

Unclassified

Master’s thesis

Investigating the possibilities to implement efficient transfer of
(MS) Office documents within the RNLA

Thesis number: 530

By Michiel Broekman

Ministry of Defense

The Royal Netherlands Army

Command & Control Support Centre

&

Preface
This thesis is the result of my graduation project that has been carried out at the Command and Control
Support Centre of the Royal Netherlands Army. This project completes my study of Computer Science
at the Radboud University of Nijmegen. The past seven months have been a great experience and
expanded my horizon as a computer scientist. For the first time I was challenged to conduct my own
research for an extended period of time. Although this has been an individual project, a number of
people have been very helpful to me.

First I would like to thank Jeroen Bruijning (Radboud University Nijmegen) for his intensive guidance,
support and feedback throughout this project. His clear interests and close involvement during the
project made the weekly meetings very pleasant. I also wish to thank Marco van der Meijden (TNO FEL)
for giving me more specific information about the systems that are deployed in the RNLA and for
supporting me with the technical aspects of these systems. I would like to thank lieutenant-colonel Bert
Smid (RNLA) and major Edward van Dipten (RNLA) for guiding me through the organization in order to
get the information I required for my research. I wish to thank the people of C&CZ of the Radboud
University of Nijmegen for helping me to overcome some technical problems during the work that had to
be done at the workstations.

Above all, I would like to thank my family for supporting me throughout these years and for giving me
the opportunity to fully develop myself both personally and professionally.

Michiel Broekman
August 28, 2004

Summary
The research in this project is aimed at the possibilities to implement efficient transfer of (MS) Office
documents within the RNLA. Programs like MS Word, MS PowerPoint and MS Excel are amongst
others being used to plan, interact and operate. Therefore it is important that military personnel can
send or update documents with their colleagues. The highly distributed nature of the military information
systems does not allow standard file synchronization tools to be used.

Principally there are two factors in achieving an efficient data transfer: (1) sending data as compactly as
possible and (2) finding some efficient distribution of this data. The distribution part of the problem will
be omitted and can be paid attention to later on in some other research. Therefore the scope of the
project is limited to a specific part of the general problem.

A field investigation has been done to get a deeper understanding of what sort of documents are used.
These documents have been categorized and realistic data sets have been developed to get a close
imitation of what could be encountered in the field. Most of the MS Office documents that are created
and sent over the network are relatively big in file size. Unfortunately the military networks that are
deployed do not have enough bandwidth to accommodate such intensive network traffic as some part of
the bandwidth should always be reserved for other activities. Therefore in this project the principal focus
lies on compression tools that can reduce file sizes substantially.

Almost anyone is familiar with the concept of file compression and a well known tool for achieving this is
called ZIP. However there are more specialized tools available that accomplish a special kind of
compression called delta compression. Delta compression is mostly concerned with efficient file transfer
over slow communication links in the case where a receiving party already has a similar file (or files).
Delta compression tries to find a minimal set of differences between the old file and the new file and
these differences are placed in a so called delta file. Later on, this delta, which is typically smaller than
the new file, can for example be sent to another computer which already has got the old file present
after which this computer can patch the old file with the received delta to construct the new file.

In order to get an indication of whether compression tools and delta compression tools can be of value
to the RNLA a number of representative (delta) compression tools are examined in great detail: ZIP,
XMill, diff, Xdelta, Vcdiff and DeltaXML. Their techniques are scrutinized and the characteristics are
described with respect to the previously developed data sets.

The results of the tests are the basis of the recommendations that are made towards the RNLA. These
recommendations fall apart in a technical and non-technical part and conclude this thesis. Delta
compression tools combined with tools like ZIP and XMill can provide a big advantage in achieving the
goal of efficient file transfer. File sizes can decrease dramatically which eventually results in a more
efficient bandwidth utilization. However that may be, in the first place it is important to minimize the file
size of the original uncompressed files. This can be done by following practical guide-lines of what
should be avoided when creating an Office document. At the other end an alternative for MS Office
called OpenOffice.org should be considered as its applications would certainly contribute to smaller file
sizes than those achieved by MS Office.

Of course (delta) compression and alternatives for MS Office only solve one part of the general problem
and in the future there should be paid attention to smart distribution algorithms for distributing these
deltas across the network. However the RNLA should first investigate what part of the communication
links is utilized by Office documents to estimate the profits of introducing these kind of changes.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 8/99 Version 1.0

Table of contents

PREFACE.. 3
SUMMARY .. 5

1 INTRODUCTION... 10

1.1 C2 SUPPORT CENTRE ... 10
1.2 OUTLINE... 10
1.3 CD-ROM... 11

2 PRELIMINARY RESEARCH... 12

3 PROBLEM DEFINITION ... 15

4 FIELD INVESTIGATION ... 16
4.1 NETWORK CENTRIC WARFARE ... 16
4.2 FILE DISTRIBUTION .. 18

4.2.1 ISIS.. 18
4.3 FILE REPLICATION ... 20

4.3.1 X-Share server... 20
4.4 OTHER SYSTEMS... 20
4.5 FIELD DATA... 21

4.5.1 Queries .. 21
4.5.2 Results ... 22

5 COMPRESSION ... 27

5.1 COMPRESSION TOOLS ... 27
5.1.1 ZIP... 27
5.1.2 XMill.. 31

5.2 DELTA COMPRESSION TOOLS ... 39
5.2.1 diff ... 40
5.2.2 LZ77-Based Delta Compressors ... 47
5.2.3 Xdelta .. 51
5.2.4 Vcdiff ... 52
5.2.5 DeltaXML.. 55

6 BENCHMARK... 62

6.1 DATA SETS... 62
6.1.1 MS Office/OpenOffice.org Documents.. 62
6.1.2 Data characteristics .. 62
6.1.3 Data Sets structure .. 62
6.1.4 XML vs Native format ... 62

6.2 BENCHMARK TOOL .. 63
6.3 HARDWARE AND SOFTWARE SPECIFICATIONS... 64
6.4 RESULTS.. 65

6.4.1 ZIP vs XMill .. 65
6.4.2 Diff vs Xdelta vs Vcdiff vs DeltaXML on XML .. 67
6.4.3 Xdelta vs Vcdiff on Doc/xsw.. 73
6.4.4 MS Word and OpenOffice.org Writer: Doc vs XML vs xsw.. 76
6.4.5 Xdelta vs Vcdiff on xls/sxc... 77
6.4.6 MS Excel and OpenOffice.org Calc: xls vs XML vs sxc .. 78
6.4.7 The benefits of a delta ... 79
6.4.8 Delta sequences... 80

The Royal Netherlands Army Command & Control Support Centre

Unclassified 9/99 Version 1.0

7 RECOMMENDATIONS... 83

7.1 TECHNICAL PART... 83
7.1.1 File synchronization.. 83
7.1.2 Open standards ... 83
7.1.3 XMill vs ZIP .. 83
7.1.4 Delta compression tools .. 84

7.2 NON TECHNICAL PART.. 85
7.2.1 Control user behavior ... 85
7.2.2 OpenOffice.org.. 85

7.3 FURTHER RESEARCH ... 86

ACRONYMS .. 88

REFERENCES .. 89
A. APPENDIX.. 91

BENCHMARK SCRIPT... 91
WORD/WRITER DATA SETS... 96
EXCEL/CALC DATA SETS .. 99

The Royal Netherlands Army Command & Control Support Centre

Unclassified 10/99 Version 1.0

1 Introduction
The Command & Control Support Centre (C2SC) of the Royal Netherlands Army (RNLA) has been busy
producing operational information systems that are based on network centric warfare concepts. The
military networks that are deployed have one thing in common: the bandwidth of the network
connections is very limited due to low capacity wireless links. Furthermore the bandwidth is shared with
multiple applications like Voice over IP and video conferencing.

The people in all layers of the military organization are (or should be) all familiar with the MS Office
standard. Programs like MS Word, MS PowerPoint and MS Excel are amongst others being used to
plan, interact and operate. Therefore it is important that military personnel can send or update
documents with their colleagues.

Most of the MS Office documents which are created and sent over the network are relatively big in file
size. Unfortunately the military networks which are in use at the moment do not have enough bandwidth
to accommodate such intensive network traffic. Despite of the limited network resources there are
circumstances in which MS Office documents should be sent as quickly and efficiently as possible.

1.1 C2 Support Centre
The project is carried out at the Command & Control Support Centre (C2SC) in Ede. As described in [6]
C2SC is the software development and management house of the RNLA for tactical C2-systems. Its
mission statement is formulated as follows:

“The Command & Control Support Centre digitizes the battlefield for Commanders in an innovative and
controlled way”.

The RNLA has explicitly chosen for in-house development, production and management of C2-systems.
The benefit of this approach is that the RNLA remains maximally involved in the process during the
development and production phase of C2-systems. If there are any changing user requirements or
budgets then adjustments can be made more directly and costly negotiations with industry are not
required. To benefit from the knowledge and experience of the civil world and to incorporate state of the
art technology civilian contractors are hired and COTS products are used where possible.

The ministry of defense of The Netherlands decided in June 2001 that The Netherlands should become
a leader in Europe in the field of Command, Control, Communications & Intelligence (C3I). With the
development of a common, European C3I-architecture, the development of new C2 supporting systems
and with training and implementation support, the RNLA C2SC should make a contribution to this
European initiative. Eventually the Dutch Centre of Excellence (CoE) of which C2SC is a part, should
evolve into a European Centre of Excellence of C2 support. This initiative was offered to the EU as part
of the Dutch contribution to the European Strategic Defense Initiative (ESDI).

1.2 Outline
This thesis describes the outcome of the graduation project that has been carried out at C2SC. Chapter
2 gives some introductory information to the real problem definition which is treated in chapter 3. In this
latter chapter the scope of the project will be defined. The problem and questions that have to be
answered are precisely formulated. After the reader has gained a clear understanding of the motivations
behind this project chapter 4 will provide some information of various systems that are used in the

The Royal Netherlands Army Command & Control Support Centre

Unclassified 11/99 Version 1.0

military to give some idea of what role information systems play in the field. Further there will be a
limited field investigation about what kind of data is representative in the informational need. Chapter 5
will go into the details of compression tools and particularly focuses on some delta compression tools.
Their underlying techniques and most important characteristics are described in detail. The results from
the field investigation of chapter 4 and the (delta) compression tools from chapter 5 are used for the
benchmark that is described in chapter 6. The various tools are measured on their input to get an
understanding of which techniques are favorable in certain situations and which not. Finally, chapter 7
will use the benchmark results and conclusions for recommendations towards the RNLA. These
recommendations fall apart in technical and non-technical recommendations and are the end of this
thesis.

1.3 CD-ROM
All deliverables that are produced during this project are delivered on a CD-ROM. The CD-ROM
contains the following:

• Project Management Plan
• Field Investigation
• Test Plan
• Data Sets, Compression Tools
• Master’s Thesis

The Royal Netherlands Army Command & Control Support Centre

Unclassified 12/99 Version 1.0

2 Preliminary research
The notion of low capacity (wireless) links and related file transfer is of course not only limited to the
military situation. All over the internet networks must cope with intense traffic which may be just beneath
the capacity the networks can handle. The general problem as it has been defined at the beginning of
the project can be formulated as follows:

 “Investigating the possibilities to implement efficient transfer of (MS) Office documents within the
RNLA.”

In the military there are all sorts of situations which can be encountered with respect to data transfer.
Essentially these can be split up into two main categories: (1) file distribution and (2) file replication.
These two categories are related to each other, but there are some important differences which are
explained beneath.

To put it in simple words file distribution is about distributing files over a network and focuses on how
data must find its way from one location to another. Within the context of this project file distribution is
concerned with getting all clients up-to-date whenever they are connected to the network.

ethernet ethernet

User A User B

User C

User D

Version 2

Version 1

Figure 2-1: Four users want to get in sync with each other.

To get an idea of what this practically means figure 2-1 serves as an example. Suppose there are four
users of whom user A, B and C already posses version 1 of a document. User A has made an update of
the original document, so the newest version has become 2. The other users are all interested in this
newest version and therefore want to synchronize, so in one way or another there must be found a way
of providing the latest information to all users. It could be very inefficient to send version 2 to all
interested parties as this could be very expensive in network bandwidth. For example consider the case
where one wants to stay in sync with several clients that update their documents frequently. In the worst
case sending complete documents simultaneously to all users could cause a network jam.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 13/99 Version 1.0

At this point terms like delta compression and file synchronization come in. The details of delta
compression will be explained later but the idea can be formulated in the preceding context as follows.
User A calculates the difference (delta) between versions 1 and 2 and sends this difference to all users
who already have version 1 present, after which they can patch version 1 with the received delta. The
users who do not have any version yet must get the complete version 2 or they can get version 1 from a
neighboring host and successively patch version 1 with the difference between version 1 and version 2.
So by sending only the essential differences, network bandwidth can be utilized more efficiently.

In our context file distribution is about finding smart distribution algorithms to figure out which users are
up-to-date and which not. It is of overall importance to find a “smart” algorithm that finds out which users
must be updated and subsequently searches for the best network path that should be followed to send
the differential updates.

File replication is not really concerned with efficient distribution of data among several clients and
usually does not make use of smart distribution algorithms to propagate data. For it is only focused on
replicating data between two or more file servers. File synchronization tries to solve the problem of
replicating data between two parties where the sender does not have a copy of the files held by the
receiver. So the sender (server) does not have access to some sort of reference and uses a protocol
between the parties which enables the receiver (client) to update its version to the newest one while
minimizing communication between the two parties [1]. Because of the significant difference with delta
compression the algorithms are rather different from those for delta compression.

Server 1 Server 2

File synchronization

Figure 2-2: File synchronization between two servers.

A few relevant applications of file synchronization are: (1) Synchronization of user files, (2) Remote
Backup of Massive Data Sets, (3) Web Access and (4) Distributed and Peer-to-Peer Systems. An
example of a software package that enables synchronization of user files is Microsoft’s ActiveSync. It
allows synchronization between several devices (like desktops and mobile devices). Synchronization
can also be used for remote backup of data sets that have not changed too much between backups. In
the case of Web Access file synchronization tries to achieve efficient HTTP transfer between clients and
a server or proxy. By using file synchronization protocols the server does not need to keep track of the
old versions held by the client. In distributed and peer-to-peer systems file synchronization can be used
to update users who have been unavailable for some time and have to update their data while rejoining
the system. Highly distributed data may be synchronized in the future, however at the moment there do
not seem to be any promising applications that can cope with the complex networks and highly
distributed data of the military. However it may be wise to watch the progress of these applications as
they may become meaningful for the RNLA.

The famous file synchronization tool called rsync uses the rsync algorithm which provides a method for
bringing remote files into sync [26]. It achieves this by sending just the differences in the files across the
link, without requiring that both sets of files are present at one of the ends of the link beforehand. This
tool however is not suitable for the highly distributed data in the military situation as rsync can not cope

The Royal Netherlands Army Command & Control Support Centre

Unclassified 14/99 Version 1.0

with the inherent complex network structures and ways of data distribution. In the case where simple
synchronization of two servers is of importance rsync will do its job fine.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 15/99 Version 1.0

3 Problem definition
The research in this thesis is aimed at the possibilities to implement efficient transfer of (MS) Office
documents within the RNLA. In the preceding chapter an important point was made: the highly
distributed nature of the military information systems does not allow standard file synchronization tools
to be used. The scope of the project must then be limited to a part of the general problem which can be
used for further research in this area.

Principally there are two factors in achieving an efficient data transfer: (1) sending data as compactly as
possible and (2) finding some efficient distribution of this data. The distribution part of the problem will
be omitted and can be paid attention to later on in some other research. With respect to the
informational need of the RNLA the goal is to examine in what way data can be sent as compactly as
possible. To structure the approach of this research a few questions need to be answered first and are
formulated as follows.

• What sort of systems does the RNLA use for its purposes? There are many kind of systems that
are used in the field. It is interesting to get some idea of what these systems do and what sort of
information is needed.

• What sort of documents are we dealing with? In the beginning MS Office documents were

explicitly mentioned as they play an important role in the planning, interaction and operation in
the field. By doing a field investigation some deeper understanding of the actual documents may
be gained.

• What are the exact criteria to categorize these documents? Of course there are many

documents around and these should be categorized on certain criteria (like file size and
frequency). It is of overall importance to get an good overview of the meta information
concerning these documents.

• What sort of compression tools do exist? There are many sorts of compression tools and some

promise very good compression rates. A special kind of compression called delta compression
may be promising and deserves to be examined thoroughly.

• Which results are gained by using these compression tools on realistic data sets? All

compression tools have their own characteristics and these must be examined. Therefore a
benchmark must be developed for testing all representative compression tools on specially
developed data sets.

• What recommendations can be made towards the RNLA? When all tests have been finished the

results must be examined and interpreted. At the end of this project recommendations should be
made towards the RNLA in the matter of what strategy should be handled when using
compression tools. The results and conclusions can be used for further research. Besides the
technical aspects of these recommendations there also should be paid attention to non-technical
alternatives of improving efficient data transfer.

The next chapters will cover the listed items above and will try to answer the questions as completely as
possible.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 16/99 Version 1.0

4 Field investigation
To get some knowledge about the kind of data that is sent it is necessary to investigate a real life
situation. The military use several systems which all fulfill a specific purpose in the informational need.
Before going into detail it is worth mentioning that all these systems are part of what is called network
centric warfare.

4.1 Network Centric Warfare
Network centric warfare has got its roots in the 1990-1991 U.S. war against Iraq which is commonly
considered the first information war [12]. This form of warfare is a concept that makes use of the
advantages of the technology in the information age. Network centric warfare provides a force with a
new sort of information that was previously an unavailable region of the information domain. Having
access to this region gives modern warfighters a new type of information advantage. This is achieved by
the advantage of information sharing which is made possible by networking. Due to this information
sharing warfighters can get a better shared situational awareness and knowledge. The combat power
that is realized by network centric warfare is related to the relationships between the physical, the
information and the cognitive domains [13].

Human Perception

World view,
Body of personal knowledge,

Experience
Information domain
A prior documented
knowledge

Information
Data

Information
systems

Physical domain

Cognitive domain

Situation
- Understanding
- Awareness
- Asessment

Decisions

Figure 4-1: Domains concerning network centric warfare [13].

• Physical domain: the physical domain is the traditional domain of warfare. It is where real battles
are fought and where all actions take place across ground, sea and air. It is also the domain
where physical platforms and communication networks reside. The elements of this domain can
be easily observed and combat power has in the past always been measured in this domain.

• Information domain: the information domain is the domain where all information resides. It is the

domain where information is created, manipulated and shared. It is responsible for providing the

The Royal Netherlands Army Command & Control Support Centre

Unclassified 17/99 Version 1.0

information to the warfighters. The command and control of modern military forces communicate
in this domain. This domain is of utmost importance in the battle for information superiority.

• Cognitive domain: the cognitive domain is related to the mind of the warfighters. Leadership,

morale, unit cohesion, level of training, experience, situational awareness and public opinion are
some elements of this domain. The commander’s intent, doctrine, tactics, techniques and
procedures also reside here.

Battle space entities like aircrafts, ships, tanks and intelligence sensors are all connected to each other
as well as to command and control centres. By connecting all these parts together a networking of
platforms is achieved which can increase the effectiveness of a warfighter. The operational tempo is
increased, accuracy is enhanced, survivability and lethality are increased.

Information technology is undergoing a change from platform-centric computing to network centric
computing. This shift can be clearly observed in the growth of the internet, intranets and extranets [11].
All these technologies have led to the concept of network centric computing. Information is now
distributed and can be used in a heterogeneous global computing environment. The military has also
been influenced by these trends as battle time plays a very important role in the field. Battle time is
heavily determined by the following two factors that are enabled by network centric warfare: (1) the
measure of speed of command and (2) the measure of being able to organize forces from bottom up to
meet the commander’s intent. The forces get information superiority which results in a better awareness
of the battle space. This means that excellent sensors, fast and powerful networks, display technology
and sophisticated modeling and simulation capabilities are needed.

In figure 4-2 the emerging architecture for network centric warfare is depicted [13]. At the high end of
the performance spectrum are cooperative sensing and engagement of high-speed targets. This can be
realized by a high data rate and low latency of the information transport facilities. At the intermediate
level there are several command and control activities, such as the coordination of tactical combat
operations. These latter sort of operations can tolerate information delays on the order of some
seconds. Other kinds of command and control and logistical operations, such as operational planning,
are not that time sensitive. For example, if one would like to have information about a large container
ship, which may need several days to get from one point to the other, delays on the order of minutes are
tolerated. At the low end of the performance spectrum high level planning is of importance and therefore
an overview of the total situation is necessary. The level of detail however is considerably smaller than
that of the high end of the spectrum as the planning itself does not need a highly detailed overview of
what happens in the field.

In the same way the wide variation in the importance and urgency is related to several levels of latency
and priority. It is interesting to notice that there is a direct relationship between the velocity of
information and the speed and tempo of operations in network centric warfare. Situational awareness
should always be of great importance. To put it in simple words situational awareness is about three
things: (1) Where am I? (2) Where are my buddies? and (3) Where is the enemy? Many more things
can be said about network centric warfare and the interested reader is referred to a detailed overview in
“Network centric warfare, Developing and Leveraging Information Superiority” [13].

