation does not
implement this.

We implemented the translation and the tool – uppaal2rcx – is available
at the web site of this master’s thesis. In order to use the tool, the source
Uppaal model should be annotated with special comments that define the
type mappings. We explained how this is done, and we compiled a very
small theoretical example to show the form of the output of the compiler.

Finally, we began with the real thing and applied our compiler to the
conceptual designs of the Level Crossing and Production Cell. The generated
byte code for the Level Crossing functioned, after a slight adjustment of the
compiler, as expected. Part of the generated code for the Production Cell,
however, did not function well. Due to lack of time we did not track the
causes for the erroneous behavior. It is noteworthy that the generated byte

62 Compiling conceptual designs

code is fairly complex. Writing it manually is not a very pleasant, and
certainly a time consuming task.

Model checking the generated models proved to be practically impos-
sible. We were unable to obtain decisive answers about the truth of our
verification properties. We concluded that a main reason is the difference in
time scale between the byte code processes and the environmental processes.
We address this problem in the next chapter.

Chapter 5

Exact acceleration of real-time
model checking

An important problem concerning symbolic model checking of timed au-
tomata, is encountered when the timed automata in a model use different
time scales. This, for example, is often the case for models of reactive
programs with their environment. Typically, the automata that model the
reactive programs are based on microseconds whereas the automata of the
environment function in the order of seconds. This difference can give rise
to an unnecessary fragmentation of the symbolic state space. As a result,
the time and memory consumption of the model check process increases.

The fragmentation problem has already been encountered and described
by Hune and Iversen et al during the verification of LEGO Mindstorms
programs using Uppaal [Hun00, IKL+00]. The symbolic state space is
severely fragmented by the busy-waiting behavior of the control program
automata. This problem can in general occur during the symbolic model
checking of systems that are modeled by timed automata. Examples include
the aforementioned reactive programs, and polling real-time systems, e.g.,
programmable logic controllers [Die99]. The validation of communication
protocols will probably also suffer from the fragmentation problem when
the context of the protocol is taken into account.

In this chapter we propose an acceleration technique for a subset of
timed automata, namely those that contain special cycles, that addresses the
fragmentation problem. Our technique consists of a syntactical adjustment
that can easily be computed from the timed automaton itself. We prove that
this syntactical adjustment is exact with respect to reachability properties
and that it can effectively speed-up forward symbolic reachability analysis.
As a result, our approach is readily applicable using the existing model
checkers. We demonstrate the exact acceleration by experimental results
obtained with a theoretical example using the model checkers Uppaal and
Kronos.

Unfortunately, it appears that our acceleration technique loses its exact-
ness when it is generalized to Uppaal models. However, our technique still
provides an over-approximation. We explain the automatic application of
this over-approximating acceleration, and apply it to the Level Crossing and
the Production Cell. Fortunately, we obtain better verification results than

64 Exact acceleration of real-time model checking

those in section 4.4; we were able to verify some of the invariance properties
within reasonable time.

Related work. Closely related work has been done in the field of symbolic
verification of systems that are modeled by a discrete control graph with
unbounded integer variables [BW94]. Static analysis of the control graph is
used to detect interesting cycles, of which the result of iterated execution can
be computed by one single meta transition. These meta transitions are then
added to the system and favored by the state space exploration algorithm,
resulting in faster exploration of the state space.

Symbolic techniques using queue-content decision diagrams, or QDDs,
for the analysis of communication protocols that are modeled by finite-
state machines that communicate through unbounded FIFO-queues, also
use meta transitions to accelerate the exploration of the state space [BG96,
BGWW97]. Special cycles in the control-graph, e.g., the repeated receiv-
ing of messages from a channel, are associated with meta transitions that
compute all states that are reachable by the iterative execution of the cycle.
In these approaches only a limited class of cycles in the control graph can
be accelerated due to the expressivity of QDDs. To overcome this problem,
constrained QDDs have been introduced, that allow the acceleration of any
cycle in a control graph [BH97].

Recently, acceleration techniques have been proposed in the setting of
parameterized model checking [ABJN99, PS00]. The techniques, again, com-
pute the effect of an unbounded number of actions to accelerate the forward
exploration process.

Möller’s “parking” approach to the sketched fragmentation problem is,
like our approach, based on a syntactical adjustment of timed automata
to speed-up the state space exploration [Möl02]. The parking idea is more
general than ours, but our method is exact, whereas parking is mostly an
over-approximation. Möller applies his approach to an example somewhat
larger than our examples, and measures speed-ups in the same order of mag-
nitude as we do. We think that both methods show promises for handling
the fragmentation problem.

In a sense, the syntactical adjustment of our approach also is a meta
transition that computes the result of iterated execution of a cycle in the
timed automaton. Using a breadth-first search order then guarantees that
the exploration of this meta transition is not postponed. As far as we know
this is the first application of acceleration techniques to timed automata.

Outline. In section 5.1 we first give a toy example that illustrates why
different time scales in models can increase the reachable symbolic state
space. Moreoever, we define our syntactic adjustment and we prove that
it is exact with respect to reachability and that it indeed is effective. The
proofs of the lemmas and theorems which appear are enclosed in appendix
A. Finally, we illustrate our main results by experimental data.

In section 5.2 we discuss how our technique can be applied to general

5.1. Exact acceleration 65

Uppaal models. We show that our technique mostly loses its exactness,
but that it always remains an over-approximation. Finally, we explain how
we enhanced our compiler uppaal2rcx with over-approximating accelera-
tion and we demonstrate its use by applying it to the Level Crossing and
Production Cell.

5.1 Exact acceleration

The timed automaton of example 2.1 on page 11, depicted again below, il-
lustrates the fragmentation of the reachable symbolic state space. It offers

L3
L2
y<=5

L0
y<=2 L4

L1
y<=4

y>3
y:=0
y>=3 z>=LARGE

y:=0y>=1

Figure 5.1: Automaton P .

a simplified modeling of a control program combined with an environment.
The cycle L0, L1, L2 corresponds to cyclic execution of a control program
consisting of three atomic instructions with the invariants and guards on the
clock y providing execution time information. Whenever the control cycle
is in location L0, the environment (modeled by the clock z) is consulted
potentially leading to an exit of the control cycle. The size of the thresh-
old constant LARGE determines how slow the environment is relative to the
execution time of control program instructions: the larger the constant the
slower. The table 2.1 on page 14 shows the symbolic states of the first exe-
cution of the cycle. It is clear that every new execution of the cycle gives rise
to new symbolic states, until the values of the clock(s) exceed the largest
constant in the model. Therefore, the number of reachable symbolic states
increases with the value of LARGE, which we call the fragmentation problem.

In this section we propose a technique that eliminates the fragmentation
that is due to a special kind of cycles. In section 5.1.1 we give some basic def-
initions concerning cycles in timed automata. The subset of cycles that we
can accelerate, is defined in section 5.1.2. Finally, in section 5.1.3 we define
the syntactical adjustment of a subset of timed automata that accelerates
the forward symbolic reachability analysis. We prove that this adjustment
is exact with respect to reachability properties and that it accelerates the
forward symbolic exploration of the reachable state space.

66 Exact acceleration of real-time model checking

5.1.1 An introduction to cycles

We start this section with the definition of two functions to obtain the source
and target locations of an edge of a timed automaton.

src((l, a, φ, λ, l′)) = l
trg((l, a, φ, λ, l′)) = l′

For a sequence of edges Ec = (e0, e1, ..., en−1) ∈ En of a timed automaton,
we let Loc(Ec) denote the set of locations that appear in the edges:

Loc(Ec) = { l ∈ L | ∃e∈Ec [src(e) = l ∨ trg(e) = l] }

A cycle in a timed automaton is a sequence of edges, defined as follows:

Definition 5.1 (Cycle) Let M = (L, l0,Σ, X, I, E) be a timed automaton
and let n ≥ 1. We say that a sequence (e0, e1, ..., en−1) ∈ En is a cycle, if
the following holds:

• trg(ei) = src(ei+1) for all 0 ≤ i < n−1, and trg(en−1) = src(e0), and

• i 6= j ⇒ ei 6= ej for all 0 ≤ i, j < n.

The timed automaton of figure 5.1 contains a cycle that, for example, is
defined by the edges L0 to L1, L1 to L2 and L2 to L0. For a cycle, we can
define the number of times that it is executable.

Definition 5.2 (Cycle execution) Let Ec = (e0, e1, ..., en−1) be a cycle in
some timed automaton M and let m > 0. We say that the cycle is m-times
executable, if a finite compressed trace in Tr(M)exists with a suffix, say of
the form

((l0, ν0), (l0, ν ′0), (l1, ν1), ..., (lk−1, ν
′
k−1), (lk, νk))

where l0 = src(e0), such that the following holds:

• the i-th action transition ((li, ν ′i), (li+1, νi+1)) corresponds to the edge
ei mod n, and

• there are m · n action transitions.

Example 5.1 The cycle in the timed automaton of figure 5.1 is 1-time ex-
ecutable. This can be understood from the following suffix of a finite com-
pressed trace, of which the first state obviously is reachable from the initial
state (we denote the clock interpretation ν by a tuple that first contains the
value ν(y) and second the value ν(z)):(

(L0,(0,4)), (L0,(1,5)), (L1,(0,5)), (L1,(2,7)), (L2,(2,7)), (L2,(4,9)), (L0,(0,9))
)

5.1. Exact acceleration 67

Cycles in timed automata suffer in general from a certain delay due to
invariants at locations and clock guards on edges. In many cases, this delay
varies for every execution of the cycle. However, we will later see that there
exist cycles with a “fixed” window of delay for each execution of the cycle.
But first, we define this window as an interval containing all possible delays
that can be accumulated by following the cycle exactly once.

