
Unclassified

Tracing Distributed Corba Applications

Date: June 2, 2004
Thesis number: 528

Name: ir. S.W van Swelm
Student number: 0023442
Education: Informatics
Specialisation: Information Systems

Institute: University of Nijmegen
Department: Software Technology
Internal Supervisors: dr. M.C.J.D van Eekelen,

ir. R.G de Vries
Referent: dr.ir. G.J. Tretmans

Company: Thales Naval Netherlands
ID Number: di519
External Supervisor: Piet Griffioen
Department: Combat Systems, Innovation

Unclassified

Table of Contents

SUMMARISATION...5

PREFACE...6

1 THESIS INTRODUCTION ...9
1.1 BACKGROUND ...9

1.1.1 Products & Technology...9
1.1.2 Thales History ...9
1.1.3 Thales Middleware Technology ..10

1.2 PROBLEM DEFINITION ..11
1.3 OBJECTIVES & RESEARCH QUESTIONS...12
1.4 THESIS ARRANGEMENT..13
1.5 RESEARCH RESULTS ...14

2 INTRODUCTION TO COMPONENT TESTING ..17
2.1 COMPONENT BASED DEVELOPMENT TERMINOLOGY ..17

2.1.1 DOC Middleware...17
2.1.2 Components..17
2.1.3 Component Interface ..17
2.1.4 Component Model...18

2.2 COMPONENT TESTING DEFINITIONS..18
2.2.1 Component Testing...18
2.2.2 Component Tracing ..18
2.2.3 Component Testability ..18

2.3 COMPONENT TESTING PROBLEMS..19
2.3.1 Distributed Programs Problems..20
2.3.2 Debugging Problems ..20

2.4 COMPONENT TESTING ENVIRONMENT...21
2.4.1 Control Framework ...21
2.4.2 Tracing Framework ...23

3 A HIGH LEVEL DESIGN FOR A GENERIC CORBA FRAMEWORK ...27
3.1 TRACING LAYER ..28

3.1.1 Trace Retrieval & Processing ...28
3.1.2 Deployment...29
3.1.3 Management ...29

3.2 INFORMATION LAYER..30
3.3 MONITOR LAYER ...30

3.3.1 A New Application of Network Diagrams..31
3.4 EVALUATION..32

4 INTRODUCTION TO CORBA MIDDLEWARE ...35
4.1 CORBA OBJECT MODEL ...35

4.1.1 The Object Request Broker ..35
4.1.2 Stubs and Skeletons...35
4.1.3 The Interposable Object Reference..36
4.1.4 The Interface Definition Language..36
4.1.5 Corba Services ...37

4.1.5.1 Interface Repository ...37
4.1.5.2 Dynamic Invocation Interface & Dynamic Skeleton Interface ...37

4.2 CORBA COMPONENT MODEL..37
4.2.1 Component Container...38
4.2.2 CCM components ...39
4.2.3 Component Home...39
4.2.4 Corba Communication ..40

5 AN EVALUATION OF TRACE DATA INTERCEPTION TECHNIQUES FOR CORBA43
5.1 MIDDLEWARE INTERCEPTION PROGRAMMING TECHNIQUES..43

5.1.1 Debug instrumentation..43
5.1.2 Pre-processing Instrumentation..44
5.1.3 Adapter Instrumentation ...45
5.1.4 Stub and Skeleton Instrumentation...45

Unclassified

5.1.5 Middleware Instrumentation..45
5.1.6 Interface Wrapping..45
5.1.7 Network Message Tracing ..46

5.2 CORBA META PROGRAMMING MECHANISMS ...46
5.2.1 Request Interceptors...47
5.2.2 Smart Proxy ..51
5.2.3 Servant Manager ..53
5.2.4 Pluggable Protocol..53

5.3 COMPARISON OF TRACE DATA INTERCEPTION TECHNIQUES ..55
6 AN EVALUATION OF CORBA TESTING TOOLS...59

6.1 CRITERIA FOR COMPARISON OF TEST FRAMEWORKS ..59
6.1.1 Controllability Functionality ...59
6.1.2 Message Observability ...59
6.1.3 Tracing Framework Performance ...60
6.1.4 Interoperability Functionality ...61

6.2 CORBA TEST TOOLS UNDER EVALUATION ...62
6.2.1 DSC toolkit ..62
6.2.2 Corba Trace ..66
6.2.3 The Silk Testing Toolkit...70

6.2.3.1 Silk Observer ..70
6.2.3.2 SilkTest...72
6.2.3.3 Silk Performer...72

6.2.4 Ethereal...73
6.2.5 MCITT ...74

6.3 AN EVALUATION OF CORBA TEST FRAMEWORKS ..75
6.3.1 Controllability Functionality ...75
6.3.2 Trace Observability Functionality..76
6.3.3 Tool Performance ...77
6.3.4 Tool Interoperability ..78
6.3.5 Final Comparison..79

7 AN ANALYSIS FOR A TRANSPARENT CORBA TRACING MECHANISM...83
7.1 TRACING DATA INTERCEPTION ...83

7.1.1 Message Communication ID...83
7.1.2 Timing Data...84
7.1.3 Context Data ...86
7.1.4 Component Instance ID ..87
7.1.5 Message Contents Data ...87

7.1.5.1 A New Transparent Proxy Mechanism for tracing message contents ..89
7.2 TRACING MECHANISM DEPLOYMENT...92
7.3 TRACING MECHANISM MANAGEMENT..93
7.4 TRACING MECHANISM PROCESSING ...94
7.5 EVALUATION..95
7.6 TOOL DEVELOPMENT RECOMMENDATIONS ..96

8 CONCLUSION...97

BIBLIOGRAPHY ..101

APPENDIXES...105
APPENDIX A: IOR...106
APPENDIX B: GIOP/IIOP..108
APPENDIX C: CORBA TELECOM LOGGING SERVICES ..111
APPENDIX D: CORBA SCRIPTING LANGUAGE ..112
APPENDIX E: TCL SCRIPTING LANGUAGE...113
APPENDIX F: LOGICAL CLOCK LIMITATIONS..114
APPENDIX G: REQUEST & REPLY FLOW ..115
APPENDIX H: REQUEST INFORMATION ..116
APPENDIX I: SERVICE CONTEXT DATA ...117
APPENDIX J: PICURRENT..118
APPENDIX K: INSTALLING INTERCEPTORS ..119
APPENDIX L: IOR INTERCEPTORS ...121
APPENDIX M: HISTORY OF THE PORTABLE INTERCEPTOR ...122

Unclassified

Unclassified

Date: 30-06-04 Page: 5

Summarisation
The software industry is realising the importance middleware for the construction of large complex distributed
systems. Corba is a distributed object middleware technology, which allows the communication of distributed
objects over a shared network and can be used for construction of distributed systems. Distributed Systems
must just like regular system be tested to validate their functionality. However, unlike regular single process
applications, testing a distributed system is a lot more difficult. Distributed computing environments usually
consist of several physical machines with different hardware configurations, having installed different operating
systems and middleware software, with different characteristics of the network connections between them.
Unfortunately, traditional tracing mechanisms were usually developed for use in single-computer environment.
Language level debuggers are therefore not very suitable for testing Corba applications because they are bound
to a specific programming language, have no knowledge of components and manage distributions in proprietary
ways.

In order to validate a distributed system, the tester must be able to observe the inside of a distributed system by
tracing the internal communication events between all distributed objects. However, the internal communication
in a distributed object middleware is normally hidden from the outside world. We therefore need tracing
mechanisms, which can extend the middleware with tracing functionality. In order for a tracing mechanism to
collect tracing data, we need to know which techniques are available to intercept communication from a
distributed system. Our thesis will therefore evaluate several Corba techniques for interception tracing data.
Besides conventional tracing programming techniques, we also looked at tracing potentials of existing Corba
meta-programming mechanisms. All tracing techniques are eventually compared based on the characteristics,
which are valuable for the construction of a tracing mechanism. For one of the meta-programming techniques,
the portable request interceptor, we analysed how the technology could be used for the construction of a fully
transparent tracing mechanism.

Because today’s system consists of highly heterogeneous distributed computing environments, a trace of a
distributed application can cross multiple technology boundaries. Our thesis addresses this problem by
introducing a high level design for generic tracing framework. The generic tracing framework is designed to allow
multiple middleware tracing mechanisms to collect tracing data and present it to the tester from a single monitor
interface. Besides the design for a new testing tool, we also looked at several existing tools, which are designed
to test Corba applications. Our thesis contains a detailed evaluation of several Corba testing tools, analyses
their tracing mechanism and compares them based on a comprehensive list of criteria.

Unclassified

Date: 30-06-04 Page: 6

Preface
This report is the result of project performed at Thales Naval Netherlands in Hengelo. This report also fulfils the
role of thesis for my graduation in Computer Engineering at the University of Nijmegen.

The reason I participated in this in project is that it was in line with my chosen graduation direction and because
of my interest for middleware technology.

Many people contributed to my project for which I would like to pay my gratitude:

• First, I would like to thank my roommates, who never gave me a dull moment at Thales. The overall

experience at Thales was enjoyable and undoubtedly a very valuable experience for my career.
• Second, I would like to thank my supervisors from the University, Marko van Eekelen, Rene de Vries, and

Jan Tretmans, for their time, interest, and their wisdom. They provided valuable feedback and constructive
criticism on my work, which helped improving it.

• Furthermore, I want to express my deep personal thanks to my supervisor at Thales, Piet Griffioen for his
patience, and for being and motivation inspiration during time at Thales. It was very pleasant working with
him and he was always helpful in discussing about my work.

• Special thanks to Harrold J. Batterham of Lucent Technologies for providing the DSC Toolkit and for
answering my questions about tracing.

• Last, but not least I want to thank my family for their support and motivation during my work on my Thesis.

Unclassified

Date: 30-06-04 Page: 7

Unclassified

Date: 30-06-04 Page: 8

Unclassified

Date: 30-06-04 Page: 9

1 THESIS INTRODUCTION
In this chapter has the following structure:

• Paragraph 1.1: Background. In the first paragraph, we tell something about the background information of our

thesis at Thales Netherlands.
• Paragraph 1.2: Problem Definition. In this paragraph, we explain the Corba testing problem and why

additional testing techniques or test tools are required.
• Paragraph 1.3: Objectives & Research questions. In this paragraph, we explain on what main questions we

have tried to find an answer during our internship.
• Paragraph 1.4: Thesis Arrangement. In this paragraph, we will give a short overview of how we arranged the

chapters, what to expect and how the thesis can be read.
• Paragraph 1.5: Research results. In our final paragraph of this chapter, we discuss the results of thesis and

its value for Thales.

1.1 Background
Because we conducted our research at Thales Netherlands, we will first tell sometime about Thales their
products and technology, history and plans to use Corba middleware as part of their middleware architecture.

1.1.1 Products & Technology
Thales Netherlands creates high-tech defence solutions for naval and ground based environments. They
combine their extensive and long experience with ongoing search for new techniques and technologies. This
has resulted in a vast expertise in the field of radar, infrared, weapon control, display technology, communication
equipment, and software support. The product range of Thales Naval Netherlands compromises system suitable
for all classes and types of naval vessels, any weapon systems and any mission. Modern and highly capable
sensor suites, together with the combat management system TACTICOS, equip new generation of frigates,
corvettes and fast attack craft throughout the world. The naval capabilities include sophisticated anti-air warfare
systems featuring APAR, GOALKEEPER, SMART-L and SIRUS. Thales Ground Based Systems provides
solution for integrating air defence surveillance, track, and fire control purposes, as well as for border and
battlefield surveillance purposes.

1.1.2 Thales History
Thales Netherlands history goes back a long way:
• In 1922, Thales Netherlands was founded under the name “NV Hazameyer’s Fabriek van Signaalapparaten”

to produce fire control equipment. The company grew rapidly and welcomed costumes from Sweden, Spain,
and Greece.

• During World War II, the German army captured the factory virtually intact. Fortunately, a large number of
the staff were able to escape to the United Kingdom and continued to work on there on fire control systems

• After the war, the Dutch government bought the factory and continued the company under the name “N.V.
Hollandse Signaalapparaten”. In those years a lot of new techniques and technologies were developed,
such as radar, fire control, computers, and air control equipment.

Figure 1.1: Some of Thales products: (from left to right): SMART-L, APAR, GOALKEEPER

Unclassified

Date: 30-06-04 Page: 10

• In 1956, PHILIPS bought a large part of the shares from the government and became the main shareholder.
The company flourished and opened plants in several cities across the country. Near the end of the eighties,
Signaal employed over 5000 people and served customers in over 35 countries.

• After Cold War ended, Signaal was forced to reorganise and reduce staff due to the changed political
theatre. Meanwhile PHILIPS decided Defence and Control Systems were not part of it core-business and
therefore sold it in 1990 to Thomson-CSF. After the reorganisation and merger with Thomson-CSF, the
company regained a new driving force. New systems were deigned, taking a leap in defence equipment and
combat system.

• In 2000, Thomson-CSF changed its name to Thales. Being a member of this group, Thomson-CSF Signaal
changed its name to Thales Netherlands.

1.1.3 Thales Middleware Technology
In the last twenty years, there has been a trend from custom build software and hardware systems to
Commercial Off-The-Shelf (COTS) based systems. The practice of COTS is known in the engineering world to
reduce cost, time, and risk. Building software systems based on COTS also offers several other advantages like
the availability of tools and people specialised in standard software technologies. Because the advantages of
COTS, the market is increasingly, demanding generic software solution based on COTS standards.

Customers of Thales are no exception to these market changes are demanding software solutions build with
middleware standards. The role of the middleware is to ease the task of designing, programming and managing
distributed applications by providing a simple, consistent and integrated distributed programming environment.
Essentially the middleware is a distributed software layer/platform, which abstracts over the complexity and
heterogeneity of the underlying distributed software with its multitude of network technologies, machine
architectures, operating systems, and programming languages.

Thales originally developed all their middleware based on their own system requirements. Thales middleware
solution, called SPLICE, is a data distribution software product designed specifically to let the operational
software processes (TACTICOS) exchange data with each other and with Thales radar systems like
APAR/SMART-L. SPLICE is a real-time distributed database management system (RDBMS) based on the
publish-subscribe paradigm. In a publish-subscribe paradigm, client and server process are decoupled from
each other and communication is one directional. A client process therefore does not communicate directly with
a server process directly (point to point) but indirectly trough Topics. The SPLICE middleware takes care of
delivering Topics published by servers to clients processes subscribed on a that Topic. Multiple server
processes can publish the same Topics while a client can subscribe on multiple Topics. The advantage of this
mechanism is that there is no single point of failure. For example, if a radar system on a ship fails to produce
track data, redundant radar systems can transparently take over it functionality without having to reconfiguring
the clients subscribed on this track data.

In the light of customer standardisation requirements, Thales wants to evolve their distributed system based on
proprietary middleware to software systems base one generic middleware standard. However, some of Thales
systems have very high performance and technical requirements, which could not be replaced by equivalent
middleware technology. Thales Naval builds, very large complex systems with very diverse performance
requirements. Therefore based on the system performance requirements (real-time, near real-time and non real-
time), Thales divided their system architecture in three separate segments; Command Execution, Command &
Control and Command Support. Combat Execution, is used for tactical operations like controlling weapon
systems, Combat Control is used for radar systems and Combat Support for administrative systems. In figure
1.2 we can see that each segment consists of tree separate layers, the application layer, the business layer, and
the data layer. This three-tier architecture, which makes an abstract distinction between presentation, business
logic, and information storage, allows Thales the construction of large, scalable, reusable systems.

Although SPLICE is a highly effective versatile software product, it was never intended as a standard. However,
the fast response times and fault tolerance requirement that are crucial for the effectiveness of Combat
Execution, could not be replaced by any exiting COTS middleware solution. Thales therefore is currently in the
process of standardising their SPLICE technology (SPLICE-2) as the new Data Distribution Standard (DDS)
standard at the Object Management Group (OMG). The OMG is a consortium, which includes over 800+
companies represents the entire spectrum of the computer industry.

Unclassified

Date: 30-06-04 Page: 11

The Command & Control, and Command Support segments one the other hand, have much lower performance
requirements and can be replaced by existing COTS software solutions. One of these COTS middleware
solutions found suitable to replace SPLICE middleware is the recently adopted OMG Corba Component Model
(CCM). Because there was no suitable implemented version of CCM, Thales had to develop lightweight
implementation of CCM themselves, which they called PERCO. In order to support the same functionary as
SPLICE, PERCO also implements many other services like fault tolerance (FT-Corba) and Real-time
functionality (RT-Corba). Thales plans to integrate PERCO in its development process and is currently looking at
new tools, which can support the construction of high quality software.

1.2 Problem Definition
In the previous paragraph, we explained why Thales wants to use Corba middleware technology in their system
architecture. In this paragraph, we explain the challenges Thales is faced with in respect to the integration of
Corba technology. Although testing services are on the PERCO roadmap, other services currently have a higher
priority. However, the construction of reliable Corba applications requires more than the availability of a CCM
middleware implementation, they also require the tools to develop them.

Verifying Corba applications consisting of multiple individual software modules running in a distributed
environment is not an easy task. Corba software modules collaborate with each other in complex ways to
achieve the application goals. Although Thales SPLICE applications have to achieve similar goals, in contrast to
Corba, SPLICE processes are a lot easier to diagnose. While it is sufficient for testers verify SPLICE application
functionality by monitoring input and output of the individual Splice processes, a tester would quickly lose track
of the overall distributed functionality when trying to diagnose a Corba application in a similar way. This is
because Corba message communication is in contrast to Topic communication, a lot more diverse and context
sensitive.

Testers therefore need to diagnose a distributed system at the abstraction level of a distributed system. To verify
the correct behaviour of a distributed system, we need a tracing mechanism, which can trace an application
‘step by step’. Tracing a Corba application ‘step by step’ allows the tester not only to verify behaviour and
integrity of each separate Corba process, but also the interactions between the processes. While SPLICE Topic
messages that can are retrieved from the Splice RDBMS with a Splice tool, there is no similar tool available for
Corba. Corba messages communication only travel directly or indirectly trough services between Corba
processes and will be lost after a message reached its destination. Our tracing mechanism therefore needs to
intercept the communication before it becomes lost.