The Royal Netherlands Army Command & Control Support Centre

Unclassified 18/99 Version 1.0

Weapens Control

Force Control

Force Coordination

Shooter/TransactionSensor/Content

Joint Planning Network
~ 1000 Users

Joint Data Network
< 500 Users

Joint Composite Tracking Network
< 24 Users

Figure 4-2: Architecture for network centric warfare [13].

4.2 File distribution
Realizing collaboration between several end systems is achieved by using hardware and software that
can handle highly distributed data structures. In this section such a system is described briefly to give
the reader some impression of what sort of systems within the RNLA exhibit these characteristics.

4.2.1 ISIS
The Integrated Staff Information System (ISIS) can be seen as an infrastructure, as well as a system,
targeting a platform that can be used in the office and in the field [15]. It runs on MS Windows 2000 and
MS Windows XP and brings MS Office applications, e-mail and specific C2 applications to the user. ISIS
is meant to facilitate the informational need with respect to the decision making process and the
forthcoming execution of plans. It is a distributed information system which enables the electronic
communication of messages both in the office and in the field, at any location. To get some idea of what
ISIS is all about some important facets will be briefly described beneath.

In every system information is of utmost importance and therefore also in the C2 workstation. The
operations are highly dependant on the given information on activities in the area of operations, such as
enemy sightings, status of bridges and roads and the own troop location. Planning information and
orders must be exchanged along the command hierarchy. So it is necessary that everybody gets the
information he needs. The information flow itself must be flexible which means that is should be possible
to create a high level picture of the battle-zone, but at the same time detailed information should be
available as well. This is where situational awareness comes in and is about the:

The Royal Netherlands Army Command & Control Support Centre

Unclassified 19/99 Version 1.0

• Understanding of the locations, strength, intentions et cetera of the players in the area of

operations.

• Ability to provide information about locations, strength, intensions et cetera of players in the area
of operations.

• Ability to anticipate on changes of the players in the area of operations.

• Ability to plan an operation based on information in the area of operations.

Situational awareness is something that is within the perception of the mind. The Common Operational
Picture (COP) is a way to provide this awareness. Principally the COP is a virtual storage place for all
C2 information as it is distributed among several physical storage places at various organizational units.
In the COP there are providers of information and consumers of information. When the consumer wants
to consume information it needs to know what information is provided. The information provider is
responsible for grouping and describing the information that is made available to consumers. The
description of the information can be found in what is called the COP Catalog. The COP Catalog does
not prescribe the content of the information but only prescribes that all information should be grouped
and described. The idea behind the COP Catalog is that some user only needs the information he is
interested in. So information is only sent when there is an explicit need for. When information at some
point is requested the user will continuously be kept up to date with changes.

The idea above has both push- and pull-characteristics. First the user has to pull or define where he is
interested in and has to make his interest available by using the COP Catalog. When the interest has
been made clear the user will receive the information including all updates in the future. So the
distribution is done on a need-to-know basis. The distribution mechanism that is used is called the
publish/subscribe method. One major benefit of this method is that data will not be sent to users who
are not interested, which eventually results in a better use of the bandwidth.

Besides that the COP Catalog owns the description of the COP information it also knows where to find
the information because the location of the information and the provider’s address are part of the
description. The COP Catalog can basically be compared to the catalog of books in a library. Every
organizational unit has at least one COP Catalog that can be accessed by other organizational units.

The 2D (as there is some progress in developing a 3D version) Geographical Information System looks
like figure 4-3. It gives the reader an idea of how situational awareness is enhanced by maintaining an
up-to-date overview of the battlefield. The exact details of ISIS will not be mentioned here and can be
read in “C2WS3001 SUM ISIS 3.0 on C2WS” [15].

In ISIS it is also possible to make use of MS office applications. At the moment these documents are
completely sent across the network by the publish/subscribe method. In the future a more efficient
transfer could be achieved by using (delta) compression tools.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 20/99 Version 1.0

Figure 4-3: ISIS 2D GIS Viewer.

4.3 File replication
Realizing file replication between two or more servers is achieved by using some sort of file
synchronization protocol. In the military servers need to stay in sync with each other and therefore a file
synchronization tool is used. In the following section an example of such a case is given.

4.3.1 X-Share server
The structure of a military network is built up out of several basic components. The overall network
however can have many forms as the network will be adapted to the hierarchical structure of the military
organization on the spot. For instance there may be a military unit consisting of two command posts.
Then the (simplified) structure of the network could be like the one depicted in figure 4-4.

Both command posts make use of a stand-alone X-Share server. The X-Share server is a special file
server which is responsible for storing all files within the unit. It can be seen both as a central repository
and a back up medium. The unit above consists of two command posts which must be able to operate
independently. The two X-Shares of the unit are continuously being synchronized by using an
Information Management Tool called Legato which is specialised in duplicating data between two file
servers. The purpose of this synchronization is to get a full backup of the original file server in the case
where the original file server falls out. The backup file server must then fully replace the one which is
temporary out of operation.

4.4 Other systems
Of course there are many other applications that make use of the military network services. The
examples above only give a partial impression of what sort of information is transferred over the
network. Some (not yet mentioned) applications that have high data rates are for example VoIP and
video conferencing. It may be clear that information superiority places a heavy burden on network

The Royal Netherlands Army Command & Control Support Centre

Unclassified 21/99 Version 1.0

resources as all kind of military organizations, like the navy, army and the air force, claim their part of
the available bandwidth.

Figure 4-4: File replication between two command posts.

4.5 Field data
To get a more precise overview of the documents that are sent across the network it is important to
investigate a real life situation. Therefore some servers of military data were queried to retrieve meta
information of the files being stored. The CIS Control Centre in Stroe is responsible for delivering
hardware and software support to military missions. The people of the centre have a real-time
surveillance over all kind of operational systems in the field, so they are able to retrieve what sort of
information is found at the various servers.

4.5.1 Queries
The queries beneath were all delivered to the CIS Control Centre and have been examined and
answered where possible. Beforehand it is important to mention that the data in question is of a static
nature: the servers that are queried are not part of a very complex distributed network. So the locally
residing data is not used for complex file distribution. The following queries have been handed over to
the CIS Control Centre:

• Get the total size of all files together.

• Get a listing of all types of files that are being stored.

• What is the minimum, average and largest size of those files that are being stored?

• How many duplicates can be found?

The Royal Netherlands Army Command & Control Support Centre

Unclassified 22/99 Version 1.0

• What type of file is found most?

• What type of file is found least?

• What type of file is found regularly (between most and least)?

• Are there relatively many small files stored?

• How many large files are stored?

• Are there any extremely large files stored?

• What type of files are being updated most frequently (and what is their average file size)?

• What type of files are being updated least frequently (and what is their average file size)?

• How many files have (not) been modified in the last 24 hours?

• What type of files have (not) been modified in the last 24 hours?

• What is the relation between the update frequency and file size?

• Which part of the files being stored are not interesting in this investigation?

• If a file is older than for example 3 days, will this document then typically be updated in the

future?

• Which part of the bandwidth is utilized by the transfer of documents?

• Are there any representative version histories and what is their content?

4.5.2 Results
The results are summarized in an Excel sheet. Due to confidentiality issues the exact overview is not
shown in this document. Unfortunately the questions relating to the update frequency of documents and
the bandwidth utilization could not be answered by the people who were responsible for retrieving the
relevant data. By looking at the results in the Excel sheet the following insights can be obtained, taking
into account that the situation is different for the various servers at different locations.

• The total size of all files together varies from 5 MB till 14 GB. 5 MB may not be very
representative, so it is better to say the total size varies from 227 MB till 14 GB. It is important to
understand that these numbers are only representative for the moment. File sizes grow when
applications become more memory dependant (processing and data storage). This trend will
hold on, so storage capacities must continuously be enlarged.

• The type of files that can be found at the file servers are: doc, txt, xls, ppt, mdb, rtf, jpg, tif, gif,

bmp, mpg, avi, mov, exe, zip, html, lnk, bin/dbr/db, tmp, pdf, pst.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 23/99 Version 1.0

• The smallest file that is found is around 0 KB. The average file size varies from 188 KB till 17
MB. In almost any case the average file size is within the range of 188 KB till 1 MB. The largest
stored files are above 50 MB and can even go up to 275 MB. Figure 4-5 gives an overview of the
average file sizes on the servers. A remark should be made concerning the server that hosts 13
files. The average file size of this server is omitted as this size (17.430.652 bytes) is not
representative for the whole.

• The amount of duplicates depends on the total amount of files stored at the specific server.

Unfortunately the only information which is presented in the Excel sheet is the number of
duplicates. This number does not say anything about how many duplicates there exist of a
specific file. Having, for example, 1000 duplicates may mean that 1 file is duplicated 1000 times,
but at the same time it could mean as well that 200 files are all duplicated 5 times. So the results
of the CIS Control Centre do not contribute to a better understanding of the situation.
Unfortunately more exact information could not be gained in time. Figure 4-6 shows the number
of duplicates per server. Finding duplicates is done by using the CRC-check.

• The type of files that are found most are: doc, jpg, xls, ppt and html. pdf is also largely used on

one server. pdf is probably stored on more servers, however the data are not complete for the
pdf type.

• The type of files that are found least are: pst, bin/dbr/db, tmp, lnk, mov, avi, tif, mdb and mpg.

• The type of files that are found regularly are: zip, exe, bmp, gif, rtf, txt.

0

200.000

400.000

600.000

800.000

1.000.000

1.200.000

1473 4479 19193 1569 18020 13 228 6338 25 9715
Number of files per server

Fi
le

 s
iz

e
(b

yt
es

)

Figure 4-5: Average file size per server.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 24/99 Version 1.0

0

10

20

30

40

50

60

70

1473 4479 19193 1569 18020 13 228 6338 25 9715
Number of files per server

Pe
rc

en
ta

ge
 o

f d
up

lic
at

es
 (%

)

Figure 4-6: Number of duplicates per server.

• If you take the definition that a small file is less than 15 KB in file size then the percentage of
small files varies from 0 % till 50 %. If the value 0 % would be excluded then 3 % may be a
better lower limit. Figure 4-7 shows the various percentages.

0

10

20

30

40

50

60

1473 4479 19193 1569 18020 13 228 6338 25 9715
Number of files per server

Pe
rc

en
ta

ge
 o

f s
m

al
l f

ile
s

(%
)

Figure 4-7: Percentage of small files per server.

• If you take the definition that a large file is bigger than 5 MB in file size then the number of large
files essentially varies from 4.5 ‰ till 15 ‰ (the value 35 ‰ is excluded as it is relatively
extreme). Of course some of the large files are even bigger than 50 MB (category extremely
large). These files are fortunately very rare and can be discarded most of the time. A remark
should be made concerning the server that hosts 13 files as all present files belong to the
category big. This data is omitted as it would violate the layout of the figure 4-8.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 25/99 Version 1.0

• As said before there are files that are bigger than 50 MB. Such files are only found a couple of

times on the server. On average these files may be found once or twice on a server with
approximately 600 files. The type of files that are found in this case are: pst, ppt, mdb, avi, mpg,
some doc files and some pdf files.

• It is without any doubt that doc files are updated the most frequently. The average file size of

these frequently updated documents varies from 50 KB till 221 KB.

0

5

10

15

20

25

30

35

40

1473 4479 19193 1569 18020 13 228 6338 25 9715

Number of files per server

N
um

be
r o

f b
ig

 fi
le

s
pe

r m
ill

e

> 5 MB > 50 MB

Figure 4-8: Number of big files per server per mille.

• Files that are updated least frequently are dbr files. There may be more files which are not
updated regularly, however this data could not be retrieved from the Excel sheet.

• Files that have been modified in the last 24 hours are relatively rare. As can be observed in

figure 4-9 there are cases in which there are no files modified in the last 24 hours. In all other
cases the percentage of files that are modified in the last 24 hours ranges (all zeros excluded)
between 0.2 % and 2.6 %. So in most cases files are not modified on a daily basis. Of course
there are always files that will not be modified (and these are highly represented on the
inspected servers), whereas doc files are more frequently changed.

• The type of files that have been modified in the last 24 hours are: doc, xls, jpg, gif, zip, html and

mdb.

• All type of documents that are summarized in the beginning and that are not listed in the bullet
above have not been updated in the last 24 hours.

• Unfortunately there has not been found any relation between the update frequency and the file

size of a document: this data could not be extracted from the servers.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 26/99 Version 1.0

0

0,5

1

1,5

2

2,5

3

1473 4479 19193 1569 18020 13 228 6338 25 9715

Number of files per server

Pe
rc

en
ta

ge
 o

f f
ile

s
m

od
ifi

ed
 <

 2
4

ho
ur

s
(%

)

Figure 4-9: Percentage of files modified in the last 24 hours.

• The documents that have some version history are: daily INTSUMs (Intelligence Summary)
which are presented in doc format, pst files, xls files and daily patrols and SITREPs (Situation
Report) which are also in doc format.

• Another interesting point is that most files on the servers are between 15 KB and 5 MB in file

size. This becomes clear when one looks at the statistical data: only a few files are smaller than
15 KB and even a much smaller amount of files are larger than 5 MB. So most files are in the 15
KB – 5 MB range.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 27/99 Version 1.0

5 Compression
Compression is widely used in computer network and storage systems in the case where efficient data
transfer and storage is of major importance. Most of the techniques focus on the compression of
individual files or certain types of data streams, like video or audio [1].

Nowadays, especially when one focuses on network-based environments, files are often widely
replicated, frequently modified and cut and reassembled in different contexts and packages. There are
many cases where the receiving party already has an earlier version of the transmitted file or some
other file that is similar or where a few similar files are sent together. Examples are the distribution of
software packages where the receiver already has an earlier version, the transmission of a set of
documents which partially have the same structure or content (e.g. pages from the same web site) or
remote file synchronization of a database. In these scenarios it may be clear that a more efficient
strategy is feasible than that achieved by individually compressing files.

This chapter will first handle the tools and underlying techniques that enable individual file compression
and will thereupon focus on the tools and underlying techniques that enable delta compression of which
a first hint of its application area is already given away in the paragraph above.

5.1 Compression tools
In this section the well-known compression tool ZIP and its underlying technique is described. A more
specialized tool called XMill will be treated in great detail as this tool may have certain important
advantages over a standard general-purpose tool like ZIP.

5.1.1 ZIP
The ZIP file format is the most widely-used compression format in the world and makes use of the
DEFLATE algorithm that combines LZ77 with Huffman coding [16].

The Lempel-Ziv compression methods are the most popular algorithms for lossless storage. LZ77 and
LZ78 are the names for the two lossless data compression algorithms published in papers by Abraham
Lempel and Jacob Ziv in 1977 and 1978. These two algorithms form the basis for most of the present
LZ variations.

The LZ77 algorithm goes through the text from the beginning to the end and continuously maintains a
history window of the most recent seen data and compares the current data that is being encoded with
the data in the history window. So the previously seen text is then used as a dictionary. The
compressed data stream contains references to the position in the history window, and the length of the
match. In the case where a match could not be found the character itself is encoded in the stream after
it has been flagged by a literal.

The main structure of LZ77 is a two-part sliding window of which the increasing part of the window
represents the text that is already coded, while the decreasing part, which is called the look-ahead
buffer, contains the text that is still to be encoded [17]. The incoming text is coded by tuples of the form
(index, length, successor symbol). The index points to the location within the window on which a match
is found with some of the text that is to be encoded. Length stands for the number of matching symbols
and the successor symbol is the first symbol in the look-ahead buffer that does not match. At the
moment the most popular LZ77 algorithm is DEFLATE which is the basis for ZIP. The other variant

The Royal Netherlands Army Command & Control Support Centre

Unclassified 28/99 Version 1.0

called LZ78 will not be further described here but it is worth mentioning that instead of working with past
data (like LZ77 does), LZ78 tries to work with future data and does this by forward scanning the input
buffer and matching it against a dictionary. The LZ77 algorithm can be summarized as follows.

The explained algorithm above might be somewhat difficult to understand and therefore the process is
clarified by applying the LZ77 algorithm to the string “abracadabra”. Table 5-1 shows step by step what
actions are taken to compress the string. POS relates to the coding position, MATCH shows the longest
match in the window, CHAR shows the first char in the look-ahead buffer that does not match and
OUTPUT presents the output in the form (index, length, successor symbol).

STEP POS MATCH CHAR OUTPUT
1 1 - a (0,0,a)
2 2 - b (0,0,b)
3 3 - r (0,0.r)
4 4 a c (3,1,c)
5 6 a d (2,1,d)
6 8 abra EOF (7,4,EOF)

Table 5-1: Output from and dictionary generated by LZ77.

So the table above gives an exact trace of how LZ77 operates on the input stream and what output
eventually is returned. In figure 5-1 the window is shown at the final step of coding (step 5 to 6). The
bold line in the window separates the already encoded text (dictionary) from the look-ahead buffer.

0 1 2 3 4 65 7 8 9 10 11

a b r aca d a b r a

Encoded text Look-ahead

Figure 5-1: LZ77 Window at the final step of coding “abracadabra”.

Fill the look-ahead buffer with symbols from the input stream;

while (look-ahead buffer is not empty)
{

Find the longest match between the (start of the) look-ahead buffer and the already
seen text. The length of the match is saved in the variable length;

Output a tuple as described above to the output stream;

Shift the contents of the window length + 1 symbols to the left, and fill empty bytes in
the look-ahead buffer from the input stream;

}

The Royal Netherlands Army Command & Control Support Centre

Unclassified 29/99 Version 1.0

Decoding is quite straightforward as the window is maintained in the same way. If P is the pointer to the
match and C is the first character of the look-ahead buffer that did not match then in each step the
algorithm gets a pair (P,C) from the input and outputs the sequence from the window specified by the
pointer P and the character C.

As already explained before ZIP combines LZ77 with Huffman coding. In Huffman coding, codes are
made by using a binary tree and this is done by the algorithm shown beneath. The statement in the
while loop is executed until the number of nodes without a parent equals 1 as this will be the root of the
tree.

This method has got the big advantage that the generated codes are directly decodable. Again the
string “abracadabra” will be coded. If this string is coded without compression there are 3 bits for each
symbol needed as the alphabet consists of 5 symbols. A simple calculation shows that the
uncompressed string will occupy 11 x 3 = 33 bits. In information theory an information source has got
symbols which are part of a finite alphabet. If information is to be measured in one or more symbols
from a given source first one should know what is meant by information. Intuitively it is easy to
understand that a seldom occurring symbol delivers more information than an often seen symbol.
Therefore a measure for the information found by the occurrence of a given symbol is the inverse of the
probability of the occurrence. Shannon has introduced the following formula which defines the
information from the occurrence of symbol si as:

where p(si) is the probability that symbol si occurs. The average information in a text is called the
entropy and is defined as:

∑
=

=
n

1i
ii))I(sp(s H

)p(s log-
)p(s

1log)I(s i
i

i ==

Create a leaf node for every symbol, and let every node contain the probability of the
occurrence of the symbol. The list of nodes is sorted on decreasing probability;

while (number_of_orphans > 1)
{

Create a new node based on the two orphan nodes with lowest probability, and make it
the parent of the two nodes. The content of the new node is the sum of probabilities for
the previously orphan nodes;

}

Assign digits 0 and 1 to every left and right (or upper and lower, depending on the orientation of
the tree) edge respectively;

To find the code of a symbol, follow each edge from the root node to the leaf node of the
symbol, combining the digits on the passed edges;

The Royal Netherlands Army Command & Control Support Centre

Unclassified 30/99 Version 1.0

When using a base 2 logarithm the entropy formula returns the theoretical lower limit for the average
number of bits per symbol that is needed to encode the stream of symbols. It would be out of scope to
proof this assumption and a detailed description can be read in [18].

When returning to the example of “abracadabra” we can easily calculate the entropy of the string by
filling in all variables in the formula above. Table 5-2 beneath first shows an overview of the information
of each symbol.

SYMBOL SI COUNT PROB P(SI) I(SI)
a 5 0.455 1.138
b 2 0.182 2.459
r 2 0.182 2.459
d 1 0.091 3.459
c 1 0.091 3.459

Table 5-2: Statistical data for “abracadabra”.

When using the formula above the entropy of the string “abracadabra” becomes 2.040 and by executing
the Huffman algorithm the following tree is built.

5/11

2/11

2/11

1/11

1/11

2/11

4/11

6/11

11/11
Root

a

b

r

c

d

Figure 5-2: A Huffman tree for coding “abracadabra”.

The tree in figure 5-2 clearly shows that the nodes with the lowest probability should be combined. In
the case of several nodes with equal probabilities there are multiple choices. It is easy to observe that
characters with a high probability consume fewer bits whereas characters that have a low probability
consume more bits. By going through the tree the following codes are obtained.

SYMBOL CODE
a 0
b 100
c 101
d 110
e 111

Table 5-3: Huffman codes for “abracadabra”.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 31/99 Version 1.0

So the string “abracadabra” is compressed to the sequence “01001010111011001001010” which
contains 23 bits. So on average one symbol consumes (23/11) 2.091 bits and this is pretty close to the
entropy. If the string would be coded without compression then on average one symbol would consume
(33/11) 3 bits, so Huffman coding certainly makes a difference.

So essentially ZIP makes both use of LZ77 and Huffman coding to compress data. LZ77 tries to seek
for repeated data after which Huffman coding tries to reduce the number of bits necessary to represent
an element of data. By using both techniques a more efficient compression ratio is realized.