Definition 5.3 (Window of a cycle) Let us consider a timed automaton
M and let Ec = (e0, ..., en−1) be a cycle in M . We say that an interval [a, b]
is the window of Ec, if for all subsequences of compressed traces in Tr(M),
say of the form

((l0, ν0), (l0, ν ′0), (l1, ν1), ..., (lk−1, νk−1), (lk−1, ν
′
k−1), (lk, νk))

such that l0 = lk = src(e0) and every action transition ((li, ν ′i), (li+1, νi+1))
is due to edge ei (this subsequence thus denotes exactly one execution of Ec),
the following holds:

• the total amount of delay in this subsequence is an element of [a, b],
and

• for all d ∈ [a, b] it holds that we can adjust the delays in the subsequence
such that they accumulate to d, and there exists a trace in Tr(M) of
which it is a subsequence.

This window property is not trivial. We can prove that not every cycle has
a window by providing a counter example to the statement that every cycle
has a window.

Lemma 5.1 Not every cycle has a window.

Moreover, there exist cycles that do have a window, as we will see in lemma
5.3.

5.1.2 Acceleratable cycles

In this section we introduce a subset of interesting cycles in timed automata.
These interesting cycles can use only one clock in the invariants, guards and
resets. This clock can be used to specify lower and upper bounds on the
edges of the cycle. This might seem like a strong restriction, but we argue
that these kind of cycles occur often in control graphs of, e.g., polling real-
time systems.

Definition 5.4 (Acceleratable cycle) Let M = (L, l0,Σ, X, I, E) be a
timed automaton, let Ec = (e0, ..., en−1) ∈ En and let y ∈ X. We say
that the tuple (Ec, y) is an acceleratable cycle, if

• Ec is a cycle,

68 Exact acceleration of real-time model checking

• I(l) is empty or has the form {y ≤ c} for all l ∈ Loc(Ec),

• if (l, a, φ, λ, l′) ∈ Ec, then either φ is empty or has the form {y ≥ c},
and λ is empty or only contains y, and

• y is reset on all ingoing edges to src(e0).

Clock y is called the clock of the cycle and location src(e0) is called the
reset location from now on. The cycle in our example automaton is an
acceleratable cycle, if we choose clock y as the clock of the cycle and L0 as
the reset location. The guards and invariants have the correct form for clock
y and this clock is reset on the only incoming edge of L0.

To extract the constants from the clock guards and invariants, we define
two partial functions cng and cnI that map clock guards and invariants to
natural numbers:

cng(φ) = 0 if φ = ∅
cng(φ) = c if φ = {y ≥ c}

cnI(φ) =∞ if φ = ∅
cnI(φ) = c if φ = {y ≤ c}

Acceleratable cycles have the property that if the cycle can be executed
once, then it can be executed infinitely often. Consider, for example, the
finite compressed trace of example 5.1. The first and the last state of this
trace agree on the value of clock y. Since the guards and invariants in the
cycle are solely concerned with this clock, the sequence action and delay
transitions can be repeated an arbitrary number of times.

Lemma 5.2 (Cycle consecution) Let (Ec, y) be an acceleratable cycle of
some timed automaton M . If Ec is 1-time executable, then it is m-times
executable, for all m > 0.

Our acceleratable cycles have a window, that can be computed from the
syntax of the timed automaton.

Lemma 5.3 (Window computation) Each acceleratable cycle has a win-
dow.

Sketch of proof. Let a timed automaton be defined by the tuple M =
(L, l0,Σ, X, I, E) and let ((e0, e1, ..., en−1), y) be an acceleratable cycle. We
will show that we can effectively compute the window from the syntax of
the timed automaton.

Let (li, ai, φi, λi, li+1) denote edge ei. We can find p natural numbers
0 ≤ k0 < k1 < ... < kp−1 that exactly correspond to the indices of the edges
on which clock y is reset. Since we know by definition that y is reset on
edge en−1, p is at least one. Next, we compute the following numbers for
0 ≤ j < p (we define k−1 = −1):

akj = max { cng(φi) | kj−1 < i ≤ kj }
bkj = cnI(I(lkj))

5.1. Exact acceleration 69

Since we consider the guards and invariants of an acceleratable cycle, all the
numbers akj and bkj are defined. We can show that the acceleratable cycle
has a window of p−1∑

j=0

akj ,

p−1∑
j=0

bkj

2

Example 5.2 We saw that the timed automaton of figure 5.1 has an ac-
celeratable cycle starting in L0. Applying our technique of window com-
putation, we first obtain that e0 is the edge from L0 to L1, e1 is the edge
from L1 to L2, and e2 is the edge from L2 to L0. Since clock y is reset
two times on these edges, we have p = 2 and k0 = 0 and k1 = 2. Thus,
a0 = max{0} = 0 and a1 = max{1, 3} = 3. Moreover, b0 = cnI(I(L0)) = 2,
and b1 = cnI(I(L2)) = 5. Therefore, the acceleratable cycle has a window of
[3, 7].

5.1.3 Acceleration

The motivation of this chapter is the acceleration of real-time model check-
ing. We explained that the time that model checking of the property ∃3(L4)
for the timed automaton of figure 5.1 takes, is very dependent on the value
of the constant LARGE. This is due to the fact that many executions of the
cycle must be explored to let the value of clock z grow large enough. The
following definition appends an extra cycle, the meta transition, to automata
with an acceleratable cycle. As we will see, this appended cycle computes
the effect of the iterated execution of the acceleratable cycle.

Definition 5.5 (Acceleration of timed automata) Let the tuple M =
(L, l0,Σ, X, I, E) be a timed automaton and let A = ((e0, ..., en−1), y) be an
acceleratable cycle. Let L = {l0, l1, ..., lm}, and let ei = (li, ai, φi, λi, li+1).
The acceleration of M is a new timed automaton Acc(M,A), defined by the
tuple (Lnew, l0,Σ, X, Inew, Enew), where

Lnew = L ∪ {l′1, l′2, ..., l′n−1} ∪ {l′0} ∪ {l′′1 , l′′2 , ..., l′′n−1}

Inew(li) = I(li) for all 0 ≤ i ≤ m
Inew(l′i) = I(li) for all 1 ≤ i ≤ n− 1
Inew(l′0) = ∅
Inew(l′′i) = I(li) for all 1 ≤ i ≤ n− 1

Enew = E ∪ { (l0, a0, φ0, λ0, l
′
1), (l′n−1, an−1, φn−1, λn−1, l

′
0) } ∪

{ (l′0, a0, φ0, λ0, l
′′
1), (l′′n−1, an−1, φn−1, λn−1, l0) } ∪

{ (l′i, ai, φi, λi, l
′
i+1), (l′′i , ai, φi, λi, l

′′
i+1) | for all 1 ≤ i < n− 1}

Note that the definition of Enew does not cover the simple case where n = 1.
Then, only two edges must be added: (l0, a, φ, λ, l′0) and (l′0, a, φ, λ, l0), if
e0 = (l0, a, φ, λ, l0).

70 Exact acceleration of real-time model checking

Example 5.3 Since the timed automaton of figure 5.1 has an acceleratable
cycle, we can construct the acceleration, see figure 5.2. The key idea behind

L3
L2
y<=5

L0
y<=2 L4

L1
y<=4

L1’
y<=4

L2’
y<=5

L2’’
y<=5

L1’’
y<=4

L0’

y>3
y:=0
y>=3 z>=LARGE

y:=0y>=1 y:=0

y>=1

y>=3
y:=0y:=0

y>=1

y>=3
y:=0

Figure 5.2: Automaton PA: the accelerated version of P .

the acceleration is that the new location L0’, that mimics location L0, has
no invariant [Möl02].

This acceleration is only interesting if we can use the accelerated version
of some automaton to model check properties of the original automaton.
Theorem 5.1 ensures this, provided that the window of the acceleratable
cycle is relatively wide enough.

Theorem 5.1 (Equivalence of reachability) Let (L, l0,Σ, X, I, E) be a
timed automaton M , let A be an acceleratable cycle of M with a window of
[a, b], and let φ be a reachability properties of M .

3a ≤ 2b⇒ (M |= φ⇔ Acc(M,A) |= φ)

If the precondition of this theorem is not satisfied, then the acceleration is
still a safe over-approximation. Thus, if a state is unreachable in Acc(M,A),
then it is also unreachable in M . The fact that definition 5.5 unfolds the
acceleratable cycle twice to form the appended cycle, is the direct cause
of the necessary relative width of the window. It can be shown that the
precondition can be generalized to (i + 1)a ≤ ib, where i is the number of
unfoldings of the acceleratable cycle. This means that if a is strictly less
than b, then we can accelerate. At this time we do not know how to handle
the simple case where a = b.

It may seem that the addition of extra locations only increases the state
space. However, we claim that if the clock of the acceleratable cycle is
also reset on the first edge of the cycle, then the acceleration is guaranteed
to work for breadth-first forward symbolic reachability analysis. Note that
if a timed automaton has an acceleratable cycle, but does not satisfy the
constraint described above, then we can introduce a dummy location to
ensure that this requirement is satisfied.