 Page 2

Architectural Vision for FCMS SA development

Application
layer

Business
layer

Data layer

Command SupportCommand & ControlCommand Execution

HTML
page

Java
application

Web
server side
component

EJB
component

Situation
Database

Doctrine
Database

Standards

Standards

C++
component

C++
component

wrapped
component

Platform
(RDBMS)Track DB

(SPLICE 2)
ESM

(RDBMS)

Java TWIST
service

C++
application

Java TWIST
service

New
WP

T1 datasorts
 (SPLICE 1)

T1
WP

New datasorts
(SPLICE 2

Standards

Standards

T1 PA

T1 PA

New
PA

T1
SA

New SA

New
PA

SPLICE 1/2

SPLICE 1/2

 (real-time) (near real-time) (not real-time)

Figure 1.2: Thales Middleware Segment Architecture

Unclassified

Date: 30-06-04 Page: 12

In order for the tracing mechanism to intercept the Corba message communication flowing through a Distributed
System, the system must be extended with tracing functionality. However, care should be taken not affect the
functionality the existing distributed system or the development new distributed applications. The testing
mechanism should therefore be as transparent as possible, which means that it should be able to test Corba
application without altering its source code.

Although one would expect that tracing is hot topic in Corba, tracing currently does not receive the attention it
deserves in the Corba community. Although the OMG has specified a Corba Scripting language [IDLScript] for
testing Corba Applications, none of their specification documents mention the words monitoring or tracing
anywhere and neither is there any OMG special interest group investigating Corba the testing problems. Instead,
the OMG Corba community is mostly focused on adding additional middleware functionality like fault tolerance
and security services.

1.3 Objectives & Research Questions
Our initial goal was to find a solution for “Thales Corba testing problem”. More specifically, we wanted to find the
answer on the question: “What is required to test Thales Corba Applications? ”. Because Corba is a standard
middleware product, the same research question is therefore also be applicable outside Thales. We can
therefore rephrase the question to “What is required to test Corba system? ”. However the answer to this
question soon turned out to be too diverse, therefore we narrowed the thesis question down to the part which
proved to be most interesting aspect of test Corba application, which is “How to Trace Corba applications? ”.
Because this report is mainly written as an advice for Thales Netherlands, we divided the thesis research
question into two research questions, which is “how to test Corba applications with existing tools?” and “how to
create a new Corba application tracing tool”. Each of these questions is further divided further in sub questions:

How to test Corba applications with existing tools?
• What are the problems when tracing Corba Applications? We answer this question by looking at the

common problems when testing distributed applications.
• What should a good Corba tracing tool be able to do? We answer this question by listing the criteria for our

ideal tracing tool.
• What tools exist for testing Corba applications? We will answer this question by reviewing several tools and

compare them with each other based on the criteria we already set.

How to create a new transparent Corba tracing tool?
• What middleware techniques could be used to trace Corba Application? We answer this question by listing

available techniques for tracing distributed applications and compare them with each other based on the
characteristics, which allow the construction of a good tracing mechanism.

• What tracing facilities does Corba middleware facilitate? We answer this question by reviewing the facilities
available in the Corba middleware possibly could be used for tracing.

• How can we build a transparently tracing mechanism? We answer this question by analysing the possible
usage of interceptors for gathering tracing information transparently.

Our thesis is focused on finding a solution for the above-mentioned research questions, which should allow
Thales Netherlands get a better understanding of what is needed to test their Corba Applications. The approach
for our thesis was therefore based on defining research questions, answering them to the best of our ability and
evaluates them of their usefulness.

Unclassified

Date: 30-06-04 Page: 13

1.4 Thesis Arrangement
Although our thesis is arranged in such a way that it be read from begin to end, a reader familiar with Corba
middleware and Corba tracing techniques can skip directly to the chapter of interest. Because Corba
applications are essentially distributed applications, we often generalise the Corba tracing problem to a generic
tracing problem, where applicable. Our chapter and paragraphs are therefore arranged in such a way that we
first describe the generic case before we discuss Corba specific characteristics.

In figure 1.3, we can see that our thesis is arranged in such a way that each chapter build further on the contents
described of the previous chapters. To improve the reading experience of the reader we located technical
details, which are not of immediate importance for the reader in the appendixes.

Chapter1

Chapter 2

Chapter 3 Chapter 4

Chapter5

Chapter 6 Chapter 7

Chapter 8
Figure 1.3: Chapter hierarchy

Chapter 1 to 8 contains the following information:

• Chapter 1: Introduction. The first chapter serves at the introduction to the rest of the thesis. The introduction

includes a brief description of the Thales background story, problem definition, research questions we will
answer during the length of this chapter and research results.

• Chapter 2: Introduction to Component Testing: This chapter serves as an introduction to components
testing. We start by explaining the main concepts used in component based software and discuss the
terminology used for component testing. We then explain the difficulties associated with testing Component
Based Applications and why we need a component-testing framework. We end the chapter by explaining the
main characteristics of a component testing framework

• Chapter 3: A high Level Design for Generic Tracing Framework. In this chapter, we introduce a generic
tracing framework, which would Thales to trace their components in a heterogeneous distributed
environment. We discuss the generic architecture and tasks that should be fulfilled by the framework.

• Chapter 4: An Introduction to Corba Middleware. In this chapter will introduce the Corba middleware
technology. We first explain the main functionality and concepts used by Corba Object Model and then
introduce the Corba Component Model, which build further on top of Corba Technology.

• Chapter 5. An Evaluation of Trace Data Interception Technique for Corba. After the introduction of Corba
technology, we investigate the common middleware programming techniques and Corba meta-programming
techniques to collect tracing data from a distributed Corba application.

• Chapter 6. An Evaluation of Corba Testing Tools. In this chapter, we will investigate several COTS
solutions, which can be used to trace Corba systems.

• Chapter 7. An Analysis for a Transparent Tracing Mechanism. In this chapter, we investigate how the
Portable Request Interceptors can be used to realise a transparent tracing mechanism for intercepting
tracing data in a distributed Corba system.

• Chapter 8. Conclusion & Recommendations. In the final chapter of this thesis, we will summarise our main
conclusions and give recommendations for the Corba testing problem.

Unclassified

Date: 30-06-04 Page: 14

1.5 Research Results
Overall, our thesis serves as an investigation of the problems and solutions for testing Corba systems.

In the context of our investigation, we have made the following research results:

• In paragraph 2.4.2, we give an overview of the most important tasks and problems of a tracing framework

and we give an insight in potential application for a tracing framework in the development of distributed
systems. This insight will be valuable for developers that want to get a wider perspective of the benefit of a
tracing framework.

• In chapter 3, we introduce a high level design for generic tracing framework, which can serve a generic
architecture for collecting tracing data in a heterogeneous environment. This design will allow the reader
get a better insight in the problem and challenges a generic tracing framework is faced with.

• In paragraph 5.1, we made a list of conventional middleware programming techniques, which can be used
to retrieve tracing data from a distributed system. This information will be useful for any middleware
developer that wants to understand the advantages and disadvantage of programming techniques, which
can be applied on any distributed object middleware technology.

• In paragraph 5.2, we reviewed several Corba meta-programming mechanism in the context of tracing. This
insight will be valuable for any Corba developer that wants to understand the possibilities and limitation of
meta-programming mechanism in the construction of Corba middleware services

• In paragraph 5.3, we made a comparison of all discussed trace data interception techniques and compare
them with each other. This insight will allow the reader to get an overall picture of the advantages and
disadvantages of the discussed techniques for the construction of a good tracing mechanism. The criteria
used for our comparison can also serve as instrument for measuring the tracing value of programming
techniques, which are not included in our evaluation.

• In chapter 6, we describe several COTS Corba testing tools, which we compared with each other based on
criteria desired for a good testing framework. Special attention has been given to a new tracing tool, which
has recently become available on the market. This information will be valuable for testers that a looking for
a good Corba testing tool. The criteria used for the comparison can also be used as an instrument for
evaluating other tools, which are not included in our evaluation.

• In chapter 7, we made an analysis of the application of the portable request interceptor for the development
of a transparent tracing mechanism. This information allows the reader to understanding in the problems
and possible solutions a developer is faced with when developing a tracing framework.

Unclassified

Date: 30-06-04 Page: 15

Unclassified

Date: 30-06-04 Page: 16

Unclassified

Date: 30-06-04 Page: 17

2 INTRODUCTION TO COMPONENT TESTING
In this chapter, we will explain why and how we need to test Corba applications.

We will discuss the following topics:
• Paragraph 2.1: Component Based Development Terminology. In this paragraph, we will introduce the reader

to some important terminology used in component-based development.
• Paragraph 2.2: Component testing Definitions. In this paragraph we introducing the reader to component

testing is and how we approach it.
• Paragraph 2.3: Component testing Problems. In order to get a better understanding of component based

testing we explain what the problems of testing distributed applications and why traditional testing
techniques are not effective.

• Paragraph 2.4: Component testing Environment. In this paragraph, we will explain what is required to create
a component testing environment which can help the tester verify component based application.

2.1 Component Based Development Terminology
Because the goal of our thesis is to test component-based application made in Corba middleware, we will first
discuss the main concepts used in Component Based Development (CBD).

2.1.1 DOC Middleware
One of the most popular middleware platforms is Distributed Object Component (DOC) Middleware. DOC
Middleware uses an object-based programming model in which application applications are structured into
potentially distributed objects (also called components) that interact via location transparent method invocation.
Prime examples of this type of middleware are OMG’s Corba, Microsoft’s DCOM and .Net.

DOC Middleware solutions usually offer the following standard mechanisms:

• An Interface Definition Language (IDL), which is used to abstracts over the fact that objects can be

implemented an any suitable programming language.
• An Object Request Broker (Orb), which is responsible for transparently directing method invocations to the

appropriate target object (servant).
• A set of common object services (COS), which further enhance the distributed programming environment.

In chapter 4, we will explain these mechanism in more detail.

2.1.2 Components
In contrast to normal objects, components are self-sufficient pieces of software that can inter-operate via
standard interfaces across networks, applications, languages, and platforms. However, in practice this
interoperability has not always happened. Certain manufactures of object technology like Microsoft (.NET) and
Sun (JAVA Beans) have their own standards and use it primarily to simplify their development for their own
operating system. A component is similar to a class in the sense that it defines the behaviour and structure of a
software component instance. Components are often implemented in the form of a module, which itself is an
executable. A running instance of such an executable could therefore be called a component instance.

Components are also a way to encapsulate functionality available for reuse in other environments. They can
offer the services of a traditional piece of code by wrapping around it and provide the interface for other services
to use. Conceptually a software component is a software element that must conform to a component model,
which can be independently deployed and composed without modification according to a composition standard.
For software components to be independently deployable, they need to be clearly separated from their
environment and from other components. To accomplish this, a software component encapsulates its
implementation and interacts with its environment through well-defined interfaces, which we explain in the next
paragraph.

2.1.3 Component Interface
A component interface provides methods to operate on and access to the public data within a component. To
enable reuse and interconnection of components, component producers and consumers often agree on a set of
component interfaces before the components are designed. A component interface therefore serves as a
binding contract between a software component and its clients. The interface obligates the component to
provide a certain set of services and tells its clients how it may use these services. Additionally, the interface
may define certain constraints on the usage of these services, which both the component and its clients must
adhere to. Although a component developer can decide to deploy the source code with the component,

Unclassified

Date: 30-06-04 Page: 18

developers of COTS components only want the customers to view the component by its interface definition
language (IDL). A component interface could therefore also serves as data hiding mechanism that masks the
component implementation from the component consumer.

2.1.4 Component Model
A component model defines how a component’s behaviour is described by means of interfaces, other non-
functional specifications, and appropriate documentation. Some components models, like Corba are also called
open component standard. A component model is called an open standard if multiple vendors can implement
the same component model. An advantage of open standard is that it can be used by any organisation that
wishes to create a component model implementation. A disadvantage of an open standard is that components
written for a specific component-model implementation might not always be compatible with other
implementation component-model. The reason for this incompatibility between component model
implementations is because of the competition between suppliers. Suppliers of component model
implementation try to win customers by offering extra non-standardised features. If a Component Model is open
standard, suppliers can also provide customers with the source code, which would allow enterprises to create a
customised version of a component model implementation. The component model implementation must provide
the necessary software to allow inter-component communication. The component model implementation is the
dedicated set of executables software elements necessary to support the execution of components within a
component model. A component model implementation can therefore act as a middleware technology in a three-
tier architecture. In the chapter 4, we introduce Corba object model, which forms the basis for the Corba
Component Model (CCM).

2.2 Component Testing Definitions
The history of software development has shown that there is insufficient attention for the testing. This while it
should have been an integrate part of the software development process in the first place. Component Based
Software is still a relatively young technology. While there are many books written about testing traditional
software, there is currently not a single book about Component testing. In addition, relatively few papers address
the problem of testing component-based software [Whitehead]. Because there is not a standardised terminology
in component testing, the literature uses different terms for the same component testing concepts. To prevent
further confusion we will first give some definitions of the most frequently used terms.

2.2.1 Component Testing
There are many ways of testing Component based systems. By Component testing, we specifically like to
mention that we do not mean testing the DOC Middleware that facilitates the communication e.g. the
Component Model, but rather the Component Based Applications. For example, the Term Corba Testing often
abused by tools that claim to ‘Test Corba’. However, they only test correct Corba Middleware behaviour, not
functional Corba Component behaviour. What we do mean with testing Components is testing functional
behaviour of individual Component in co-operation with each other in a component architecture environment.
Testing component in co-operation with each other can be accomplished by tracing Component interaction,
which will be discussed in the following paragraph.

2.2.2 Component Tracing
The word ‘tracing’ can often be a confusing term since it can be used for a wide range of meanings. A general
definition [Mann] for tracing is “a step-by-step execution of a software system conducted in order to gain extra
information or insight on how a system works, and which is not part of the normal execution output”. The
definition leaves a lot room for different interpretations since it’s not specified what is meant by ‘step by step
execution’. This was left intentional under-specified to make the definition scalable for a wide range of purpose.
For example, a ‘step’ might be represented by a very low-level step (like machine code instruction) or very high-
level step (communication between computers). Further ‘step-by-step execution’ does not necessarily mean the
system must halt between every step but it does require the ability to observe the trace. In our distributed
context, we are mostly interested in the lowest grain available in a distributed system, which are the
communication event in a distributed system. Thus by tracing a distributed system, we mean tracing component
interaction, e.g. monitoring the communication between components. Monitoring is essentially a less strict form
of tracing since it does not require a ‘step-by-step execution’. Monitoring is often associated with following a
process state online, over longer time period. Therefore, we prefer the term ‘tracing’ above the term ‘monitoring’
when observing the ‘step-by-step’ execution of a component-based application.

2.2.3 Component Testability
Testability is the ability to generate, evaluate, and apply tests to improve quality and minimise time-to-profit.
Software systems with a high testability simplify the software testing process. It quantifies the extent to which a

Unclassified

Date: 30-06-04 Page: 19

design or a fielded system can be tested for the presence of manufacturing defects or failures. A testable system
implies better fault coverage and fault isolation, shorter testing times, higher product quality, shorter time-to-
market, and lower life-cycle costs. In other words, the higher the testability, the better the tester will be able to
guarantee the overall quality of a software system.

Software system testability [Testability] can be increased from two viewpoints:

• Controllability of a System indicates how easy it is to control the software system under test, how easy is it

to simulate a testing scenario, triggering the desired operation and collect the retrieved output. High
controllability can be achieved by using a controlled test environment (see figure below), which can execute
a test case without interference of the outside environment. Creating a controlled component testing
environment will be further discussed in paragraph 2.4.

• Observability indicates how easy it is to observe a program in terms of traceability and how easy it is to
relate invoked inputs with its observed outputs on a component interface. The traceability of a component-
based application refers to the extent of tracing the application internal behaviour. In our thesis, we are
mainly interested in observing internal communication between components (see figure 2.1), which allows
us to diagnose distributed system. Therefore, techniques that allow the verification of testing input with
observed output fall outside the scope of our thesis.

External test input

External Observable Output

Testing environment

Component

Component Based Application

Component

Component

Internal
communication

Figure 2.1: Observability & Controllability of Component Based Applications

2.3 Component Testing Problems
In this paragraph, we discuss some of the problems when testing in a distributed environment and why
traditional software testing techniques do not work when testing component-based applications. Although
Software components are supposed to be reusable in different environments, testing reused components is
often an underestimated task. Due to lack of time, testers are often forced to select test cases based on the
highest probability of finding faults in their targeted environment and are therefore based on the most commonly
occurring inputs in a particular environment. Since these test cases can only verify a very small percentage of all
possible test cases, a test case will only be valid in that particular environment. The assumption that that a
tested component made in one particular component infrastructure is also valid in a new component
infrastructure is therefore flawed. An example where this assumption had devastating consequences was in the
infamous Ariane 5 rocket malfunction incident. The Ariane 5 rocket-guidance system reused software
components from the Ariane 4 program, but their internal mechanism was not properly documented.
Consequently, after a single uncaught exception caused by an integer overflow, resulting the entire control
system shut down in mid-air.

Unclassified

Date: 30-06-04 Page: 20

Distributed systems constructed from COTS component are inherently even more complex than systems that
are designed and written from scratch. One of the reasons for this is because of the enterprise heterogeneous
nature of components and interfaces. The third party components often evolve in a way that is not under the
control of the developers. This may include changes at the interface, requiring subsequent changes of the
distributed system in order to stay compatible with newer components. Distributed systems composed of
components from different vendors are particularly prone to problems, due to incompatibilities of versions, subtle
differences in interfaces, and implicit requirements of the components, which are frequently undocumented. This
is not surprising since there exists no standard way to describe the overall structure of such applications.
Because structural information is captured only in source code, where it is not available for high-level analysis
and documentation, the testability of a distributed system is further reduced.