5.1.2 XMill
The program XMill is a tool that is specially developed for compressing XML data. In [3] it is said that
XMill usually achieves about twice the compression ratio of gzip (which is also based on LZ77 and
Huffman coding) at roughly the same speed. XMill can be used with applications like XML data
exchange and archiving. XML data may make use of a so called schema (such as a DTD or an XML-
schema), however XMill does not necessarily need this schema information but it is able to exploit the
present schema information to further enhance the compression ratio. In order to compress XML data
XMill incorporates and combines several existing compressors: it makes use of zlib, the library function
of ZIP, as well as a collection of data type specific compressors. It is also possible to fine-tune XMill by
extending it with data specific compressors. There are already many specialized areas in which XML is
used to exchange and store specific data: saving images and DNA sequences are some examples.
Large organizations like the U.S. Army tend to migrate XML with their applications as well [19].

Before going into some of the details of XMill it may be wise to tell something about XML first. At the
FAQ of the web site XML.com of O’Reilly [9] a simple introductory definition of XML is given: XML is a
markup language for documents containing structured information. Structured information contains both
content (words, pictures et cetera) and some indication of what role that content plays (for example,
content in a section heading has a different meaning from content in a footnote). Practically all
documents exhibit some sort of structure.

XML data is self-describing which means that the data describes itself by using a certain predefined
schema. This feature increases the amount of data extremely but instead flexibility is gained. Although
there have been many data exchange formats the last years XML will certainly become of great
importance in the future (it already plays an important role). The reason XML has made such an
amazing advance is because of its relation to the Web. Furthermore major companies like Microsoft
have integrated XML in their applications which compels the world to make use of it. So its popularity is
not because it is such a good and revolutionary idea, but because of its universal acceptance.

XML primarily consists of three kind of tokens: tags, attributes and data values. The following fragment
gives an example of XML data:

In this example Book, Title and Year are tags. Each tag must be part of a begin-tag and an end-tag and
this is clearly shown above. A begin-tag and an end-tag distinguish an element which on its turn can
consist of elements as well (and/or data values). The element Book contains the elements Title and
Year, and the content of Year is 1995. The data values are strings and an element may have a set of

<Book> <Title lang=”English”> Data compression </Title>
 <Year> 1995 </Year>
</Book>

The Royal Netherlands Army Command & Control Support Centre

Unclassified 32/99 Version 1.0

attribute-value pairs. In the example above @lang is an attribute (to distinguish attributes from data
values all attributes are preceded by the character @) of Title with as its value English. An XML
document may also contain a processing instruction (PI), comments, CDATA values and a document
type declaration (DTD).

It is important to understand that XMill is not a about a new algorithm. It is rather a new architecture
which makes use of existing compressing algorithms and tools to compress XML data. Because of its
open architecture XMill is extensible which means that users can add their self-developed compressors
when needed. An example of this is when scientist must store data like DNA sequences or when
medical personnel must store high resolution images of MRI scans. Specialized compressors can then
be used for compressing parts that can not be compressed efficiently by using standard solutions.
When knowledge about the XML data is gained, for example when two parties exchange XML data with
a common DTD or XML-schema, settings of XMill can be changed to get an even better compression.
An interesting fact is that by migrating data from other formats to XML the size of the compressed data
decreases. When a native format is translated into XML the data usually expands because XML tags
are verbose and must be repeated. However when XML data is compressed with XMill the compressed
files are smaller than the gzipped data. The reason behind this is the way XMill groups data in so called
containers which will be explained later. Of course the same compression rate can be achieved with a
special purpose compressor, but such a compressor must be specially developed first. Thus by
converting to XML both flexibility and efficiency (when compression is used) is gained.

XMill uses three principles to compress XML data:

• Separate structure from data: the structure consists of XML tags and attributes which form a
tree. The data consists of a sequence of items (strings) representing element contents and
attribute values. The structure and data are compressed separately.

• Group data items with related meaning: data items are grouped in containers, after which each

container is compressed separately. For example, all <surname> items form one container and
all <address> items form a second container.

• Apply different compressors to different containers: data items can consist of text, others of

images, while others may consist of DNA sequences. Therefore XMill uses different specialized
compressors (semantic compressors) for different containers.

To get an idea of what XMill can accomplish a simple example will be used as an illustration. Web Log
files are compressed because these files increase in file size rapidly. A typical line (the two lines
beneath are supposed to be on one line) in such a log file looks as follows:

Each line in the log file is a record consisting of eleven fields that are separated by a |: host, request
line, content type et cetera. After a long time web logs of popular web sites can take huge amounts of
space. A log file of 100.000 entries is approximately 16 MB in file size and can be reduced to 1.6 MB
after it has been compressed with gzip.

202.239.238.16|GET / HTTP/1.0|text/html/200|1997/10/01-00:00:02|-|4478
|-|-|http://www02.so-net.or.jp/|Mozilla/3.01 [ja] (Win95; I)

The Royal Netherlands Army Command & Control Support Centre

Unclassified 33/99 Version 1.0

weblog.dat 15.9 MB
weblog.dat.gz 1.6 MB

Programs that process a web log file are usually not very portable as different vendors use different
formats. The same server can even be configured to generate different log formats. To get some
flexibility the web log above can be converted into XML in the following way:

Because field names and server type are very clear now an application can easily process the XML
data. The major disadvantage of the XML format is that the file size increases dramatically, both for the
XML file and its compressed version:

weblog.xml 24.2 MB
weblog.xml.gz 2.1 MB

The ultimate goal is to get the flexibility of XML without increasing the file size substantially. Therefore it
is a good idea to compress data values separately. Compressing data values based on their tags
results in all host values being compressed together, all request lines being compressed together et
cetera. The nice thing is that gzip compresses better when it is applied to values of the same type than
when applied to mixed values. The resulting compression will then become:

weblog.xml 24.2 MB
weblog.xmi 1.33 MB

In this case the XML file that is compressed with XMill is even smaller than the original gzipped file. But
it is still possible to get an even better compression by giving XMill some explicit hints about the
structure of the web log. The idea is to carefully inspect each field and use a specialized compressor for
it. For example in the log file <apache:host> is an IP address and therefore can be stored by 4 unsigned
bytes. The <apache:date> can also be stored more efficiently in binary. In some cases substrings can
be taken out by closely looking at the structure of a certain value. In <apache:requestLine> most entries
begin with GET and end in HTTP/1.0 (as HTTP/1.1 is also possible). The following hints can be added
as an argument (settings.pz) to the XMill command line:

-p//apache:host=>seqcomb(u8 "." u8 "." u8 "." u8)
-p//apache:userAgent=>seq(e "/" e)
-p//apache:byteCount=>u
-p//apache:statusCode=>e
-p//apache:contentType=>e
-p//apache:requestLine=>seq("GET " rep ("/" e) " HTTP/1." e)
-p//apache:date=>seq(u "/" u8 "/" u8 "-" u8 ":" di ":" di)
-p//apache:referer=>or(seq("file:" t) seq("http://" or (seq(rep("." e) "/"
rep ("/" e)) rep ("." e))) t)

<apache:entry>
<apache:host>202.239.238.16</apache:host>
 <apache:requestLine>GET / HTTP/1.0</apache:requestLine>
 <apache:contentType>text/html</apache:contentType>
 <apache:statusCode>200</apache:statusCode>
 <apache:date>1997/10/01-00:00:02</apache:date>
 <apache:byteCount>4478</apache:byteCount>
 <apache:referer>http://www02.so-net.or.jp</apache:referer>
 <apache:userAgent>Mozilla/3.01 [ja] (Win95; I)</apache:userAgent>
</apache:entry>

The Royal Netherlands Army Command & Control Support Centre

Unclassified 34/99 Version 1.0

After settings.pz has been created the XMill command can be run in the following way:

With these settings the compressed file size can be reduced to 0.82 MB. An overview of the file sizes is
shown in table 5-4.

FILE FILE SIZE
weblog.dat 15.9 MB
weblog.dat.gz 1.6 MB
weblog.xml 24.2 MB
weblog.xml.gz 2.1 MB
weblog.xml 24.2 MB
weblog.xmi 1.33 MB
weblog2.xmi 0.82 MB

Table 5-4: Overview of file sizes.

Of course the example of a web log is relatively very simple and in reality much more complex data can
be compressed in the same way.

The architecture of XMill is based on the three principles described before. At first the XML file is parsed
by a SAX (Simple API for XML) parser that sends tokens to the path processor. Each token (tags,
attributes and data values) is thereupon assigned to a container. The tags and attributes which form the
structure of the XML document are put in the structure container. Data values are put in various
containers, in accordance with the path expressions, and the containers are compressed separately.
Before a data value is put in a container a semantic compressor may compress the data value.

The core of XMill is the path processor which is responsible for mapping data values to containers. It is
possible to control this mapping by adding some path expressions on the command line as an extra
argument to XMill. For each XML data value the path processor checks its path against each container
expression and so decides if the specific data value must be stored in an existing container or must be
placed in a container that must be created beforehand. At the end each container is compressed
separately with gzip after which it is stored in the output file.

Users have the possibility to associate semantic compressors with containers. Some atomic
compressors can be used directly like differential compressors and binary encoding of integers. These
simple compressors can further be used to form more complex ones. In special cases users can even
build semantic compressors fully by their own, which is especially useful when XML data contains very
specific data types like DNA sequences. It is not necessary to define semantic compressors and by
default the text semantic compressor copies its input to the containers without any semantic
compression.

xmill -f settings.pz weblog.xml weblog2.xmi

The Royal Netherlands Army Command & Control Support Centre

Unclassified 35/99 Version 1.0

SAX-Parser

Path Processor

<apache:entry>
<apache:host>203.237.165.15</apache:host>
<apache:requestLine>GET /images/logo.gif
…
<apache:useragent>Mozilla/4.0…

</apache:entry>
<apache:entry>

<apache:host>203.172.22.2</apache:host>
<apache:requestLine>GET /dist/test.zip
…

-p//apache:host=>IP
-p//apache:requestLine=>set(“GET ” t)
-p//#

Sem Compressor 1 Sem Compressor 2 Sem Compressor k

/images/logo.gif
/dist/test.zip

CB ED A5 0F
CB AC 16 02#1 #2 C1 / #3 C2 / … Mozilla/4.0 [en]

gzip gzip gzip gzip

...

...

Input file: XML Command line: Container Expressions

Output file: compressed XML

Structure Container Data Container 1 Data Container 2 Data Container k

...

Main memory

Figure 5-3: Architecture of XMill.

XML data consists of both structural elements and content and XMill separates these two to achieve an
efficient compression. As described before XML uses tags and attributes to structure the content and
this is tokenized in XMill as follows. Start-tags are encoded by assigning an integer value to them, while
end-tags are replaced by the token /. Data values are replaced by their relating container number which
can be illustrated with a simple example.

Each data value is replaced by its container number and this number will be represented by a C
followed by the container number.

<Book> <Title lang=”English”> Transaction Processing </Title>
 <Author> Gray </Author>
 <Author> Reiter </Author>
</Book>

The Royal Netherlands Army Command & Control Support Centre

Unclassified 36/99 Version 1.0

From the example above it is clear that the @lang values are stored in container 3, the titles in container
4 and the authors in container 5. After replacing all tags and attributes the tokenized structure will be as
follows:

In reality the tokens above are encoded as integers (with 1, 2 or 4 bytes) so the structure above
consumes 14 bytes. In the example above white spaces are ignored and the decompressor will produce
standard indentation which is sufficient for most application. However it is also possible to preserve
white spaces and in that case white spaces are stored in a special container. When preserving white
spaces the structure above becomes as follows:

By preserving white spaces the compressed file increases slightly: approximately 4 %. There are sorts
of data, like a linguistic database, of which the increase is much higher (Treebank: 30 %) because of the
deeply nested structures. Consider a large collection of books and for the sake of simplicity assume that
they all share the same structure (Title, @lang attribute and two times an Author) then the structure
container consists of repeated lines like the one beneath (white spaces are ignored).

The strings above can be compressed by gzip very well. A collection of 10.000 books can be
compressed into 16 bytes if LZ77 uses a large enough window. With slight irregularities, like one author
instead of two or a missing @lang good compression is still maintained. When the structure is regular
the compressed structure will contain 1% - 3% of the compressed file, while an irregular structure (for
example the linguistic database) will consume much more (Treebank: 20%).

Data values are uniquely assigned to one data container. This mapping is done by looking at the
following information: (1) the data value’s path and (2) the user-specified container expressions. The
following example will clarify the two points above.

#1 #2 #3 C1 / C2 /#4 C3 / #4 C3 //
#1 #2 #3 C1 / C2 /#4 C3 / #4 C3 //
…

<Book> C1 <Title lang=”C2”> C3 </Title> C1 <Author> C4 </Author> C1 <Author>
C4 </Author> C1 <Book>

Book = #1, Title = #2, @lang = #3, Author = #4
Structure = #1 #2 #3 C1 / C2 / #4 C3 / #4 C3 / /

<Book> <Title lang=”C3”> C4 </Title> <Author> C5 </Author> <Author> C5
</Author> </Book>

The Royal Netherlands Army Command & Control Support Centre

Unclassified 37/99 Version 1.0

In the example above the path to Compression is /Doc/Book/Title and the path to English is
/Doc/Book/Title/@language. Container expressions are used to associate a data value with a container.
One container is created for each tag or attribute. The container is specified by the last tag or attribute in
the path, so there is one container for //Title and one for //@language. The expressions are XPath
regular expressions. The mapping of tags and attributes to containers may be too restrictive and
therefore a mapping is described from paths to containers with container expressions. This mapping is
not treated here thoroughly , but a few simple examples may clarify its use. For example //Name creates
one data container for all data values of which the path ends with Name. //Person/Title creates a
container for all Person Titles. The // places all data values in one single container and //Person/#
creates different containers for each tag under person.

Because certain values are not compressed very well by gzip semantic compressors are used. For
example an IP address compressed by gzip does not come close to the standard 4 bytes per address.
As XML data often comes with all sorts of values like integers, dates, airport codes et cetera special
semantic compressors are used. As said before there are three sorts of semantic compressors: atomic,
combined and user-defined. A brief description of these three will be given.

There are eight atomic compressors in XMill which are shown in table 5-5 beneath. The text compressor
t only places the string to the container and leaves it unchanged after which it is compressed by gzip.
The u compressor encodes positive integers in binary as follows: numbers less than 128 use one byte,
those less than 16384 use two bytes and otherwise they use 4 bytes. The most significant one or two
bits are used to indicate the length of the sequence. The integer compressor u8 stores a number
between 0 en 255 in one single byte. The other atomic compressors will not be described and can be
read in [3].

COMPRESSOR DESCRIPTION
t default text compressor
i compressor for integers
di delta compressor for integers
e enumeration (dictionary) encoder
u compressor for positive integers
u8 compressor for positive integers < 256
rl run-length encoder
“…” constant compressor

Table 5-5: Atomic semantic compressors.

Combined compressors can be used where values exhibit some sort of structure. A nice example of this
is the IP address which consists of 4 integers separated by a dot or the request line which always

<Doc> <Book> <Title language=”English”> Compression </Title>
 <Year> 1995 </Year>
 </Book>
 <Person> <Name> Tom </name>
 <Title> Mr. </Title>
 <Child> Tim </Child>
 <Child> Karen </Child>
 </Person>
</Doc>

The Royal Netherlands Army Command & Control Support Centre

Unclassified 38/99 Version 1.0

begins with a GET followed by a string. XMill has three compressor combinators for compressing these
sorts of values.

• Sequence compressor seq(s1 s2 …). For example seq(u8 “.” u8 “.” u8 “.” u8) compresses an IP
address as four integers. In order to simplify parsing all other semantic compressors (s1, s2, ….)
must be constant.

• Alternate compressor or(s1 s2 …). For example take page references in a bibliography file.

These can be 120–145 or a single page like 111. Then the composite compressor will be
or(seq(u “-” u) u).

• Repetition compressor rep(d s). Here d is a delimiter and s is another semantic compressor. For

example a sequence of comma separated keywords can be compressed by rep(“,” e).

User-defined compressors can be used when very specialized data types are part of the XML data (e.g.
DNA sequences). A user can write its own compressor/decompressor and integrate it into XMill and
XDemill, while making use of the Semantic Compressor API (SCAPI).

The SAX parser for XML uses callbacks that translate an XML file into a stream of events. There is a
special event for each start-tag, end-tag, data value, attribute and attribute value. Each event, which
essentially is a token, is sent to the path processor. The benefit of this way of parsing is that a complete
internal representation of the XML file is not needed and when the window is full it will not result in any
difficulties if the parsing is interrupted and at a later time resumed at the next token. The parser can
buffer 64 KB of data to store the current token and data values that are too large are split up into several
tokens. For example if Author in <Author> C5 </Author> would be too long to buffer the author would be
split up into two or more values: <Author> C5 C5 </Author>. For each value the semantic compressor is
evoked separately.

The path processor keeps track of the current path of each data value and evaluates each container
expression on the path. This container expression is a regular expression and when successful the
semantic compressor can be applied to the data value. This is the most time-critical part of the
compressor and several different evaluation methods, which will not be treated, are used by XMill.

With respect to compression time the total processing time can be split up in two parts: (1) parsing and
applying semantic compressors and (2) applying gzip. XMill saves time by applying gzip on smaller
fragments and by regrouping data to further enhance the compression rate. There are four steps
concerning decompression: (1) gunzip the containers, (2) interpret the XML structure and merge all data
values, applying the appropriate semantic compressors which results in a stream of SAX events, (3)
generate the XML-string (start-tags, end-tags, data values, attributes et cetera) and (4) output the
uncompressed XML file. If an application would directly accept SAX events, instead of having to re-
parse the XML-string then XMill would only need to go through step (1) and (2) which would make
decompression much faster. Both compression and decompression time of XMill are linear in the size of
the data.

In general XMill achieves better compression rates than gzip without any decreasing speed . It achieves
better compression for data-like XML than for text-like XML. XMill is very suitable for data archiving
purposes and in some cases data exchange. When data exchange is needed there are several factors
that should be mentioned. Although XMill never looses to gzip its improvements depend on the following
factors: (1) the type of exchange application and (2) the relative processor versus network speed. When
facing a slow network XMill will always give some advantages as it compresses better than gzip. For a

The Royal Netherlands Army Command & Control Support Centre

Unclassified 39/99 Version 1.0

fast network, one has to look at the following three exchange steps: (1) compression, (2) network
transfer and (3) decompression. Compression is the most expensive and is approximately the same for
XMill and gzip. Therefore the benefits rely more on the kind of application that is used. In the case of an
end-to-end file transfer none of the two compressors is really better. When an XML file is published it
only needs to be compressed once after which network travel en decompression are the final important
factors that influence the total performance. XMill is only slightly faster than gzip. When data is directly
imported into an application, then the decompression does not need to produce an output XML file. The
only thing it has to do is to generate the SAX events. This makes XMill much faster than gzip. When
network bandwidth is off overall importance XMill will surely help to gain some advantage by
compressing the data as efficient as possible.

Some future improvements could be made to the compression/decompression time of XMill as the
compression rate is already good. This seems very difficult as this could mean that zlib, the library of
gzip, should be changed. Some research has been done by the inventors of XMill and it turned out that
a time advantage would result in a less powerful compressor, so there should be a balance between
time and space. It is interesting to mention that zlib consumes 50% of the compression time. If one
would like to get a better time the path processor should be improved. In the case of decompression the
bottleneck lies in merging the data from the different containers while interpreting the structure. So some
future improvements could be achieved there. The interested reader can find a more detailed
description of XMill in [3].

5.2 Delta compression tools
As already described in the beginning of this chapter there are cases where better compression should
be achieved than that obtained by individually compressing each file.

Delta compression is mostly concerned with efficient file transfer over slow communication links in the
case where a receiving party already has a similar file (or files) [1]. It becomes increasingly important in
network-based applications where files are widely replicated, frequently modified and distributed over
the network.

There will be a survey of software tools for delta compression. As told before delta compression can be
used in the case where the sender knows all the files that are in the possession of the receiver. In reality
however, there is the problem where the sender does not have a complete overview of the files held by
the receiver. This is the field of remote file synchronization which will not be treated in this project and
the interested reader is referred to [1]. Before going into the details of some representative delta
compression tools it is interesting to get some insight of the fundamentals behind delta compression.

For example consider a server which distributes a software package. The client may already have some
version of the software package present which enables an efficient distribution scheme. This scheme
only sends a patch to the client that only contains the essential differences between the old version of
the client and the new version which resides on the server. The server can compute the difference
between the old version and the new version and outputs the difference which is called the delta. The
computation of this delta or patch between two files is called delta compression or sometimes
differential compression or delta encoding.

The problem of delta compression can be described mathematically as follows. The two files are
represented by two strings fnew and fold ∈Σ∗ over some alphabet Σ (the methods described hereafter are
character or byte oriented), and two computers C (client) and S (server) which are connected by a
communication link. In the case of delta compression C has a copy of fold and S has copies of both fnew

The Royal Netherlands Army Command & Control Support Centre

Unclassified 40/99 Version 1.0

and fold, so S must compute a file fδ of a minimum size, such that C can build fnew from fold en fδ. The fδ is
also called the delta of fnew and fold. In remote file synchronization, which will not be further treated, C
has got a copy of fold and only S has got a copy of fnew. So a protocol must be developed which results in
C holding a copy of fnew. The communication costs between C and S must be minimized though. The old
file fold is also referred to as the reference file and the new file fnew is also called the current file.
The first work done in the area of delta compression is related to the string to string correction problem
which is about finding the best sequence of insert, delete and update transformations that transform one
string in the other (this idea is also exploited in the diff algorithm described next). The approach is about
finding the longest common subsequence of the two strings. However this approach will not completely
solve the problem of delta compression as it implicitly assumes that data common to fold and fnew are in
the same order in the two files. Another issue is that the string to string correction algorithm does not
account for substrings in fold which appear in fnew a couple of times (this will all become clear when the
diff algorithm will be described in the next section).