5.1. Exact acceleration 71

Example 5.4 Suppose that the timed automaton of figure 5.1 does not have
a reset of y on the edge from L0 to L1. Then we can construct the “equiva-
lent” automaton depicted in figure 5.3. We added a dummy location between

L3
L2
y<=5

L0
y<=2 L4

L1
y<=4

Dummy
y<=0

y>3 z>=LARGE

y>=1

y>=3
y:=0 y:=0

Figure 5.3: Adding a dummy location.

the locations L2 and L0 with invariant y ≤ 0. Next, the edge from L2 to L0
has been redirected to the dummy location. Finally, we added an extra edge
from the dummy location to location L0 that resets clock y. We now can
accelerate the cycle from the dummy location.

The cycle that results from our trick is larger, but with the dummy loca-
tion as reset location, it satisfies the requirement for the effectiveness of
acceleration, as formalized in the next theorem.

Theorem 5.2 (Effectiveness of acceleration) Let the timed automaton
M be defined by (L, l0,Σ, X, I, E) and let A = ((e0, ..., en−1), y) be an ac-
celeratable cycle. If y is reset on edge e0, then all states reachable by more
than one execution of the acceleratable cycle in M , are reachable by exactly
one execution of the appended cycle in Acc(M,A).

This theorem guarantees us that breadth-first forward symbolic reachability
analysis is accelerated. When using a breadth-first search-order, the ap-
pended cycle is “in parallel” explored with the first few executions of the
acceleratable cycle. Our effectiveness theorem ensures that the symbolic
state that results from the execution of the appended cycle swallows the
symbolic states that result from two or more executions of the acceleratable
cycle. Therefore, the acceleratable cycle is only explored a small number of
times. (The exact number of times depends on the implementation of the
model check algorithm, but it will be independent of the difference in time
scale.)

5.1.4 Experimental results

To demonstrate the effect of exact acceleration, we collected run-time data
for the automata of figure 5.1 on page 65, denoted by P , and figure 5.2
on page 70, denoted by PA. We used the model checkers Uppaal and
Kronos – both with a breadth-first search order – to verify whether or not

72 Exact acceleration of real-time model checking

P PA

LARGE

103

104

105

106

Mem Time
[kB] [s]

1084 0.05
1488 2.98
6312 374

– †

Mem Time
[kB] [s]

1084 0.01
1084 0.01
1084 0.01
1084 0.01

Table 5.1: Run-time data obtained with
Uppaal.

P PA

LARGE

102

103

104

1, 5 · 104

#

45
432

4290
6432

#

21
21
21
21

Table 5.2: Run-time data
obtained with Kronos.

location L4 is reachable.Table 5.1 shows the time and memory consumption
of Uppaal as a function of the value of LARGE. The † in the table means
that we ran out of patience: the model checking takes more than 10 minutes.
Similarily, table 5.2 shows the number of states (in the table denoted by #)
that Kronos explored as a function of the value of LARGE.

We can explain the constant time and memory consumption and the
constant number of explored states of PA by theorem 5.2. The breadth-first
search order ensures that the appended cycle is explored before the complete
exploration of the acceleratable cycle. The resulting symbolic state swallows
all the smaller symbolic states that result from execution of the acceleratable
cycle.

5.2 Acceleration of Uppaal models

In chapter 4 we proposed a translation from Uppaal models to RCX byte
code and a model of the runtime behavior of that byte code. As an example
we applied our compiler to a simple Uppaal model, see section 4.3 on page
51. The Uppaal process of the run-time behavior of the byte code, depicted
in figure 4.14 on page 56, exhibits many cycles. It may seem that many of
these cycles are acceleratable cycles. However, there are differences with the
theory developed in the previous section.

First, Uppaal models can use bounded integer variables. These are
not treated in our acceleration theory. Second, Uppaal models consist of a
network of timed automata. Third, Uppaal models can use urgent locations
and channels and committed locations.

In section 5.2.1 we explain the consequences of the three differences for
our acceleration technique. Fortunately, our technique is not rendered use-
less, and in 5.2.2 we discuss how we enhanced our compiler uppaal2rcx with
acceleration. Finally, in section 5.2.3 we show experimental results obtained
by application of the compiler to the Level Crossing and Production Cell.

5.2.1 Does equivalence of reachability disappear?

In this section we discuss the consequences of the presence of bounded integer
variables, networks of parallel automata, and urgency and commitment for

5.2. Acceleration of Uppaal models 73

our acceleration technique.

Bounded integer variables

Consider a timed automaton, say P , which uses bounded integer variables
as Uppaal does. Moreover, let us assume that it contains an acceleratable
cycle, say A. The edges of A can contain guards over the bounded integer
variables, and assignments of the bounded integer variables.

We argue that if A only contains guards over the bounded integer vari-
ables and assignments which in total do not change the variable interpreta-
tion, then acceleration of P with A still remains exact.

It is clear that the bounded integer variables of P can be encoded in the
control structure of P , resulting in a new timed automaton without bounded
integer variables, say, Pv. Each location of Pv is the product of a variable
interpretation and a location of P . Thus, each state (l, ν, v) in the transition
system of P has an equivalent state (l′, ν) in the transition system of Pv.
For example, a state (l1, x = 3, a = 5) has ((l1, a = 5), x = 3) as equivalent
state.

Now let us consider what happens with A in the “variable abstraction”
Pv. Let us assume that the edges of A traverse the locations l1, .., ln, l1. The
acceleratable cycle A will have a number of “equivalent” paths in Pv. Such
an equivalent path traverses the locations (l1, v1), .., (ln, vn), (l1, vn+1). Note
that our requirement concerning the integer assignments on A ensures that
v1 = vn+1, which means that these equivalent paths are cycles! Moreover,
these cycles match A with respect to the clock guards and invariants. There-
fore, these cycles are all acceleratable. Note that the number of equivalent
cycles depends on the integer guards of A.

If we accelerate A in automaton P , then the appended cycle will also
have a number of equivalent paths in Pv. Following a similar argument
as above, these paths will be cycles. Moreover, they will exactly be the
appended cycles of the equivalent paths of A in Pv. Thus, if we accelerate
A in P , then exactly all equivalent paths of A in Pv are also accelerated.

However, if A contains, e.g., only the assignment n := n + 1, then the
previous informal argument does not hold: the equivalent paths in Pv are
not cycles, since the variable interpretation changes when the edges of A are
executed.

Networks of timed automata

The following example demonstrates that equivalence of reachability is not
retained in a setting of parallel automata that communicate with each other.
Consider the Uppaal model that consists of process P , depicted in figure
5.4, and process Env, depicted in figure 5.5. Process P has a local clock y
and process Env has a local clock z. The reader can verify that the cycle
of process P is an acceleratable cycle, say A. Here we see the first problem:

74 Exact acceleration of real-time model checking

C A

y<=10

B
y<=10

a>=1

a<=2,
y>=5
y:=0

y:=0

Figure 5.4: Process P .

L0

z<=32

L1

z<=22

L2

z==32
z:=0,
a:=3

z==22
a:=2

Figure 5.5: Process Env.

the acceleratable cycle also contains invariants on clock z due to the parallel
composition of the automata. However, it can be shown that the acceleration
of a cycle as in definition 5.4 which contains additional invariants, remains
exact.

The fact that the processes communicate through the shared integer
variable a, however, poses another problem. Using Uppaal we verified that
the following property is not satisfied for P ||Env

∃3(P.A ∧ a==2)

However, if we add the acceleration to P – we use the model Acc(P,A) ||Env
–, then the property is satisfied. A similar counter example can be con-
structed for communication through channels instead of shared integer vari-
ables.

The problem originates from the fact that process Env can execute an
edge while Acc(P,A) is in the appended cycle. If one considers the parallel
composition of Acc(P,A) with Env, then we see that the appended cycle
has been transformed to a structure with more than one “exit”. These
additional exits correspond to location switches of Env while Acc(P,A) is
in the appended loop. Clearly, this structure is not an acceleration as in
definition 5.5.

We conclude that in a setting of networks of timed automata we have
to accelerate the cycles in the parallel composition instead of the cycles
in the individual components. For example, figure 5.6 depicts this parallel
composition of P with Env. The small cycle of process P appears three
times in the syntactical parallel composition, since Env has three locations.
Note that such a parallel composition results in an exponential growth of
(i) the size of the system description, and (ii) the number of acceleratable
cycles. The size of the reachable symbolic state space, however, will not
change.

Due to the exponential growth of the system description, we would rather
not construct the parallel composition. By expansion of our technique, we
can avoid this. Let us consider the example of Acc(P,A) ||Env again. First,
we declare an extra boolean variable b, which is initialized to 0. Second, we
add two assignments to component Acc(P,A): we add b:=1 to the first edge
of the appended cycle and we add b:=0 to the last edge of the appended
cycle. Third, we guard all edges of Env with b==0. This ensures that Env

5.2. Acceleration of Uppaal models 75

A0
y<=10,
z<=32

B0
y<=10,
z<=32

C0
z<=32

A1
y<=10,
z<=22

B1
y<=10,
z<=22

C1
z<=22

A2
y<=10

B2
y<=10C2

a<=2, y>=5
y:=0

y:=0

a>=1

z==32
z:=0,
a:=3

a<=2, y>=5
y:=0

y:=0

a>=1

a<=2, y>=5
y:=0

y:=0

z==22
a:=2

a>=1

z==32
z:=0,
a:=3

z==32
z:=0,
a:=3

z==22
a:=2

z==22
a:=2

Figure 5.6: The parallel composition of P with Env.

can only execute an edge, if Acc(P,A) is not in the appended cycle. We claim
that this results in the same effect as acceleration of the three small cycles in
figure 5.6. Indeed, when we check the aforementioned reachability property
in this adjusted accelerated system, then the property is not satisfied, which
is good!