2.3.1 Distributed Programs Problems
Distributed programs operate in a completely different environment than the single process environment.
Besides all of the well-known problems, that makes tracing traditional single computer environment difficult to
test, distributed software suffers from a whole range of extra problems which are part of the nature of distributed
systems.

Some examples of the common problems [Scallan] in testing distributed systems are:

• Deadlocks can appear because of faults in synchronisation protocol between components, which prevents

each other from completing their tasks. Deadlocks often only appear under special conditions and are
therefore difficult to locate.

• Control flow design errors, especially exceptions and failures with multiple modules can be difficult to detect.
In comparison to single process application, the control flow through a distributed application is usually
much more complex, leading to a variety of design errors.

• Race conditions can occur when parallel working components of a distributed application are not properly
synchronised to prevent different components from producing contradictory results. These synchronisation
errors, usually the result of latencies caused by the network or by other processes, tend to occur
sporadically and are not easy to reproduce.

• Timeout failures resulting from delays and bottlenecks in the network can cause distributed parts of an
application to time out and produce failures. These failures may propagate through the rest of an application
if not handled properly.

• Performance bottlenecks can appear in a distributed application when a complex operation is performed by
time critical process, which can substantially slowdown application overall application performance resulting
in race conditions.

• Network failures can often afflict a complex network. When network failures occur, it is important that the
tester is to be able to detect and circumvent each point of failure.

• Network resource limitations can cause a distributed system to fail when the size of a system is ramped up.
These scalability problems might not occur within single component testing configurations, but only appear
at later stage deployment in the form of limited connections or insufficient bandwidth.

2.3.2 Debugging Problems
In traditional single process environments, tracing is often achieved by stepping through the application with a
debugger tool. This tracing technique commonly referred a debugging, allows a programmer to trace an
application at the level of abstraction of the programming language. Usually, compilers implement debugging by
adding extra debugging information to the machine-level code so that every tracing step corresponds to a single
instruction in the source code. When debugging is activated, the inserted debugging information raises an
interrupt call at the instruction boundaries. After every interrupt call, control returns back to the debugger
allowing the programmer to check the current state of the system before executing the next instruction. By
repeating this debugging process, a programmer is able to walk through a single process-program “step-by-
step”.

Unfortunately, this tracing mechanism will not work in component-based systems. In order to diagnose the
problems mentioned in the previous paragraph, testers cannot simply debug a distributed system as if it was
conventional single application. Distributed objects reside on separate systems, each maintaining their own
memory and connections with other distributed objects. Moreover, distributed objects are implemented on
different operating systems and written in different languages. Therefore in order to set up a step-by-step test
through a distributed application with a debugger, testers would have fit every message entry and exit point
among numerous processes in the distributed system with a separate code debugger. Although it is possible to
set up debuggers at every process and step through a distributed application this way, it would be very time
consuming and awkward. Detecting scalability problems with debuggers would be outright impossible because

Unclassified

Date: 30-06-04 Page: 21

of the large number of processes debuggers required. In addition, because every debug step effectively halts
the distributed system, timeout problems can occur resulting in the total crash of distributed application.

Beside all the practical problems of debugging, debuggers would never be able to detect time critical failures
such as bottlenecks, race conditions, deadlocks and timeout failures because that would require real execution
time. Therefore, component-based applications require a completely different level of monitoring than traditional
single-process applications. One effective way of diagnosing a distributed application would be to use
component-testing environment, which will be explained in next paragraph.

2.4 Component Testing Environment
A DOC Middleware solution (like Corba) supports the construction of distributed systems containing many
components. These components can interact in complex ways, not necessarily conforming to a client-server
model. This is it is also the reason why testing these systems in isolation is so difficult because each component
can have complex dependencies on any number of components.

We have explained that Language level debuggers are not very suitable for testing component based systems
because they have no knowledge of components infrastructure and are often limited to boundaries of the same
machine. Therefore, a tester needs techniques to verify component at the abstraction level of its design. To
accomplish this, a tester needs a testing environment that can verify the behaviour and integrity of each
separate component as well in co-operation with each other. In order to allow the tester to create a controlled
test environment, the tester needs methods to trigger the components under test, monitor its interactions with
other components, and verify the data flow through a distributed system with its system specification. We
therefore need a test framework that is able to verify the correct behaviour of Corba Applications. By a Corba
test framework, we mean a collection of components, which cooperate with each other to allow the tester, verify
the behaviour of a Corba Applications with is intended behaviour.

We can divide required testing framework into two separate sub frameworks:

• A Control Framework, allows the construction of a controlled testing environment for the distributed system

under test. A control framework usually consists of Active and Passive test components called Actors and
Reactors. Actors act as client components, which can be controlled manually by the tester or automatically
by some script. Reactors are prototyped server components that can call the services other Components
when required.

• A Tracing Framework, allows the observation of traceable invents inside the system under test. A tracing
framework consists at least of a monitor tool, which allows the user to trace the events in a system and
some tracing mechanism which can gather tracing data from a distributed system.

In the next two sub paragraphs, we will further explain the characteristics and problems of each framework.

2.4.1 Control Framework
It is hard to test components in isolation and pairs because they can have multiple dependencies on other
components divided over multiple operating systems, which have not been implemented yet (see figure 2.2).
Because these components might not be available or trusted at the time of testing, they must be substituted by
an emulator component that mimics the required component services. Beside unit testing, where one
component must be tested in isolation, server emulation is also useful for system testing, integration testing, and
conformance testing by provide a more controlled testing environment.

Although a tester could build a test environment for every test case, it would require considerable time and effort
to create a simple emulation that can be used to replace an actual server in a testing scenario. This is a
significant problem because it would require the redevelopment and rebuild of the test application whenever a
change has to be made in the test case. To solve this problem, a tester could use an Actor/Reactor generation
Testing tool, like MCITT (see also paragraph 6.2.5), which can automatically generates test clients/servers from
a test scenario script. The main difference between Actor and Reactor is that Actor initiates request while
Reactor reacts to request done by other components.

Most Corba vendors facilitate programmers with more or less integrated test Reactor generation tools, like Orbix
Code Generation Toolkit (OCGT), that can generate client or server component from Corba scripting definition
language. The problem of using these tools is that they often rely on propriety services from a specific Corba
implementation, which might pose migration problems later on when switching between Corba middleware
implementations.

Unclassified

Date: 30-06-04 Page: 22

Windows NT Linux Solaris

Trusted
Component

Component
under test

Reactor
Component

(Not available or
trusted)

Actor
Component

(Not available or
trusted)

Trusted
Component

Figure 2.2: A Component requiring the services of other component, which are not available or trusted

Scripting languages are often also used to prototype a client or server component before it is implemented in the
final language.

Scripting Languages offer the following generic advantages:

• Simplicity of usage, In comparison to static programming languages like C++, scripting languages are much

easier to use for construction of simple test reactors. That is because scripting languages, offers a high-level
abstraction mechanism that hides low level programming details like memory management and interface-
calling conventions, which will help the user focus on the real problem.

• Portability. Because script is an interpreted language, script is portable to other operating systems different
from the one it was developed on. This also encourages the exchange of scripts between users.

• Reusability. Script languages also offer the benefit to be used for performing regression testing performed
after a modification the component.

• Enhanced productivity. Another advantage of scripting languages is that they do not require recompilation
and re-linking after each change like statically compiled languages have to.

• Easy to learn. The ability to learn a scripting language is often more simple than a traditional language like
C++, which requires all kinds of low level programming knowledge to use it effectively.

• Reduced cost: Simplicity and productivity respectively mean reduced training costs for users and reduced
operating costs in conventional computer environments.

There are many languages, which can be used as a scripting language for testing Corba. We can identify
several scripting language types:

• Propriety Testing Scripting Languages. These scripting languages are made specifically for one specific tool

and are not portable to any other tool. An example of a proprietary language is the scripting language used
by the MCITT tool, which we will describe in paragraph 6.2.5.

• Generic Testing Scripting Languages. These languages are designed as a standard scripting language,
which are supposed to be portable between testing tools. A disadvantage of these languages is that they
are often limited in their capabilities due to their drive to remain generic. In appendix D: OMG Corba
scripting language, we will give a example of a Generic scripting language.

• Extended Scripting Functionality. Instead of creating entirely new scripting languages, some scripting
languages extend an existing well known scripting language with extra testing functionality. An advantage of
these scripting languages is that they can make use of existing tool support of the extended scripting
language. In appendix E: Tcl Combat, we give an example of a scripting language, which is extended with
testing functionality.

Unclassified

Date: 30-06-04 Page: 23

2.4.2 Tracing Framework
When the result of a component-based application, consisting of multiple components, is not what we were
expecting, we want to know exactly what caused the problem. However, distributed applications can be
regarded as black box that tries to hides its internal functionality. To solve this traceability problem, programmers
need to know the exact component that behaved malfunctions and under what circumstances the error
manifested. Because the smallest elements in a component-based system are components, and the smallest
event is a communication between components, a tester will be mainly interested in tracing communication
events between components.

In order to find a malfunction component, testers need to be able to observe the execution of a distributed
application, ‘step-by-step’ without altering its behaviour. However, because distributed application can consist of
multiple components, we cannot use a simple single threaded application and hope intercept all communication
in a distributed system. We therefore need a framework, which can use several processes concurrently working
together to collect tracing information and present it to a tester. We therefore call it a tracing framework because
it allows testers to trace component communication events in a distributed system.

Although it can be argued that large scale distributed systems can be tested relying exclusively on component
units test, a tracing framework allows testers to find problems faster. By finding problems at an early stage in the
development, which would otherwise remain unnoticed until it manifests at a later stage in the development
process, the development cost of distributed systems could be reduced dramatically.

A typical tracing framework achieves support for the following actions:

• Trace Data Interception. Because the communication in a distributed system is hidden and lost as soon an

event has taken place, the trace framework must be able intercept communication events taking place
between components at real time.

• Trace Data Transportation. Because distributed systems can consist of multiple systems, the tracing
framework should support the user transport the tracing data to a central location where is can be analysed
offline.

• Trace Data Processing. Because of the size and complexity of communication event, the tracing framework
must be able to process into a readable format, which the tester can understand.

• Framework Configuration. Because internal communication events are invisible, the tracing framework must
somehow alter the distributed system to collect this data. The framework should therefore support the user in
the configuration of a tracing mechanism.

Collecting trace data collected by a tracing framework can be used for a wide range of utilisations in
development of component-based applications:

• Insight. The ability to trace ‘step-by-step’ trough a distributed program is invaluable for gaining an

understanding into the functional behaviour of a system. A Corba trace could help the viewer to obtain a
picture of how existing components co-operate with each other. After gaining insight into the behaviour of a
distributed application, testers might notice possible problems faster and programmers will see possible
improvement sooner.

• Educational. Besides gaining insight for operational purposes, if adequately visualised, tracing is also useful
for educational purposes. A trace of the execution of single application visualised as a sequence diagram is
relatively easy to understand, yet powerful enough to visualise complex problems. Tracing can therefore be
used in courses for trainees or students to learn how Corba Components communicate or more in general,
how a distributed system functions.

• Checking Correctness. It is obvious that testers and programmers want to validate the implementation with
the specification of a distributed application. By tracing a distributed application step-by-step, a tester will be
able to observe every step and verify the observed behaviour with the specified correct behaviour.

• Locating Errors. Once detected that that the application does not behave as specified, tracing framework will
allow the programmer to locate the first trace where erroneous behaviour was detected. By investigating the
exact parameter values of the message, which triggered a component to produce the erroneous trace, the
bug could be pinpointed to the source. The erroneous component can then be further inspected with a
language debugger to find the exact line of code the problem started.

• Analyse Scalability. Component Based Applications must besides verified for correct behaviour of a single
test case also be verified on correct behaviour of multiple invocations happening simultaneously or in short
bursts. The tracing mechanism must there be able to discriminate individual test cases and allow the tester
to analyse the scalability of the distributed application under test.

Unclassified

Date: 30-06-04 Page: 24

• Stress Simulation. In order to anticipate possible timeout problems, the tracing mechanism can be used to
delay communication. A tracing mechanism, which allows the tester to add delays between trace events,
allows the tester to simulate a system under stress.

• Monitoring. Even after a system has passed every test thrown at it, it might still fail when used over longer
periods. Especially in mission critical systems, where constant uptime is of crucial importance, you want to
be able to detect malfunction behaviour and if possible take appropriate action at real time. Because
monitoring is over a longer period, the tracing framework data storage must be scalable enough to harbour
huge quantity of tracing data. A tester would then be able to analyse the logged traces offline and use the
results to prevent the malfunction from happening again.

• Fault Tolerance Testing. A tracing mechanism, which can intentionally sabotage component communication,
for example by halting message communication, could be used to test the fault tolerance of a component-
based application.

• Fault Recovery. Once a trace failure is detected, the system could use logged traces to recover the system
back to a functional state. In the event of a system crash, the last recorded outgoing messages could be
used to redirect all communication to another servant fulfilling the same functionality.

• Timing Analysis. If tracing does not significantly influence speed and a tracing mechanism can accurately
measure the time traces occurred, tracing can be used to analyse the performance of components and
communication performance of a distributed application. Assuming a message will generate at least two
trace events, the event where a message is send from a component and the event where a message enters
another component, we can calculate the communication latency. By measuring, the time elapsed between
trace events succeeded after each other; the performance of individual Components can be calculated.

• Detecting Security Breaches. Another application for tracing is automatically detecting vulnerabilities of
privileged programs by recognising program states that exhibit potential danger for the integrity of security
problems. Once a possible security breach is detected, the system could employ counter measures to
secure the system from harm.

• Extracting Documentation. If traces are logged into a persistent storage device, they can be used to
automatically analyse and generate dynamic documentation about the dynamic behaviour of a software
system. The dynamic documentation could be a great asset to static documentation techniques like
inheritance graphs, which can be automatically extracted from component source code.

• Message Replaying. Traced messages can be used to automatically generate a component, which mimics
the exact same behaviour as the traced component. This could for example be accomplished by distracting
a script from component instance interactions and use it as output for a Actor/Reactor component.

We have seen that tracing framework has many possible uses. Nevertheless, collecting tracing data is plagued
with several problems, which has to be solved or minimised.

A Tracing framework must solve or minimise the following problems:

• Framework Overhead. Because distributed system normal does not allow the observation of its internal

communication event, it must be extended with tracing functionality. However, any kind of modification to a
distributed system requires additional action to be carried out, resulting in a delay of the original program.
This delay causes problems especially for performance analysis, where the execution times have to be
measured as accurately as possible. The tracing framework must therefore minimise the overhead cause by
the tracing mechanism.

• Transparency Problems. The problem of modifying a distributed system, is that is lowers the distributed
system portability to other environment requirements. For example, the instrumentation of a component
source code for collecting tracing data, excludes the use of COTS component, from which the source code is
not available. The tracing framework should therefore minimise the loss of transparency.

• Time Synchronisation Problems. In distributed systems, the time of the local clocks may differ from machine
to machine. The problem is that this influences the ordering of communication events collect by the tracing
framework, when using time as an ordering criteria. The tracing framework must therefore use some
mechanism to make the event order back into its true order.

• Identity Problems. Traceability was not a design criterion when communication protocols were designed.
Middleware communication protocols often do not contain the identity of a source. That because the
middleware does not need it; they use the callback mechanism of network protocol for the delivery of a reply
message. Although it is an efficient and effective design, this design feature makes tracing a lot more difficult.
The tracing framework must there employ mechanism to derive the client identity.

• Heterogeneity Problems. Nowadays it is common that distributed applications consist of components using
multiple programming languages, middleware types, and operating system systems. Thales Netherlands for
example uses JAVA, C++, Corba, Java Beans, SPLICE, Windows, and several UNIX operating systems.

Unclassified

Date: 30-06-04 Page: 25

Although the value of tracing an application spanning multiple standards is commonly understood, the trend
is that most tracing frameworks only focus on one specific middleware and programming language.

• Open Standard Problems. Although open component model allows a larger diversity in vendor solutions, they
introduce a their own problems. Vendors often try to help developers by offering functionality, which is not
part of the standard. Although this propriety functionality can be very useful in the construction of tracing
framework, their application limits it usage with other implementation of the component model.

Now that we have introduced the basic characteristics, possibilities and problems of tracing frameworks, we
introduce a generic design for a tracing framework, which allow high flexibility.

Unclassified

Date: 30-06-04 Page: 26

Unclassified

Date: 30-06-04 Page: 27

3 A HIGH LEVEL DESIGN FOR A GENERIC CORBA FRAMEWORK
In this chapter, we introduce the reader to high-level design for a generic tracing framework, which will allow
tester to diagnose a heterogeneous component-based system. In contrast to other tracing frameworks, our
tracing framework is mend to be context free from any technology dependencies like operating system,
language, and middleware. That means we do not specify the technology that must be used to realize it. We
only specify the architecture and functional requirements that should be fulfilled by the framework
implementation.

Our strategy to achieve heterogeneously and platform independence is to use a tree tier architecture. In figure
3.1, we can see that our tracing framework is divided into tree abstract layers. Each layer conceptually fulfils a
separate set of responsibility in the tracing framework:

• Tracing Layer. The responsibility of the tracing layer is to collect tracing data from a distributed system and

supply it the Information layer. The tracing layer consist of one or more tracing mechanisms, each
intercepting tracing data from communicating components, processing the tracing data into a universal
tracing data, and storing it in the generic Information system located in the information layer.

• Information Layer. From an architectural point of view, the Information layer serves as the glue between the
tracing layer and the monitor layer. The responsibility of information layer is to provide a generic information
system that allows tracing mechanisms to store tracing data, and to allow monitoring tools to retrieve
generic tracing data en present it to the tester.

• Monitor Layer. The responsibility of the monitor layer is to allow the tester to analyse collected tracing data.
The Monitor layer should consists of one ore more Monitor Tools that allow a tester to diagnose a
component-based application based on tracing information stored in the information layer.