At some point W. Tichy [20] came up with a string to string correction with block moves which resulted in
a fundamental shift in the area of delta compression methods. In the string to string correction with block
moves a block move is of the form of a tuple (p,q,l) such that fold[p,…,p + l -1] = fnew[q,…,q + l -1]. This
tuple represents a nonempty common substring of fnew and fold of length l. The file fδ can then be
constructed as a minimal covering set of these tuples with the result that each element fnew[i] (fnew[i]
defines the element at offset i of fnew) that is also part of fold comes from exactly one block move. The fδ
which is the result of the longest common subsequence approach described above is a special case of
a covering set of block moves. The question is how to minimize these block moves to construct a
minimal fδ. W. Tichy showed that a minimal cover set can be created and that this minimal set of block
moves can be achieved in linear space and time. For more information about this subject the reader is
referred to [20].

5.2.1 diff
The diff utility is a tool for keeping track of what has changed in a text file. As is described in [5] the diff
command reports differences between files, expressed as a minimal list of line changes to bring either
file into agreement with the other. It can also be used to distribute updates to files without redistributing
the entire file which is the idea behind delta compression.

The diff command is also incorporated in a version control system that is called CVS [4]. The differences
between different versions of a file in the CVS repository can be obtained by using the CVS (CVS diff)
command. However, if you want to get the difference between two files that are not in the CVS
repository, the stand-alone diff utility may be quite useful. The diff command is especially suitable for
finding out the differences between the working copy and the backup copy of a specific source code file.

To give an illustration of the how diff operates the two text files beneath (text1.txt and text2.txt) are
compared to each other.

Main Entry: jug·ger·naut
Pronunciation: 'j&-g&r-"not, -"nät
Function: noun
Etymology: Hindi JagannAth, literally, lord of the world, title of Vishnu
1 chiefly British : a large heavy truck
2 : a massive inexorable force, campaign, movement, or object that crushes
whatever is in its path <an advertising juggernaut> <a political juggernaut>

The Royal Netherlands Army Command & Control Support Centre

Unclassified 41/99 Version 1.0

The following command shows that files test1.txt and test2.txt differ at line number 5. The line starting
with the less-than symbol is taken from the first file (test1.txt) and the line starting with the greater-than
symbol is taken from the file test2.txt.

The first line of the output contains the character c (changed) that shows that line 5 in the first file is
changed to line 5 in the second file. Of course much more complex comparisons can be done with the
restriction that both input files are in plain text. The diff command can not show the differences between
binaries, although it can return whether two binaries are different or not.

The technique behind diff is scrutinized by J.W. Hunt and M.D. McIlroy [5]. In their paper the basic
aspects of differential file comparison with respect to the diff utility are discussed. It is very interesting to
get some deeper understanding of how the underlying algorithm of diff operates. Therefore the most
interesting insights that are explained in [5] will be treated now.

The program diff has been developed in such a way to make efficient use of both time and space on
typically occurring inputs that are representative in version-to-version changes. Time and space usage
vary about as the sum of the file lengths on real data. In the worst case however, they vary as the
product of the file lengths.

The algorithm behind diff tries to find the “longest common subsequence” in order to find the lines that
do not change between files. A subsequence can be obtained by deleting some or none symbols from a
given sequence [23]. Given two sequences with lengths m and n, where m ≥ n, the longest common
subsequence problem is to find the common subsequence which has a maximal length among all
common subsequences. For the sake of clarity the following example will show what is meant with a
subsequence as the term may be still confusing. Consider the words “zen” and “zero knowledge”, then
is the first word a subsequence of the second? The answer is yes and only in one way. This can be
shown by capitalizing the subsequence: “ZEro kNowledge”. With respect to the longest common
subsequence of diff each character in the example strings above are in reality separate lines of a text.

Efficiency is gained by focusing only on candidate matches between the files. To get a better
performance techniques like hashing, presorting into equivalence classes, merging by binary search
and dynamic storage allocation are incorporated.

1 studs1>diff test1.txt test2.txt
5c5
< 1 chiefly British : a large heavy truck

> 1 chiefly American : a large heavy truck

2 studs1>

Main Entry: jug·ger·naut
Pronunciation: 'j&-g&r-"not, -"nät
Function: noun
Etymology: Hindi JagannAth, literally, lord of the world, title of Vishnu
1 chiefly American : a large heavy truck
2 : a massive inexorable force, campaign, movement, or object that crushes
whatever is in its path <an advertising juggernaut> <a political juggernaut>

The Royal Netherlands Army Command & Control Support Centre

Unclassified 42/99 Version 1.0

To get to know what lines of one file have to be changed to bring it into agreement with the other file (or
conversely) diff makes use of a list. Consider the two files that are horizontally listed beneath (the
horizontally listed numbers indicate the line numbers of both files):

It is not difficult to see that the first file can be made into the second by the following procedure, in which
an imaginary line 0 is at the beginning of each file.

The first file can be obtained from the second in the following way:

The only actions that are used by diff are delete, change and append. The actions can be abbreviated
by the letters d, c and a respectively. Another way of representing the operations above is shown
beneath. The ‘<’ relates to the lines of the original file whereas ‘>’ relates to the derived file. It is easy to
observe that the procedure of getting from one file to the other and vice versa is reversible: the append
action can be exchanged with the delete action and the line numbers of the first file can be exchanged
with those of the second file. It is an exercise for the reader to understand that when a longest common
subsequence is found only three actions are required to transform the reference file into the current file.

0 a 1,1 1,1 d 0
> v < v
3,4 c 4,6 4,6 c 3,4
< m < x
< q < y
--- < z
> x ---
> y > m
> z > q
6,7 d 7 7 a 6,7
< p > p
< h > h
7 a 8,8 8,8 d 7
> c < c

delete line 8, which was c
delete line 1, which was v
change lines 4 through 6, which were x y z
into m q
append after line 7 p h

append after line 0 v
change lines 3 through 4, which were m q
into x y z
delete lines 6 through 7, which were p h
append after line 7 c

0 1 2 3 4 5 6 7 8

t r m q o p h
v t r x y z o c

The Royal Netherlands Army Command & Control Support Centre

Unclassified 43/99 Version 1.0

A simple idea of solving the longest common subsequence problem is to go through both files line by
line until they differ, then search forward in one way or another in both files until a matching pair of lines
is encountered and proceed in the same way. The problem lies in implementing in one way or another.
Stripping matching lines from the beginning and the end may help when changes are not extremely
pervasive as this will reduce some processing time. However the hard part of the problem (which is
nonlinear) is still not solved of course.

There exists a very simple heuristic for in one way or another, which works pretty well when there are
relatively few differences between files and relatively few duplications of lines within one file. When a
difference is encountered, compare the kth line ahead in each file with the k lines following the mismatch
in the other for k = 1, 2 … until a match is found. When solving more difficult problems the method may
not be appropriate. The value for k can be customarily limited to get some control over time and space.
It is easy to understand that if the value for k is chosen too low then longer changed passages defeat
resynchronization.

The following dynamic programming scheme makes use of a recursion to find the longest common
subsequence. The lines of the first file are called Ai i = 1,…,m and the lines of the second file Bj j =
1,…,n. Then let Pij be the length of the longest subsequence common to the first i lines of the first file
and the first j lines of the second.

When looking at the recursive expression above it is easy to see that Pmn is the length of the longest
common subsequence between the two files. If Pmn is calculated the indices of the elements of the
longest common subsequence can be found quite easily. The time complexity of the program above is
O(mn) and the space complexity is in the worst case even O(mn) which makes it less attractive. The
algorithm above shows that each row Pi of the difference equation is gained from Pi-1.

The algorithm above can be improved by looking only at the essential matches. The essential matches
that are called k-candidates by Hirschberg occur when Ai = Bj and Pij > max(Pi-1, j, Pi, j-1). A k-candidate
is a pair of indices (i,j) such that (1) Ai = Bj , (2) a longest common subsequence exists between the first
i lines of the first file and the first j lines of the second, and (3) no common subsequence of length k
exists when either i or j is reduced.

As a proof assume that both (i1,j1) and (i2,j2) with i1 < i2 are k-candidates, then j1 > j2. If j1 = j2 then (i2, j2)
would violate condition (3). Also j1 < j2 would mean that the common subsequence of length k ending
with (i1, j1) could be extended to a common subsequence of length k+1 with (i2, j2). The situation is
visualized in the figure 5-4. The crossing lines indicate that (i1,j1) and (i2,j2) are part of two different
common subsequences.

Pi0 = 0 i = 0,…,m
P0j = 0 j = 0,…,n

≠
=+

=
−

ji1-ji,j1,-i

ji 1j1,-i
ij

B Aif),P(P max
B Aif P1

 P

The Royal Netherlands Army Command & Control Support Centre

Unclassified 44/99 Version 1.0

i1 j1

i2

j2

Begin string 1 Begin string 2

End string 1 End string 2

ka

kb

Figure 5-4: The pairs (i1,j1) and (i2,j2) are both k-candidates.

Figure 5-5 shows a graphical interpretation of the candidate methods. The dots represent grid points (i,j)
for which Ai = Bj is true. Any two horizontal or any two vertical lines in the figure have either no dots in
common or have exactly identical dots, which means that the dots show an equivalence relation. In
figure 5-5 a common subsequence is a collection of dots that is interconnected by a strictly monotone
increasing (uninterrupted) curve. In total four of such curves are depicted in the figure. The values of k
for these candidates are shown by the dashed curve that is strictly monotone decreasing. The total
number of candidates is much less than mn and it turns out to be much less when real files are
compared. So storing candidates will not be a big problem.

The diff utility stores the dots in linear space as follows:

(1) At first it creates lists of the equivalence classes of elements in the second file. The space
complexity of these lists is O(n). This can be done by sorting the various lines of the second file. Table
5-6 represents the equivalence classes of “cbabac”.

CHARACTER EQUIVALENCE CLASS
a 3,5
b 2,4
c 1,6

Table 5-6: Equivalence classes of “cbabac”.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 45/99 Version 1.0

1 2 3 4 5 6 7
1

2

3

4

5

6
a b c a b b a

c

a

b

a

b

c

k=1

k=2

k=3

k=4

Figure 5-5: Common subsequences and candidates in comparing “abcabba” with “cbabac”.

(2) Next the equivalence class must be associated with the elements of the first file. This association
can be done in O(m) space and these relations are shown in the table 5-7. This results in a list of dots
for each vertical.

ELEMENTS FIRST FILE EQUIVALENCE CLASSES SECOND FILE
1 3,5
2 2,4
3 1,6
4 3,5
5 2,4
6 2,4
7 3,5

Table 5-7: Associations of equivalence classes.

After this the candidates are generated from left-to-right. Let K be a vector indicating the rightmost k-
candidate that is yet seen for each k. The vector also includes a 0-candidate (0,0) and for all k that do
not have a candidate yet a fence candidate (m+1,n+1). So K begins with (0,0) as its only value and is
updated while moving right. Figure 5-6 clarifies all updates that are made during this process.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 46/99 Version 1.0

1 (0,0) (1,3) (8,7) (8,7) ...

2 (0,0) (2,2) (2,4) (8,7) (8,7) ...

3 (0,0) (3,1) (2,4) (3,6) (8,7) (8,7) ...

4 (0,0) (3,1) (4,3) (4,5) (8,7) (8,7) ...

5 (0,0) (3,1) (5,2) (5,4) (8,7) (8,7) ...

6 (0,0) (3,1) (5,2) (5,4) (8,7) (8,7) ...

7 (0,0) (3,1) (5,2) (7,3) (7,5) (8,7) (8,7) ...

Figure 5-6: Generating candidates from left-to-right.

Each step corresponds with the number of the vertical in figure 5-5. So after processing the 4th vertical
the list of rightmost candidates is visualized in step 4 above. A new k-candidate on the next vertical is
the lowest dot that is located between the ordinates of the previous (k-1)- and k-candidates. In figure 5-5
two of those dots can be observed. These two dots replace the 2-candidate and 3-candidate and the
following vector K is shown in step 5. The two dots on the 6th vertical do not fall between the ordinates in
the list and are therefore no candidates. In figure 5-6 the method of finding a chain of candidates is
visualized. Each new k-candidate is chained to the previous (k-1)-candidate to recover the longest
common subsequence and this done as follows.

Begin by taking the k-candidate (ik,jk) with the largest value for k and find a (k-1)-candidate (ik-1,jk-1) that
satisfies the following rules: (1) ik > ik-1 and (2) jk> jk-1. So in figure 5-6 (7,5) (5,4) (4,3) (3,1) (the string
“abac”) and (7,5) (5,4) (4,3) (2,2) (the string “abab”) are the only two longest common subsequences
between the two given strings. So finding a chain of consecutive candidates is about comparing the
coordinates of the candidates to each other. Figure 5-6 also shows that, while updating K, the value for i
in some k-candidate (ik,jk) does not become smaller while the value for j in the same k-candidate does
not become larger. This feature can be exploited in finding the longest common subsequence.
Candidates are determined on a certain vertical by a specialized merge of the list of dots on that vertical
into the current list of rightmost candidates. This merging, of which the exact details can be read in [5],
dominates the worst case time complexity of diff.

It would be very inefficient to compare large files (with thousands of lines) without hashing each line in
random access memory. Therefore diff hashes each line into one computer word. The drawback of this
is that lines that are different may be looked at as if they were equal. If the hash function would be really
random the probability of a false equality on a given comparison is 1/M when the hash values range

The Royal Netherlands Army Command & Control Support Centre

Unclassified 47/99 Version 1.0

from 1 to M. So a longest common subsequence of length k which is determined by using hash values
can contain k false matches. Diff solves the jackpot problem by checking the generated longest
common subsequence against the original files, so false equalities are deleted.

In the worst case the diff algorithm is not really better than the simple dynamic program of before. The
worst case complexity is for a large part the result of the merging and is O(mn log m). The worst case
space complexity is dominated by the space that is used for the candidate list, which is O(mn). In reality
diff works much better than it does in these worst cases and only in rare situations more than min(m,n)
candidates are found. In most of the cases diff needs only linear space. Concerning time complexity the
algorithm of diff is so fast that half the time is needed for simple character handling for hashing, jackpot
checking and other simple operations, which are linear in the amount of characters in the two files.
Sometimes diff loses from the simple algorithms (like the one described earlier) in trivial cases but in
more difficult cases diff is a winner. For a complete description of the diff algorithm the reader is referred
to [5].

5.2.2 LZ77-Based Delta Compressors
The best general-purpose delta compression tools are at the moment copy-based algorithms based on
the Lempel-Ziv approach described earlier [1]. Two examples of such tools, which will be further looked
at in this chapter are Xdelta and Vcdiff (the newer variant of Vdelta). These copy-based algorithms are
based on a modification of zlib (general-purpose data compression library) and anyone who has read
the section of ZIP must be able to understand the following description.

The idea behind LZ77-based compressors is to encode the current file by pointing to substrings in the
reference file as well as in the already encoded part of the current file. To identify suitable matches
during coding, two hash tables are used of which one is for the reference file, Told, and the other for the
already coded part of the current file, Tnew. The table Tnew is essentially built up in the same way as the
table is done in LZ77, where new entries are inserted while encoding fnew. The table Told though is
completely built at the beginning by scanning fold. By searching in both tables the algorithm tries to find
the best match. A substring is hashed by looking at its first 3 characters, with chaining inside each hash
bucket. First a short intermezzo concerning hashing is presented.

Assume that a hash table maintains two arrays, one for keys, and one for values [16]. The
elements of these arrays are referred to as buckets. To find the associated value for a certain
key, a key is given to the hash function which outputs an integer (hash value). This integer is
then the index to the associated value.

A collision occurs when two or more different keys hash to the same integer and one technique
for dealing with this is called chaining. Chaining is about using each bucket as a pointer to
another structure, like an array, a linked list or another hash (preferably with another size and
hash function).

Chaining has got a big disadvantage because when more and more elements are added to the
hash the O(1) complexity of hashes is lost. This in turn can be partially solved by rehashing: by
increasing the table size and recomputing the hash values with respect to the table size the
O(1) complexity can be remained.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 48/99 Version 1.0

If both the reference and current file fit into main memory and the hash tables are initially empty the
algorithm basically goes as follows.

The whole algorithm is visualized in figure 5-7 on the following page. Of course there are still some
issues concerning the implementation above. For example there are various ways of updating the
pointers pi in the case where the match is in fold. The motivation for updating these pointers lies in the
fact that in many cases the location of the next match from fold is a short distance after the location of
the preceding one. This is especially so if the two files are very similar. Vcdiff which will be described
later uses a special method of updating these pointers.

2) Encoding the current file:

Initialize pointers p1,…, pk to zero, say for k = 2

j = 0;

while (j <= length(fnew))
{

hj = h(fnew[j, j + 2]);

Search hash bucket hj in both Told and Tnew to find a “good match”, that is, a substring in
fold or the already encoded part of fnew that has a common prefix of maximum length
with the string at position j of fnew;

Insert a pointer to position j into hash bucket hj of Tnew;

If the match is of length at least 3, encode the position of the match relative to j if the
match is in fnew, and relative to one of the pointers pi if the match is in fold. If several
such matches of the same length are found then choose the one that has the smallest
relative distance to position j in fnew or to one of the pointers into fold. Also encode the
length of the match and which pointer was used as reference. Increase j by the length
of the match and updating some of the pointers pi may give some better performance;

 If no match of length at least 3 is found then write out character fnew[j] and increase j by 1;
}

1) Preprocessing the reference file:

for (i = 0; i <= length(fold) – 3; i++)
{

hi = h(fold[i, i + 2]);

Insert a pointer to position i into hash bucket hi of Told;

}

The Royal Netherlands Army Command & Control Support Centre

Unclassified 49/99 Version 1.0

In figure 5-7 both the reference file and the current file are depicted. The two tables are hash tables that
are compared to each other to find suitable matches. The dashed lines represent the pointers which
point to a specific location of the file in question. In the example there are exactly 4 matches to be
observed. A remark should be made that in table Tnew there are two matches with respect to the same
hash bucket (h9). However the best match is chosen and this match is between the current file and the
old file as the length of the match is the longest.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 50/99 Version 1.0

0
1

2
3

4
6

5
7

...
m-

2
m-

1
m

0
1

2
3

4
6

5
7

...
n-

2
n-

1
n

Cu
rre

nt
Fil

e f
ne

w
Re

fer
en

ce
 F

ile
 fo

ld

"**
*"

"**
*"

"**
*"

"**
*"

"**
*"

"**
*"

"**
*"

"**
*"

"**
*"

"**
*"

"**
*"

i =
 0

i =
 1

i =
 2

i =
 3

i =
 4

i =
 5

i =
 6

i =
 7

i =
 n

- 2

i =
 n

- 3

i =
 n

- 4

h 0 hn
-2

hn
-3hn
-4

h7h6h5h4h3h2h1
........................

........................

........................

p0 pn
-2

pn
-3pn
-4

p7p6p5p4p3p2p1

........................

"**
*"

"**
*"

"**
*"

"**
*"

"**
*"

"**
*"

"**
*"

"**
*"

"**
*"

"**
*"

"**
*"

j =
 0

j =
 3

j =
 4

j =
 7

j =
 8

j =
 9

j =
 21

j =
 20

j =
 m

j =
 m

 -
1

j =
 m

 -2

h 0 hmhm
-1

hm
-2

h2
2h2
1

h9h8h7h4h3

........................

........................

........................

p0 pmpm
-1

pm
-2

p2
2p2
1

p9p8p7p4p3

........................
To

ld
Tn

ew

Ma
tch

 le
ng

th
=

12

Ma
tch

 le
ng

th
=

3

Matc
h le

ng
th

= 3

Match length = 3

Ha
sh

 K
ey

: F
irs

t 3
 ch

ar
ac

ter
s

Ha
sh

 va
lue

Po
int

er
Ha

sh
 K

ey
: F

irs
t 3

 ch
ar

ac
ter

s
Ha

sh
 va

lue
Po

int
er

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

Up
da

te
j w

ith
 le

ng
th

of
ma

tch

Figure 5-7: Visualization of LZ77-based copy-based delta compression algorithms.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 51/99 Version 1.0

5.2.3 Xdelta
The program Xdelta is a general-purpose delta compression tool engineered by the eXperimental
Computing Facility (XCF) at Berkeley. Version 2 of Xdelta presents an application-level file system that
is based on the Berkeley Database and is called the Xdelta File System (XDFS). XDFS is a solution for
delta-compressed storage.

The file delta problem is about constructing a file td from the set of kd From files Fd = {f d

0 …f d
k d } [21]. The

definition is more general than other presentations as F can be a set of files instead of only a single file.
A file is defined as a sequence of bytes, so for a file f, size(f) specifies the length of f in bytes and for a
set of files F, size(F) = ∑∈Ff

fsize)(. The notation f[i] specifies the byte at offset i of f, where 0≤i<size(f).
The delta is split up into two parts: the Control Cd and insert-data Id. The control contains a sequence of
instructions c d

1 … c d
z d . The insert-data is a file which contains the concatenation of the data inserted by

each insert instruction. Each instruction ci can be one of the following two operations: copy(m,o,l) and
insert(l). These operations are executed to create the To file, where copy inserts the substring
fm[o]…fm[o+l-1] and insert inserts the next l bytes from Id.