Urgency and commitment

In the previous sections we claimed that we can exactly accelerate single
components in a network of timed automata, which use bounded integer
variables in a slightly restricted way. This covers a large subset of Up-

paal models. The remaining models all use urgent channels or locations, or
committed locations.

Let us consider a Uppaal model with three processes, P1, P2 and P3.
Process P1 has an acceleratable cycle starting in location l1. Process P2 and
P3 can synchronize over some urgent channel, when they are in locations
l2 respectively l3. Now consider a situation where the processes are in the
mentioned locations. Due to the urgency of the synchronization between P2

and P3, no time may elapse as long as it is enabled. We will show that this
behavior is not guaranteed when P1 is accelerated. Therefore, consider the
accelerated version of P1 (including the extra boolean variable that blocks
P2 and P3 when P1 is in the appended cycle). Now P1 can enter its appended
cycle, which disables the urgent synchronization. However, time certainly
elapses in the appended cycle. It is clear that the urgent synchronization
should have been taken before entering the appended cycle. This cannot be
expressed with syntactical means.

76 Exact acceleration of real-time model checking

Concluding, the presence of urgent synchronizations in a model can cer-
tainly remove the exactness of our technique. The presence of urgent or
committed locations probably does not compromise the exactness. If the
exactness is lost, however, then we still have an over approximation of the
reachable symbolic state space. Let M be a component of a network of
timed automata, let A be an acceleratable cycle of M and let Q be a state
property of M , then:

M |= ∃3(Q)⇒ Acc(M,A) |= ∃3(Q)

This is easily proven – since all traces of M are certainly also traces of
Acc(M,A) – and does not only hold for our syntactical addition, but for
any syntactical addition to the original component. This is the base of
Möllers “parking approach” [Möl02]. The consequences for theorem 5.2 are
not clear.

When is equivalence of reachability preserved?

In the previous sections we discussed how we can generalize our exact ac-
celeration technique for single timed automata to the more general Uppaal

models. Let us consider a single component M of a Uppaal model, which
has a cycle A. We claimed that we can accelerate this cycle in an exact way,
if the following conditions are satisfied:

• if the bounded integer guards and assignments on edges of A are left
out, then A is an acceleratable cycle as in definition 5.4, and

• the consecutive execution of the integer assignments on the edges of
A does not have a net effect, and

• the total model does not contain urgent synchronizations.

Our generalized exact acceleration technique needs an additional boolean
variable, which ensures that no component other than the accelerated com-
ponent executes an edge, if the accelerated component is in its appended
cycle.

When one of the previous conditions does not hold, then our generalized
technique is not exact, but an over-approximation. This is still useful to
verify the truth of invariance or untruth of reachability properties.

5.2.2 Automatic application of acceleration

In the previous section we discussed the consequences for the exactness of our
acceleration technique when it is applied to single components of Uppaal

models. We claimed that our technique – extended with the extra boolean
variable – remains exact if there is no total effect of the integer assignments
on the edges of the acceleratable cycle, and if the concepts of urgency and

5.2. Acceleration of Uppaal models 77

commitment are not used. Otherwise, our technique still results in an over
approximation.

Figure 4.14 on page 56 shows a typical example of a byte code process
that results from our translation. Many acceleratable cycles are present in
this process. At the end of the previous chapter we explained that such a
byte code process displays busy-waiting behavior that fragments the sym-
bolic state space in an unnecessary way. This busy-waiting is in fact the
cycling through the various “test and branch” and “branch always far” in-
structions that implement the control structure. These so-called idle cycles
thus represent the continuous testing of all guards by the byte code. For
example, the cycle S4, S11, S12, S16, S17, S21, S22, S29, S33, S34, S4 is
such an idle cycle.

We implemented the acceleration of these idle cycles. Remember that
we are able to provide the lower and upper bounds of instructions to the
compiler. If we set these bounds wide enough for the “test and branch” and
“branch always far” instructions, then many of the idle cycles will satisfy
the window precondition of theorem 5.1. Since these cycles only consist of
“test and branch” and “branch always far” instructions, there are no integer
assignments on the edges of the cycle. Moreover, we implemented the scheme
with the extra boolean variable, which assures that other processes cannot
execute edges when some process is in an appended cycle.

The cycles that we append to processes differ slightly from those in
definition 5.5. Let us consider some acceleratable cycle A with windows
[a, b]. Let G denote the conjunction of all guards on the edges of A. Instead
of adding 2 · |A| − 1 new locations, we add 3 three new locations, see figure
5.7 for the new form of the appended cycle. Location L is part of the original

L

L1

y<=b L2

L3

y<=b

G
b:=1

y>=a
y:=0

y:=0
y>=a
y:=0,
b:=0

Figure 5.7: The new form of the appended cycle.

automaton, and locations L1, L2, and L3 form the appended cycle. The first
edge is guarded by G: the conjunction of all guards of the accelerated cycle.
Clock y is the clock of the cycle, that implements the delay of the window.
On entry of the appended cycle, the extra boolean b is set to 1. On exit, it
is reset to 0.

Although we have not (yet!) proven that this new form is equivalent
to the old form, it certainly gives an over-approximation. The reason for
the introduction of a new form of the appended cycle, is that this new
form is much smaller than the original form, which will probably reduce the
reachable state space.

78 Exact acceleration of real-time model checking

Note that a byte code process built from m source processes, each with
Ni locations, contains at most Πm

i=1Ni idle cycles. As we already mentioned,
we implemented the acceleration of idle cycles in our compiler uppaal2rcx.
Using the -a=<n> option, the compiler tries to accelerate n percent of the
maximal number of idle cycles. If cycles are actually accelerated, then the
generated model certainly is an over-approximation of the run-time behavior
of the generated byte code.

The user can also optionally apply our technique of the blocking boolean
variable with the -g= option. If =t, then the appended cycle is
guarded using an extra boolean variable. If =f, then the appended cy-
cle is not guarded, with the result that if control of some process is in an
appended cycle, then all other processes may execute edges. However, this
proves to be very useful when urgent synchronizations are present, as we
will see in the next section with experimental results.

Concluding, when we supply the -a option to the compiler, and it ac-
tually accelerates cycles, then we can say the following about the generated
model:

• If we assume that the new form of the appended cycle is equivalent
to the old form, and that our assumptions concerning the generalized
acceleration technique are correct, then the generated model is exact,
if (i) there are no urgent synchronizations in the model, and (ii) the
option -g=t is used.

• In all other cases – we do not need the assumptions stated above for
exact acceleration – the generated model is an over-approximation.

5.2.3 Experimental results

We obtained the following experimental results in almost the same manner
as described in section 4.4. The only difference is that we additionally
supplied the -a=100 and -g=f options to the compiler. Thus, the compiler
tries to accelerate as much idle cycles as possible, and it does not use the
extra boolean to guard the appended cycle.

The generated models are over-approximations. As a result, we can only
obtain conclusive answers about the truth of invariance and the untruth of
reachability properties.

Note that we omitted properties (3.3) and (3.13), which both are con-
cerned with deadlock. These properties will certainly not be satisfied, since
the appended cycles introduce deadlock.

Table 5.3 shows us that we can obtain one conclusive answer. It is
true that the physical gate cannot reach its error location. This is not
unexpected, since the physical gate is solely controlled by the gate controller,
which is the same as in the conceptual design; only the train is implemented.
Comparison with table 4.1 on page 58 shows us that the accelerated model
is much faster than the convex hull approximation.

5.2. Acceleration of Uppaal models 79

Property Time [h:m:s] Mem [MB] Options Satisfied?

(3.4)
2

1 : 22
3
21

-A maybe
maybe

(3.5) < 1 2 maybe
(3.6) 1 : 45 8 -A YES

Table 5.3: Accelerating the implementation of the train controller.

Table 5.4 contains the data concerning the implementation of the gate
controller. Unfortunately, we were not able to obtain conclusive answers.

Property Time [h:m:s] Mem [MB] Options Satisfied?
(3.4) < 1 2 maybe
(3.5) < 1 2 maybe

(3.6)
3 : 46

4 : 53 : 11
3
95

-A maybe
?

Table 5.4: Accelerating the implementation of the gate controller.

Property Time [h:m:s] Mem [MB] Options Satisfied?

(4.1)
24

4 : 46 : 16
3
91

-A maybe
?

(3.10) < 1 2 maybe

Table 5.5: Accelerating the implementation of the belt controller.

The results in table 5.5 show that model checking property (4.1) with
use of the convex hull approximation takes more time then when no ac-
celeration is applied. This can be explained by the contribution of the
over-approximating acceleration to the reachable state space.

Fortunately, table 5.6 shows us some good news: we are able to obtain
two conclusive answers within reasonable time. Property (3.9) specifies the
upper bound of 48 seconds on the time that it takes to transport a brick
to its destination. Property (3.10) specifies that the brick does not reach

Property Time [h:m:s] Mem [MB] Options Satisfied?
(3.8) 32 : 50 142 -A maybe
(3.9) 51 : 53 181 -A YES
(3.10) 40 : 20 181 -A YES

Table 5.6: Accelerating the implementation of the robot arm controller.

its error location. At least this gives us some faith in the correctness of the
implementation of the robot arm controller. Comparison with table 4.4 on

80 Exact acceleration of real-time model checking

page 60 shows us that applying the acceleration results in a speed-up of the
model checking process with at least a factor 5.