 Information Layer Monitor Layer Tracing Layer

Figure 3.1: Tracing Framework Tree Layers Architecture

Collect trace data Retrieve trace data

Tr
ac

in
g

m
ec

ha
ni

sm
s

Component
A

Component
B

Component
A

Component
B

Monitor
tools

CORBA
Tracing

mechanism

SPLICE
Tracing

mechanism

Information
model

Web Monitor

Java Monitor

This tree layer architecture has the following advantaged:

• Layer Transparency. One of the big advantages of dividing tracing layer and monitor layer in a separate

information layers is that both layers only have to deal with one intermediate communication protocol.
Because if you would not separate them, either the tracing layer or the monitor layer would be forced to use
each other communication protocol.

• Heterogeneous Transparency. Another advantage is that the used tracing mechanism is not forced to a
single middleware technology and tracing technique. Tracing mechanisms are therefore free to utilise any
combination of platform, middleware, programming language, and tracing techniques.

Unclassified

Date: 30-06-04 Page: 28

The next tree sub paragraphs will describe each layer in more detail

3.1 Tracing Layer
In this paragraph, we discuss the requirement for the tracing layer in our tracing framework. Figure 3.2 illustrates
the Tracing Layer as a Data Flow Chart. Each arrow arriving at the tracing layer represents an incoming
information flow and each arrow that is leaving represents an outgoing information flow. Each box represents a
process that can be split further into a new Data Flow Chart. Depending on the direction an arrow enters or
leaves a task box, a different type of information type is meant.

Tracing Layer

Deployment

Management

Interception Processing
Input stream

Control stream

Output stream

Initialisation stream

Figure 3.2: Tracing Mechanism Information Streams

For each arrow arriving or leaving at our Tracing Layer, we can identify a separate task that must be fulfilled by
the tracing layer. Because there are four information streams, we can also define four separate tasks:

• Interception. The Interception task is the actual capturing of tracing data from distributed system. The

information retrieved must gather sufficient information to allow the Processing tasks to populate the tracing
information with generic tracing information.

• Processing. The Processing task is all actions that must be performed to fill the tracing layer with retrieved
tracing data. This task includes at least at the transportation and processing of context sensitive tracing data
into generic tracing format.

• Deployment. By deployment, we mean all actions that must be undertaken by the framework to install the
tracing mechanism in a distributed system.

• Management. Once a tracing later is properly installed, the dynamic behaviour of the tracing layer should be
actively manageable by some management mechanism.

For each task, we will now dedicate a separate paragraph.

3.1.1 Trace Retrieval & Processing
In this paragraph, we give an architecture that could fulfil the retrieval and processing tasks required by the
tracing layer. The Tracing mechanism can be implemented by separating the retrieval task into tree separate
components. Figure 3.3 illustrates how the components cooperate with each other to retrieve tracing data and
transport it to the other layers. The Tracing layer can be achieved by the collaboration of the following three
components, each playing a different role:

• Tracer: A Tracer represent the trace data interception mechanism in the middleware that is responsible for

intercepting communication events in a distributed system and send it further to the locally hosted Collector
component. The Tracer should strive to be as transparent to the distributed system as possible.

Unclassified

Date: 30-06-04 Page: 29

• Collector: Although Tracers could send intercepted communication directly from to the Processor. It offers
several advantages to use an intermediate component. By locally buffering intercepted tracing data before
its being sent to the Processor component, the communication overhead is minimised. Because internal
communication causes no network traffic overhead, they can also function as gatekeepers, by blocking
tracing events that are undesired by the user.

• Processor: The Processor is the component closest to the Information system. By locating the processor on
a different host than systems that is being traced, the overhead of the Processor on the distributed system
under test will be minimised. Its main task is to complete the final steps in the tracing mechanism, which is
to supply the information layer with tracing data. Before the tracing data can be stored in the information
layer, it must first be processed. Processing consists of filtering and combining the tracing events received
from the Collectors into the generic tracing format and storing it in the information system.

HOST C

HOST A

Collector

Processor

Component

A
Component

B

Monitor Tool Information
system

HOST B

Collector

Tracing
Layer

Information
Layer

Monitor
Layer

Tracer

Tracer

Tracer

Tracer

Component

Component

Figure 3.3: Tracing Mechanism Architecture

Component communication

3.1.2 Deployment
A tracing layer often requires the modification of the distributed system before monitoring can commence.
Deploying, registering, compiling, linking, starting and eventually uninstalling multiple Framework components
for every time a component needs to be traced, is something the tester rather would like to see automated.
However, deployment is often an overlooked problem in testing solutions. If a framework does not supported
properly, the deployment of a tracing layer can easily delay a test process due to unforeseen deployment
difficulties.

3.1.3 Management
Often, tracing all communication events is not always desired because most tracing events will be uninteresting
and therefore only introduce unnecessary overhead. While trying to minimise the overhead in tracing
mechanism is desirable in most cases, there are cases where an extra artificial delay is actually useful. By
introducing artificial delays during message interception, the tracing mechanism could be used to simulate
process or communication latency. Therefore, in order to prevent unnecessary tracing overhead or artificially
introduce extra overhead, the tracing mechanism should be fitted with additional management functionality. The
management functionality would have to locally maintain a profile, which would determine the tracing
mechanism behaviour during tracing events. For example, a profile could contain a filter condition that specifies
the communication events that should be discarded for tracing. In order to modify these tracing profiles, the
tracing mechanism should therefore be fitted with some management control mechanism, which can alter the
behaviour of the tracing mechanism.

Unclassified

Date: 30-06-04 Page: 30

3.2 Information layer
The Information layer must fulfil the following requirements:

• Persistent Data Storage. One of the characteristics for a good tracing framework is the ability analyse the

intercepted tracing data offline, long after the trace of a distributed application through has taken place. In
order to analyse tracing data offline, the information layer must therefore be able to store the data on a
persistent data storage which can be retrieved at a future point of time.

• Open Interface. Another characteristic of a good tracing framework is that it offers an open framework with
open well-defined interfaces. The tracing layer and the monitor layer can use this interface for exchanging
tracing and management information between the layers. An open interface also allows easier development
of the other tools that want to access or modify the information stored in the information layer..

• Generic Tracing Information System. The information system should try to store basic tracing information in
an as much generic way as possible. This will allow the information system to trace system independently of
the observed middleware technology.

• Self-Describing Contents Data. Contents data is the data exchanged between processes. The captured
tracing contents data from a distributed system can vary widely in types and structures. In order to allow the
other layers have certain flexibility in the storage of complex data types, the contents data should be self-
describing with multiple levels of abstraction. Self-describing data specifies the data structures and types
used to represent the data in the correct way.

Storing information in a generic format can be achieved by restricting tracing data to atomic tracing information
supplemented with self-describing meta-data. The smallest atomic tracing information in a in any network-
oriented middleware is a message event between two processes. The generic tracing information model should
therefore contain at least the following required tracing data (see table below).

Trace data Description
Message ID Uniquely identifies a message
Source Process ID Uniquely identifies the source process of a message
Designation Process ID Uniquely identifies the destination process message
Source Process Time The exact global time at which the communication started at the source
Destination Process Time The exact global time at which the communication ended at the destination

Note that a process is an abstract concept, which depending on the level of abstraction can have different
meaning. Although a Process ID uniquely identifies a process in the tracing framework, there should also be
some context information linked with every process ID, which describes it location of a process in its context.
Because we often can differentiate multiple levels of abstraction in a distributed system, a process can be scaled
to a higher context level. For example, a process ID in a Corba/CCM environment can be scaled up and down
through following levels of abstractions (see table below). This context information of a process can be used by
the monitor layer to group processes together.

Abstraction
level

Context data Description

7 Building The building at which the computer is located
6 Network The network at which on the computer is located
5 Computer The computer which contains the process
4 Processor The processor which runs the process
3 Container / Orb The container/ orb associated with the Component/Object
2 Component / Object The component which uses the Object Request Broker
1 Interface The facet or receptacle which was uses for communication
0 Thread The thread from which the communication event was intercepted

3.3 Monitor Layer
In Monitor Layer, the tester will be able to analyse the tracing data stored in the information layer. The monitor
layer could make use of several visualisation techniques to visualise tracing data. Although we will not describe
a design for the monitor layer, we will discuss how the tracing data could be visualised by a monitor tool.

Unclassified

Date: 30-06-04 Page: 31

Tracing data can be analysed at different levels of abstraction:

• Message level, is the lowest level of abstraction. It should allow a user to inspect a message contents, the

source and destination identity of message. A standard visualisation technique which is can be used to
display the message level is a hierarchically structured parameter tree.

• Process level, allows user to analyse how unique processes exchange messages with each other. A
standard visualisation technique, which is often used to analyse message communication at the process
level are sequence diagrams.

• System level, allows a user to analyse an overall distributed system. This is often achieved by performing
automated statistic analysis over all intercepted communication. Although this technique can quickly identify
communication anomalies, it might miss important problems. In the next paragraph, we introduce new
visualisation technique, which can help the tester analyse messages at the system level.

3.3.1 A New Application of Network Diagrams
Testers that need to diagnose multiple invocations made on the component based application need some
effective way of visualisation. A technique, which is often used to visualise invocations between processes, is
the sequence diagram. A sequence diagram is a standard visualisation technique where the interaction between
processes can be analysed. Processes are visualised as vertical lines while invocations a visualised as arrows.
Because western cultures read from top to bottom, from left to right, it is custom to visualise a sequence diagram
in the same format. The advantage of this visualisation technique is that it allows the viewer to observe all
communication actions of a process, chronological ordered by time. Sequence diagrams can also be used to
visualise the interaction between component instances. Although a real component instance may in fact use
multiple processes, we can model a component instance by a single process. Because all communication
between network-oriented middleware is based on directed messages, we can model all directed message
communication as a sequence invocation between processes. In the figure 3.4, we can see how each arrow in
the collaboration diagram can be represented as a arrow in the sequence diagram.

Component A

Component B

Component C

1
4

2

3

Component D

5 6
7

A B C

2

D

3

4
5

6

1

7

8

Figure 3.4: A collaboration diagram visualised as a sequence diagram

Although a sequence diagram allow the viewer to observe parallelism, crossing sequence lines can easily clutter
a sequence diagrams (see figure 3.4). Using sequence diagram for system level analysis is therefore insufficient
for this task because the system overview can easily be lost. Instead, we need a visualisation technique that
emphasises the phenomenon’s, which that are most interest for system level analysis. When analysing the
parallel behaviour of a distributed system, the phenomenon’s, which are most interesting is the latency between
the trace events and casual relationship between tracing events. A visualisation technique, which could satisfy
these demands, is to usage network diagrams. Network diagrams are used to visualise the time critical relation
ship between parallel events. Network diagram consists out two main building blocks, nodes and directed
arrows. The nodes in a network diagram represent unique events or disjoint group of events. A directed arrow
that connects two nodes represents a transition between the two nodes. We can transform every message
diagram isomorph into a labelled network diagram. In figure 3.5, we can see how a sequence diagram can be
transformed into a network diagram in which every node represents a trace event and the connection lines can
either represent an invocation of a process.

Unclassified

Date: 30-06-04 Page: 32

1

2 3

5 6 7

4

8

B

A C D
D

C

D B A

A B C

2

D

3

4
5

6

1

7

8

Figure 3.5: Sequence diagram visualised as network diagram

Depending on the number of incoming and outgoing arrows, different parallel events can be observed in a
network diagram:

• Nodes that are only connected by two arrows (one incoming and one outgoing) visualise an event

communication chain. Notice in figure 3.5 that we can now clearly see how these communication chains
visualise two parallel processes in sequential order.

• When nodes contain two outgoing arrows, it means an event is followed by two simultaneously
communication chains. These nodes, which mark the start a new chain of sequential events, effectively
visualising to creation of a parallel process.

• When nodes contain two incoming arrows, it means that beforehand of the event, two simultaneously
transitions happen. Notice in figure 3.5 that the nodes that mark the end a chain of sequential events
effectively visualise a possible synchronisation between two communication chains.

3.4 Evaluation.
We have presented high level architecture and functional requirements for the construction of a generic tracing
framework. By separating the framework into three separate layers, we achieve a higher level of flexibility able to
function in a heterogeneous environment. For the tracing layer we have shown a universally applicable
architecture for collecting and transferring tracing data from a distributed system to the information system. The
generic information model allows the tracing mechanism to collect tracing data from any network-oriented
middleware. In chapter 7, we will show how a tracing layer functional requirements can be fulfilled by a
transparent Corba tracing mechanism.

Unclassified

Date: 30-06-04 Page: 33

Unclassified

Date: 30-06-04 Page: 34

Unclassified

Date: 30-06-04 Page: 35

4 INTRODUCTION TO CORBA MIDDLEWARE
Now that we introduced the reader to the main concepts and problems behind Component Testing, and
introduced a generic tracing framework for diagnosing middleware we will look at the middleware we want to
monitor, which is Corba Middleware. This chapter is by no means a complete description of the Corba
middleware but is merely mend as an introduction to Corba middleware technology.

This chapter will have has the following structure:

• Paragraph 4.1: Corba Object Model. In the first paragraph of this chapter, we introduce the reader to Corba

object model and explain some important concept and mechanism. The basic Corba concepts introduced in
this paragraph will be essential for understanding the following chapters.

• Paragraph 4.2: Corba Component Model. In the last paragraph we tell something about the Corba
Component Model, which builds further on top of the Corba Object Model.

4.1 Corba Object Model
Corba Object Model is the product of a consortium called the Object Management Group (OMG). The OMG
objectives are to foster the growth of technology and influence its direction by establishing the Object
Management Architecture (OMA). The OMA Reference Architecture defines an underlying infrastructure of
services and mechanisms that allow objects to intemperate. Corba allows object to be executed in any
Operating System such as Microsoft Windows or UNIX using an Operating System specific Object Request
Brokers (Orb). Unlike other Object Models like Microsoft DCOM, Corba is an open standard, which means that
the OMG promotes the standard, but is not a middleware producer that provides the middleware
implementation.

The basic structure of this paragraph will be as follows:

• Paragraph 4.1.1: We introduce the basic Architecture of the Corba Object Model
• Paragraph 4.1.2: We explain how a basic connection between Corba Object can be established
• Paragraph 4.1.3: We describe how client server applications can be constructed.
• Paragraph 4.1.4: We describe some important Corba services used for the construction of Corba

applications.

4.1.1 The Object Request Broker
In the Corba Object Model, the Object Request Broker (Orb) plays a central role in all Corba communication. It
allows clients to connect and call a remote object without knowing where the distributed object resides on, in
what operating system it executes on, or in what programming language the object is implemented in. Because
neither the client nor the server has to worry about the location of each other, we say the Orb functions as a
transparent communication layer between client and server. The Orb will automatically take care of all message
routing between client and server. The next paragraph describes how client and servant are able to
communicate with each other.

4.1.2 Stubs and Skeletons
A Corba client request is not handled directly by the Orb but by a stub instance. Stubs implement the proxy
pattern [Gamma] that marshals operation information and typed parameters into a standardised request.
Likewise, a Corba object does not respond to an Orb directly but through a skeleton (see figure 4.1). The
skeleton implements the Adapter pattern [Gamma], which un-marshals the operation information and typed
parameters information located in the standardised request format. The stub and skeleton therefore serve as the
“glue” between the servant and Orb, allowing an invocation on a client object to pass through a stub instance on
exit and through a skeleton on entry.

Unclassified

Date: 30-06-04 Page: 36

Microsoft Windows Machine

ORB

Unix Machine

ORB

Client Servant

Transparent
Communication

OS OS

Network
communication

Figure 4.1: Distributed Communication through ORB

Stub Skeleton

4.1.3 The Interposable Object Reference
The only thing a client needs to do is to call upon the services of a distributed object is to acquire the interface
object reference. Because an interface object reference has no meaning outside the context of the Orb, a client
must first generate an interface object reference from an Interoperable Object Reference (IOR). An IOR is a
generic format for identifying Corba objects generated by the Portable Object Adapter (for more details see
appendix A). In order to acquire an IOR, a client could retrieve the address from a file made by the server or use
a specialised common object service (COS) like Corba Naming or Corba Trading service. The Corba Naming
service functions like a telephone ‘White pages’ for objects in the sense that allows a client to find object
reference by name. The Trader Service is like a telephone ‘Yellow Pages’, which allows object services. Once
an application has acquired IOR, it has all the information it needs to connect to the object and make remote
invocations on the remote objects.

4.1.4 The Interface Definition Language
The stub and skeleton implementation source code does not have to be written manually but is automatically
generated from schemas defined using the Interface Definition Language (IDL). Figure 4.2 show how an IDL
compiler generates a stub and skeleton file from an IDL file. The stub and skeleton is then included by client and
server source file, which is eventually generated into a client and server application by a normal language
compiler.

The stub and skeleton generated by an IDL compiler are fixed, e.g. the code emitted by the IDL compiler is
determined at translation time. An advantage of statically generated stubs and skeletons is that it eliminates
common sources of network programming errors and provides a mechanism for providing language and
platform transparency. A disadvantage of using statically generated stubs and skeletons [Nonbour] is that the
fixed behaviour is not always be sufficient to perform middleware specific functionality, such as tracing or
security. To overcome these problems, developers could instrument the stub or skeleton or employ meta-
programming techniques explained in the next chapter.

IDL
Compiler

IDL file

Stub file

Skeleton
file

Client
Application

Server
application

generates

uses

uses

Language
Compiler

Client
source

Server
source

generates

Figure: 4.2 IDL stub and skeleton generation

Unclassified

Date: 30-06-04 Page: 37

4.1.5 Corba Services
Services are extremely generic and are independent of any application domain. Although we already introduced
some COS Corba services like the naming and trading service, in this paragraph will now explain some other
Corba services, which can play an important role in the construction of a testing framework.