The program Xdelta uses an algorithm which achieves a linear space and time complexity. It uses a
fingerprint function which is a hashing function for fixed length strings for which collisions are unlikely.
The fingerprint algorithm uses a hashed index of the value of a fingerprint function at regular offsets in
the reference file to achieve string matching. After this the current file is scanned while executing the
copy/insert algorithm (this copy/insert algorithm looks like the LZ77-based delta compression approach
described earlier and therefore will not be treated here).

Let s be a constant and a small power of 2 then the algorithm calculates a fingerprint on segments of
length s in each file and at all offsets i divisible by s except, possibly, the last if s does not divide size(f)
which means that the segment is too short. In each file the fingerprint function afi = fingerprint(f,i) is
evaluated and inserted in a hash table B with a hash function H. A single pair (f,i) or a nil is placed in
each hash bucket. Because the hash table does not chain hash collisions an array cf is used for each
file to index cf[i] = afi, which makes it possible to detect a fingerprint collision. The complete algorithm is
shown at the next page. The m in the algorithm refers to a specific f that is part of the set F as defined
above.

The algorithm computes the fingerprint while going through the current file. If a large value for segment
s is chosen the work done and space required by the algorithm is reduced. However less matches will
be found in this case. A value that is chosen too small will result in copies that are so small that the
efficiency will be less than a similar insert encoding.

Further it is worth mentioning that Xdelta itself does not compress the generated delta and leaves it up
to the user. The interested reader should read [21] for a comprehensive description of Xdelta.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 52/99 Version 1.0

5.2.4 Vcdiff
Like Xdelta the program Vcdiff is a general-purpose delta compression tool that is based on the LZ77
copy-based algorithm. The program Vcdiff is also known as a Generic Differencing and Compression
Data Format [22]. In many cases files are transported to machines with different architectures and
performance characteristics, so the data should be encoded in a form that is portable and can be
decoded with little or no knowledge of the encoders. This portability is the aim of Vcdiff.

Data differencing and data compression are traditionally treated as distinct types of data processing.
However in Vdelta, the predecessor of Vcdiff, compression is seen as a special form of differencing in
which the source data is empty (data compression is principally similar to differencing without the use of
a source data). The idea is to combine the string parsing scheme used in the LZ77 style compressors
with the block-move technique of W. Tichy [20]. This can be roughly summarized as follows: (1)
Concatenate source and target file, (2) Parse the data from left to right as in LZ77 and make sure that a
parsed segment starts the target data, (3) Start to output when the target data is reached.

Parsing is based on string matching algorithms which becomes a problem for large files. The way to
solve this memory limitation problem is to split up the input file into windows. Still little has been done on
researching efficient window schemes. The techniques that are also used in Vdelta use source and
target windows that correspond to positions of the source and target files. The string matching and
windowing algorithms have a big effect on the compression rate of delta and compressed files. Vcdiff
however does not focus on such algorithms and uses a portable encoding format that is not dependant
of such algorithms. This means that Vcdiff could be of great importance in the area of client-server
applications where a server does not know the computing characteristics of the client it communicates
with. Vcdiff is the first encoding format that addresses these issues and the following characteristics are
achieved:

• Output compactness: the basic encoding format compactly represents compressed or delta files.
The basic encoding format can be extended with secondary encoders to enhance the
compression rate.

• Data portability: The basic encoding format is free from machine byte order and word size

issues. This enables data to be encoded on one machine and decoded on a different machine
with a different architecture.

x ← fingerprint(t,i) # Step 1: Fingerprint

if (B[H(x)] = nil) # Step 2: Lookup
 return no match
else
 (m,o) ← B[H(x)]
If (mfc [o] ≠ x) # Step 3: Test for collision
 return no match
l ← length of longest matching substring at offsets o and i # Step 4: Grow
if (l<s)
 return no match
return (m,o,l)

The Royal Netherlands Army Command & Control Support Centre

Unclassified 53/99 Version 1.0

• Algorithm generality: The decoding algorithm is not dependent of string matching and windowing
algorithms. This allows competition among implementations of the encoder while keeping the
same decoder.

• Decoding efficiency: Except for secondary encoders, the decoding algorithm runs in time

proportional to the size of the target file and uses space proportional to the maximal window
size. Vcdiff is different from more conventional compressors as it uses only byte-aligned data,
thus avoiding bit-level operations, which improves decoding speed at the slight cost of
compression efficiency.

As already mentioned above the basic data unit is a byte. Because of portability reasons Vcdiff limits a
byte to its lower eight bits and this also counts for machines with larger bytes. There are specific ways in
which Vcdiff deals with bytes and for detailed information the reader is referred to [22].

A large target file is split up into several target windows which are processed separately. The order of
processing is based on the sequential order of the windows in the target file. A target window T of length
t can be compared with a source segment data S with length s. This segment S has to come either from
the source file or from a part of the target file that is earlier than the target window T. The values of T, t,
S, and s are all the result of the window selection algorithm which has a big influence on the size of the
encoding. Vcdiff encodes previously made choices which means that during decoding no knowledge of
the window selection algorithm is required.

The jth byte in S is written as S[j] and T[k] represents the kth byte of T. With respect to the delta
instructions the windows S and T are treated as substrings of a superstring U which is the result of the
concatenation of S and T: S[0]S[1]...S[s-1]T[0]T[1]...T[t-1]. The instructions to encode the reconstruction
of the target window are called delta instructions. There are three kind of delta instruction:

• ADD: This instruction contains two arguments, a size x and a sequence of x bytes that should be
copied.

• COPY: This instruction contains two arguments, a size x and an address p which relates to the

string U. The arguments specify the substring of U that should be copied. The substring must be
fully present in either S or T.

• RUN: This instruction contains two arguments, a size x and byte b that is repeated x times.

The following example shows a source and target window in order to clarify the instructions above. The
source string consists of 16 characters and the target string consists of 28 characters.

The delta instructions which encode the target window in terms of the source window are shown
beneath.

a b c d e f g h i j k l m n o p
a b c d w x y z e f g h e f g h e f g h e f g h z z z z

The Royal Netherlands Army Command & Control Support Centre

Unclassified 54/99 Version 1.0

The first letter a of the target window is at position 16 (the start position is 0) in U. The fourth instruction
may be confusing: it copies from T itself, and position 24 in U relates to position 8 in T. The instructions
above show that it is no problem that data to be copied is overlapped with data being copied from with
the condition that the latter starts earlier. This also enables the efficient encoding of periodic sequences.
The reconstruction of the target window is done by processing one delta compression after the other
and copying the data from either the source window or the target window that is being reconstructed.
This is all done by looking at the instruction type and the associated addresses.

A Vcdiff delta file starts with a header section after which a sequence of window sections follow. The
header section uses specially reserved bytes to identify the file type and information which relates to
data processing that goes beyond the basic encoding format. The window sections contain the encoded
target windows. The exact way of how Vcdiff makes use of the header section and window sections is
very interesting, but it would go too far to explain the mechanism in detail. The interested reader is
referred to [22].

The addresses of COPY instructions are locations of matches and often occur a short distance from or
exactly equal to one another. This is the result of that data in local regions is often replicated with some
small changes. Therefore it would give some advantages to code a newly matched address against a
recently matched address. Vcdiff maintains two different address caches to encode addresses of COPY
instructions more efficiently. Both the encoder and the decoder are fully aware of these caches which
means that the caches of the decoder stay synchronized with the caches of the encoder. The exact way
Vcdiff handles these caches can be read in [22].

The matches between two files are most of the time short in lengths and are separated by small
amounts of data that did not match. This practically means that the lengths of the COPY and ADD
instructions are most of the time small. This scenario can for example be observed in binary data or
structured data like HTML and XML. The compression can be enhanced by combining the encoding of
the sizes and the instruction types as well as by combining the encoding of adjacent delta instructions
with data sizes that are small enough. When such combinations should be performed depends on many
factors like the data which is being processed and the string matching algorithm which is used. For
example if a reasonable amount of COPY instructions have the same data size it may be a good idea to
encode these instructions more compactly than other cases.

Vcdiff is specially designed so that a decoder does not have to know anything of the choices that are
made in the encoding algorithms. This is realized by using a so called instruction code table. To get
detailed knowledge of the format of a code table and how encoding and decoding are related to each
other the reader is referred to [22].

Finally there can be said something about the performance of Vcdiff. The encoding format is compact
and the string parsing strategy is based on LZ77 without any secondary compressors. The compression
rate is close to gzip and for differencing decoding speed and encoding efficiency is quite good when
compared to already existing methods. Vcdiff can be run in several modes which have their own specific
performances:

COPY 4, 0
ADD 4, w x y z
COPY 4, 4
COPY 12, 24
RUN 4, z

The Royal Netherlands Army Command & Control Support Centre

Unclassified 55/99 Version 1.0

• Vcdiff: Vcdiff is used as a compressor only.

• Vcdiff-d: Vcdiff is used as a differencer only which means that it compares target data against

source data. Because files are large they are split up into windows. This means that each target
window starting at some file offset in the target file is compared against a source window with the
same file offset. The source window is kept somewhat larger than the target window to increase
the possibility of matches.

• Vcdiff-dc: It is the same as Vcdiff-d but this version also compares target data against target

data. This results in Vcdiff computing both differences and compressing data. The windowing
algorithm stays the same with the exception of the hint given above.

• Vcdiff-dcw: It is the same as Vcdiff-dc, but now the windowing algorithm makes use of a content-

based heuristic to select a source window that probably will make a better match with a given
target window. In this case the source data segment that is selected for a target window will
most of the time not be aligned with the file offsets of this target window.

In some cases the compression rate of Vcdiff is a little bit worse than gzip. However when Vcdiff is used
as a delta compression tool it can produce very small deltas between two files versions that are very
similar. Vcdiff-d and Vcdiff-dc both use the same window selection algorithm of aligning by file offsets
but Vcdiff-dc also compresses the data which results in a smaller output. Vcdiff-dcw uses a content-
based algorithm as well to find the best matches between the two file versions. Although it does its job
pretty well, the algorithm is not always able to find the best matches.

5.2.5 DeltaXML
DeltaXML is a tool for comparing, merging and synchronizing XML documents. When comparing two
XML documents DeltaXML generates a delta that is XML formatted and can be viewed instantly. The
program itself is written in Java and therefore it can be easily integrated into any application. The Java
API is based on SAX/JAXP/TrAX (which are Java APIs for XML processing) industry standards which
make integration for developers possible [24]. The reader should be familiar with the basics of XML to
understand what is explained next.

Nowadays it comes in quite handy to manage XML data as XML is increasingly used for all kind
purposes like data exchange. Standard tools fail to identify changes precisely and meaningfully. The
problem of finding changes can be solved more intelligently by closely looking at the XML structure.
DeltaXML represents deltas in an XML format that allows downstream processing in an XML pipeline.
According to a definition from [27] a pipeline is an XML vocabulary for describing the processing
relationships between XML resources. A pipeline document specifies the inputs and outputs to XML
processes and a pipeline controller uses this document to figure out the chain of processing that must
be executed in order to get a particular result.

The reason behind XML change control is that in various fields changes to data must be identified,
tracked, communicated and synchronized. Typical applications are related to content management,
data versioning, data synchronizing and merging. Finding differences between files has already been
done in many ways, but applying a simple diff on XML data is not very efficient. The rules needed to
identify changes in XML files are very different from those that are needed for unstructured files. Tools
that are specially made for one sort of document structure do not make use of the advantages of XML
such as openness, flexibility and standardization.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 56/99 Version 1.0

Finding differences between XML files is not really straightforward. First of all it is important to get some
understanding of what a change to an XML document really means. Traditional string-based change
control will not be efficient as a large amount of insignificant changes will be found. These insignificant
changes must then be ignored by an XML aware comparison. For example the following two files are
identical to each other.

Although both examples above are XML-identical they are also different from each other. The second
file has got another declaration of the namespace, the elements look different and some white spaces
were added. Other differences than these are significant. For example if the order is important then the
following two files are different and if the order is not important the only difference is the two added
elements.

<record id="b124">
 <employee-no>BR12</employee-no>
 <name>Gillian Bryan</name>
 <born>1951-03-06</born>
 <sex>F</sex>
</record>
<record id="b123">
 <employee-no>BR24</employee-no>
 <name>Michael Brown</name>
 <born>1984-03-08</born>
 <sex>M</sex>
</record>

<record id="b123">
 <name>Michael Brown</name>
 <born>1984-03-08</born>
 <sex>M</sex>
</record>
<record id="b124">
 <name>Gillian Bryan</name>
 <born>1951-03-06</born>
 <sex>F</sex>
</record>

<staff:record id="b123" xmlns:staff="http://www.myco.com/records">
 <staff:name>Michael Brown</staff:name>
 <staff:born>1984-03-08</staff:born>
 <staff:sex>M</staff:sex>
</staff:record>

<record xmlns=http://www.myco.com/records id="b123">
<name>Michael Brown</name><born>1984-03-08</born>
<sex>M</sex>
</record>

The Royal Netherlands Army Command & Control Support Centre

Unclassified 57/99 Version 1.0

A text based comparison like diff will most of the time report a huge change when only some small
changes have been made to an XML document. The identification of a minimal set of actual changes is
not an easy job.

In evaluating an XML change control solution there are principally three criteria that should be taken into
account:

• Accuracy of the result: does the tool accurately identify changes to the XML data? A tool should
not return changes because of a difference in the order of elements or the use of white spaces
or namespace prefixes or any other insignificant change in XML. It is also very handy if a tool
can be configured for example in the case where specific elements or attributes should be
ignored. The handling of white spaces is also something that should be configurable as for some
users white spaces will be relevant and for others not.

• Representation of the result: can the change information be used? It should for example be

possible to automate change processing.

• Usability of the solution: the solution should be both efficient and usable. For example can the
solution be used in the case of fast changing XML data or (very) large XML data sources? It is
also very useful if the solution can be integrated in other applications.

The challenge lies in how changes to XML documents and data files can be represented in XML. In [24]
a proposal of a delta format for XML is outlined and a short summary will be given here.

The first decision that arises when one would like to represent the differences between two files in XML
is whether new elements should be used to indicate the changes or whether attributes should be used
on the existing elements. There are people who like to use XML attributes to contain data and those
who use XML as a markup language and use tags or elements to distinguish data items. However
attributes provide order-independence and also use less file space. The disadvantage of using
attributes is that it is impossible to add attributes to attributes. Attributes can be used for meta-data or
information that can be applied to all kind of elements. That is why attributes are used as a method of
specifying why an element is present in some delta file. As it is impossible to add attributes to attributes
another mechanism must be used to identify the changes to attributes.

It is less difficult to extend an XML definition that is content-based than one that is attribute-based.
Attributes are leaf elements which can not easily be extended. The use of attributes to identify the
reason for the inclusion of an element in the delta file can be explained by a simple example. Consider
an XML file that has no attributes and DTD. The basic structure of the delta file for the content-based
XML file can be created by adding a single attribute, the delta attribute. This is an optional attribute
which can have one of the following values: modify, add or delete. Consider the following XML
fragment:

Then consider a small change to this file:

<X> <Y/>
</X>

The Royal Netherlands Army Command & Control Support Centre

Unclassified 58/99 Version 1.0

Then the delta fragment is as follows:

Of course the example above is very simple, but it gives an idea of the basic principles. The basic
structure of the delta file is the same as the files that are compared to each other.

In order to be complete it is important to identify changes to PCDATA and to identify pairs of elements
that have been exchanged. Both changes are represented by using special elements. This is roughly all
there is needed. However the exact rules for representing the data elements are more complex.

For well-formed XML the delta file must be built without having any clues of the structure of the file
which is given in a DTD or XML schema specification. Although the structure of the file is not explicitly
given it is still possible to make a comparison between two XML files and to traverse the XML tree of the
two files in a synchronized manner. A specific element of one file is seen as a modification of an
element in the other file if they are the same type which means that the elements have the same name
space (if any) and local name. The best match can be realized for elements that have the same name
space and local name, the same attributes and sub elements that are all similar right down through the
tree structure. These equal elements are used as an anchor point while the two files are matched, which
eventually results in a minimum delta. Only a few attributes and elements are used to represent the
changes. These attributes are added to the existing elements of the input files. The additional attributes
are:

• d:delta to specify how the containing element has been changed.

• d:new-attributes and d:old-attributes specify changes to attributes.

The new delta elements are as follows:

• d:PCDATAmodify to specify a change to PCDATA in an element.

• d:exchange to specify an element exchanged with another or an element exchanged with
PCDATA.

The attribute d:delta is found regularly in the delta file. It specifies why a certain element is present in
the delta file, for example because it has been modified, added or deleted. The root element of the delta
file has got a d:delta attribute with a value “WFmodify” if something has changed. The “WF” stands for
“Well Formed” which separates it from a modification that is based on the structure of the DTD. Below
any element with a d:delta with value “WFmodify” each element also contains a d:delta attribute with
one of the following values:

• “add” if the specific element has been added.

<X d:delta=”modify”> <Y d:delta=”delete”/>
</X>

<X>
</X>

The Royal Netherlands Army Command & Control Support Centre

Unclassified 59/99 Version 1.0

• “delete” if the specific element has been deleted.

• “unchanged” if the specific element is unchanged.

• “WFmodify” if the attributes and/or content of the specific element have been modified.

There are some restrictions on how these attributes with their values are nested and this can be read in
[24].

If a PCDATA item has been changed there will be a d:PCDATAmodify element which contains the old
data within a d:PCDATAold element and the new data within a d:PCDATAnew element. If an element in
one file is replaced by a different element or PCDATA in the other file, the delta file will contain a
d:exchange element. This element will contain the data from the first file within a sub element d:old and
the data from the second file within a sub-element d:new. If a d:exchange occurs in the delta file the two
elements in the input file must be of a different type.

If there are any changes to XML attributes these should be detected and shown in the delta file. These
changes are represented by using two special attributes in the delta file: d:old-attributes and d:new-
attributes. The d:old-attributes contains all values of attributes that existed in the old file and which have
been changed or deleted in the new file. The d:new-attributes contains all values of attributes that
appear in the new file and which have either been changed or added in the new file. If attributes have
not changed they are not included in the delta file, except in some special cases which will not be
treated here.

The encoding of the values of the delta attributes is done by their attribute values which are changed,
added or deleted. For example consider the attribute “Juggernaut” which has changed then it will be
included as “Juggernaut=’old-value’ ” in the delta attribute d:old-attributes and as “Juggernaut=’new-
value’ ” in the delta attribute d:new-attributes. A deleted attribute will only exist in d:old-attributes and an
added attribute will only appear in d:new-attributes. The following example shows that on an element a,
the value of the attribute href has been modified from href=’www.run.nl’ to href=’http://www.run.nl’.
Furthermore the attribute xx=’value of xx’ has been deleted and the attribute yy=’value of yy’ has been
added.

There are other ways of treating changed attribute values but the way it is done above is how it is
handled in DeltaXML.

XML documents can be compared as well-formed XML, but better results can be gained by exploiting
the structure of the XML data. A DTD provides DeltaXML with knowledge of the allowed structure of an
XML file such that a better and more efficient comparison can be done which usually results in a smaller
delta file. The DTD defines which elements are required, which are optional and/or repeated. With this
knowledge two files can be compared better as it is now more clear how the two files correspond with
one each other. For example consider the two XML fragments beneath.

<a d:old-attributes= "href='www.run.nl' xx='value of xx'"

 d:new-attributes= "href='http://www.run.nl' yy='value of yy'"/>

The Royal Netherlands Army Command & Control Support Centre

Unclassified 60/99 Version 1.0

When comparing these two fragments, without any knowledge of the structure, the following delta may
be produced:

This delta file that is generated without any knowledge of the DTD could be useful to check if two files
are the same or to provide an update for changes. Without the DTD the comparator uses the following
structure:

However if the definition of the fragment was as follows:

then the modification could be identified as it is originally meant. By using the information of the DTD the
comparator can understand that the address elements have been deleted instead of that they have
been changed to another type of element. With the new information a smaller delta file can be
generated:

<! ELEMENT fragment (firstName | lastName | address*)*>

<! ELEMENT fragment (firstName | lastName | address)*>

<fragment d:delta=”WFmodify”>
 <firstName d:delta=unchanged”/>
 <lastName d:delta=”unchanged”/>
 <d:exchange>
 <d:old>
 <address>21 High Street</address></d:old>
 <d:new><firstName>Mike</firstName></d:new> </d:exchange>
 <d:exchange>
 <d:old><address>Malvern</address></d:old>
 <d:new><lastName>Jones</lastName></d:new>
 </d:exchange>
 <address delta=”unchanged”/>
</fragment>

<fragment>
 <firstName>John</firstName>
 <lastName>Smith</lastName>
 <firstName>Mike</firstName>
 <lastName>Jones</lastName>
 <address>Worcester</address>
</fragment>

<fragment>
 <firstName>John</firstName>
 <lastName>Smith</lastName>
 <address>21 High Street</address>
 <address>Malvern</address>
 <address>Worcester</address>
</fragment>

The Royal Netherlands Army Command & Control Support Centre

Unclassified 61/99 Version 1.0

The delta above is more meaningful. So by making use of a DTD better results are achieved, although
in some cases the DTD will not help much in producing an adequate delta. This is true for a relatively
unstructured DTD and for data of which the order is strictly defined.