It is noteworthy that we also did the previous model checking runs with
models which we generated using the -a=100 and -g=t option. Thus, these
models use our technique to “atomize” the execution of appended cycles.
We could not obtain any conclusive answers using these models. Analysis
of counter example traces provided by Uppaal confirmed what we already
suspected. The extensive use of urgent synchronizations in our models, e.g.
the hurry channel, led to the behavior we described in section 5.2.1 on page
75.

5.3 Summary

In this chapter we have presented an acceleration technique for forward sym-
bolic reachability analysis of timed automata. Our technique addresses the
fragmentation problem that occurs when different time scales are present in
a timed automaton. Our technique is applicable to a subset of timed au-
tomata, namely those that contain acceleratable cycles. We append an extra
cycle to the timed automaton that in one execution computes the result of
the iterated execution of the acceleratable cycle in the original automaton.
Whether or not a cycle is acceleratable, and the form of the appended cycle
are easily computable from the syntax of the timed automaton.

We have proven that our syntactic adjustment is exact with respect to
reachability properties and that it will speed up forward symbolic reacha-
bility analysis with a breadth-first search order. Using the model checkers
Uppaal and Kronos, we have demonstrated that our technique can seri-
ously reduce the time and memory consumption of the model check process.
It even completely solves the fragmentation problem for our theoretical ex-
ample.

We generalized our technique to general Uppaal models and argued that
it remains exact if (i) the integer assignments of an acceleratable cycle have
no net effect, and (ii) there are no urgent synchronizations in the model.
Moreover, we automatically applied our technique to idle cycles in Uppaal

models of the run-time behaviour of executable byte code for the Level
Crossing and Production Cell. We were able to obtain three conclusive
answers to invariance properties within reasonable time. Remember that
we were not able to obtain a single conclusive answer without acceleration!

Future work. A logical next step is to prove our claims concerning the gen-
eralization of our acceleration technique to Uppaal. Especially, we would
like to investigate the precise effect of urgent channels on our technique.
Their semantics are very effective for modeling reactive systems, but they
render our technique inexact. However, we think that it is very useful to
achieve exact acceleration, since that enables us to verify the truth of reach-
ablity properties. As we already sketched, urgent synchronizations should

5.3. Summary 81

be executed before entering an appended cycle. Thus, there is need for
more sophisticated guiding; not only just breadth-first search order. The
recent advancements in the area of guided model checking might be helpful
[HLP00, BFH+01].

Another interesting subject is investigation of weakening of the con-
straints on acceleratable cycles, as used in this chapter. We can probably
permit upper bounds on the clock of the cycle and lower bounds on the
other clocks on the edges of the cycle.

Finally, we note that a compressed version of this chapter has been
accepted at the Workshop on Theory and Practice of Timed Systems 2002
[HL02].

82 Exact acceleration of real-time model checking

Chapter 6

Conclusion

In this master’s thesis we introduced a technique for the development of
reactive programs using a model checker. In short, our technique consists of
a translation from a conceptual design to (i) executable code that (approxi-
mately) implements this design, and (ii) a model of the run-time behavior of
the generated code. See figure 1.1 on page 3 for a graphical depiction. The
conceptual design is used to validate the design, and the generated models
are used to verify the implementation of the design.

In order to answer the two main questions concerning our technique, we
implemented it for a fixed hardware platform and model checker, which we
have chosen in chapter 2. We use the LEGO RCX micro controller for its
availability, flexibility and realism. As a result, the generated executable
code is so-called byte code, an assembly like language that is interpreted by
the firmware of the RCX. We use the formalism of timed automata, in the
shape of the model checker Uppaal, for the conceptual modeling and for
the modeling of the run-time behavior of the system.

Of course, an implementation without input is of no use. In chapter
3 we constructed conceptual designs of existing LEGO setups – the Level
Crossing and the Production Cell – both controlled by two RCX bricks.
The simulator and the option to generate traces of a counter example that
disproves a specification property, were very useful during the construction
of the conceptual designs. They allowed us to quickly track and solve logical
design errors.

In chapter 4 we described and implemented the translation, which is the
heart of our technique to obtain correct reactive programs for the RCX using
Uppaal. We explained that a bare Uppaal model does not contain enough
information to implement it on an arbitrary hardware platform. There-
fore, the user must supply information about the intention of the various
processes, variables and clocks in the model.

We also explained that the implementation of the conceptual design will
– in general – differ from the conceptual design due to the fact that Uppaal

supports unrealizable (for the RCX at least) concepts like concurrency and
non-determinism. In order to avoid a too large gap between the conceptual
design and its implementation, we stated some requirements on the concep-
tual design. The remaining small gap is covered by the generated model of
the run-time behavior of the implementation.

84 Conclusion

Finally, we implemented the translation and compiled the Level Cross-
ing and the Production Cell. The generated code for the Level Crossing
functions as expected. The code for the Production Cell, however, only
functions partially. Due to lack of time we did not fix this. Verification of
the generated byte code proved to be practically impossible, which is mainly
caused by the so-called fragmentation problem, which occurs when different
time scales are used in models.

In chapter 5 we developed theory which addresses the fragmentation
problem. We propose a syntactic adjustment to a subset of timed automata
which is exact with respect to reachability properties and which speeds up
forward symbolic reachability analysis, if a breadth-first search order is used.
We have demonstrated that our technique completely solves the fragmenta-
tion problem for a theoretical example.

Unfortunately, the Uppaal models which are generated by our compiler
are – in general – not contained in the class of acceleratable timed automata.
Therefore, we generalized our technique to Uppaal models, but it seems that
the use of urgent channels disturbs the exactness. However, our generalized
technique always remains an over-approximation.

Finally, we enhanced our compiler with the generalized acceleration tech-
nique. Our compiler can thus generate two kinds of models of the run-time
behavior, which we already planned in figure 1.2 on page 4. We applied the
acceleration to the Level Crossing and the Production Cell. The results are
promising: we can actually verify three invariance properties within reason-
able time. A compressed version of this chapter has been accepted by the
workshop TPTS02 [HL02].

We now can answer the first research question of this thesis, which asked:
“What are the benefits of a translation from models appearing in the con-
ceptual design phase to (i) executable code and (ii) models of that code,
for the development of reactive programs for embedded real-time systems?”
We see two obvious benefits of such a translation.

First, automated code generation saves much time and it may prevent
some errors, e.g., errors due to concentration loss of the programmer. This
is clearly illustrated by the generated byte code for the Level Crossing and
the Production Cell, which is fairly complicated. Moreover, we found that
– in this particular setting – the translation does not need to restrict the
models of the conceptual design phase in some fundamental way. E.g., all
features of Uppaal can be used.

Second, the relation between the conceptual design and the implementa-
tion has been formalized by the translation. If the compiler ensures that the
(mostly unpreventable) gap between a conceptual design and its implemen-
tation is small, then validation of the conceptual design is meaningful. In
other words, many logical design errors can be detected during the concep-
tual design phase. In chapter 4 we have explained that – in this particular
setting – a compiler can actually approximate one execution of the concep-
tual design. The fact that the generated code for the Level Crossing worked

85

immediately illustrates this.

The benefits of models of the run-time behavior of generated byte code
are not clear, since they are practically unverifiable. This brings us to the
second question of this thesis , which asks “How can we accelerate the model
checking process of the model of the executable code?”

We have shown that we can (partially) handle the fragmentation prob-
lem, which is one of the main reasons that inhibit the practical verification
of byte code, in the setting of a single timed automaton without bounded
integer variables. We argued that generalization of this exact acceleration
technique to Uppaal is probably not too difficult and can be achieved by
formalization and proof of our thoughts in section 5.2.1. However, the role
of urgent synchronizations is not yet clear. Since they are very useful for
modeling conceptual reactive systems, we would rather not exclude them.

Concluding, we think that the integration of model checkers in the de-
velopment process of reactive programs can be very valuable. Especially in
a setting where timing parameters may have very subtle and unexpected
effects, model checkers can provide a relative easy way to detect errors in
conceptual designs. Moreover, in many cases it will be possible to define
a sensible translation from models which appear in the conceptual design
phase to executable code. This translation saves implementation time and
reduces the risk of errors. Verifying executable code using a model checker
still is very difficult. However, we think that our research concerning the
fragmentation problem brings this yet a little closer.

86 Conclusion

References

[ABJN99] P.A. Abdulla, A. Bouajjani, B. Jonsson, and M. Nilsson. Han-
dling Global Conditions in Parameterized System Verification.
In 11th International Conference on Computer Aided Verifica-
tion, number 1633 in LNCS, pages 134–145. Springer–Verlag,
1999.

[ACD93] R. Alur, C. Courcoubetis, and D.L. Dill. Model checking in
dense real time. Information and Computation, 104:2–34, 1993.

[AD90] R. Alur and D.L. Dill. Automata for modeling real-time sys-
tems. In 17th International Colloquium on Automata, Lan-
guages, and Programming, pages 322–335, 1990.

[Alu99] R. Alur. Timed Automata. In 11th International Conference
on Computer Aided Verification, number 1633 in LNCS, pages
8–22. Springer–Verlag, 1999.