Corba offers the following generic services, which are useful for creating a Corba testing framework:

• Interface Repository. This interface allows the developer to retrieve metadata information on the available

interfaces and components. This will be useful for the actor application to list available interfaces and help to
innovating them it the right way. Another very useful application of the interface repository is to translate a
intercepted IOR address back to a object name

• Dynamic Invocation Interface (DII). This interface allows a client application to establish a connection to a
Corba component at run time. This will be especially useful in actor applications, which has to connect to a
component, on the fly.

• Dynamic skeleton interface (DSI). The DSI is the server variant of the DII. This interface allows an Object
Request Broker (Orb) to deliver requests to object implementations that have no compile-time knowledge of
the interfaces they implement defined using Corba IDL.

The next sub paragraphs will give a short description of the mentioned Corba services.

4.1.5.1 Interface Repository
Corba is a self-describing system. In fact, every component, system level object, every service that lives on a
Corba bus (Orb), even the bus itself is self-describing. Self-describing data, which also referred as metadata,
allows independent developed components to dynamically discover each other existence and collaboration.
Tools such as Actor/Reactor tools can use this metadata to obtain inheritance structures and class definition at
run time.

In Corba, metadata is derived from the metadata located in IDL files. All Corba available metadata is stored into
retrievable metadata repository called the Interface Repository. The Interface Repository is hierarchy ordered
set of classes whose object instances represent the information that is in the repository. The Interface
Repository classes provide operations that allow a Corba object to read, write, or destroy the metadata that is
stored in a metadata repository. The Interface Repository is automatically populated with metadata by the
statically or dynamically generated stubs and skeletons, or manually through the Interface Repository write
functions.

4.1.5.2 Dynamic Invocation Interface & Dynamic Skeleton Interface
Normal Corba client to servant communication use stubs and skeletons, which has to be statically generated by
a IDL compiler (see also paragraph 4.1.4). A disadvantage of static generated stubs and skeletons is that the
communication link between client and servant must be known before compilation. The Dynamic Invocation
Interface (DII) and Dynamic Skeleton Interface (DSI) enable a client and servant to establish a connection at
run-time. The DII and DSI is essential the mechanism which allows an Actor and Reactor tools to connect to a
component under test without recompilation. Without it, an Actor tool would have to be recompiled for every time
it switches connections. The DII and DSI also enable deferred synchronous interaction clients client and server
object where a client can decide whether to wait for a response. This asynchronous form of communication
allows monitor mechanisms to send tracing information to a central location that can further process the tracing
data. While the DII provides more flexibility over a compiler-generated stub/skeleton, it is also more resource
costlier because with the DII, a remote request cannot be made in a single Remote Procedure Call (RPC).

4.2 Corba Component Model
Because Thales Netherlands will use PERCO, a Corba Component Model (CCM) implementation for the
development of Corba applications, we now give a brief overview of CCM. CCM is designed for large-scale,
distributed enterprises and Internet applications that need to run with transactional assurance, security, and high
throughput. Although Corba offers a tremendous amount of flexibility in creating distributed systems, it still
requires a fair amount of technical knowledge to program with it. This is because POA policies, transactions,
security, and other resources combine in thousand of different ways and it would require considerable skill to
select the best combination out of all the alternatives. Of these combinations, a few patterns have proven to be
very successful, have demonstrated that it is usually not necessary to consider the others.

By introducing CCM components and the container-programming model, the Object Management Group (OMG)
realises a true Component Model standard that enables developers to assemble application from reusable

Unclassified

Date: 30-06-04 Page: 38

Corba components instead of developing them from traditional Corba objects which have to implement lots of
low level middleware functionality by themselves.

With the introduction of the new Corba standard (version 3.0), OMG also aims to reduce the complexity of
constructing Corba applications and lowering the steep learning curve for starting Corba developers. The CCM
Container Programming Model wraps complex Corba services in a layer that exposes a simpler, higher-level
interface with fewer choices.

The basic structure of this paragraph will as following:

• Paragraph 4.2.1. In this paragraph, we explain what containers are how they affect tracing
• Paragraph 4.2.2. In this paragraph, we explain CCM components.
• Paragraph 4.2.3. In this paragraph, we explain how component are managed.
• Paragraph 4.2.4. In this paragraph, we explain more about Corba communication techniques.

4.2.1 Component Container
In this paragraph, we will give the readers a brief overview of the component container-programming model and
how it affects tracing. Containers were designed to support scalable servers which allows an application to set
policies that control among other things activation/ deactivation patterns for the executing code and data that
constitutes a Corba Component instance. In figure 4.3, we can see that the CCM container is an essentiality
specialised Corba Portable Object Adapter (POA), which hides all low-level middleware functionality from
components it contains. In contrast to Corba servants, that have to establish a connection to the Orb and
maintain their own life cycle with the POA, CCM components do not have to perform any low level Corba
operations. In fact, they do not even have access to them. This causes a problem with any Corba object
programming technique, which have to perform any low level Corba operations like Orb initialisation, and object
reference operations.

A component container offers the following main functionality:

• Internal interfaces that enable the component to connect with the container
• Manage the life cycle of components by activating them at the request of a client and deactivate them to

preserve system resources.
• Automatically Forwards client request to Corba Services
• Provide Call-back mechanisms to inform component about interesting events, such as new messages from

the transaction or notification services

Although the OMG attempts to make the development of distributed systems al tot easier with their introduction
of the new CCM container, they neglect to specify any services that can help testers to trace components.
However, outside OMG group, there are currently some groups working on services, which are potentially useful
for tracing Cobra. As part of PERCO Container Programming Model, Thales France is in currently in the process
of developing logging services which can log communication at the component level [Philips].

POA

Container

Component

Orb

Services
Profiles

Component Home

External
Interface

Security

Transaction

Notification

Fault tolerance

Persistent state

Figure 4.3: CCM Container Model

Unclassified

Date: 30-06-04 Page: 39

4.2.2 CCM components
With CCM components, OMG realises the promise of creating self-contained units of software code consisting of
its own data and logic, with well-defined connections or interfaces exposed for communication. To allow CCM
component to be compatible with other component object models, like Java beans, CCM makes a clear
distinction between Basic components and Extended components.

Although basic component has to conform to the much stricter Corba Component Model, they are almost
identical traditional Corba Objects and are therefore compatible. Basic components only expose an equivalent
interface which consists of operations and attributes inherited from supported interfaces, attributes in the
component body, and a number of standard base interfaces that a component are required to have.

Basic

Component

Extended
Component

Corba
Object

Figure 4.4: Component Type Inheritance

In figure 4.4, we can see that an extended component is a specialisation of a basic component because it
inherits all requirements of a basic component and adds additional features to them. Although the extra features
enhance component reusability when compared to traditional Corba objects, the drawback is that they make
extended components incompatible with traditional objects. The extra features of extended components are
made available through ports (see figure 4.5). Ports are additional interfaces that allow a component to have
event driven communication or provide extra interfaces other than those it inherits. The extra interfaces, called
facets, allow components to expose different views to it clients. Clients that want to establish a synchronous
connect to one of these facets can use Receptacles obtain the object reference to the component instance. This
object reference can than be used to delegate operations on server component.

Event
sources

Receptacles

Event
sinks

Facets

Component
Interface

Extended
Component

Attributes

Basic
Component

Figure 4.5: Extended Component

4.2.3 Component Home
In contrast to Corba, where a client has to establish a connection with a Corba object itself, CCM clients cannot
create component instances directly but they have to use a component home to find an existing component
instance or create a new component instance for them. A CCM client therefore has no access to low level
objects like interface object reference and Orb object. The interface of a component home provides operations

Unclassified

Date: 30-06-04 Page: 40

to manage component life cycles, and optionally manage associations between component instances. In order
to allow the client to find a component home in the first place, there is a special finder interface available, which
functions much like the Corba Naming System.

4.2.4 Corba Communication
Because communication plays an important role in the construction of Corba tracing framework, we will explain
some of the communication available in Corba/CCM:

• Two- way message communication. Synchronous Two-way message communication is the basic way of

communicating between Corba objects. Although this method is relatively simple to use, the biggest
disadvantage is the low performance caused by the communication. That because a client is locked during
send and requirement of a remote procedure call.

• One-way message communication. This method of communication allows clients to send a message to a
target object directly without expecting any return. This technique it relatively complicated to implement
properly because the client must establish and maintain reliable a communication link with the destination
object. That is because there is no guarantee that a one-way Corba message will arrive at it destination.
However properly implemented it could potentially achieve the best performance possible by a Corba
middleware solution.

• Indirect message communication. Instead of communicating the information directly between Client and
Servant, a message is sent indirectly trough standard Corba Event/Notification service. Although the
Event/Notification service uses standard one-way communication internally, this event-based
communication mechanism allows the communication between client and server to be de-coupled. Corba
Event/Notification service therefore allows clients to send information to multiple servants without knowing of
their existence. The notification service also offers a Quality of Assurance functionality, which guarantees
the delivery of all send messages, and optional offers the usage of filters, which can block undesired events.
Although the usage of the Event/Notification service makes event based communication a lot more simple, a
Corba Object still has to perform many actions to implement it.

• Publish-Subscribe message communication. The CCM standard also offers a publish-subscribe
communication technique in the form of event sources and event sinks. Although component use standard
Corba Event/Notification services under the hood, the developer won’t be bothered with any of
communication issues and can therefore focus more on the functionality of the component.

Unclassified

Date: 30-06-04 Page: 41

Unclassified

Date: 30-06-04 Page: 42

Unclassified

Date: 30-06-04 Page: 43

5 AN EVALUATION OF TRACE DATA INTERCEPTION TECHNIQUES FOR CORBA
To verify correct behaviour of Corba applications, and pinpoint a misbehaving component, it is necessary to
trace the exact propagation of messages as they flow through a distributed system, entering and leaving
components. In chapter 3, we described a generic tracing framework design containing a tracing layer
architecture, which has to collect tracing data from a distributed system. However, except for the messages a
client sends and receives from a server component, the internal Corba application data flow is hidden from the
client by the middleware and must be intercepted somehow. Therefore, we will now investigate the possible
techniques to intercept this trace data from a Corba application. In chapter 7, we further analyse one of the
techniques for the construction of a transparent tracing layer.

In this chapter, we will discuss the following topics:

• Paragraph 5.1 Middleware Interception Programming Techniques. In this paragraph, we look at several

programming technique, which enable us to collect tracing data independently of the used middleware
technology.

• Paragraph 5.2: Corba Meta programming Interception techniques. Corba offers several Meta programming
mechanisms and facilities, which can be used intercept Corba communication events. Programmers can
use Meta-programming mechanisms to transparently change the Corba middleware behaviour to collect
tracing information whiteout modifying the middleware or components.

• Paragraph 5.3: Comparison of Trace Data Interception Techniques. In the final paragraph of this chapter,
we compare all tracing techniques we discussed in this chapter based on the characteristics that are
important for developing an effective tracing mechanism.

5.1 Middleware Interception Programming Techniques
In this paragraph, we will explain several middleware-programming techniques, which can be used to intercept
trace data and look at their strong and weak points. Each middleware interception technique is described in a
separate sub-paragraph.

5.1.1 Debug instrumentation
Debugging instrumentation is probably one of most used programming technique by developers to trace
distributed systems. This programming technique is similar to adding debugging code to the source code, could
for example be implemented by calling a logger object just before and after a procedure call. Typically, a logger
object provides some functions for this, so it can receive a client parameters or result as in arguments. For
example, in the client source code, every remote procedure call to a distributed object could be preceded and
followed by a call to the Logger object (see figure 5.1).

 // Log before RPC is send

Logger->beforeRPC(this, ServerObj, sum, 1 , 2);

// Do a RPC call on server object
result = ServerObj->sum(1, 2)

// Log RPC result
Logger->afterRPC(this, ServerObj, sum, 1 , 2, result);

// Do a RPC call on server object
result = ServerObj->sum(1, 2)

Figure 5.1: Instrumentation client source (before and after)

On the server object, the Logger object could be called just after the start and just before the end of a method
(see figure 5.2).
 Class ServerObj

{
 Int Sum (int left, int right);
 {
 // Log received RPC
 Logger->recieveRPC(this, left, right);

 // Calculate sum method
 result = left + right;

// Log result just before returning

 Logger->recieveRPC(this, left, right);
 Return result;
 }
}

Class ServerObj
 Int Sum (int left, int right);
 {
 // Calculate sum method
 result = left + right;

 Return result;
 }
}

Figure 5.2: Instrumentation of server source code (before and after)

Unclassified

Date: 30-06-04 Page: 44

Another advantage of this technique is relatively simply to implement because no complex programming
techniques are required. Another advantages of instrumentation of the component source code is that it allows
access to all information in a component. This includes the all contents data exchanged between components
which allows tester to verify the input parameters with the output parameters.

However, this technique is not very elegant because all the modifications blow up the source code, reducing the
readability, and increasing the chances on mistakes. Although this technique is relatively simply to implement on
the short term, in the long term it will cost time because manual instrumentation is labour intensive and error
prone. Another disadvantage however, is that component instrumentation cannot intercept message
communication like exceptions and other middleware communication events. Component instrumentation is
therefore often used in combination with other tracing techniques, which do not have access to this information.
Although this instrumentation technique can only be applied when the component source-code is available, this
technique is middleware independent because it can be applied completely separate from any middleware
architecture.

5.1.2 Pre-processing Instrumentation
By automating all instrumentation tasks, Pre-processing solves the some of problems, which plagued Debug
instrumentation. Automated instrumentation can be achieved by using techniques like lexical and syntactic
analysis to find the locations of interest and automatically instrument them with tracing code. The rules actually
describe the location where a RPC enters or leaves an object, can be defined by describing the tracing points
and program, script, etc that must be inserts the instrumentation into component code. Using a parser with
access to a middleware interface repository could also automatically derive this information. An example of
where this principle is applied is in the TMT Monitor framework that allows automated tracing for the Middleware
standards DCOM, Corba, and Java RMI [TMT]. However, adding extra lines of tracing code in the original
source code is not a very elegant solution. The source code becomes longer and becomes tied with a specific
tracing technique. To un-tie a component implementation from the instrumentation technique, we have to
separate the original source code from the instrumented source code. The separation between original file and
instrumentation is achieved by using a pre-compiler that makes a copy from the original source file, which it
instrument with tracing code. Figure 5.3 visualises how the instrumented file produced by pre processor would
have to be further compiled into an object file by a traditional language compiler. This technique would separate
the original clean source code from the instrumented source code creating a transparent instrumentation
technique, which does not alter the original source code. However, because the source code must still be
recompiled, it is not fully transparent.

P re-Pro cesso r

// Log before RPC is send
Logger->beforeRPC(this, ObjectA, sum, 1 , 2);

// Do a RPC call on server object
result = ObjectA ->sum(1, 2)

// Log RPC result
Logger->afterRPC(this, ObjectA, sum, 1 , 2, result);

O rigin al so u rce file

Traceab le o b ject co d e

N ew In stru m en ted so u rce file

10110101010101011010101010101010000001010
01010101101000110100101010101011101010101
11010101010101010100101011010110010101010
10101101001011010101010011010101110101010
101

Lan gu age C o mp iler

ObjectA
..

In terface n ames

copy
// Do a RPC call on server
result = ObjectA ->sum(1,2)

F igure 5 .3 : sepa ra tio n betw een o rigina l so urce a nd instrum ented so urce

Unclassified

Date: 30-06-04 Page: 45

5.1.3 Adapter Instrumentation
An Adapter is an object that does not implement target interface itself but only performs some tracing actions
and wraps to interface similar with the original interface. By offering the same interface as the target object, a
Corba object can use the adapter exactly as the original. Because an adapter conceptually located between the
Corba object and the target object, it can be used to intercept all communication flowing between an application
and target object. An example of how the adapter programming technique is applied is during the connection
between client and server. Adapter wraps Corba Interface object reference and creates a proxy object between
the application and the stub/skeleton interface object. Because the proxy object will be invoked every time
information flows between application and stub/skeleton, it can be used to log all communalisation flowing
between client and servant interface. Besides intercepting message contents, the proxy object can also
generate context information by linking intercepted parameter values with the component name and unique
identifier. In chapter 7 we will see how a tools uses this technique is to collect tracing data (see also paragraph
6.2.2).

5.1.4 Stub and Skeleton Instrumentation
The standard Corba object model uses a fixed stub generation mechanism. An IDL post processor can
instrument these statically generated proxies with tracing code, which intercepts and logs all communication
events. The advantage of this technique is that it requires neither modification of the component, nor
modification of the middleware libraries. However, changing the stub code is not easy because it requires
specific knowledge about the stub communication mechanism and costs a lot of time to modify the code every
time the IDL file is compiled. Although stubs and skeletons generated by a Java IDL compiler are equal, a
separate instrumentation is required for stubs and skeletons generated by IDL compiler generated in different
languages, like C++. Another problem is that this instrumentation technique can only be applied on stubs or
skeletons generated by an IDL compiler. Dynamically created stubs, generated by the DII and DSI (see
paragraph 4.1.5.2) cannot be instrumented and therefore not extended with tracing functionality. In chapter 6 we
will see how the DSC Toolkit uses this instrumentation technique to collect tracing data (see also paragraph
6.2.1).

5.1.5 Middleware Instrumentation.
Because Corba middleware is responsible for establishing and maintaining a communication links Corba
objects, they have access to all Corba communication events. Some Corba distributions like ACE TAO or
JacOrb, provide the complete middleware library source code. With enough understanding of the Corba
implementation, developers can instrument these libraries to extent a middleware with additional tracing
functionality. Once the instrumented libraries are recompiled, all components using the instrumented libraries
can be transparently traced without any changes the components source code. Note however, that depending
whether or not these libraries are static or dynamically loaded, component need to be recompiled (static) or not
(dynamic) for first time usage. The main problem of middleware instrumentation is that it effectively creates a
proprietary middleware solution, which will have to be maintained. Moreover, the effort and cost of changing to
another middleware implementation greatly increased or becomes impossible by the lack of middleware source
code. Because Corba is still under development, it is expected that vendors will continue create new versions of
their Corba implementation, which increases performance, repair bugs or add new Corba features. Beside that,
modifying the middleware is often simply not possible because the vendor does not supply the middleware
source code. Therefore, in order to remain middleware transparent, we have to stay away from any proprietary
middleware instrumentation solution.