Many more things come along in order to produce an efficient comparison between XML files. For more
detailed information the reader is referred to [24].

At last some important characteristics of DeltaXML are listed beneath:

• The possibility to define how precisely changes should be handled.

• Representation of deltas in XML which can be processed by both humans and automata.

• Extensive configuration options designed for pipeline architectures.

• Scalability: large source files can be compared.

• Java API with a comprehensive documentation.

<fragment d:delta=”modify”>
 <firstName d:delta=”unchanged”/>
 <lastName d:delta=”unchanged”/>
 <address d:delta=”delete”>21 High Street</address>
 <address d:delta=”delete”>Malvern</address>
 <address d:delta=”delete”>Worcester</address>
 <firstName d:delta=”add”>Mike</firstName>
 <lastName d:delta=”add”>Jones</lastName>
 <address d:delta=”add”>Worcester</address>
</fragment>

The Royal Netherlands Army Command & Control Support Centre

Unclassified 62/99 Version 1.0

6 Benchmark
This chapter describes the structure of the developed data sets and the tests that were carried out to
measure the performance of the described (delta) compression tools. The results of the field
investigation were needed to get a realistic picture of which data can be encountered and what their
related characteristics are. This chapter is an important part of the project as it attempts to find out
which tools are preferable with respect to the data sets.

6.1 Data Sets
Before the tests can be run some realistic data sets must be developed first. In the design of these data
sets the results of the field investigation were used as a guide-line. The sort of documents fall apart in
the categories described next.

6.1.1 MS Office/OpenOffice.org Documents
• MS Word documents are widely used for all kind of purposes and are relatively frequently

modified. Therefore these documents are very appropriate to undergo some extensive testing.
The average file size of MS Word documents varies between 50 KB and 221 KB. Therefore it is
particularly interesting to focus the tests on this range of file sizes. In the preliminary research
some testing is already done, even for MS Word documents that well exceed 50 MB in file size.
Parallel to the MS Word documents there should be made similar OpenOffice.org Writer
documents.

• MS Excel documents are regularly used and their file size will (on average) certainly not exceed

that of MS Word documents. The file size of MS Excel documents ranges from 50 KB till 221 KB
as well. Parallel to the MS Excel documents there should be made similar OpenOffice.org Calc
documents.

6.1.2 Data characteristics
With respect to Word/Writer documents it is interesting to develop data sets that are fully text-based and
data sets that contain both text and graphical elements. Graphical content may be in the form of
embedded jpeg, gif, bmp, eps and various other formats. Other sorts exist but in this test the graphical
elements are limited to a few types only. With this information it is possible to get an idea of what
contribution is made by graphical content to the calculation time and the size of the delta.

6.1.3 Data Sets structure
There are several data sets: MS Word XML Graphics Data Sets, MS Word Doc Only Text Data Sets,
MS Excel xls Data Sets, OpenOffice.org Doc Graphics Data Sets et cetera. Each data set consists of 12
files that are part of a version history. The data sets and the file sizes of the individual files can be
observed in the Excel sheets in the appendix.

6.1.4 XML vs Native format
MS Office 2003 (with MS PowerPoint as an exception) documents can be saved in the native format but
also in XML. As open standards become more popular data standards migrate to XML. Therefore it

The Royal Netherlands Army Command & Control Support Centre

Unclassified 63/99 Version 1.0

would certainly be useful to test all Office documents (except MS PowerPoint) in the XML format. XML
documents can be gained by converting the native format to the XML format, such that the content of
the two documents will be identical. OpenOffice.org saves documents in a rather different way. Writer
documents for example are by default saved in a ZIP compressed format. If this compressed file is
unzipped several files can be distinguished: XML files, CSS files and various other elements can be
encountered.

6.2 Benchmark tool
The main benchmark script is written in Perl and automatically runs all tests after being initiated (see the
appendix for the source code). The benchmark primarily consists of two parts: (1) the delta part and (2)
the patch part. The delta part is responsible for computing the deltas by subsequently running the
specific compression tools on the files of the various data sets. The patch part computes the target files
by making use of the old files and the associated deltas that were generated in (1). Multiple runs are
performed for each file in the data sets such that an average value of the calculation times can be
computed. Both the delta part and the patch part return unique files which contain average values of the
measurements.

Data1 Data2 Data3 Data4 Data5 Data6 Data12

Figure 6-1: Permutations of deltas between the files of the data sets.

As mentioned before each data set consists of 12 files that represent a version history. The first file
Data1 is the oldest file in the history and the newest file is Data12. Each file is compared to each other
file to include all possible scenarios of delta compression. The number of possible comparisons can be
calculated by filling in n =12 and k =2 in the following formula:

66

!2)!212(
!12

!)!(
!

=
−

=
− kkn
n

So there are 66 possible comparisons to be done. Each measurement is repeated 10 times, so
altogether there are 66 x 10 = 660 comparisons per delta compression tool (per delta or patch part). So
at the end the benchmark has performed 66 x 10 x 2 x 4 = 5280 comparisons.

The delta part outputs files that contain average values of the performed measurements and each line
consists of the following fields (the names reveal their meanings) :

The Royal Netherlands Army Command & Control Support Centre

Unclassified 64/99 Version 1.0

The patch part also outputs files, although the fields are somewhat different:

The benchmark code is properly structured and comments are placed where necessary, so an average
programmer should be able to read the code easily. Some additional benchmark scripts have been
made to measure other specific values, however these are not included in this paper and can be found
on the CD-ROM.

6.3 Hardware and software specifications
The major benchmark script was run on a workstation with the following specifications (all data sets
were directly available on the local hard disk):

OS: Sun Microsystems Solaris 8
Processor: Sparcv9 502 MHz
Memory: 256 MB
Hard Disk: 7200 rpm

The benchmark script for comparing XMill to ZIP was run on a PC with the following specifications (all
data sets were directly available on the local hard disk):

OS: Windows XP SP1
Processor: AMD Athlon 2100+, 1.73 GHz, L2 On-board Cache 256 KB
Memory: 512 MB SD RAM
Hard Disk: 7200 rpm

The various tools that are used in the benchmark are only CPU-bound. No continuous disk activity was
observed and memory is not a problem as the tools work with a certain window size to maximize
memory allocation.

size_old_file
size_new_file
size_zipped_delta
size_uncompressed_delta
average_time_unzipping
average_time_patching
average_time_total_computation

size_old_file
size_new_file
size_new_file_zipped
size_uncompressed_delta
size_zipped_delta
average_time_delta_uncompressed
average_time_delta_zipped
average_time_total_computation

The Royal Netherlands Army Command & Control Support Centre

Unclassified 65/99 Version 1.0

6.4 Results
The results of the benchmark will be presented with the help of Excel sheets that are derived from the
benchmark data. All (delta) compression tools were evaluated to enable a comprehensive comparison.

6.4.1 ZIP vs XMill
Both ZIP and XMill are tools to compress individual files. ZIP can be used on any given input type
whereas XMill is only applicable to XML files, so a suitable comparison between the two can only be
achieved on XML files. Therefore the two tools are compared on both the MS Word XML Graphics Data
Set and the MS Word XML Only Text Data Set. This makes it possible to find out how the two tools
behave on data-like XML files (which contain binaries that are encoded by using the base64 encoding
scheme) and text-like XML files. The results are shown in figure 6-2.

A first observation clearly indicates that uncompressed XML files are relatively large in file size. The
uncompressed XML files fully correspond with the last 11 (the first one is excluded) files that are shown
in the MS Word XML Data Sets in the appendix. It does not make any significant difference (although
any reduction in file size is desirable) if the files of the MS Word XML Graphics Data Set are
compressed by ZIP or XMill. The XMill compressed XML files are only a few thousands of bytes smaller
than the ZIP compressed XML files. However a more significant difference can be observed between
the XML files and the XMill compressed files of the MS Word XML Only Text Data Set. XMill is here a
clear winner and in some cases the XMill compressed files turn out to be 23 % smaller than the ZIP
compressed files. This difference would be even bigger if XMill would be extended with some
specialized compressors such that some structural knowledge of MS Word XML files can be exploited.

Figure 6-3 shows how the original file sizes of the data sets relate to the file sizes of the ZIP and XMill
compressed files. It is particularly interesting to observe that ZIP and XMill behave in the same way:
their curves look quite similar (although the curves of XMill are a little bit less steeper, which means that
it continually compresses better than ZIP). The fact that the curves look similar can be explained by the
fact that XMill, just as ZIP, uses the zlib library to compress data. XMill however stores data beforehand
in so called containers that are later compressed separately by gzip. As already claimed by the
inventors of XMill, in almost any case XMill performs better than ZIP. The inventors also stated that
XMill would produce better results when compressing data-like XML files instead of text-like XML files.
This does not seem to be true when looking at the benchmark results, for in this benchmark XMill
compresses text-like XML files better than data-like XML files. This may be due to the way MS Word
formats XML data.

Figure 6-4 shows the computation times of ZIP and XMill. This graphic indicates that the difference in
computation time between ZIP and XMill looks like some initiation time. The behavior of both tools is
further quite similar.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 66/99 Version 1.0

MS Doc XML Data Sets
ZIP vs XMill

0

100.000

200.000

300.000

400.000

500.000

600.000

1 2 3 4 5 6 7 8 9 10 11

Fi
le

 s
iz

e
(b

yt
es

)

New file Graphics New file Graphics ZIP New file Graphics XMill New file Only text

New file Only text ZIP New file Only text XMill

Figure 6-2: ZIP versus XMill MS Doc XML Data Sets File Compression.

MS Doc XML Data Sets
ZIP vs XMill

0

20.000

40.000

60.000

80.000

100.000

120.000

0 100.000 200.000 300.000 400.000 500.000 600.000

File size new file (bytes)

Fi
le

 s
iz

e
ne

w
 fi

le
 c

om
pr

es
se

d
(b

yt
es

)

ZIP Graphics XMill Graphics ZIP Only text XMill Only text

Figure 6-3: ZIP versus XMill MS Doc XML Data Sets File Compression.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 67/99 Version 1.0

MS Doc XML Data Sets
ZIP vs XMill

0

100.000

200.000

300.000

400.000

500.000

600.000

0 0,02 0,04 0,06 0,08 0,1 0,12

Time (sec)

Fi
le

 s
iz

e
ne

w
 fi

le
 (

by
te

s)

ZIP Graphics XMill Graphics ZIP Only text XMill Only text

Figure 6-4: ZIP versus XMill MS Doc XML Data Sets Compression Time.

6.4.2 Diff vs Xdelta vs Vcdiff vs DeltaXML on XML
As open standards are becoming more important nowadays it is interesting to know how the delta
compression tools perform on XML data. The data sets used are the same as in the previous
comparison between ZIP and XMill.

Figure 6-5 gives an impression of what results are gained when the delta compression tools are
evaluated on the MS Word XML Graphics Data Set. As already expected the deltas that are generated
by diff are extremely inefficient. The diff algorithm is not a good delta compressor as it implicitly
assumes that data common to fold and fnew are exactly in the same order in the two files and it also does
not account for substrings in fold which appear in fnew a couple of times. DeltaXML does not return any
efficient deltas as well, which may be caused by the (not so efficient) XML code that is generated by MS
Word. However better results would be expected of a tool that is specially designed to generate
accurate deltas between XML files. Xdelta and Vcdiff are much more efficient in generating deltas and
without compressing the delta, Xdelta returns the best results among the delta compression tools tested
here. In general the uncompressed deltas can also be further compressed by using ZIP (XMill is not
used here as it did not work on Solaris 8). Although Xdelta does not compress its output it would not
make any difference to zip the output as the format is already compressed enough. The output of Vcdiff
can still be compressed though as Vcdiff was run without compressing the delta (vcdiff –d).

By zipping the output of Vcdiff the file size comes pretty close to that of the uncompressed output of
Xdelta. The zipped output of diff remains the most inefficient of the tools. Figure 6-5 shows the size of
the zipped output of DeltaXML which is smaller than that of the zipped output of Vcdiff. In the previous
comparison between ZIP and XMill, XMill turned out to be a better XML compressor than ZIP as XMill
compressed files were sometimes 23 % smaller than those that were zipped. So DeltaXML combined
with XMill may certainly result in very small deltas which may be even smaller than those of Xdelta.

Figure 6-6 shows the same comparison only then related to the MS Word XML Only Text Data Set. The
uncompressed deltas of diff and DeltaXML are much larger than those of the MS Word XML Graphics

The Royal Netherlands Army Command & Control Support Centre

Unclassified 68/99 Version 1.0

Data Set. Xdelta and Vcdiff return very small deltas without using any compression. Further the same
trend can be observed as for the MS Word XML Graphics Data Set, although the deltas are generally
smaller.

Figure 6-7 shows the relation between the uncompressed deltas and the calculation time of the tools on
the MS Word XML Graphics Data Set whereas figure 6-8 shows the relation between the compressed
deltas and the calculation times of the tools on the MS Word XML Graphics Data Set. Without
compressing the delta with ZIP the following trend can be observed: Xdelta is the fastest among them,
diff and Vcdiff do not differ much in speed and DeltaXML is clearly the slowest. When compressing the
delta (which is recommended!) Xdelta and Vcdiff are very similar in speed and diff is significantly slower
which is due to the fact ZIP needs more time to compress the large deltas that are generated by diff.

Figure 6-9 shows the relation between the uncompressed deltas and the calculation times of the tools
on the MS Word XML Only Text Data Set whereas figure 6-10 shows the relation between the
compressed deltas and the calculation times of the tools on the MS Word XML Only Text. The
difference with the previous Graphics Data Set is that the files of the MS Word XML Graphics Data Set
consume more time which means that graphical elements (base 64 encodings) require more calculation
time. It is also interesting to mention that diff operates relatively better on text-like XML files: although
the deltas are still the largest diff operates faster than Xdelta and Vcdiff on the Only Text Data Set, see
figure 6-9. However when the deltas are zipped Xdelta is approximately as fast as diff and Vcdiff
becomes the one that is slower, while DeltaXML remains the slowest delta compression tool among all
tools.

Figure 6-11 and 6-12 relate to the MS Excel XML Data Set and are quite similar to the graphics of the
MS Word Only Text Data Set. No special attention will be paid to the patching part and therefore only
figure 6-13 will give some idea of how the tools patch the old file with the delta to generate the target
file. Although some tools are faster, the difference in speed is most of the time a matter of a fraction of a
second, with DeltaXML as an exception because it is significantly slower than all other tools.

Note: The curves that are related to the file size of the deltas consist of 11 points that are
formed by the following deltas: 1-2, 1-3, …, 1-11, 1-12.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 69/99 Version 1.0

MS Word XML Graphics Data Set
Diff vs Xdelta vs Vcdiff vs DeltaXML

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 1-12

Fi
le

 s
iz

e
de

lta
 (b

yt
es

)

Diff delta uncompressed Diff delta zipped Xdelta delta uncompressed Xdelta delta zipped

Vcdiff delta uncompressed Vcdiff delta zipped DeltaXML delta uncompressed DeltaXML delta zipped

Figure 6-5: (Delta) compression tools on MS Word XML Graphics Data Set.

MS Word XML Only Text Data Set
Diff vs Xdelta vs Vcdiff vs DeltaXML

0

100.000

200.000

300.000

400.000

500.000

600.000

700.000

1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 1-12

Fi
le

 s
iz

e
de

lta
 (b

yt
es

)

Diff delta uncompressed Diff delta zipped Xdelta delta uncompressed Xdelta delta zipped

Vcdiff delta uncompressed Vcdiff delta zipped DeltaXML delta uncompressed DeltaXML delta zipped

Figure 6-6: (Delta) compression tools on MS Word XML Only Text Data Set.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 70/99 Version 1.0

MS Word XML Graphics Data Set
Diff vs Xdelta vs Vcdiff vs DeltaXML

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

0 1 2 3 4 5 6 7 8 9 10

Time (sec)

Fi
le

 s
iz

e
de

lta
 (b

yt
es

)

Diff Xdelta Vcdiff DeltaXML

Figure 6-7: Delta compression tools on MS Word XML Graphics Data Set.

MS Word XML Graphics Data Set
Diff vs Xdelta vs Vcdiff vs DeltaXML Delta Zipped

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

100.000

0 1 2 3 4 5 6 7 8 9 10

Time (sec)

Fi
le

 s
iz

e
de

lta
 (b

yt
es

)

Diff Xdelta Vcdiff DeltaXML

Figure 6-8: Delta compression tools on MS Word XML Graphics Data Set Delta Zipped.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 71/99 Version 1.0

MS Word XML Only Text Data Set
Diff vs Xdelta vsVcdiff vs DeltaXML

0

100.000

200.000

300.000

400.000

500.000

600.000

700.000

0 2 4 6 8 10 12 14 16

Time (sec)

Fi
le

 s
iz

e
de

lta
 (b

yt
es

)

Diff Xdelta Vcdiff DeltaXML

Figure 6-9: Delta compression tools on MS Word XML Only Text Data Set.

MS Word XML Only Text Data Set
Diff vs Xdelta vsVcdiff vs DeltaXML Delta Zipped

0

10.000

20.000

30.000

40.000

50.000

60.000

0 2 4 6 8 10 12 14 16

Time (sec)

Fi
le

 s
iz

e
de

lta
 (b

yt
es

)

Diff Xdelta Vcdiff DeltaXML

Figure 6-10: Delta compression tools on MS Word XML Only Text Data Set Delta Zipped.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 72/99 Version 1.0

MS Excel XML Data Set
Diff vs Xdelta vs Vcdiff vs DeltaXML

0

200.000

400.000

600.000

800.000

1.000.000

1.200.000

1.400.000

1.600.000

1.800.000

0 2 4 6 8 10 12 14

Time (sec)

Fi
le

 s
iz

e
de

lta
 (b

yt
es

)

Diff delta Xdelta delta Vcdiff delta DeltaXML delta

Figure 6-11: Delta compression tools on MS Excel XML Data Set.

MS Excel XML Data Set
Diff vs Xdelta vs Vcdiff vs DeltaXML Delta Zipped

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

0 2 4 6 8 10 12 14 16

Time (sec)

Fi
le

 s
iz

e
de

lta
 (b

yt
es

)

Diff delta Xdelta delta Vcdiff delta DeltaXML delta

Figure 6-12: Delta compression tools on MS Excel XML Data Set Delta Zipped.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 73/99 Version 1.0

MS Word XML Graphics Data Set
Diff vs Xdelta vs Vcdiff vs DeltaXML

- Patching -

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

0 1 2 3 4 5 6 7

Time (sec)

Fi
le

 s
iz

e
de

lta
 (b

yt
es

)

Diff Xdelta Vcdiff DeltaXML

Figure 6-13: Patching of delta compression tools on MS Word XML Graphics Data Set.

6.4.3 Xdelta vs Vcdiff on Doc/xsw
Figure 6-14 shows how Xdelta and Vcdiff behave on the MS Word Doc Data Sets. Xdelta performs the
best as it is produces the smallest deltas in a considerably shorter time than Vcdiff. The strange twist in
the blue curve is something which could not be explained. By looking at figure 6-15 it is easy to see that
some profit can be gained by compressing the deltas with ZIP. The last two figures 6-16 and 6-17 relate
to the OpenOffice.org Writer Doc Data Sets. The uncompressed deltas that were generated between
the files of the OpenOffice.org Writer Doc Data Sets are a little bit smaller than those generated
between the files of the MS Word Doc Data Sets. As can be observed by comparing figure 6-15 with 6-
17 the difference between the zipped deltas of the MS Word Doc files and the OpenOffice.org Writer
Doc files is quite small. However the deltas with respect to the OpenOffice.org Writer Doc Data Sets are
still smaller and the time required to generate these compressed deltas is relatively much shorter. It is
not interesting to show any information about the patch part as patching is achieved in a very short time.

The results with respect to the OpenOffice.org Writer Native Data Sets (xsw) are unexpected and can
be observed in figure 6-18. Here Vcdiff performs the best: the deltas of Xdelta and Vcdiff are quite
similar while the time required to generate these deltas is shorter for Vcdiff (the time difference is the
largest with respect to the graphics data set). Further compressing the deltas will not contribute to a yet
more efficient delta.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 74/99 Version 1.0

MS Word Doc Data Sets
Xdelta vs Vcdiff

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

0 0,5 1 1,5 2 2,5

Time (sec)

Fi
le

 s
iz

e
de

lta
 (b

yt
es

)

Xdelta Graphics 1-12 Xdelta Only text 1-12 Vcdiff Graphics 1-12 Vcdiff Only text 1-12

Figure 6-14: Xdelta vs Vcdiff on MS Word Doc Data Sets.

MS Word Doc Data Sets
Xdelta vs Vcdiff Delta Zipped

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

0 0,5 1 1,5 2 2,5

Time (sec)

Fi
le

 s
iz

e
de

lta
 (b

yt
es

)

Xdelta Graphics 1-12 Xdelta Only text 1-12 Vcdiff Graphics 1-12 Vcdiff Only text 1-12

Figure 6-15: Xdelta vs Vcdiff on MS Word Doc Data Sets Delta Zipped.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 75/99 Version 1.0

OpenOffice.org Writer Doc Data Sets
Xdelta vs Vcdiff

0

20.000

40.000

60.000

80.000

100.000

120.000

0 0,05 0,1 0,15 0,2 0,25 0,3

Time (sec)

Fi
le

 s
iz

e
de

lta
 (b

yt
es

)

Xdelta Graphics 1-12 Xdelta Only text 1-12 Vcdiff Graphics 1-12 Vcdiff Only text 1-12

Figure 6-16: Xdelta vs Vcdiff on OpenOffice.org Writer Doc Data Sets.