[Bel57] R. Bellman. Dynamic Programming. Princeton University
Press, 1957.

[BFH+01] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Petters-
son, and J. Romijn. Efficient Guiding Towards Cost-Optimality
in Uppaal. In T. Margaria and W. Yi, editors, Proceedings
of the 7th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, number 2031 in
Lecture Notes in Computer Science, pages 174–188. Springer–
Verlag, 2001.

[BG96] B. Boigelot and P. Godefroid. Symbolic verification of commu-
nication protocols with infinite state spaces using QDDs. In
8th International Conference on Computer Aided Verification,
number 1102 in LNCS, pages 1–12. Springer–Verlag, 1996.

[BGWW97] B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The
power of QDDs. In 4th International Static Analysis Sympo-
sium, LNCS. Springer–Verlag, 1997.

[BH97] A. Bouajjani and P. Habermehl. Symbolic reachability analy-
sis of FIFO-channel systems with non-regular sets of configu-
rations. In 24th International Colloquium on Automata, Lan-
guages, and Programming, number 1256 in LNCS. Springer–
Verlag, 1997.

88 References

[Boe79] B.W. Boehm. Software engineering: R & D trends and defense
needs. In Research Directions in Software Technology, 1979.

[BW94] B. Boigelot and P. Wolper. Symbolic verification with periodic
sets. In 6th International Conference on Computer Aided Ver-
ification, number 808 in LNCS, pages 55–67. Springer–Verlag,
1994.

[CDH+00] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby,
S. Laubach, and H. Zheng. Bandera: Extracting
Finite-state Models from Java Source Code. In Pro-
ceedings of the 22nd International Conference on Soft-
ware Engineering, June 2000. Available through URL
http://www.cis.ksu.edu/santos/bandera/.

[CK96] E. Clarke and R. Kurshan. Computer-aided verification. IEEE
Spectrum, 33(6):61–67, 1996.

[CL00] F. Cassez and K. G. Larsen. The Impressive Power of Stop-
watches. In International Conference on Concurrency Theory,
pages 138–152, 2000.

[Die99] H. Dierks. Specification and Verification of Polling Real-Time
Systems. PhD thesis, Carl von Ossietzky Universität Olden-
burg, July 1999.

[Dil89] D. Dill. Timing Assumptions and Verification of Finite-State
Concurrent Systems. In J. Sifakis, editor, Proc. of Automatic
Verification Methods for Finite State Systems, number 407 in
Lecture Notes in Computer Science, pages 197–212. Springer–
Verlag, 1989.

[Fag86] M.E. Fagan. Advances in software inspections. IEEE Transac-
tions on Software Engineering, 12(7):744–751, 1986.

[Hen96] T. A. Henzinger. The Theory of Hybrid Automata. In 11th
Annual IEEE Symposium on Logic in Computer Science, pages
278–292, 1996.

[Hen01] M. Hendriks. Translating uppaal to Not Quite C. Technical
Report 8, CSI University of Nijmegen, March 2001.

[HHWT97] T. A. Henzinger, P. Ho, and H. Wong-Toi. HyTech: A Model
Checker for Hybrid Systems. Software Tools for Technology
Transfer, 1:110–122, 1997.

[HKPV98] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s
decidable about hybrid automata? Journal of Computer and
System Sciences, 57:94–124, 1998.

References 89

[HL02] M. Hendriks and K. G. Larsen. Exact Acceleration of Real-
Time Model Checking. In Electronic Notes in Theoretical Com-
puter Science, volume 65. Elsevier Science Publishers, April
2002.

[HLP00] T. Hune, K. G. Larsen, and P. Pettersson. Guided Synthe-
sis of Control Programs Using Uppaal. In Ten H. Lai, edi-
tor, Proc. of the IEEE ICDCS International Workshop on Dis-
tributed Systems Verification and Validation, pages E15–E22.
IEEE Computer Society Press, April 2000.

[Hun00] T. S. Hune. Modeling a language for embedded systems in
timed automata. Technical Report RS-00-17, BRICS, Basic
Research in computer Science, August 2000. 26 pp. Earlier
version entitled Modelling a Real-Time Language appeared in
FMICS99, pages 259–282.

[IKL+00] T. K. Iversen, K. J. Kristoffersen, K. G. Larsen, M. Laursen,
R. G. Madsen, S. K. Mortensen, P. Pettersson, and C. B.
Thomasen. Model-Checking Real-Time Control Programs —
Verifying LEGO Mindstorms Systems Using uppaal. In IEEE
Euromicro Conference on Real-Time Systems, pages 147–155,
2000.

[LPY] M. Lindahl, P. Pettersson, and W. Yi. Formal Design and
Analysis of a Gear-Box Controller.

[LPY98] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a Nut-
shell. In International Journal on Software Tools for Technol-
ogy Transfer, 1, pages 134–152. Springer-Verlag, 1998.

[LRRA98] P. Liggesmeyer, M. Rothfelder, M. Rettelbach, and T. Acker-
mann. Qualitätssicherung Software-basierter technischer Sys-
teme – Problembereiche un Lösungsansätze. Informatik Spek-
trum, 21:249–258, 1998.

[Möl02] M. O. Möller. Parking Can Get You There Faster. In Electronic
Notes in Theoretical Computer Science, volume 65. Elsevier
Science Publishers, April 2002.

[Nie00] S. Nielsson. Introduction to the legOS kernel, 2000. Available
through URL http://legos.sourceforge.net/.

[Pro99] K. Proudfoot. RCX Internals, 1998–1999. Available through
URL http://graphics.stanford.edu/∼kekoa/rcx/.

[PS00] A. Pnueli and E. Shahar. Liveness and Acceleration in Parame-
terized Verification. In 12th International Conference on Com-
puter Aided Verification, number 1855 in LNCS, pages 328–343.
Springer–Verlag, 2000.

[Som96] I. Sommerville. Software engineering. Addison–Wesley, 1996.

90 References

[Tan96] A. S. Tanenbaum. Computer Networks. Prentice–Hall, 1996.

[Yov97] S. Yovine. Kronos: a verification tool for real-time systems.
In Software Tools for Technology Transfer, 1997.

Appendix A

Proofs of lemmas and theorems

Lemma 5.1 Not every cycle has a window.

Proof. Consider the timed automaton M with two clocks, y and z, depicted
below. Obviously, there is a cycle, but this cycle does not have a window.

L

y<=1

z<=2
y:=0

We prove this by contradiction. Let us assume that the cycle does have
a window. Now consider the following trace of this timed automaton (we
denote the clock interpretation ν as a binary tuple that first contains the
value ν(y) and second the value ν(z)):

((L, (0, 0)), (L, (1, 1)), (L, (0, 1)), (L, (1, 2)), (L, (0, 2)), (L, (0, 2)), (L, (0, 2)))

Observe that this is a compressed trace in Tr(M) that executes the cycle
three times. From the invariant of L can be concluded that the cycle ex-
ecution takes at most 1 time unit. Moreover, the first execution can take
no time, since the cycle is not guarded by a lower bound on some clock.
Therefore, we must conclude that the window of this cycle is [0, 1].

If we consider the third execution of the cycle in the trace above, we see
that the first bullet of definition 5.3 is satisfied. However, the second bullet
is not satisfied, since we cannot delay more than zero time units because
then the value of z would exceed 2, which disables the cycle. Thus, we must
conclude that the window is [0, 0].

This window of [0, 0] is not valid for the first execution of the cycle in
the trace above by the first bullet of definition 5.3. Thus, we conclude that
this cycle has no window.

2

Lemma 5.2 (Cycle consecution) Let (Ec, y) be an acceleratable cycle
of some timed automaton M . If Ec is 1-time executable, then it is m-times

92 Appendix A

executable, for all m > 0.

Proof. Let us assume that Ec is 1-time executable. From definition 5.2
we know that a finite compressed trace in Tr(M) exists with a suffix as in
definition 5.2, say of the form

((l0, ν0), (l0, ν ′0), (l1, ν1), ..., (lk−1, ν
′
k−1), (lk, νk))

By definitions 5.1 and 5.2, we can conclude that this suffix starts and ends
in location src(e0), in other words l0 = lk = src(e0). Moreover, since we
consider an acceleratable cycle, we know that νk(y) = 0. We can extend this
suffix with a δ-delay transition, where δ = ν ′0(y), and we obtain the suffix

((l0, ν0), (l0, ν ′0), (l1, ν1), ..., (lk−1, ν
′
k−1), (lk, νk), (lk, ν ′k))

where ν ′k(y) = ν ′0(y). This delay transition is allowed because lk = l0, and
ν ′k(y) = ν ′0(y). Since we consider an acceleratable cycle, we know that the
invariant of lk is only concerned with clock y. Therefore, we can conclude
that ν ′k |= I(lk).

As a result, we can repeat the sequence of action and delay transitions
of the first part of the trace an arbitrary number of times, since the guards
and invariants are solely concerned with clock y.

2

Lemma 5.3 (Window computation) Each acceleratable cycle has a
window.

Proof. Consider a timed automaton M = (L, l0,Σ, X, I, E) and an ac-
celeratable cycle ((e0, e1, ..., en−1), y). We will show that we can effectively
compute the window from the syntax of the timed automaton.