5.1.6 Interface Wrapping.
One simple technique that is commonly used to trace the communication between components is to use a
Wrapper. A Wrapper is a component, which function a proxy between client and server and which can log all
invocation communication between client and server. The basic strategy is to rename the original component to
a different name and to introduce a wrapper, which identifies itself as the original component. In Corba, this is
accomplished by changing the server registration in the naming service in the following way. First, the original
server, which interface has to be monitored, is deleted from the naming service and reregistered under different
name. Then, a new component, called the wrapper, is registered with the name of the original server. The result
is that any client that wishes accesses the monitored server will automatically call the wrapper, which logs all
invocation before it finally calls the original server interface. However, because all clients that use the same
server will call the wrapper, and the wrapper has no method of knowing where invocation originated from, the
intercepted invocation cannot be linked with a single component instance, and is therefore not uniquely
identifiable. Note that in order to make the interception mechanism work, the Wrapper must take special care to
perform its renaming actions after the original server has been registered but also before the client can retrieve
the original object reference, otherwise a client will never call the Wrapper. Although, a Wrapper will alter neither

Unclassified

Date: 30-06-04 Page: 46

the client nor the server source code, the message arriving at the server is not exactly the same as the message
that was send by client. This is a problem because the message send between wrapper and server is a new
message, and therefore not message transparent.

5.1.7 Network Message Tracing
A completely different technique of intercepting trace data from a distributed system is to use network sniffers.
Network sniffers can collect and analyse Corba network messages by listening directly to all communication on
Local Area Network (LAN). By intercepting these network messages and decode them based on their IIOP
message protocol (see appendix B for details), it will be possible to deduce the method invocations between
components. The advantage of this technique is that it is completely transparent because it does not alter a
system in any way. However, the interception will be restricted to the information contained in the IIOP. The
problem is that except from opaque message identifiers IP address and port number, a message cannot pinpoint
the exact source of the invocation. Another problem is that network sniffers can only capture broadcasted IIOP
message travelling between components hosted by different computers. In the next chapter, we will give an
example of a network sniffer.

5.2 Corba Meta Programming Mechanisms
Now that we have shown some common trace data interception technique, we will discuss how the Corba
middleware itself can facilitate tracing. We will explain what Corba meta-programming mechanism is available
and how they can potentially be utilised for constructing a tracing mechanism. We assume the reader has
sufficient knowledge about Corba Middleware we described in the previous chapter.

Although the original Corba core provided many self-describing features like the interface repository (see
paragraph 4.1.5.1), support for tracing, was simply not considered. Fortunately, the Corba community is starting
to realise that we need (meta-object) additions to Corba core that will make tracing possible. The result is that
the Corba community has introduced several new meta-programming mechanisms. Corba can use these meta-
programming mechanisms to improve the adaptability and flexibility of distributed application, while avoiding
obstructive changes to existing applications and middleware.

In order, to modify the behaviour of Corba middleware in a transparent manner we need ways to change the
meta-objects that lay on the invocation path between client and server [Nanbour]. Meta object are
programmable objects, that refine the capability of base-level objects, which are the objects comprising the bulk
of application programs [Zimmerman]. As all operation invocations pass through meta-objects, certain aspects of
application and middleware behaviour can be adapted transparently when system requirements and
environmental conditions change by simply modifying the meta-objects.

In a distributed objects middleware environment, stubs, skeletons, and certain points in the end–to-end
invocation path can be treaded as meta-objects because they can be modified. When a client invokes an
operation on a server, a stub implemented as a meta-object can act in conjunction with transport-protocol meta-
objects to access and/or transform a client operation invocation into a message and transmit it to a server.
Corresponding meta-objects on the server apply request transformations on the operation invocation message
and dispatch the message to its servant. An invocation result is derived in a similar fashion in reverse direction.

The following meta-programming mechanism can be used for the interception of trace data:

• Request Interceptors, are embedded hooks into the Orb that can intercept all messages passing through

them. They allow the forwarding and inspection of messages, and can be used to transparently transfer
contents information through the Corba application.

• Smart Proxy, are customised meta-object which function as proxy object between a client and specific
servant interface

• Servant Managers. Is a meta-object, which can be used to forward or inspect the message contents just
before and after it replies. Servant managers can also detect the first and last time the servant object
instance is used and use it for the initialisation or destruction of other processes.

• Pluggable Protocol Framework is a new Meta programming mechanism, which can modify the
communication protocol between Orbs.

Figure 5.4 gives a good overview of the several meta-programming mechanisms described above. Note that the
figure also visualised the location of the CCM container. That is because Corba Component Container
Framework (see also paragraph 4.2.1) can be used as meta-programming mechanism to trace the
communication between the components. A Container extended with build-in logging service, which collect
tracing data automatically, can implement by using request interceptors or servant manages.

Unclassified

Date: 30-06-04 Page: 47

Another mechanism that can be used to trace Corba communication is Orbix Message Filters mechanism.
Message Filters is a propriety Orb mechanism supported only by a small group of Orb vendors (Orbix / VisiOrb).
Similar to a request interceptor, a Message Filter can intercept communication events at the Orb. However in
contrast of Request Interceptor, it functionality is limited to its interface. The advantage of Message Filters is that
it does not require the registration or initialisation of any meta-object, but can be activated directly in the Orb.
Because this mechanism is effectively a modification of standard Orb behaviour, and not a meta- programming
mechanism, we classify it a middleware instrumentation technique.

CCM Container

POA

Smart
Proxy

Client side
Orb Core

Pluggable protocol
meta-object

Operation (args)

In args

Out args + return value

 Skeleton
(server side
meta-object)

DII

Interface Repository

Stub
(client side

meta object)

Client
Request

Interceptor

Meta information
descriptions

Servant Manager

Server side
Orb Core

Pluggable protocol
side meta-object

Object store
meta-object

Server
Request

Interceptor

DII

Client Servant

IDL Compiler

Servant
Locator

Servant
Activator

Figure 5.4: Meta programming mechanism in the Corba Middleware

Each meta-programming mechanism will be further detailed in separate subparagraph.

5.2.1 Request Interceptors
The Request Interceptor is part of Corba standardised Portable Interceptor specification. Beside the Request
Interceptor, the Portable Interceptor also defines a second type of interceptor, named the IOR interceptor (see
appendix L). Request Interceptors are a meta-programming mechanism used in Corba to increase the flexibility
of both client and server applications [Nanbor]. This mechanism is useful for making invocation decisions,
checking invocation rights, or performing other operations that apply to the entire request as a unit. Request
Interceptors were introduced as an answer to add specific network-oriented capabilities such as authentication
and flow control to distributed applications.

Portable Interceptors are not usually part of a typical Corba environment, implementing them is considered an
advanced programming task. Interceptors must be registered before the Orb in the client or server application
becomes initialised. This is because in contrast to the intuition, Portable Interceptors are not linked to a Corba
object, but to the Orb object used by the Corba object. After the Orb is initialised, all Request Interceptors
installed on an Orb will affect all GIOP messages (see appendix B) passing through that Orb.

Unclassified

Date: 30-06-04 Page: 48

The Orb that is used by both client and server to establish a communication can be fitted with multiple
independent Portable Interceptors. Just like triggers in a DBMS, Request Interceptors are triggered after certain
communication events take place in the Orb. From abstract point of view, these interaction points are located at
the boundaries of a component. Figure 5.5, shows how An interaction point can be an interface instance at entry
or reference to a remote object at exit. Request Interceptors allow the programmer to execute its code, just after
a message leaves an interaction point, or just before it enters an interaction point.

Object
A

Object
B

Object
C

Interaction points
Figure 5.5: Object interceptor interaction points

There are two types of request Interceptors; the Client Request Interceptor and the Server Request Interceptor.
The both Request Interceptors are activated at different stages in the request reply invocation. Figure 5.6
visualizes the different paths of invocation points a request reply message can activate. Request Interceptors
function like hooks into the Orb through which Orb services can use to intercept the normal flow of execution of
the Orb. There are ten different hooks from which six are used for very special purposes. We can see that each
Request Interceptor is called at least twice during the request-response cycle of an invocation: once when a
request is going from the client towards the servant, and once when a response returns to the client.

Figure 5.6: Possible flow through Request Interceptor Hooks

Depending on the message event, different methods (hooks) are called by the Orb:

• Before sending a request message at the client:

o When the message is a Time Independent Invocation, the Orb calls send_poll
o Otherwise, the Orb calls send_request

• Before a request message reaches the server, but before calling the servant manager:
o The Orb calls receive_request_sequence_contexts (which allows access to service context

fields)
• Before a request message reaches the servant:

o The Orb calls receive_request (which allows access to all information available in the message)
• Before sending a reply message at the server:

o If the servant throws an exception, the Orb calls send_exception
o If the servant replies normally, the Orb calls send_reply
o Otherwise (e.g. when the call is redirected), the Orb calls sent_other

Unclassified

Date: 30-06-04 Page: 49

• Before the reply message reaches the client:
o If the client throws an exception, the Orb calls recieve_exception
o If the client receives a normal reply, the Orb calls recieve_reply
o Otherwise, the orb calls recieve_other

Beside the standard interception functionality, Request Interceptors also offer following advantages and
possibilities:

• Message Redirection. A Request Interceptor can temporary or permanently redirect a request to a different

location at any interception point other than a successful reply. This is useful for transparently redirecting a
request to an exact copy of the initial target object when the initial object has gone offline. This error
recovery behaviour is especially useful for creating fault tolerance services.

• Message Blocking. A Request Interceptor can stop a request from reaching the target by raising a system
exception in the inbound path. A system exception function like an interrupt call in the sense that forces the
Orb to stop the current transmission and take alternative actions. This functionality is especially useful for
authorization by security services or for the construction of proxies.

• Message Inspection. A Request Interceptor allows read access to the request or reply fields located in
intercepted GIOP message. Depending on the intercepted message this information includes but is not
restricted to, target object, operation name, input parameters, output parameter, return value, and other
fields (for details see appendix H).

• External Invocation. During its activation, the Request Interceptor can call other Corba Components or use
standard Corba Object Services like the naming service or Interface Repository. This feature allows the
Request Interceptor to exchange information with external services.

• Exception Handling. By inspecting message exception fields, Request Interceptors can be used for
exception handling. This is both useful for Fault Tolerance services trying to recover form a communication
failure, as well for tracing services, which want to log it as a tracing event.

• Middleware Transparency. In contrast to other instrumentation techniques, which require the modification of
middleware, interceptors installed by parameters, do not change any line in the middleware source code.
This is an advantage because if the middleware remains unmodified, the middleware also remains upward
compatible with future updates from the Corba middleware vendor. Note however that the installation of
interceptors by parameters is different for every Corba implementation.

• OMG Standard. The Request Interceptor has been part of OMG official Portable Interceptor standard for
quite some time now. Although the initial request interceptor had a bad start (for details see appendix M),
most members of the OMG now recognise the current Portable Interceptor specification as a Standard
Corba facility. Most Orb vendors now support the OMG Portable Interceptor in their current Corba
middleware implementation or plan to support in their future version. The advantage of using a standardised
Corba meta- programming mechanism is that in contrast to proprietary vendor facilities, customers can
switch Orb vendors, without too much technical difficulties.

• Point to Point tracing. Request Interceptors can be used to collect tracing data from both sides of a
communication and in both directions. Other meta-programming mechanism, which can also be used for
tracing, only allow tracing at one side. For example, Smart Proxies only allow tracing at the client side while
Servant Managers can only trace at the server side. In addition, it is important that intercepted includes all
Orb-to-Orb information flows, not just communication between systems. This might seem trivial but a tracing
technique like sniffing are only able to detect the communication between Component hosted on different
systems, not between component hosted on the same system.

• Communication Diagnosing. The ability to detect all incoming and outgoing messages allows Request
Interceptors to detect exceptions, communication failures, and performance problems. Communication
failures can be detected by messages that are sent but never reach their destination. Performance problems
can be detected by determining the latency of the message communication or the processing latency
between receiving and sending messages. All this diagnosing information allows the testers to verify the
correct communication behaviour of both components as well as the used middleware services.

• Piggybacking. The Request Interceptor offers two facilities which tracing framework can use to transparently
propagate context data through a distributed Corba Application. Request Interceptors can send service
context data embedded in GIOP messages without modifying the client, server, or Orb (for details see
appendix I). In order to transfer the tracing data received from incoming messages to outgoing messages,
request interceptors can use the PICurrent. This shared memory mechanism allows services to transfer
context data between the interceptor context and application context (for details see appendix J).
Propagating tracing data through a system is invaluable for tracking the causality relationship between
individual messages travelling between Corba Components. By transparently propagating tracing context
information containing a logical clock value, a tracing mechanism is able to determine the exact sequence of
intercepted communication events.

Unclassified

Date: 30-06-04 Page: 50

Although the functionalities described above make Request Interceptor a powerful meta-programming
mechanism, we have found many limitation and problems. The foremost reason why interceptors have these
build-in limitations is that the integrity of the intercepted messages has to be secured. Another reason of its
shortcomings is that they were originally developed only to facility the minimum functionality required to allow
security services to operate. Although the literature often mentioned them as potential mechanism for tracing
Corba, they were never designed for this purpose.

We can summarize the limitations and problems of Request Interceptors as follows:

• Portability problem. Although the Portable Interceptor specification has been around for quite some time

now, there are still Orb vendors, which do not comply with the official OMG standard. Non-portable
interceptors often were the result of the first interceptor specification (for details see appendix M). One of the
main reasons why these propriety non-portable Interceptors still exist is because these pioneer Orb vendors
have obligation to their existing customers, which rely on their proprietary functionality. Although most
proprietary Request Interceptor implementations seem only different in name, they also apply different
functionality rules during message interception making migration to OMG compatible Corba implementations
complicated. Another problem is that Portable Interceptors must be registered in the namespace of an Orb
instance. This means the registration of Portable Interceptors is strongly connected to that of the Orb. This is
a problem because this mechanism is not the same for all Orb implementations and even the specification
standard is not programming language independent.

• Overhead problem. Although a Request Interceptor (which does not throw any exception) does not alter the
behaviour of the Corba middleware, depending on the implementation of the installed interceptors, it
imposes a small or larger degree of increased overhead to all Corba communication causing the overall
system to degrade. In comparison to other Corba meta-programming mechanisms, Request Interceptors
cause a relative large amount of latency. This is because the large number of interfaces that are called
during an invocation and because the information related to the request is bundled into anys, which have a
higher parameter conversion overhead for their insertion and extraction operations.

• Limited installation. Interceptors can only be installed by registration an interceptor into the Orb before
initialisation, not after or during initialisation. Therefore, in order to register an interceptor afterwards, a client
or server would first have to halt and reinitialise their Orb. Although most Orb implementations allow the
registration of interceptors through parameters, the official PI specification only defines how to register on
interceptor by method calls. This is however, a direct violation of a transparency because a component
source code must be altered. In addition, after altering the source code of the component, it must be
recompiled, and linked before usage. Online Corba Component must therefore always be shut down and
restarted before request interceptors can do their work.

• Limited configuration. A request interceptor must always implement all interface methods defined by the
Portable Interceptor specification. Although an method implementation of a Request Interceptor can be
empty, upon the arrival of any communication event, the will Orb still invoke all methods before returning to
its original tasks. Request interceptors have also no facility for uninstalling themselves at runtime. Therefore,
once a Request Interceptor is installed on an Orb, it will always intercept all request and replies exchanged
between client and server until the Orb is brought offline. Because an interceptor cannot be uninstalled at
real-time, even if interceptor does nothing, it still causes 10% latency hit.

• Limited ordering. While interceptors may be ordered administratively, there is no concept of order with
respect to the registration of interceptors. Because the invocation order is Orb implementation dependent,
the order in which the interceptor interfaces are called, cannot either be inspected or modified. Although
there most Orb implementations that actual allow to change the order of request interceptors in a
customisable fashion, assumptions on the order of invocation of multiple interceptors result in non-portable
interceptor code.

• Limited internal communication. Corba objects are not limited in the number of Orbs. Although, request
interceptors located on a same Orb can make use of the PICurrent mechanism (see also appendix I) to
exchange context information among them selves, Corba does not supply any communication mechanism,
which can share information between Orbs that have no established connection. This means Corba objects
using multiple Orbs must use proprietary techniques to share context information.

• Limited external communication. Although Request Interceptors can communicate with the outside world by
doing invocations themselves, there is no standardised facility for external processes to exchange
information with an active Request Interceptor.

• Limited parameter modification. Although Portable Interceptor can add new service context and access
service context data inserted by other Request Interceptors, it cannot alter this service context. In addition,
request interceptors can read input parameters, but they cannot affect a request by changing a parameter or
affect the outcome of an invocation by supplying the response itself.

Unclassified

Date: 30-06-04 Page: 51

• Limited blocking. Although Request Interceptors can block message from reaching its destination, it is
limited to using the standard exception technique. However sometimes alternative blocking techniques are
desired. For example, when a service wants to temporary block a message because the host is currently
busy with a high priority task.

• Limited exemption handling. When an Orb, fitted with multiple request interceptors receives a message, and
one of the interceptors throws an exception, all remaining interceptors, which are not called already will not
be able to intercept a message or notified of the exception. Therefore, caution must be taken for any Orb,
which is fitted with a Request Interceptor that can throw exceptions.

• Limited forwarding addressing. A forward exception can only redirect message to a single alternative
address. In addition, although Request Interceptor can forward a message to another servant object, which
can answer to the same interface call, it cannot forward a message back to the client. The reason is that a
client is not addressable and can therefore not receive rerouted messages.

• Java contents access problems. The main problem of request Interceptors on a Java Orb is the impossibility
of accessing contents information in the message like input, output, and return value. Java request
interceptors can only access the operation name, concerning the signature of an operation. Another
potential problem is the fact that JAVA interceptors can only be installed with parameters.