OpenOffice.org Writer Doc Data Sets

Xdelta vs Vcdiff Delta Zipped

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4

Time (sec)

Fi
le

 s
iz

e
de

lta
 (b

yt
es

)

Xdelta Graphics 1-12 Xdelta Only text 1-12 Vcdiff Graphics 1-12 Vcdiff Only text 1-12

Figure 6-17: Xdelta vs Vcdiff on OpenOffice.org Writer Doc Data Sets Delta Zipped.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 76/99 Version 1.0

OpenOffice.org Writer Native Data Sets (xsw)
Xdelta vs Vcdiff

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

0 0,02 0,04 0,06 0,08 0,1 0,12

Time (sec)

Fi
le

 s
iz

e
de

lta
 (b

yt
es

)

Xdelta Graphics 1-12 Xdelta Only text 1-12 Vcdiff Graphics 1-12 Vcdiff Only text 1-12

Figure 6-18: Xdelta vs Vcdiff on OpenOffice.org Writer Native Data Sets (xsw).

6.4.4 MS Word and OpenOffice.org Writer: Doc vs XML vs xsw
Figure 6-19 and 6-20 should give some impression of what a specific data format and compression
method can contribute to the total file size of an Office document. In figure 6-19 it is clearly visible that
the MS Word Doc and MS Word XML files are relatively very large. The OpenOffice.org Writer Doc
format and especially the OpenOffice.org Writer Native format (xsw) create much smaller files (at least
50 % till 80 % smaller). All formats, except the OpenOffice.org Writer Native files which are already
compressed by ZIP, can be further compressed to get an even smaller file size. The most efficient files
are gained by zipping the OpenOffice.org Writer Doc files, after which the OpenOffice.org Writer Native
files and the XMill compressed MS Word XML files are the most efficient. It is worth mentioning that the
XMill compressed XML files from MS Word are smaller than the ZIP compressed Doc files from MS
Word. In the section about XMill it was already stated that when XML files are compressed with XMill
these compressed files will typically be smaller than the zipped original data.

When comparing figure 6-19 with figure 6-20 it is clear that text-like XML files consume more memory
than data-like XML files. Data-like XML files are only 30 % larger than the original MS Word Doc files,
whereas text-like XML files are more than 100 % larger than the original MS Word Doc files. This is the
consequence of the verbose nature of text-like XML data. Fortunately compressors are very suitable for
compressing text-like XML and this is reflected in the small file sizes of the compressed files (figure 6-
20). This time MS Word XML files that are compressed with XMill are the smallest files that can be
produced. These files are even smaller than the compressed OpenOffice.org Writer formats.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 77/99 Version 1.0

Graphics Data Sets

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

1 2 3 4 5 6 7 8 9 10 11 12

Fi
le

 s
iz

e
(b

yt
es

)

MS Doc MS Doc zipped MS XML MS XML Zipped
MS XML XMill OpenOffice.org Doc OpenOffice.org Doc Zipped OpenOffice.org Native (xsw)

Figure 6-19: Comprehensive overview Graphics Data Sets.

Text Data Sets

0

100.000

200.000

300.000

400.000

500.000

600.000

1 2 3 4 5 6 7 8 9 10 11 12

Fi
le

 s
iz

e
(b

yt
es

)

MS Doc MS Doc zipped MS XML MS XML zipped
MS XML XMill OpenOffice.org Doc OpenOffice.org Doc zipped OpenOffice.org Native (xsw)

Figure 6-20: Comprehensive overview Doc Only text Data Sets.

6.4.5 Xdelta vs Vcdiff on xls/sxc
Xdelta and Vcdiff are the only tools that can generate deltas between MS Excel xls documents or
OpenOffice.org Calc xls/sxc documents. The uncompressed deltas that are generated by Xdelta and
Vcdiff on the OpenOffice.org sxc Data Set are really small which is the result of the fact that the original
files are already small. This also reduces the total calculation time required for generating the delta. So
if processor speed is expensive this OpenOffice.org format is recommended. Further compressing of
the deltas of the OpenOffice.org sxc format will not contribute to a smaller delta: the original format is
already compressed by ZIP. See also figure 6-21 and 6-22.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 78/99 Version 1.0

MS Excel xls & OpenOffice.org Calc xls/sxc Data Sets

Xdelta vs Vcdiff

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Time (sec)

Fi
le

 s
iz

e
de

lta
 (b

yt
es

)

Xdelta MS Excel xls Xdelta OpenOffice.org sxc Xdelta OpenOffice.org xls

Vcdiff MS Excel xls Vcdiff OpenOffice.org sxc Vcdiff OpenOffice.org xls

Figure 6-21: Xdelta vs Vcdiff on Excel/Calc Data Sets.

MS Excel xls & OpenOffice.org Calc xls/sxc Data Sets
Xdelta vs Vcdiff Delta Zipped

0

10.000

20.000

30.000

40.000

50.000

60.000

0,0 0,2 0,4 0,6 0,8 1,0 1,2

Time (sec)

Fi
le

 s
iz

e
de

lta
 (b

yt
es

)

Xdelta MS Excel xls Xdelta OpenOffice.org sxc Xdelta OpenOffice.org xls

Vcdiff MS Excel xls Vcdiff OpenOffice.org sxc Vcdiff OpenOffice.org xls

Figure 6-22: Xdelta vs Vcdiff on Excel/Calc Data Sets Delta Zipped.

6.4.6 MS Excel and OpenOffice.org Calc: xls vs XML vs sxc
In figure 6-23 all Excel/Calc formats are compared to each other. As already stated before
uncompressed XML files are very large. In the section about XMill it is said that XMill compressed XML
files are usually smaller than the zipped original files. Again it can be shown this claim is true as the
large XML files are reduced to file sizes that are the smallest among all file sizes. So XMill can
compress XML data very efficiently and performs somewhat better than ZIP. It can also be observed

The Royal Netherlands Army Command & Control Support Centre

Unclassified 79/99 Version 1.0

that the OpenOffice.org Calc Native file format is always smaller than the OpenOffice.org Calc xls
alternative.

MS Excel & OpenOffice.org Calc Data Sets

0

200.000

400.000

600.000

800.000

1.000.000

1.200.000

1.400.000

1 2 3 4 5 6 7 8 9 10 11 12

Fi
le

 s
iz

e
(b

yt
es

)

MS xls MS xls zipped MS XML MS XML zipped
MS XML XMill OpenOffice.org Native OpenOffice.org xls OpenOffice.org xls zipped

Figure 6-23: Comprehensive overview Excel/Calc Data Sets.

6.4.7 The benefits of a delta
In papers about delta compression it is often stated that deltas are usually much smaller than the
individually compressed files. The benchmark results consist of many data that support this claim and
figure 6-24 and 6-25 show that, although the benefits are not always that large, the deltas are smaller
than the individually compressed files.

Xdelta MS Word Doc Graphics Data Set
Deltas vs New Files Zipped

0

50.000

100.000

150.000

200.000

250.000

1 2 3 4 5 6 7 8 9 10 11

Files

Fi
le

 s
iz

e
(b

yt
es

)

New file New file zipped Delta

Figure 6-24: Xdelta Delta vs New File Zipped on MS Word Doc Graphics Data Set.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 80/99 Version 1.0

Xdelta MS Word XML Graphics Data Set
Delta vs New File XMill

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

1 2 3 4 5 6 7 8 9 10 11

Files

Fi
le

 s
iz

e
(b

yt
es

)

New file New file XMill Delta

Figure 6-25: Xdelta Delta vs New File Zipped on MS Word XML Graphics Data Set.

6.4.8 Delta sequences
Many of the previous figures show curves that consist of 11 points. These 11 points are the file sizes of
the following deltas: 1-2, 1-3, …, 1-11, 1-12.

The benchmark has computed many more deltas though and these are: 2-3, 2-4, …, 2-11, 2-12 and 3-
4, 3-5, …, 3-11, 3-12 and 4-5, 4-6, …, 4-11, 4-12 and 5-6, 5-7, …, 5-11, 5-12 and 6-7, 6-8, …, 6-11, 6-
12 and 7-8, 7-9, …, 7-11, 7-12 and 8-9, 8-10, 8-11, 8-12 and 9-10, 9-11, 9-12 and 10-11, 10-12 and
finally 11-12. Figure 6-26 shows 7 curves that are related to the first 7 sequences of deltas described
above. The last point of the some curve n (2 ≤ n ≤ 7) lies less higher than the last point of the n-1th
curve which is the result of the fact that for example the delta 1-12 is bigger than the delta 8-12. The
strange twists in the curves could not be explained. Figure 6-27 shows the same sequences of deltas
only then for Xdelta instead of Vcdiff.

It is possible to calculate the average file size of the deltas for each sequence (there are 11 sequences
altogether) and these are shown in figure 6-28 for both Xdelta and Vcdiff. This graphic demonstrates
that both tools share some common characteristic: if the average delta of Xdelta of sequence n is bigger
than that of sequence n+1 then the same thing counts for Vcdiff. This practically means that if for
example one of the tools produces larger deltas than expected for some sequence of deltas than the
same can be expected for the other tool.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 81/99 Version 1.0

MS Word Doc Graphics Data Set
Vcdiff

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6

Time (sec)

Fi
le

 s
iz

e
de

lta
 (b

yt
es

)

Vcdiff delta 1 Vcdiff delta 2 Vcdiff delta 3 Vcdiff delta 4 Vcdiff delta 5 Vcdiff delta 6 Vcdiff delta 7

Figure 6-26: Vcdiff Deltas on MS Word Doc Graphics Data Set.

MS Word Doc Graphics Data Set
Xdelta

0

50.000

100.000

150.000

200.000

250.000

0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

Time (sec)

Fi
le

 s
iz

e
(b

yt
es

)

xdelta delta 1 xdelta delta 2 xdelta delta 3 xdelta delta 4 xdelta delta 5
xdelta delta 6 xdelta delta 7

Figure 6-27: Xdelta Deltas on MS Word Graphics Data Set.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 82/99 Version 1.0

MS Word Doc Graphics Data Set
 Xdelta and Vcdiff Average Deltas

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

100.000

1 2 3 4 5 6 7 8 9 10 11

Average deltas

Fi
le

 s
iz

e
av

er
ag

e
de

lta
 (b

yt
es

)

Average delta Vcdiff Average delta Xdelta

Figure 6-28: Average deltas of Xdelta and Vcdiff on MS Word Doc Graphics Data Set.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 83/99 Version 1.0

7 Recommendations
This chapter is based on the results and insights that were obtained during this project. Several
recommendations can be made towards the RNLA and these fall apart in a technical and non-technical
part.

7.1 Technical part
The results of the tests give some clues of how the problem of efficient transfer of (MS) Office
documents can be tackled by using a technical approach. Several approaches can be considered and
these are listed beneath.

7.1.1 File synchronization
Highly distributed data may be synchronized in the future, however at the moment there do not seem to
be any promising applications that can cope with the inherent complex networks and highly distributed
data of the military. However it may be wise to watch the progress of these applications as they may
become meaningful for the RNLA.

7.1.2 Open standards
The advantages of XML as a primary source of information have been stressed a couple of times during
this project. Terms like openness, flexibility and standardization are characteristics that refer to XML.
Some benefits of openness are [28]:

• Availability: open standards are available for all people to read and implement.

• Maximize end-user choice: open standards do not force the customer to choose for a particular
vendor.

• No royalty: everyone can implement an open standard without any fee. However certification of

compliance by a standards organization may involve a fee.

At the moment the RNLA frequently uses COTS products to incorporate state of the art technology in
their systems [6]. As open standards have matured to the point where they are a serious competitor
(see the section about OpenOffice.org in the non-technical part of this chapter) to their commercial
counterparts, open standards may offer the same or even better performance than the commercial
products that are not free, unavailable for people to read and implement and less easily extensible.
Open standards may make things more easy when one for example would like to extend software to
include techniques for a more efficient file transfer.

7.1.3 XMill vs ZIP
XMill only compresses XML files and can be extended with self-made compressors in order to enhance
the compression rate. This means that military systems which use XML to store or exchange data can
reduce file sizes by using XMill as a primary compression tool. By compressing files with XMill good
results are gained. Furthermore it is possible to extend XMill with specialized compressors and/or to
give it some clues of how certain data items are structured such that XMill outperforms compression
tools like ZIP. XMill is slightly faster than ZIP but this difference is not really significant. As explained

The Royal Netherlands Army Command & Control Support Centre

Unclassified 84/99 Version 1.0

earlier decompressing XMill compressed files can be done very fast if an application would directly
accept SAX events, instead of having to re-parse the XML-string. When using XML data it is
recommendable to use XMill as there is always gained some extra compression. The benchmark
showed that files from the MS Word XML Only Text Data Set are compressed very efficiently by XMill.
In the case where simple structured data has to be exchanged XMill can achieve very good
compression rates by exploiting the structural knowledge of the data.

7.1.4 Delta compression tools
Some tools perform well only on specific data types and others perform well on a wider range of data
types. The benchmark results of the preceding chapter clearly indicate that there are some differences
between the performances of the various tools.

Table 7-1 gives a summary of the measured performances of the tools on the various data sets. The
following notation is handled: xx/yy, where xx is the score for the size of the delta and yy is the score for
the time that is required to calculate the (compressed) delta. The score is relative and a + + is assigned
to a tool which performs the best and - - is assigned to a tool that performs the worst. A single + or – is
also possible of course. The blue areas relate to the smallest deltas that can be achieved.

 Diff Diff + ZIP Xdelta Vcdiff Vcdiff + ZIP DeltaXML DeltaXML +
ZIP

MS Word XML Graphics - - / + + + / - + + / + + + / + + / + + - - / - - + + / - -
MS Word XML Only Text - - / + + - - / + + + + / + + + / + + / + - - / - - + / - -
MS Word Doc Graphics + + / + + - - / - - + / - -
MS Word Doc Only Text + + / + + - - / - - + / - -
OpenOffice.org Doc Graphics + + / + + + / - - + / - -
OpenOffice.org Doc Only Text + + / + + - - / + + / +
Open Office.org xsw Graphics + + / + + / + + + + / +
Open Office.org xsw Only Text + + / + + / + + + + / +

MS Excel xls + + / + + - - / - - + / - -
MS Excel XML - - / + + - - / + + + + / + + + / + + / + - - / - - + / - -
OpenOffice.org Calc xls + + / + - - / + + + + / + +
OpenOffice.org Calc sxc + + / + + + + / + + + + / + +

Table 7-1: Comprehensive score card for the tools with respect to the data sets.

In almost any case Xdelta turns out to be the best delta compression tool with respect to the developed
data sets. Xdelta is continuously the fastest and delivers the smallest deltas. Compressing the output is
even unnecessary as the deltas are already saved efficiently enough.

Vcdiff returns (vcdiff –d) deltas that are usually larger than those of Xdelta and it is usually somewhat
slower than Xdelta. However Vcdiff can also be run with the option to compress the delta (vcdiff –cd),
however this option was not included in the benchmark and instead the deltas were zipped.

DeltaXML does not produce any small deltas (although some of the ZIP compressed deltas are small
too) and it really needs much processing time to generate a delta. DeltaXML may not be very suitable
for Office documents, but according to the developers it may certainly be meaningful for data exchange
applications.

The famous diff is very impractical for delta compression purposes as the deltas are not efficient
enough. Furthermore diff can only be applied to plain text files which makes it useless for many formats.

Except for Xdelta it is strongly recommended to further compress the delta. By using ZIP or XMill (XMill
can only be used in the case where deltas are XML formatted) deltas can decrease in file size

The Royal Netherlands Army Command & Control Support Centre

Unclassified 85/99 Version 1.0

significantly. The largest decrease can be observed when XML formatted deltas are compressed by
XMill.

The advantage of using (delta) compression tools is smaller when OpenOffice.org is used because the
native file formats are already saved very efficiently. By using delta compression some reduction in file
sizes can even still be gained though.

The best combination possible is to create the Office documents in OpenOffice.org after which Xdelta
can compare the documents and generate highly efficient deltas.

7.2 Non technical part
This part of the recommendations will treat the non-technical aspects that can influence the efficiency of
the transfer of (MS) Office documents. It tries to inform the reader which factors can contribute to a
more efficient transfer even before any technical solutions have been applied.

7.2.1 Control user behavior
A MS PowerPoint presentation tends to be a large consumer of memory. Strict standards should be
designed to overcome this practical problem. At the moment some people create very fancy
presentations to impress their superiors. Adding useless animations and large pictures makes
presentations needlessly large. Special protocols, that are principally used everywhere in the army, can
be designed to create some delimitation of what is allowed to be made in MS PowerPoint. This will
certainly result in a heavy decrease of the file sizes which on its turn results in a better bandwidth
utilization. At the other end strict rules also cause presentations to be more uniform which makes them
better to read. Use of colors, pictures, animations and sounds which do not contribute to a better
understanding will then be omitted. People also like to scan pictures from paper and place it directly into
an application. Resizing and compressing with appropriate image compression formats like png and
jpeg decreases the total file size too. Superiors should play an exemplary role and should discourage
the needless use of memory consuming elements.

7.2.2 OpenOffice.org
At the official FAQ of the web site of OpenOffice.org [8] OpenOffice.org is described as the open source
project through which Sun Microsystems has released the technology for the popular StarOffice
Productivity Suite. All of the StarOffice source code is available under the GNU Lesser General Public
License (LGPL) as well as the Sun Industry Standards Source License (SISSL). Sun is participating as
a member of the OpenOffice.org community.

From the unofficial FAQ [8] the role of OpenOffice.org is explained as follows: OpenOffice.org is the
project behind the multi-platform, free office package called OpenOffice.org 1.1 consisting of
applications such as a word processor, spreadsheet and presentation software, that has a similar
codebase to Sun Microsystem's StarOffice. OOo as its commonly called is the alternative to using a
paid package like Microsoft Office. It currently runs on Windows, Linux, Mac OS X, FreeBSD, and
Solaris.

Because the data sets used in the benchmark indicate that OpenOffice.org documents are much more
efficiently saved then their MS Office counterparts it may be particularly interesting to compare the two
packages with each other.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 86/99 Version 1.0

In an article from eWEEK [7] much time has been spent with comparing the overall accepted MS Office
2003 to the less known OpenOffice.org. In last years, open-source alternatives to MS Office have
become more sophisticated and IT managers are seriously looking at the possibility of moving from the
Microsoft Office suite to a license-free alternative. In the article of eWEEK a user-based comparison
between the OpenOffice.org project's OpenOffice.org suite and Microsoft's Office 2003 is made.

In this user-based comparison most users already use MS Office 97 or MS Office 2000. During the tests
most of the users had almost no trouble moving from MS Office to OpenOffice.org. However advanced
users, particularly those who work with MS Excel were of the opinion that OpenOffice.org was less
ideal. This is because advanced users already came close to the limits of MS Office and some
specialized features were just not part of OpenOffice.org.

Users who tested MS Office 2003 said that the suite was more polished and easy to use than MS Office
97 and 2000. The advanced users of MS Excel found out that MS Excel 2003 provides significantly
more functionality than the preceding one.

All users liked MS Office 2003 and said it would be the smoothest upgrade as the user interface of MS
Office is found the most user friendly. However for the average user some training will help to get used
to the interface of OpenOffice.org soon. There are some differences between MS Office and
OpenOffice.org which must be overcome, like different key combinations and other small things.
OpenOffice.org Writer presented the fewest file-format-compatibility problems. Many users agreed that
familiarity with a MS Office product will minimize the time required to get used to the OpenOffice.org
alternative.

It is worth mentioning that OpenOffice.org and MS Office differ in the case where fancy markup is used.
Very specific elements that are used in MS Office are not always understood by OpenOffice.org which
does not always make converting a very easy task. Some people who are getting used to
OpenOffice.org even prefer the way the applications are organized. Furthermore OpenOffice.org
produces relatively small files that do not necessarily have to be compressed further which reduces
processing time. At the other end some users complained that it took more time to load a similar file in
OpenOffice.org than in MS Office 2003. This may be the result of the fact that OpenOffice.org makes
use of Java for some features.

People who are used to work with macros in MS Office must be aware of the fact that OpenOffice.org
uses a different version of Basic than MS Office, so macros created in the MS Office will not work in
OpenOffice.org.

7.3 Further research
In this project the emphasis lies clearly on compression tools and techniques to decrease file sizes
which eventually will contribute to a decrease in network traffic. Besides compression another important
factor is related to the distribution. The compressed data should be distributed by using an algorithm
that tries to find an efficient way of propagating data from one point to the other through the network.
Already existent protocols can be investigated and perhaps these can be adapted to the specific needs
of the RNLA. When distributing data clients and servers must be aware of the hosts in the network. The
hosts need to communicate with each other to get an up to date picture of the network.