Let the tuple (li, ai, φi, λi, li+1) denote edge ei. We can find p natural
numbers 0 ≤ k0 < k1 < ... < kp−1 that exactly correspond to the indices
of the edges on which clock y is reset. Since we know by definition that
y is reset on edge en−1, p is at least one. Next, we compute the following
numbers for 0 ≤ j < p (we define k−1 = −1):

akj = max { cng(φi) | kj−1 < i ≤ kj }
bkj = cnI(I(lkj))

Since we consider the guards and invariants of an acceleratable cycle, all the
numbers akj and bkj are defined. We will show that the acceleratable cycle
has a window of p−1∑

j=0

akj ,

p−1∑
j=0

bkj

Let us consider a subsequence of some compressed trace as in definition 5.3.
This subsequence denotes one execution of the acceleratable cycle, starting

Proofs of lemmas and theorems 93

in the reset location. We can partition this subsequence by the numbers kj ,
to obtain p “partial” compressed subsequences:

((l0, ν0), ..., (lk0 , ν
′
k0

), (lk0+1, νk0+1)) part k0

((lk0+1, νk0+1), ..., (lk1 , ν
′
k1

), (lk1+1, νk1+1)) part k1

:
((lkj−1+1, νkj−1+1), ..., (lkj , ν

′
kj

), (lkj+1, νkj+1)) part kj
:
((lkp−2+1, νkp−2+1), ..., (lkp−1 , ν

′
kp−1

), (l0, ν ′0)) part kp−1

For each of these parts holds that clock y is reset with the last action tran-
sition. Moreover, the guards and invariants in these parts satisfy the special
forms defined in definition 5.4.

We will show that (i) the total delay in a part kj , i.e., ν ′kj (y), is an
element of [akj , bkj] and (ii) that we can adjust the amount of delay in part
kj to d for all d ∈ [akj , bkj], such that the adjusted sequence is a subsequence
of some trace in Tr(M).

Part (i). Let us consider part kj . This fragment traverses part of the
cycle until y is reset. We know by computation of the numbers kj that
νkj−1+1(y) = 0. This also holds for k0, since l0 = src(e0) and clock y is reset
on every incoming edge of the reset location, or ν0(y) = 0 by definition of
νinit.

We show that ν ′kj (y) ∈ [akj , bkj]. Since the part is from an existing trace,
the clock interpretation in part kj must have satisfied the maximal guard
y ≥ akj at some moment. The clock y is only reset on the last transition
in the part and therefore ν ′kj (y) ≥ akj . We also know that ν ′kj |= I(lkj) and
thus that ν ′kj (y) ≤ cnI(I(lkj)) = bkj . As a result, the total delay of this part
is an element of [akj , bkj].

Part (ii). Consider the part kj , for simplicity denoted by

((lq, νq), (lq, ν ′q), (lq+1, νq+1), ..., (lr−1, νr−1), (lr−1, ν
′
r−1), (lr, νr)) (6.1)

We will show that, given a d ∈ [akj , bkj], we can redefine the delays in each
location such that the total delay of the part equals d. In other words, we
construct a new finite compressed trace of the form

((lq, µq), (lq, µ′q), (lq+1, µq+1), ..., (lr−1, µr−1), (lr−1, µ
′
r−1), (lr, µr)) (6.2)

where that µq = νq and the total delay in this subsequence equals d. More
formally, µr(x) = νr(x) + d for all clocks x 6= y, and of course µr(y) =
νr(y), since y is reset on the last edge. We inductively define the clock

94 Appendix A

interpretations µ as follows for every q ≤ i < r − 1:

µq = νq
µ′i = µi + δi
µi+1 = µ′i

δi = 0 iff µi |= φi
δi = cng(φi)− µi(y) otherwise

These definitions mean that if the next action transition is already enabled,
then the delay in the location is zero. If not, the delay is the minimal delay
needed to enable the edge. We thus construct trace 6.2 up to the state
(lr−1, µr−1). We choose the last delay after we have proven that a valid
compressed trace results from our construction. We prove by induction on
i the following for all q ≤ i < r − 1:

(1) Enabledness of edges: µi |= I(li), µ′i |= I(li), µ′i |= φi, and µ′i |= I(li+1).

(2) We construct a “faster” trace then we have: µ′i(y) ≤ ν ′i(y).

(3) We construct the “fastest” trace: µ′i(y) ≤ akj .

Base. We know that µq(y) = 0 and by the existence of trace (6.1) that
µq |= I(lq). By choice of δq, we know that µ′q(y) = cng(φq), and thus
µ′q |= φq. Now we must show that µ′q |= I(lq) and µ′q |= I(lq+1). Consider
the state (lq, ν ′q) in trace 6.1. It is clear that ν ′q satisfies the guard and
therefore ν ′q(y) ≥ µ′q(y). Moreover, ν ′q satisfies the invariants of locations lq
and lq+1. Since ν ′q(y) ≥ µ′q(y), we can conclude that µ′q(y) must also satisfy
I(lq) and I(lq+1). This proves the properties 1 and 2.

We know by definition that µq(y) = 0. So if µq |= φq, then µ′q(y) = 0
and thus µ′q(y) ≤ akj , since akj is at least 0. On the other hand, if µq 6|= φq,
then µ′q(y) = δq = cng(φq). In this case, we know by definition that akj is
at least cng(φq), and thus µ′q(y) ≤ akj . This proves property 3 and the base
of the induction.

Induction. Suppose that the properties 1, 2 and 3 hold for i = m, where
q ≤ m < r − 2. We will show that they also hold for i = m+ 1.

Since no clocks are reset on edge em, it is true that µm+1 = µ′m. From
part 1 of the induction hypotheses follows that µm+1 |= I(lm+1). By choice
of δm+1, we know that µ′m+1 |= φm+1. Next, consider the state (lm+1, ν

′
m+1)

in trace (6.1). We show that µ′m+1(y) ≤ ν ′m+1(y). There are two cases:

• Suppose δm+1 = 0, then µ′m+1 = µm+1. Since µ′m+1 = µm+1 = µ′m,
we obtain by the induction hypothesis that µ′m+1(y) ≤ ν ′m(y). We
know by definition that no clocks are reset on this edge and thus
ν ′m(y) ≤ ν ′m+1(y). Combining these last two formulas gives us that
µ′m+1(y) ≤ ν ′m+1(y).

Proofs of lemmas and theorems 95

• Suppose δm+1 > 0. Using the minimal choice of δm+1 we can con-
clude that µ′m+1(y) ≤ ν ′m+1(y). For a proof, suppose that µ′m+1(y) >
ν ′m+1(y). Filling in the definition of µ′m+1 and δm+1 gives us that
µ′m+1(y) = cng(φm+1). Combination of this formula with our as-
sumption results in ν ′m+1(y) < cng(φm+1). In other words, the guard
φm+1 in trace (6.1) is not enabled from state (lm+1, ν

′
m+1). This

clearly contradicts the existence of trace (6.1) and we conclude that
µ′m+1(y) ≤ ν ′m+1(y).

Next, we show that µ′m+1 |= I(lm+1) and that µ′m+1 |= I(lm+2). Above, we
already proved that property 2, µ′m+1(y) ≤ ν ′m+1(y), holds for the induction
step. From the existence of trace (6.1), it is clear that ν ′m+1 |= I(lm+1) and
ν ′m+1 |= I(lm+2). From the special form of the invariants, they give upper
bounds on clock y, we can conclude that µ′m+1 |= I(lm+1) and µ′m+1 |=
I(lm+2). This proves the properties 1 and 2.

Now only property 3 is left. We show that µ′m+1(y) ≤ akj . Since no
clocks are reset on edge em, we know that µ′m = µm+1. Using part 3 of the
induction hypothesis, we obtain µm+1(y) ≤ akj . Next, we distinguish two
cases for the delay in location lm+1:

• If δm+1 = 0, then µ′m+1 = µm+1. Combination with the formula above
thus easily gives us that µ′m+1(y) ≤ akj .

• If δm+1 > 0, then we know by the minimal choice of δm+1 that
µ′m+1(y) = cng(φm+1). Clearly, akj ≥ cng(φm+1) and thereforewe
can conclude that µ′m+1(y) ≤ akj .

Now that we have proven that our choice of delays up to the location lr−2

enables all edges, we must define the last delay δr−1, prove that edge er−1 is
still enabled after that delay, and show that the total delay of our compressed
fragment equals d.

Since no clocks are reset on edge er−2, we know that µr−1 = µ′r−2. By
property 1, we conclude that µr−1 |= I(lr−1), and thus µr−1(y) ≤ bkj . By
property 3 we know that µr−1(y) ≤ akj . Now we can define the last delay as
δr−1 = d−µr−1(y). After this delay, the guard on edge er−1 and the invariant
of location lr−1 are satisfied, since (µr−1+δr−1)(y) = d and ar−1 ≤ d ≤ br−1.
The invariant of location lr is also satisfied because clock y is reset to 0 on
edge er−1. This proves part (ii).

Concluding, the total delay for the concatenation of all partial trace frag-
ments is our window and its bounds are given by the interval. Moreover,
using the technique demonstrated in part (ii), we can adjust the delays of
the separate parts of the subsequence to obtain any delay that lies within
this window. Of course, these separate parts can still be “concatenated”
after the adjustment, since the “overlapping” states of the different parts
agree on the value of clock y. This enables the inductive adjustment of the
delays in the total subsequence.

96 Appendix A

2

We need the following three small lemmas in our proof of theorem 5.1.

Lemma 6.1 For all a, b,m ∈ N, if 3a ≤ 2b and m ≥ 2, then (m+1)a ≤ mb.