• Limited identification. Although most Corba objects will use a single unique Orb, the Corba specification
does not forbid a Corba object from using multiple Orbs. Worse, multiple Corba objects can share the same
Orb. Because a client request interceptor cannot be associated with a single component instance, they
cannot be used reliably for the identification of component instance.

In the last paragraph of this chapter, we will evaluate the Request Intecept with other trace-data interception
techniques.

5.2.2 Smart Proxy
A common problem in Middleware technology is that an application needs to add extra client specific tracing
functionality, which should be logically part of the middleware architecture, but the client implementation code is
not available. Although this functionality could be achieved by extending the stub source code with tracing
functionality, we explained that there are several disadvantages to this instrumentation technique (see
paragraph 5.1.4). What developers really need is a transparent meta-programming solution, which allows an
application developer to change the functionality of the stub selectively without actually modifying the generated
stub, middleware, or client source code [Nabour]. The solution to this problem is provided by ACE TAO, is the
Smart Proxy meta-object [Koster].

The Smart Proxy is similar to the Adapter instrumentation technique (see paragraph 5.1.3) in the sense that it
allows developers to modify the behaviour of interfaces. Similar to the Adapter instrumentation, a smart proxy
object has a one-to-one connection with a Corba object, which allows a tracing mechanism to identify a client
object by it Smart Proxy identity. In figure 5.7, we can see how this meta-programming mechanism, which allows
the developer to transparently override the default stub implementation, is located between the client and the
default client proxy (the stub). A Smart Proxy will not replace the functionality of the default stub (marshalling
parameters and de-marshalling the return value), but will delegate standard stub tasks to the default-generated
stub. Although a smart proxy use a similar proxy technique use by the Adapter instrumentation, in contrast to
adapter instrumentation, smart proxies can achieve this functionality without modifying the client or target
objects.

The Smart Proxy is also comparable with the Request Interceptor (see paragraph 5.2.1) in the sense that both
can participate in the communication between a particular client and a particular servant. However, in contrast to
the Request Interceptor, a Smart Proxy is solely a client mechanism. That is because the only invocation point
occurs whenever an operation is invoked through a stub and is therefore called only once during each invocation
and once during a reply. Note however, that in contrast to the Request Interceptor, which can intercept Orb
message communication, a smart proxy can only intercept method invocations

Although the Smart Proxy offers relatively little freedom in modifying any details of the call, they could perform
action like collecting tracing data, throwing user exceptions or use other Corba services like access the Current.
The Current allows the Smart Proxy to communication with installed Portable Interceptor Current (PICurrent).
In comparison to request interceptor, which causes a relative large overhead, Smart Proxy imposes a minimal
overhead on a distributed application. However in contrast to request interceptors, a client can only have a
single smart proxy for each interface whereas multiple interceptors can be registered with an Orb.

Unclassified

Date: 30-06-04 Page: 52

Orb factory

Default Proxy
(IDL Stub)

Default
Proxy
Factory

Creates

Smart Proxy
(Meta Object)

Smart
Proxy
Factory

Creates

Delegates

Connects
Client
Factory
(Main) Client Object

Creates

Orb object

Creates

Method Call

Invocates

Servant
Object

Transparent Interface Invocation

Registers

Connects

Figure 5.7: Smart Proxy Architecture

In figure 5.7 we can also see that the Smart Proxy consists of two parts, a Smart Proxy factory class, and a
Smart Proxy meta-object. Similar to the request interceptor, which is registered to the Orb by a special factory
class, a Smart Proxy is registered to the object reference by a smart factory class. The Smart Proxy factory does
not have to be written manually but can be automatically generated by the TAO IDL compiler for every interface
in the IDL file.

The activation of smart proxies can be achieved the following methods:

• Automatically, by the Orb. During initialisation, the Orb will activate the Smart Proxy factory that creates the

Smart Proxy meta-object whenever a client application connects to a target interface with the _narrow
operation. This can be achieved using TAO Component Configuration pattern [Schmidt] and adding an entry
to svc.conf configuration script. Although this method is fully transparent for the client, it only allows a per-
interface policy. In the per interface policy, the Smart Proxy is used for all targets objects associated with a
particular IDL interface.

• Manually, by first adding a smart proxy factory initialisation-call after the Orb is initialised, and then add a
separate initialisation call for each object reference that needs to be traced. Thus, if smart proxies are
installed before a client accesses these interfaces, the client can transparently use the new behaviour of the
proxy returned by the factory. Although manual instrumentation is less transparent, it allows a per-object
policy. In the per-object policy, each object can have a separate smart proxy, which is less transparent but
more flexible. This fined grained control will be especially useful for trace configuration because it allow a
trace framework to exclude any object, which are not of interest to the test case.

Although the Smart Proxy is currently not an OMG standard, the ACE consortium (the developers of the TOA)
has made a request for proposal at OMG, called Smart Proxies. TAO, is the currently not the only Orb vendor
which implements a Smart Proxies model. Many other Orb vendors support this feature as a proprietary solution
or are planning to implement in future releases of their middleware. We expect to see a similar process that took
place after the introduction of Portable Interceptors; initially many proprietary smart proxy solutions will emerge
but eventually most Orb vendors will conform to the new standard once the official OMG specification becomes
accepted

Unclassified

Date: 30-06-04 Page: 53

5.2.3 Servant Manager
The Servant Manager is just as the name suggests, a mechanism that manages the servant object located at
the server. This meta-programming mechanism allows server application developers to strategize the selection,
loading, unloading, and activation of object implementations. The Orb will invoke methods on servant managers
to activate or deactivate servants on demand.

A servant manager is similar to a server-side Request Interceptor in several respects. They both can intercept
requests and affect the outcome of request invocations before they are dispatched to servants. Like the Request
Interceptor, an invoked servant manager method could raise forward exception to forward a request message to
another servant. Invoked methods can also create a new servant instance on the fly (see figure 5.5). Thus, the
servant manager may choose or even create a servant for processing the request at real time. This mechanism
is especially useful for load balancing or fault tolerance schemes, since it enables the simultaneous existence of
many parallel servants from which the servant manager may choose.

POA

Object ID

Servant Object

Server-side Orb

Create / Calls

Manage

Invokes

Locates

Servant Manager

Figure 5.8: Managing Resources with a Servant Locator

However Unlike Request Interceptors, Servant Managers only affect the Portable Object Adapters (POA) that
install them and can therefore only provide access to a limited subset of request information [Wang]. As a result,
they are more tightly coupled with POA’s and servant implementations than Portable Interceptors. Rather than
modifying the internal Orb behavior, Servant Managers are used primarily to coordinate the resources necessary
to activate and deactivate servants. Because of its integrated relation with the POA, the Servant Manager is
part of Corba official POA specification standard [Corba 2.4].

A servant manager is registered with a POA as a callback object, to be invoked by the POA when necessary. An
application server that activates all its needed objects at the beginning of execution does not need to use a
servant manager; it is used only in case an object must be activated during request processing. Servant
Managers are therefore responsible for managing the association of Object Id value (a unique number in the
POA's Active Object Map) with a particular servant and for determining whether an object exists or not (see
figure 5.8).

Depending on the active server policies, the POA uses two kinds of servant managers, the Servant Activator or
the Servant Locator:

• The Servant Activator is activated the first time a servant is activated. This Servant Activator provides two

methods, a constructor and destructor method called incarnate and etherealizes. The Orb calls the
incarnate method when a client wants to access the servant for first time usage. The etherealise
method is the opposite of the incarnate method, in that it is called when a servant object is deactivated
or no longer needed by the POA.

• The Servant Locator is invoked every time a request is made to the servant. The Servant Locator provides
two hook methods; a pre-condition method and post-condition method called preinvoke and
postinvoke. The preinvoke method is called by the POA to locate a servant before every request on an
object. The postinvoke method is as expected called after every request when a servant is no longer in
use.

5.2.4 Pluggable Protocol
The Pluggable protocol framework is another meta-programming mechanism recently introduced by ACE TAO
Orb [Dougles]. Just like smart proxy framework, Pluggable protocol framework is in the process of becoming a
standard by the OMG in the Extensible Transport Framework specification [ExtTrans]. The pluggable protocol
framework makes it possible to separate the component architecture from the communication protocol of the

Unclassified

Date: 30-06-04 Page: 54

Orb [Kuhns]. This allows developers to add new protocols without requiring changes to Corba components. In
order to achieve this, the component architecture and high level Corba services access the communication
protocol using the facade design pattern, which should make the replacement Corba existing communication
protocol relatively easy [Gamma].

Pluggable Protocols are intended to overcome the shortcomings of the standard IIOP and GIOP middleware
communication protocol (see also appendix B). However, the standard CORBA GIOP/IIOP interoperability
protocols are not well suited for applications that cannot tolerate the message footprint size, latency, and jitter
associated with general-purpose messaging and transport protocols. Fortunately, the CORBA specification
defines the notion of "Environmentally-Specific Inter-ORB Protocols" (ESIOPs) that can be used to integrate
non-GIOP/IIOP protocols beneath an ORB. To allow end-users and developers to take advantage of ESIOP
capabilities, it is useful for an ORB to support a Pluggable Protocols framework that allows custom messaging
and transport protocols to be configured flexibly and used transparently by applications. Figure 5,9 illustrates
how the high-level communication protocols rely on the low-level communication protocols in the Pluggable
Protocol architecture.

Pluggable Protocols could potentially be used in the construction of tracing framework. Similar to request
interceptors (see paragraph 5.2.1), Pluggable Protocols offers a set of interfaces, which are triggered by the
Orb. Similar to smart proxies, higher-level application components and Corba services use the Component
Configurator pattern [Schmidt] to dynamically configure custom protocols into TAO’s Pluggable Protocols
framework without requiring obstructive changes to themselves or the Orb. In order for a pluggable protocol to
be usable by TAO without making any modifications to TAO itself, its interfaces must be fully implemented to
provide the functionality dictated by TAO's pluggable protocols framework interface. This functionality is
implemented within several components, namely the Acceptor, Connector, Connection Handler, Protocol
Factory, Profile, and Transport.

Especially the Transport Components is useful for tracing purposes because it is activated during Orb-to-Orb or
Orb-to-Object communication. During these events, the Pluggable protocol is able to log a communication
message source, destination, and parameters. Unfortunately though, creating a new protocol is quite tedious
and error prone [Mann]. In contrast to portable interceptors and smart proxies that offer high level interfaces,
Pluggable protocols are much harder to implement because they deal directly with the Corba communication
infrastructure. Because of the low level the communication protocol operates on, it is not easy to recognise part
of the original high-level message. Therefore implementing a pluggable protocol involves exactly the kind of low-
level error-prone programming aspects that middleware is supposed to shield the developer from. However, in
contrast to portable interceptors and smart proxies, which alter the semantics of objects, pluggable protocols
framework can only alter the underlying Orb transport mechanism. Thus, they do not permit fine-grained control
over objects since they affect all objects in an Orb and it is very hard to vary the transport mechanism at the
level of object references [Nanbour].

Figure 5.9: Pluggable Protocol Framework Architecture

Unclassified

Date: 30-06-04 Page: 55

5.3 Comparison of Trace Data Interception Techniques
We will now make a comparison of all trace data interception techniques we discussed in the previous
paragraphs.

We will compare the based on the following characteristics with scales:

• Transparency. Determines the level of transparency and effect on the distributed system:

o -- Client/Server source code is instrumented with many modifications
o - Client/Server/Middleware source code is instrumented with minimal modifications
o +/- Orb/stub/skeleton source code is instrumented but the client/server source code isn’t
o + Not any source code is instrumented but the Orb must be proprietary initialised
o ++ The distributed system does not require any alteration

• Middleware independence. Determines the level of independence on the Orb vendor:
o -- The techniques is proprietary and there are no attempts for standardisation
o - The techniques is current proprietary but is being standardised.
o +/- The techniques can be implemented in any open source middleware
o + The techniques is standardised but not implemented by all Orb vendors
o ++ The techniques can be applied on any distributed system

• Language independence. Determines the level of programming language independence of a technique.
o -- The technique is only possible in one specific language
o - The technique is bind to one specific language, but future binding are expected
o +/- The technique is bind to on specific language but can be adaptable to other languages
o + The technique is available in multiple commonly supported languages
o ++ The technique is possible for any language

• Tracing Overhead. Determines how much will the tracing technique affect the system under test.
o -- The technique will halt or alter the distributed system resulting in different system behaviour
o - The technique will slow down the distributed system altering some system behaviour
o +/- The technique will slow down a distributed system but not significantly
o + The technique will lower the distributed system performance but almost non detectable.
o ++ The technique will not alter distributed system at all

• Context Piggybacking. Determines the technique ability to transmit service context along messages:
o -- The technique cannot be used for transmitting service context
o - The technique can transmit context with parameters by wrapping the interface externally
o +/- The technique can transmit context with parameters by wrapping the interface internally
o + The technique can transmit context by populating the service context field
o ++ The technique can transmit context by modifying the service context field

• Message community. Determines the level of observability of communication events in a system:
o -- The techniques is only able to detect communication event between computers
o - The techniques can only detect message entering or leaving at only side
o +/- The technique can only detect message entering or leaving at both client and server side
o + The technique can detect All communication events between Orbs
o ++ The technique can detect All communication events in the Orb

• Identity Tracing. Determines the ability to detect the source and destination of a message.
o -- The technique can only detect the interface of the destination.
o - The technique can detect the server IOR and client IP / port address.
o +/- The technique can detect the server IOR and client Orb ID
o + The technique can detect the client or server object
o ++ The technique can detect both client and server object

• Technique Complexity. Determines the difficulty of implementing the trace technique in practice.
o -- The technique is difficult to implement implementation and different for every case
o - The technique is difficult to implement but is repeatable for different cases
o +/- The technique requires some technical expertise to implement but not too difficult
o + The technique is relatively easy to implement but still requires some time to create
o ++ The technique does not requires technical expertise except from its deployment and usage

• Cost Effectiveness. Determines the long-term cost effectiveness of trace technique.
o -- The technique is labour intensive, very complicated and awkward to implement
o - The technique is labour intensive, error prone but manageable.
o +/- The technique is relatively easy to implement but still requires manual work
o + The technique is semi automated and only requires some initialisation
o ++ The technique is fully automated and does not require any deployment activities

Unclassified

Date: 30-06-04 Page: 56

In the table below, we compare all discussed tracing techniques. Note that for comparison reasons, we also
included the language level debugger.

Interoperability Observability Deployment Trace Technique

Tr
an

sp
ar

en
cy

M
id

dl
ew

ar
e

In
de

pe
nd

en
ce

La
ng

ua
ge

In

de
pe

nd
en

ce

Tr
ac

in
g

O
ve

rh
ea

d

C
on

te
xt

Pi

gg
yb

ac
ki

ng

M
es

sa
ge

co

m
m

un
ic

at
io

n

Id
en

tit
y

Tr
ac

in
g

C
on

te
nt

s T
ra

ci
ng

Te
ch

ni
qu

e
C

om
pl

ex
ity

C
os

t E
ff

ec
tiv

en
es

s

Language Level Debugger ++ + + -- -- +/- ++ ++ + --
Debug Instrumentation -- ++ ++ + - +/- ++ + + +
Pre processing - ++ +/- + - +/- ++ + -- +
Adapter Instrumentation - + +/- + - +/- + + - +
Stub/Skeleton Instrumentation +/- + +/- + +/- +/- + + - +
Middleware Instrumentation +/- +/- + + ++ ++ + + -- ++
Interface Wrapping + + + -- - +/- -- + +/- +/-
Network Sniffing ++ ++ ++ ++ -- -- - + ++ -
Request Interceptor + + +/- - + + +/- +/- +/- +
Smart Proxy + - - + -- - + + +/- +
Pluggable Protocols + - - +/- ++ ++ + + - +
Servant Manager - ++ + + -- - - - +/- +
Message Filters + -- +/- + -- + - + + +

Concluding we can say there is not a silver bullet which allows use to develop the ideal tracing mechanism.
Although we can combine some techniques to increase the system observability, it will also inherit the lowest
level interoperability and deployment of the combined techniques. For example, a combination of the Request
Interceptor with the current Smart Proxy would create a tracing mechanism with excellent observability but with
mediocre interoperability. One particular combination that is interesting to notice is the combination of
Stub/Skeleton instrumentation with Request Interceptor. They complement each other on observability and both
offer reasonable good interoperability and therefore are in our view the best combination to create tracing
mechanism. Note that if smart proxies or Pluggable Protocols become an official OMG standard, their value as a
trace-data interception technique would be increased dramatically. They would allow the construction of a
transparent, interoperable tracing mechanism. Unfortunately, history has shown that the standardisation of a
meta-programming mechanism does not make instantly interoperable between Orbs. After the standardisation of
the Request interceptors, it tool several years before Orb vendors implemented it properly in the middleware
solution. Because we cannot wait until that to happen, we need to look for other solutions.

Because there already exists a tracing mechanism, which uses a combination of stub/skeletons instrumentation
and Request interceptor, we have looked how to create a tracing mechanism based exclusively on the Request
Interceptor. In spite of all its problems, we still think Request Interceptor is still one of the best trace-data
interception techniques currently available for Corba. In chapter 7, we show how far we can push the request
interceptor to create a transparent tracing mechanism with maximum deployment and interoperability
performance. However, before we do, we first investigate which tools can be used for testing Corba systems and
analyse how useful they are as a testing solution for Thales in the next chapter.

Unclassified

Date: 30-06-04 Page: 57

Unclassified

Date: 30-06-04 Page: 58

Unclassified

Date: 30-06-04 Page: 59

6 AN EVALUATION OF CORBA TESTING TOOLS
In this chapter, we make an evaluation of Corba testing tools and compare them with each other.

The structure of this chapter will be as following:

• Paragraph 6.1: Criteria for comparison of Test Tools. In the first paragraph, we define the criteria we will

compare the tools under evaluation.
• Paragraph 6.2: Corba Test Tools Under Evaluation. In this paragraph, we review five Corba tools, which can

be used to test Corba applications.
• Paragraph 6.3: A Comparison Of Corba Test Tools. In the last paragraph we make a final comparison of the

Corba test tools under evaluation based on the criteria set by paragraph 6.1.