Unfortunately due to a lack of time MS PowerPoint and OpenOffice.org Impress data sets could not be
developed. As MS PowerPoint is used for all kind of purposes in the army it would be interesting to

The Royal Netherlands Army Command & Control Support Centre

Unclassified 87/99 Version 1.0

develop a realistic version history which can be used as an input for the (delta) compression tools of the
benchmark. By making some small adjustments to the benchmark (see appendix) the performance of
the various tools on MS PowerPoint and OpenOffice.org Impress documents can be measured.

Here is a hint: MS PowerPoint documents are also widely used and their file size is relatively big. It is
not extraordinary to find a 10+ MB document. Pictures and even animations are not seldom integrated
in a standard presentation. Some MS PowerPoint files can be used in the benchmark and of course the
file size may exceed 10+ MB. Parallel to the MS PowerPoint documents there should be made similar
OpenOffice.org Impress documents. The latter can be saved as a compressed format that also makes
use of XML data parts, contrary to MS PowerPoint 2003.

In the field investigation one of the questions was: “Which part of the bandwidth is utilized by the
transfer of documents?”. This question could not be answered at the time as this would implicate that
much monitoring work should be done to retrieve the information. It is important to understand that the
(delta) compression tools used will only substantially contribute to a better bandwidth utilization if the
documents themselves utilize a considerable part of the bandwidth. For example assume that MS Office
documents are responsible for approximately 60 % of the total available bandwidth of a specific link,
then any possible reduction in file size of these documents would be a great benefit to the total
availability of the communication link. The previous chapter shows that the combination of compressing
(ZIP and XMill) and differencing (diff, Xdelta, Vcdiff, DeltaXML) can largely reduce a file size (by at least
50%).

The Royal Netherlands Army Command & Control Support Centre

Unclassified 88/99 Version 1.0

Acronyms

C2 Command & Control
C2SC C2 Support Centre
C2WS C2 Work Station
CIS Communication & Information Systems
COTS Commercial Off The Shelf
CVS Concurrent Versions System
C3I Command, Control, Communications & Intelligence
DTD Document Type Definition
ESDI European Strategic Defense Initiative
FAQ Frequently Asked Questions
ISIS Integrated Staff Information System
JAXP Java API for XML Processing
RNLA The Royal Netherlands Army
SAX Simple API for XML
TrAX Transformation API for XML
VoIP Voice over IP

The Royal Netherlands Army Command & Control Support Centre

Unclassified 89/99 Version 1.0

References

[1] Algorithms for Delta Compression and Remote File Synchronization
 Torsten Suel & Nasir Memon

[2] XML Sizing and Compression Study for Military Wireless Data
 Michael Cokus & Daniel Winkowski

[3] XMill: an Efficient Compressor for XML Data
 Hartmut Liefke & Dan Suciu

[4] Manual CVS, Concurrent Versions System

[5] An Algorithm for Differential File Comparison
 J.W. Hunt & M.D. McIlroy

[6] Web Site Command & Control Support Centre

http://www.c2sc.org

[7] Web Site Article eWEEK

http://www.eweek.com

[8] Web Site Open Office
 http://www.openoffice.org

[9] Web Site O’Reilly XML.com
 http://www.xml.com

[10] Web Site rsync
 http://samba.anu.edu.au/rsync/

[11] Web Site Naval Institute
 http://www.usni.org

[12] Web Site Iconmedia
 http://www.iconmedia.com

[13] Network Centric Warfare, Developing and Leveraging Information Superiority
 David S. Alberts, John J. Garstka and Frederick P. Stein

[14] TMS 4 “The TITAAN (phase 2/3) mobile messaging system”
 RNLA

[15] C2WS3001 SUM ISIS 3.0 on C2WS
 RNLA

[16] Web Site TheFreeDictionairy.com
 http://www.encyclopedia.thefreedictionary.com

The Royal Netherlands Army Command & Control Support Centre

Unclassified 90/99 Version 1.0

[17] Web Site University Oslo
 http://www.ifi.uio.no/

[18] Information Theory for Information Technologists
 M. J. Usher

[19] XML Sizing and Compression Study For Military Wireless Data
 Michael Cokus & Daniel Winkowski

[20] The string-to-string correction problem with block moves
 W. Tichy

[21] Versioned File Archiving , Compression, and Distribution
 Josh MacDonald

[22] RFC 3284 The VCDIFF Generic Differencing and Compression Data Format
 David G. Korn, J. MacDonald, Jeffrey C. Mogul, Kiem-Phong Vo

[23] An Approach for Solving the Constrained Longest Common Subsequence Problem
 Chao-Li Peng

[24] Change Control for XML: Do It Right
 DeltaXML

[25] A Delta Format for XML: Identifying Changes in XML Files and Representing the Changes in

XML
 DeltaXML

[26] Web Site Rsync
 http://samba.anu.edu.au/rsync/

[27] Web Site World Wide Web Consortium
 http://www.w3.org

[28] Web Site Bruce Perens
 http://www.perens.com

The Royal Netherlands Army Command & Control Support Centre

Unclassified 91/99 Version 1.0

A. Appendix

Benchmark script

#!usr/bin/perl -w

use Time::HiRes qw(gettimeofday tv_interval);
use Cwd;

In all data sets there are 12 files

$max_comparisons = 12;

To get an average value of all measurements, every measurement is done
several times.

$iterations = 10;

Delta part

sub delta
{
 $tool = shift(@_);

 for ($i=1; $i <= $max_comparisons-1; $i++)
 {
 for ($next=$i+1; $next <= $max_comparisons; $next++)
 {
 $cwd = getcwd();

 if ($cwd =~ /XML/)
 {
 $filename1 = "Data".$i.".xml";
 $filename2 = "Data".$next.".xml";
 }
 elsif ($cwd =~ /Doc/)
 {
 $filename1 = "Data".$i.".doc";
 $filename2 = "Data".$next.".doc";
 }
 elsif ($cwd =~ /Native/)
 {
 $filename1 = "Data".$i.".sxw";
 $filename2 = "Data".$next.".sxw";
 }

 @filestat1 = stat ($filename1);
 $size_old_file = $filestat1[7];

 @filestat1 = stat ($filename2);
 $size_new_file = $filestat1[7];

 # Zipping the new file

 $file_new_zipped = "file_new_".$next.".zip";
 $command1 = "zip $file_new_zipped $filename2";
 system($command1);

 @filestat1 = stat ($file_new_zipped);
 $size_new_file_zipped = $filestat1[7];

 # Configuring arguments for the specific tool and giving
 # the statistics file the right name

 $uncompressed_delta = "uncompressed_delta_".$i."-".$next.".txt";

 if ($tool eq "diff")
 {
 $command1 = "diff $filename1 $filename2 > $uncompressed_delta";
 $datafile = "delta_diff_data.txt";
 }
 elsif ($tool eq "xdelta")
 {
 $command1 = "xdelta delta $filename1 $filename2 $uncompressed_delta";
 $datafile = "delta_xdelta_data.txt";
 }
 elsif ($tool eq "vcdiff")
 {
 $command1 = "vcdiff -d $filename1 < $filename2 > $uncompressed_delta";
 $datafile = "delta_vcdiff_data.txt";
 }
 elsif ($tool eq "deltaxml")
 {
 $command1 = "java -jar /home/infstud/mbroekma/benchmark/Tools/deltaxml/DeltaXMLAPI-2_8_1/command.jar compare --
 raw-xml-output --changes-only $filename1 $filename2 $uncompressed_delta";
 $datafile = "delta_deltaxml_data.txt";
 }

 # Every measurement is done several times

 for ($j=1; $j <= $iterations; $j++)
 {
 # The delta is written to an output file

 $time0 = [gettimeofday];

The Royal Netherlands Army Command & Control Support Centre

Unclassified 92/99 Version 1.0

 system ($command1);

 $time1 = [gettimeofday];

 # The ouput file is zipped

 $zipped_delta = "zipped_delta_".$i."-".$next.".zip";
 $command2 = "zip $zipped_delta $uncompressed_delta";
 system($command2);

 $time2 = [gettimeofday];

 # Inspecting the file sizes

 @filestat1 = stat ($uncompressed_delta);
 $size_uncompressed_delta = $filestat1[7];
 @filestat1 = stat ($zipped_delta);
 $size_zipped_delta = $filestat1[7];

 # Inspecting time intervals

 $time_delta_uncompressed = tv_interval ($time0, $time1);
 $time_delta_zipped = tv_interval ($time1, $time2);
 $time_total_computation = tv_interval ($time0, $time2);

 # Writing all data to arrays

 $definitive_values[$i][$next][0] = $size_old_file;
 $definitive_values[$i][$next][1] = $size_new_file;
 $definitive_values[$i][$next][2] = $size_new_file_zipped;
 $definitive_values[$i][$next][3] = $size_uncompressed_delta;
 $definitive_values[$i][$next][4] = $size_zipped_delta;

 $temp_values[$i][$next][$j][0] = $time_delta_uncompressed;
 $temp_values[$i][$next][$j][1] = $time_delta_zipped;
 $temp_values[$i][$next][$j][2] = $time_total_computation;
 }

 # Calculating average time values

 $total = 0;

 for ($k=1; $k <= $iterations; $k++)
 {
 $total = $total + $temp_values[$i][$next][$k][0];
 }

 $average_time_delta_uncompressed = $total/$iterations;

 $total=0;

 for ($k=1; $k <= $iterations; $k++)
 {
 $total = $total + $temp_values[$i][$next][$k][1];
 }

 $average_time_delta_zipped = $total/$iterations;

 $total=0;

 for ($k=1; $k <= $iterations; $k++)
 {
 $total = $total + $temp_values[$i][$next][$k][2];
 }

 $average_time_total_computation = $total/$iterations;

 $definitive_values[$i][$next][5] = $average_time_delta_uncompressed;
 $definitive_values[$i][$next][6] = $average_time_delta_zipped;
 $definitive_values[$i][$next][7] = $average_time_total_computation;
 }
 }

 # Writing all benchmark data to a text file

 open(FILE,">$datafile") or die "$datafile could nog be created\n";

 for ($m=1; $m <= $max_comparisons-1; $m++)
 {
 for ($n=$m+1; $n <= $max_comparisons; $n++)
 {
 print FILE "$m-$n \t
 $definitive_values[$m][$n][0] \t
 $definitive_values[$m][$n][1] \t
 $definitive_values[$m][$n][2] \t
 $definitive_values[$m][$n][3] \t
 $definitive_values[$m][$n][4] \t
 $definitive_values[$m][$n][5] \t
 $definitive_values[$m][$n][6] \t
 $definitive_values[$m][$n][7] \n";
 }
 }

 close(FILE);
}

Patch part

sub patch
{
 $tool = shift(@_);

The Royal Netherlands Army Command & Control Support Centre

Unclassified 93/99 Version 1.0

 for ($i=1; $i <= $max_comparisons-1; $i++)
 {
 for ($next=$i+1; $next <= $max_comparisons; $next++)
 {
 $zipped_delta = "zipped_delta_".$i."-".$next.".zip";
 $uncompressed_delta = "uncompressed_delta_".$i."-".$next.".txt";

 $cwd = getcwd();

 if ($cwd =~ /XML/)
 {
 $filename1 = "Data".$i.".xml";
 $filename_new = "Data".$next."b.xml";
 }
 elsif ($cwd =~ /Doc/)
 {
 $filename1 = "Data".$i.".doc";
 $filename_new = "Data".$next."b.doc";
 }
 elsif ($cwd =~ /Native/)
 {
 $filename1 = "Data".$i.".sxw";
 $filename_new = "Data".$next."b.sxw";
 }

 if ($tool eq "diff")
 {
 $command1 = "patch -o $filename_new $filename1 $uncompressed_delta";
 $datafile = "patch_diff_data.txt";
 }
 elsif ($tool eq "xdelta")
 {
 $command1 = "xdelta patch $uncompressed_delta $filename1 $filename_new";
 $datafile = "patch_xdelta_data.txt";
 }
 elsif ($tool eq "vcdiff")
 {
 $command1 = "vcundiff $filename1 < $uncompressed_delta > $filename_new";
 $datafile = "patch_vcdiff_data.txt";
 }
 elsif ($tool eq "deltaxml")
 {
 $command1 = "java -jar /home/infstud/mbroekma/benchmark/Tools/deltaxml/DeltaXMLAPI-2_8_1/command.jar
 recombine-forward $filename1 $uncompressed_delta $filename_new";
 $datafile = "patch_deltaxml_data.txt";
 }

 for ($j=1; $j <= $iterations; $j++)
 {
 $time0 = [gettimeofday];

 # The delta is unzipped

 $command2 = "unzip -o $zipped_delta $uncompressed_delta";
 system($command2);

 $time1 = [gettimeofday];

 # The old file is patched to get the new file

 system ($command1);

 $time2 = [gettimeofday];

 # Inspecting the file sizes

 @filestat1 = stat ($filename1);
 $size_old_file = $filestat1[7];

 @filestat1 = stat ($zipped_delta);
 $size_zipped_delta = $filestat1[7];

 @filestat1 = stat ($uncompressed_delta);
 $size_uncompressed_delta = $filestat1[7];

 @filestat1 = stat ($filename_new);
 $size_new_file = $filestat1[7];

 # Inspecting time intervals

 $time_unzipping = tv_interval ($time0, $time1);
 $time_patching = tv_interval ($time1, $time2);
 $time_total_computation = tv_interval ($time0, $time2);

 $definitive_values[$i][$next][0] = $size_old_file;
 $definitive_values[$i][$next][1] = $size_new_file;
 $definitive_values[$i][$next][2] = $size_zipped_delta;
 $definitive_values[$i][$next][3] = $size_uncompressed_delta;

 $temp_values[$i][$next][$j][0] = $time_unzipping;
 $temp_values[$i][$next][$j][1] = $time_patching;
 $temp_values[$i][$next][$j][2] = $time_total_computation;
 }

 # Calculating average time values

 $total = 0;

 for ($k=1; $k <= $iterations; $k++)
 {
 $total = $total + $temp_values[$i][$next][$k][0];

The Royal Netherlands Army Command & Control Support Centre

Unclassified 94/99 Version 1.0

 }

 $average_time_unzipping = $total/$iterations;

 $total=0;

 for ($k=1; $k <= $iterations; $k++)
 {
 $total = $total + $temp_values[$i][$next][$k][1];
 }

 $average_time_patching = $total/$iterations;

 $total=0;

 for ($k=1; $k <= $iterations; $k++)
 {
 $total = $total + $temp_values[$i][$next][$k][2];
 }

 $average_time_total_computation = $total/$iterations;

 $definitive_values[$i][$next][4] = $average_time_unzipping;
 $definitive_values[$i][$next][5] = $average_time_patching;
 $definitive_values[$i][$next][6] = $average_time_total_computation;
 }
 }

 # Writing all benchmark data to a text file

 open(FILE,">$datafile") or die "$datafile could nog be created\n";

 for ($m=1; $m <= $max_comparisons-1; $m++)
 {
 for ($n=$m+1; $n <= $max_comparisons; $n++)
 {
 print FILE "$m-$n \t
 $definitive_values[$m][$n][0] \t
 $definitive_values[$m][$n][1] \t
 $definitive_values[$m][$n][2] \t
 $definitive_values[$m][$n][3] \t
 $definitive_values[$m][$n][4] \t
 $definitive_values[$m][$n][5] \t
 $definitive_values[$m][$n][6]\n";
 }
 }

 close(FILE);
}

Main procedure which calls all other procedures

sub doEverything
{
 $time_start_benchmark = [gettimeofday];

 # diff

 @diff_dir = ('/home/infstud/mbroekma/benchmark/Word_Files_Data_Sets/MS_Word_XML/Graphics',
 '/home/infstud/mbroekma/benchmark/Word_Files_Data_Sets/MS_Word_XML/Only_text');

 foreach my $dir (@diff_dir)
 {
 chdir $dir;
 delta("diff");
 patch("diff");
 }

 # xdelta

 @xdelta_dir = ('/home/infstud/mbroekma/benchmark/Word_Files_Data_Sets/MS_Word_XML/Graphics',
 '/home/infstud/mbroekma/benchmark/Word_Files_Data_Sets/MS_Word_XML/Only_text',
 '/home/infstud/mbroekma/benchmark/Word_Files_Data_Sets/MS_Word_Doc/Graphics',
 '/home/infstud/mbroekma/benchmark/Word_Files_Data_Sets/MS_Word_Doc/Only_text',
 '/home/infstud/mbroekma/benchmark/Word_Files_Data_Sets/Open_Office_Writer_Native/Graphics',
 '/home/infstud/mbroekma/benchmark/Word_Files_Data_Sets/Open_Office_Writer_Native/Only_text',
 '/home/infstud/mbroekma/benchmark/Word_Files_Data_Sets/Open_Office_Writer_Doc/Graphics',
 '/home/infstud/mbroekma/benchmark/Word_Files_Data_Sets/Open_Office_Writer_Doc/Only_text');

 foreach my $dir (@xdelta_dir)
 {
 chdir $dir;
 delta("xdelta");
 patch("xdelta");
 }

 # vcdiff

 @vcdiff_dir = ('/home/infstud/mbroekma/benchmark/Word_Files_Data_Sets/MS_Word_XML/Graphics',
 '/home/infstud/mbroekma/benchmark/Word_Files_Data_Sets/MS_Word_XML/Only_text',
 '/home/infstud/mbroekma/benchmark/Word_Files_Data_Sets/MS_Word_Doc/Graphics',
 '/home/infstud/mbroekma/benchmark/Word_Files_Data_Sets/MS_Word_Doc/Only_text',
 '/home/infstud/mbroekma/benchmark/Word_Files_Data_Sets/Open_Office_Writer_Native/Graphics',
 '/home/infstud/mbroekma/benchmark/Word_Files_Data_Sets/Open_Office_Writer_Native/Only_text',
 '/home/infstud/mbroekma/benchmark/Word_Files_Data_Sets/Open_Office_Writer_Doc/Graphics',
 '/home/infstud/mbroekma/benchmark/Word_Files_Data_Sets/Open_Office_Writer_Doc/Only_text');

 foreach my $dir (@vcdiff_dir)
 {
 chdir $dir;
 delta("vcdiff");
 patch("vcdiff");

The Royal Netherlands Army Command & Control Support Centre

Unclassified 95/99 Version 1.0

 }

 # deltaxml

 @deltaxml_dir = ('/home/infstud/mbroekma/benchmark/Word_Files_Data_Sets/MS_Word_XML/Only_text',
 '/home/infstud/mbroekma/benchmark/Word_Files_Data_Sets/MS_Word_XML/Graphics');

 foreach my $dir (@deltaxml_dir)
 {
 chdir $dir;
 delta("deltaxml");
 patch("deltaxml");
 }

 $time_end_benchmark = [gettimeofday];

 # The benchmark is completed and the total computation time is calculated

 $total_time_running = tv_interval ($time_start_benchmark, $time_end_benchmark);

 print "\nBenchmark process completed in $total_time_running seconds\n";
}

doEverything;
exit(0);

The Royal Netherlands Army Command & Control Support Centre

Unclassified 96/99 Version 1.0

Word/Writer Data Sets

MS Word Doc Data Sets

0

50.000

100.000

150.000

200.000

250.000

1 2 3 4 5 6 7 8 9 10 11 12

Fi
le

 s
iz

e
(b

yt
es

)

Graphics Only text

Figure 1: MS Word Doc Data Sets

MS Word XML Data sets

0

100.000

200.000

300.000

400.000

500.000

600.000

1 2 3 4 5 6 7 8 9 10 11 12

Fi
le

 s
iz

e
(b

yt
es

)

Graphics Only text

Figure 2: MS Word XML Data Sets.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 97/99 Version 1.0

OpenOffice.org Writer Doc Data Sets

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

180.000

200.000

1 2 3 4 5 6 7 8 9 10 11 12

Fi
le

 s
iz

e
(b

yt
es

)

Gaphics Only text

Figure 3: OpenOffice.org Writer Doc Data Sets.

OpenOffice.org Native Data Sets (xsw)

0

20.000

40.000

60.000

80.000

100.000

120.000

1 2 3 4 5 6 7 8 9 10 11 12

Fi
le

 s
iz

e
(b

yt
es

)

Graphics Only text

Figure 4: OpenOffice.org Writer Native Data Sets (xsw).

The Royal Netherlands Army Command & Control Support Centre

Unclassified 98/99 Version 1.0

Comprehensive Graphics Data Sets

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

1 2 3 4 5 6 7 8 9 10 11 12

Fi
le

 s
iz

e
(b

yt
es

)

MS Doc MS XML OpenOffice.org Doc OpenOffice.org Native (xsw)

Figure 5: Comprehensive Graphics Data Sets.

Comprehensive Only text Data Sets

0

50.000

100.000

150.000

200.000

250.000

1 2 3 4 5 6 7 8 9 10 11 12

Fi
le

 s
iz

e
(b

yt
es

)

MS Doc MS XML OpenOffice.org Doc OpenOffice.org Native (xsw)

Figure 6: Comprehensive Only text Data Sets.

The Royal Netherlands Army Command & Control Support Centre

Unclassified 99/99 Version 1.0

Excel/Calc Data Sets
MS Excel & OpenOffice.org Calc Data Sets

0

200.000

400.000

600.000

800.000

1.000.000

1.200.000

1.400.000

1 2 3 4 5 6 7 8 9 10 11 12

Fi
le

 s
iz

e
(b

yt
es

)

MS xls MS XML OpenOffice.org Native (sxc) OpenOffice.org xls

Figure 7: MS Excel & OpenOffice.org Calc Data Sets.