Proof. We prove this by induction on m. The base, m = 2, follows directly
from our assumption. Now suppose that it holds for m = n and let us
consider the case m = n+ 1:

((n+ 1) + 1)a ≤ (n+ 1)b ⇔ (n+ 1)a+ a ≤ nb+ b

From the induction hypothesis we know that (n+1)a ≤ nb and since 3a ≤ 2b
we also know that a ≤ b. This proves the lemma.

2

Lemma 6.2 For all D ∈ R+ and a, b ∈ N, if D ≥ 2a and 3a ≤ 2b, then
there exists a k ∈ N such that D ∈ [k · a, k · b].

Proof. We prove that ∪kn=2[na, nb] = [2a, kb] by induction on k. The base,
k = 2, is straightforward to verify. Now let us assume that it holds for
k = m. The case for k = m+ 1 looks like this:⋃m+1

n=2 [na, nb] =
⋃m
n=2[na, nb] ∪ [(m+ 1)a, (m+ 1)b]

= [2a,mb] ∪ [(m+ 1)a, (m+ 1)b]

From lemma 6.1 we know that (m+ 1)a ≤ mb, since m ≥ 2 and therefore

[2a,mb] ∪ [(m+ 1)a, (m+ 1)b] = [2a, (m+ 1)b]

Since b is strictly greater than a the limit of this union covers all real numbers
larger than or equal to 2a. This proves the lemma.

2

Lemma 6.3 For all D ∈ R and a, b ∈ N, if there exists a k ∈ N such that
D ∈ [ka, kb], then we can write D as d1 + d2 + ...+ dk, where every di is an
element of [a, b].

Proof. We prove this by induction on k. It is easy to see that this holds
for k = 1, since then d1 = D. Now let us assume that it holds for k = p.
Then it also holds for k = p + 1. Suppose that D ∈ [(p + 1)a, (p + 1)b].
Then D = δ + ∆ for some δ ∈ [a, b] and ∆ ∈ [pa, pb]. From the induction
hypothesis we know that ∆ can be written as d1 + ...+ dp, where every di is
an element of [a, b]. The fact that δ also is an element of [a, b] proves that
we can write D as d1 + ...+ dp+1, where every di is an element of [a, b].

Proofs of lemmas and theorems 97

2

Theorem 5.1 (Equivalence of reachability) Let (L, l0,Σ, X, I, E) be a
timed automaton M , let A be an acceleratable cycle of M with a window of
[a, b], and let φ be a reachability properties of M .

3a ≤ 2b⇒ (M |= φ⇔ Acc(M,A) |= φ)

Proof. To prove the theorem, assume 3a ≤ 2b.

(⇒) Let us assume that M |= φ. Then there exists a trace in Tr(M) that
satisfies φ. Observe that Acc(M,A) only extends M with some locations
and edges. Therefore, a trace in Tr(M) is also a trace in Tr(Acc(M,A))
and we can conclude that Acc(M,A) also satisfies φ.

(⇐) Now, let us assume that Acc(M,A) |= φ. We will show that any state
(l, ν), where l is a location of M , that is reachable in Acc(M,A), is also
reachable in M . We assume the same naming conventions of the locations
as in definition 5.5.

Let us consider a finite subsequence of a trace in Tr(Acc(M,A)) that
starts on entry of src(e0) and takes the added cycle exactly once:

((l0, ν0), ..., (l0, νi), (l′1, νi+1), ..., (l′′n−1, νf−1), (l0, νf))

We let D denote the sum of all delay transitions in this subsequence. Note
that D ≥ 2a. Since y is reset on the edge to l0 (see definition 5.4), we
know that νf (y) = 0. Moreover, no other clocks are reset on edges of the
acceleratable cycle. Therefore, νf (x) = ν0(x) +D for all clocks x, except y.

We will show that there exists a k ∈ N such that the delay D can be
gathered by k executions of the acceleratable cycle in M . In other words, we
will show that a finite compressed trace in Tr(M) exists, where µ0,0 equals
ν0, say of the following form:

((l0, µ0,0), (l0, µ′0,0), (l1, µ1,0), ..., (l0, µ0,1), (l0, µ′0,1), ...,

(ln−1, µ
′
n−1,k−1), (l0, µ0,k))

such that µ0,k equals νf . It is clear that if this trace exists, then the added
cycle of Acc(M,A) does not render states reachable that are not reachable
in M .

First we observe that the acceleratable cycle in M is 1-time executable,
since we assumed that a trace through Acc(M,Ec) exists that takes the
appended cycle once. This trace can easily be compressed to obtain the
delay in each location of the appended cycle. The appended cycle mimics
two unfoldings of the acceleratable cycle, and therefore we can conclude
that we can apply the same delay transitions to obtain a compressed trace

98 Appendix A

in Tr(M) that proves that Ec is 1-time executable. By lemma 5.2 we know
that we can execute the acceleratable cycle an arbitrary number of times.

Next, by lemma 5.3 we can pick an element of [a, b] to be the delay for
each execution of the acceleratable cycle. Since D ≥ 2a and we assumed
that 3a ≤ 2b, we can apply lemma 6.2 to conclude that there exists a k ∈ N
such that D ∈ [ka, kb]. With this knowledge we can apply lemma 6.3 to
conclude that we can write D as d1 + d2 + ... + dk, where every di is an
element of [a, b].

Concluding, we know that the compressed trace in Tr(M) exists that
executes the acceleratable cycle k times from the state (l0, µ0,0). Moreover,
the last clock interpretation in this trace, µ0,k, assigns 0 to clock y, since
y is – by definition – reset on all ingoing edges of l0. The sum of all delay
transitions equals D, and therefore µ0,k(x) = µ0,0(x)+D for all clocks x 6= y.
Thus, µ0,k equals νf .

2

Theorem 5.2 (Effectiveness of acceleration) Let the timed automaton
M be defined by (L, l0,Σ, X, I, E) and let A = ((e0, ..., en−1), y) be an ac-
celeratable cycle. If y is reset on edge e0, then all states reachable by more
than one execution of the acceleratable cycle in M , are reachable by exactly
one execution of the appended cycle in Acc(M,A).

Proof. We let (li, ai, φi, λi, li+1) denote edge ei and we let [a, b] denote the
window of A. We assume the same naming conventions as in definition 5.5.

Let us consider a subsequence of some trace of M that starts on entry of
the reset location of A and that takes the acceleratable cycle m > 1 times.
We denote this trace by

((l0, ν0), ..., (l0, νj), ..., (ln−1, νp), (l0, νq))

We know from the properties of acceleratable cycles that ν0(y) = νq(y) = 0
and νq(x) = ν0(x) +D for the other clocks x, where D ≥ 2a. We show that
a compressed trace of Acc(M,A) exists with the following subsequence

((l0, ν0,0), (l0, ν ′0,0), (l′1, ν0,1), .., (l′n−1, ν0,n−1), (l′0, ν1,0), (l′0, ν
′
1,0), ..,

(l′′n−1, ν
′
1,n−1), (l0, ν2,0))

where ν0,0 = ν0 and ν2,0 = νq. This subsequence results from exactly one
execution of the appended cycle.

In the proof of lemma 5.3 we explained how to choose the minimal delays
in the locations of the acceleratable cycle. Without proof, we apply the same
technique here, with the exception that we choose the delay in the location
l′0 as the minimal delay plus D − 2a. This delay is larger or equal to the
minimal delay, and thus assures that the guard on the edge to l′′1 is enabled.
The invariant of l′0 certainly allows this delay, since it is true by definition

Proofs of lemmas and theorems 99

5.5. To prove that this delay is also allowed by the invariant on location
l′′1 , we need our assumption that edge e0 resets clock y. Since if that is the
case, clock y equals zero on entry of location l′′1 and the invariant is certainly
satisfied. As a result, the total delay of the subsequence is a+D−2a+a = D.

2

	Introduction
	Model checking and system development
	Objectives
	General outline

	Setting and tools
	The hardware platform
	The firmware and byte code
	LegOS

	The model checker
	Timed automata
	Symbolic model checking
	The model checker Uppaal

	Summary

	Case studies: the conceptual designs
	A communication protocol
	Encoding of packets on the RCX platform
	Modeling the communication channels
	The sender
	The receiver
	The tester
	Validation of the protocol

	The Level Crossing
	The physical gate and the physical train
	The gate controller
	The train controller
	The hurry dummy: urgent edges
	Validation of the Level Crossing

	The Production Cell
	The physical robot arm
	The brick template
	The robot arm controller
	The belt controller
	Validation of the Production Cell

	Summary

	Compiling conceptual designs
	Extra information in conceptual designs
	Only a Uppaal model is not enough
	The type mappings

	Definition of the translation
	Generating the byte code program
	Generating the Uppaal model of the run-time behavior
	Relation between the input and output of the translation
	Restrictions introduced by the translation

	The implementation
	Adding the type mappings to a Uppaal model
	A small example

	Experimental results
	Testing the generated byte code of the Level Crossing
	Testing the generated byte code of the Production Cell
	Verifying the Level Crossing
	Verifying the Production Cell
	Discussion

	Summary

	Exact acceleration of real-time model checking
	Exact acceleration
	An introduction to cycles
	Acceleratable cycles
	Acceleration
	Experimental results

	Acceleration of Uppaal models
	Does equivalence of reachability disappear?
	Automatic application of acceleration
	Experimental results

	Summary

	Conclusion
	References
	Appendix A