6.1 Criteria For Comparison of Test Frameworks
In paragraph 2.3, we explained that traditional testing techniques would not work in a distributed system. Then
what kind of tooling would we need in order to test Corba Applications sufficiently? In this chapter, we specify
what functionality is desired in a good Corba testing tool.

We can divide the criteria’s of the required testing tool into four criteria categories:

• Message Controllability; specifies the message control the testing framework should aim for offer to create

an effective controllable testing environment.
• Message Traceability; specifies the tracing functionality the tool should aim for to allow tester to observe

Corba message communication more effectively.
• Tracing Framework Performance; allows testers to use tracing mechanism more efficiently. An efficient

tracing tool allows a tester to trace a system in shorter time with fewer problems.
• Tracing Framework Interoperability; specifies how the testing framework should be able to support testing

functionality in different distributed environments.

The following four sub paragraphs will give a list of each requirement category

6.1.1 Controllability Functionality
A testing control framework with high Controllability contains the following control requirements:

• Dynamic deployment. In order to perform simple test case without changing the distributed system, the utility

should be able dynamically connect and invoke a component interface without recompiling any source files
or restarting any applications. To assist the tester in the invocation process, the testing utility interface
should allow the tester to browse through exiting components collection and review available interfaces.

• Manual invocation. Testers require a quick user-friendly Actor/Reactor utility, which allows them to manually
create a request or reply message. Once an interface is selected, the tool could further assist the tester by
restricting the parameter input.

• Automation invocation. In order perform regression tests or perform complex test cases, the control
framework should be able to execute a test script by actor and reactors utilities. The test script could be
created by the tester by manually, generated from some static test definition language, or recorded from
manual invocation.

• Workload invocation. Simple test scenarios often do not represent the real world. Real world distributed
application must cope with multiple invocation at the same time. The testing framework should therefore be
able to create a similar environment by generating an invocation workload. This would allow testers to verify
both functional behaviour as well as the performance of the system under stress.

6.1.2 Message Observability
The tracing framework should aim for the following message observability:

• Message tracing: The tracing framework should allow testers to trace a component-based application on the

lowest granularity in a distributed system, which is to trace all communication between the components. In
order to give testers a better insight in distributed system, communication should not be restricted to request
and reply messages but also all other communication event used by the middleware to connect and
maintain a connection.

Unclassified

Date: 30-06-04 Page: 60

• Message visualisation. To allow tester analyse a distributed system effectively, the intercepted tracing data
should be visualised in some understandable format. To visualise the communication between components,
the tracing framework interface could for example use sequence diagram.

• Message context tracing: Tracing the communication between unique processes is not enough. A tester
needs to be able to link the source and destination of a message with existing components. The tracing
mechanism should therefore collect context information about the component that send or received a
message.

• Message contents tracing: All DOC Middleware standards use some sort of communication protocol that
enables components to send messages too each other. The parameter and result contents of these
messages are of special interest to the tester because they enable him to verify the input with expected
output of individual component instance. Components that are found to return unexpected results can then
be traced further traced with traditional debuggers to pinpoint the malfunction behaviour inside the
component.

• Message causality tracing. In complex distributed systems, multiple invocations can happen at the same
time. Diagnosing a distributed system demands that the tester is able to understand the casual relationship
between invocations. This requires that testers need to be able to trace the propagation of a single request
through a component application. A tester should therefore be able to select a logical subset from the total
collection of tracing data in which each event is the result of a previous event.

• Message timing analysis. Although tracing a single propagation through a network is a good way to test the
basic functionality of a component based application, it is not a very realistic test. In a real distributed
environment, a component-based application must be able to handle multiple requests at random intervals
without choking. To diagnose and find time critical dependencies, testers require means to effectively
analyse the send and arrival times of messages, the latency of messages travel and response times of
components.

• Message Filtering: Distributed applications that run for a long time can produce a lot of tracing events. Not
all trace events are interesting to the tester. What a tester is interested in is to find traces with special
properties. For example, an exception with specific message contents. Such a framework would allow
testers to observe and record method invocation and exceptions selectively, helping the tester avoid
potential failures that would otherwise plague the performance of a distributed application.

6.1.3 Tracing Framework Performance
The tracing framework should aim for the following tracing framework performance:

• Distributed Tracing: Because a component-based application can reside distributed of multiple systems, a

message sequence trough a distributed application can therefore visit multiple systems. Although a tester
could follow a trace sequence by tracing every system a sequence flows trough, it would be awkward and
very time-consuming. A far more effective method of tracing a distributed system would be to allow testers
to trace distributed system from a central location. This requires that framework takes care of gathering
tracing data from a distributed system and present it to the tester trough a single user interface.

• Runtime tracing: In order to diagnose distributed application real behaviour, the monitor framework must be
able to trace a component-based application at run time. This requires that the tracing process does not halt
during execution (e.g. tracing must be in real execution time). The interception technique should therefore
allow the tracing framework to collect tracing data without interfering with the normal flow of execution.

• Offline tracing. Testers need to be able to analyse large amounts complex tracing information long after the
tracing data is recorded. Large systems that are traced over a long period can produce huge amount of
tracing events. Every tracing event in traced data sequence can consist of multitude of complex typed fields
that must be individually analysed by the tester. This requires that the data is stored in a persistent data-
storage device that is powerful enough to store large amounts complex typed data.

• Online tracing. In contrast to offline tracing, where data is analysed after tracing data is collect, online tracing
means that the tracing data can be analysed as soon as it becomes available at runtime. In a distributed
environment, this requires the tracing framework collects tracing data, transmitting it to a central location,
process the data, and presenting it to the tester without too much delay.

• Minimal Overhead. One of the main problems of online tools is their interference with the observed
environment, as the observation itself influences the system under test and potentially affects its functional
behaviour. Thus, keeping the overhead of the tracing mechanism as small as possible by is an important
testing requirement. A tracing framework can prevent overhead by controlling the influence of the tracing
mechanism on the observed systems

• Trace Configuration: Tracing every component in a system in not always desired. Testers that are only
interested in tracing a specific list of components should be able to do so with minimal effort. Testers
generally do not like to get into technical details. The tracing framework should therefore strive to enable
testers to activate and deactivate the tracing mechanism with a simple interface.

Unclassified

Date: 30-06-04 Page: 61

6.1.4 Interoperability Functionality
The tracing framework should aim for the following requirements to the interoperability:

• Open Framework: A tracing framework is never finished. New advances in testing techniques will become

available which if applied could further improve the testing process. By using an open framework
constructed from replaceable, extendable standardised modules with well-defined generic interfaces, the
framework would have a longer life expectancy.

• Implementation Independence. The implementation source code of Corba component might be unavailable
and only exist in binary format. Components that hide their implement details must still be tested. the toolkit
must therefore be able to test components without modifying any components implementation code.

• Language Independence. Distributed Applications made in a Language Independent Middleware solution
can consist of components written in multiple languages. The framework tracing mechanism should
therefore not be tied to a single programming language but instead provide an architecture that supports
language independent tracing. This will enable testers to trace communication between components written
in different programming languages.

• Platform Independence. Some middleware solutions like Corba are Platform independent, which means the
middleware, is not tied to one specific platform. In a Platform independent middleware solution, components
based application can be scattered over hosts running different operating systems. Therefore, a tracing
framework must be able to collect tracing data from component located on heterogeneous operating
systems.

• Middleware Independence. Distributed applications are not always limited to the usage of a single
middleware solution. Distributed applications can consist of component communicating with components
made in a different middleware. Thales architecture for example uses multiple middleware solutions for their
distributed applications. Components made in different middleware products communicate through special
constructed bridges that translate middleware communication from one middleware specific protocol to
another specific protocol. In order for a tester to observe a complete trace through heterogeneous
middleware application, the framework must be able to collect tracing information from different middleware
products simultaneous and present it to the tester in a generic way.

• Monitor Environment Independence. Even if the framework is able to collect all tracing data independent of
the operating system, middleware and programming language a component is developed in, the tester does
still need some tool to analyse the collected tracing data in. However, testers might not always have access
to all platforms. The framework should therefore allow the tester to analyse the tracing data on any platform.

• Standard Based. Open middleware standards like Corba are not restricted by the implementation of a single
vendor. Although an open standard allows customers more choice, they do not make testing any easier.
Vendors often try to distinguish them self from competing vendors by providing extra but also proprietary
solutions. Although these additions can be very useful for developing new applications, these applications
quickly become incompatible with the Middleware implementations from other vendors. Because Companies
wish to switch vendors without difficulties, the tracing framework must be vendor independent. Thales for
example, had to migrate from Orbacus to JacOrb because Orbacus support stopped. In order to be vendor
independent, the tracing framework must avoid using propriety middleware interfaces and exclusively use
standardised middleware interfaces.

• Vendor Adaptability. The toolkit should strive to be compatible with most used Orb distributions. However,
every Orb is slightly different from each other due to slightly different naming conventions and different
implementation features. If you consider that there are over a hundred different Orb implementations, each
consisting of multiple versions, it is not suppressing that full compatibility is close to impossible to achieve.
The test framework should therefore support facilities that allow the administrator to make unsupported Orbs
compatible with the testing toolkit.

Unclassified

Date: 30-06-04 Page: 62

6.2 Corba Test Tools under Evaluation
Which tools are available on the market for tracing Corba? This chapter will answers this question by giving the
reader an overview of tools that were designed to test Corba application.

We have examined and evaluated the following Corba tools:

• Lucent DSC Framework Testing Toolkit
• Segue Silk Testing Toolkit
• Corba Management Component Interface Testing Toolkit (MCITT)
• Ethereal Network Sniffer
• Corba Tracer developed by the University of Nantes

Note that we were unable to give every tool an equal amount of attention due to lack of time and information.
One tool specific, the Lucent DSC toolkit will proportionally have more attention because there was the a lot
more information available for it and we were actually able to test it firsthand.

6.2.1 DSC toolkit
Until recently, the DSC Toolkit was an IDE toolkit developed by Lucent Technologies used exclusively by Lucent
Research Groups in the development of distributed systems. Although their initial plan was to make the source
and binaries available for non-commercial purposes, the tool is currently available under license conditions.
Lucent Technology in Hilversum was so helpful to send us an old version of the DSC Toolkit for evaluation
purposes.

The DSC Testing Toolkit also called Monitor framework, is part of the DSC Framework. The DSC framework
originated in the MESH project. It was created to support the design and development of a large distributed
component-based architecture for a multimedia, multiparty services platform, named the MESH platform. The
architecture of the MESH platform was based on the TINA architecture, which in turn is based on the ODP
model. The DSC framework was further enhanced in the FRIENDS project. During the FRIENDS project, they
included many elements of the Corba Component Model (CCM) in the DSC framework.

Lucent original intention was to replace the DSC framework with a commercial CCM implementation when
available. At the time, only a few freeware and commercial implementations had been announced, and no
existing product was found which matched their needs. Therefore, they decided to make the DSC framework
CCM compliant. However, the progress of the CCM standard was very slow and did not seem to acquire the
necessary industry support and momentum. During the time they tried to adopt elements of the CCM
specification in the DSC framework, they discovered many inconsistencies and open questions in the
specification. The CCM standard also felt like to large and too complex for Lucent needs (an opinion that is also
shared by Thales). Although they admit too have adopted some good elements from the CCM, they have no
intentions to work any longer towards a CCM compliant implementation of DSC [DSCDoc].

Although the Testing toolkit was originally designed as a verification technique for the Distributed Software
Component (DSC) Framework, it had many similarities with the CCM standard. The presumption was that if the
DSC framework would be made compatible with the OMG CCM standard, it could theoretically be applied to any
Corba based architecture. DSC uses a thin, abstract Orb layer that unifies differences between different Orb
vendors. Although DSC can make use several different Orbs, the tool only pre configured to work with Orbacus
and JacOrb. (The evaluation version only contained support for constructing Java Components under JacOrb or
Orbacus), Lucent has demonstrated that they also have a prototype C++ version support the freely available
TAO Orb.

Unclassified

Date: 30-06-04 Page: 63

The DSC Toolkit offers a user-friendly testing utility
that can be configured as an actor, reactor, or both.
DSC Test utility allows testers to create a controlled
environment (see figure 6.1) were components can
be prototyped by a test components. Test
components (Actor/Reactor) can connect to multiple
test subjects at runtime, by using Corba DII or DSI
facilities (see paragraph 4.1.5.2). The test component
allows the user to select a test subject, an interface,
operation, and parameters through a selection menu.

The test utility helps the tester to construct a valid
message request or response by constraining the
input values in the parameter tree (see picture 6.2).
The test utility can derive this restriction data directly
from Corba Interface Repository. The object
reference of a target component can be obtained
through the naming service, or can be provided
directly as a Corba IOR string, which can be resolved
automatically into a valid object reference. Note that
each reactor can be controlled from a centralised test
console, regardless of the location of the reactors in a
distributed environment.

The DSC toolkit allows the Actor to run Actor script
which can be used automatically invoke target interfaces. The actor script is written in a Java enabled version of
the popular Tcl script and is powerful enough to simulate complex test cases. Besides using the Tcl script for the
automation of the Actor, the scripting language can also be used for the automation of the Reactor. A Reactor
script can be programmed to respond to any invocation on a Reactor component. A Reactor can therefore be
used as a substitute for components that have not yet been developed but which external interfaces are known.
Reactor components are automatically generated from component specification files by the DSC Generation
tool. They provide an empty implementation component, which can be used in a testing situation where the
components being tested need to interact with other components, which are not yet available.

The DSC tracing mechanism is customisable which allows better control over the overhead it invests in the
observed distributed application. The graphical user interface (called Viewers) only requires the tester to select
the component interaction points for examination. The framework management mechanism
The tracing mechanism generates all necessary information needed to identify the component, its interface, the
operation, the parameter values and its source and destination.

Before any component interaction can be traced, the components in the System Under Test (SUT) have to be
prepared for usage by the tracing framework. The DSC framework must both add tracing code to the stub and
skeleton source code generated by the IDL compiler, as well install interceptors on the Container Orb. By
default, DSC will automatically augment all component stubs and skeletons) created by the IDL compiler.
Although the extra overhead caused by the tracing mechanism is low, changing some variables in a property file
can manually turn off the augmentation. Once the modified stub and skeleton code is recompiled, the
interception mechanisms that is now located between components, can send intercepted communication events
to a predefined location (see figure 6.4). Whether or not this tracing code is executed depends if the ‘monitor
code’ was activated before the component was instantiated.

To activate the component tracing mechanism, the container that instantiated the component, can manually
activate tracing behaviour in a component property file. This file also includes property settings for the
initialisation of the Orb. Because the Java version of the DSC Framework can use the Orb property setting for
the activation of the interceptors with parameters, it requires no additional changes to the Component
implementation. However, the C++ version is a more complicated because not all C++ Orb support initialisation
of the Request Interceptor by parameters. In these cases, the component source code must be slightly modified
to register the interceptors.

Actor
Test

Subject

Environment
(Reactor)

Environment
(Reactor)

Figure 6.1: Actor Reactor Framework

Figure 6.2: Actor Parameter tree interface

Unclassified

Date: 30-06-04 Page: 64

Figure 6.3: Message Sequence Diagram

The monitoring framework in DSC is part of the
component runtime that observes invocations at the
component interface level. The tracing framework
generates all the necessary information needed to
identify the component, the involved interface, the
operation, the parameter values, etc. The collected
tracing data can be used for generating graphical
representations in the form of a message sequence
diagram. Because the events produced by the tracing
framework are self-contained and ordered, a specially
designed visual tool can dynamically generate a
message sequence diagram showing the interactions
between the DSC components in a distributed
application.

After an invocation, the tool will immediately generate
and display a complete message sequence diagram of
the last invocation (see figure 6.3). The complete
diagram can also be saved to a database and analysed
off-line. The DSC tracing framework can accomplish
this by intercepting the interactions and sends the
intercepted contents data along with tracing context
data to a central Trace Server Component. Figure 6.4
shows how the Trace Server component forwards
stores recorded interaction in a Local Database, (see
figure).

The DSC tracing framework is extendable because it
offers an offers an API for development of custom
event consumers and an API for the extension of the
event model by adding support for new type of events.

Viewers

Viewers

Viewers Local Trace

Database

Tracer
Server

Actor

Component
under test

Reactor

Local Trace
Database

Local Trace
Database

Figure 6.4: DSC Framework Architecture

buffer

buffer

buffer

Lucent Technologies developed their test tool even before Corba Request Interceptors were available. Their
tracing mechanism was initially based exclusively on instrumented the stub and skeleton with tracing
functionality. Besides reading the contents information of an invocation, they added context information into the
message by wrapping the interface with additional parameters. The context information, contains a logical clock
value, has to be transmitted along with every message in the SUT. The logical clock value is a technique used to
construct message sequence diagram by the viewer utility. The drawback of this interface wrapper technique is
that it requires both stub and skeleton to be instrumented with tracing functionality. This is because an
instrumented skeleton can only read the extra parameter data send by instrumented stub. Communication which

Unclassified

Date: 30-06-04 Page: 65

used Corba object services that cannot be instrument like Corba transaction service and event service would
become impossible.

Fortunately, the OMG Portable Interceptor solution arrived just time to solve their tracing mechanism problems.
Instead of using their proprietary wrapper technique, they could replace it with the Service Context mechanism
of Corba Portable Interceptors (see appendix I). Portable Interceptors were in contrast to their original wrapper
technique, message transparent, which means that it will be compatible with all Corba communication, including
transaction and event services.

However, they could not abandon their instrumentation technique completely because of two reasons.
• The first reason is that JAVA interceptors cannot read contents information exchanged between components.

This contents information is necessary in order to verify the functional behaviour of the Components Based
System.

• The second reason is that beside contents information, the instrumented stub/skeleton can also supply
component context information like component ID. Interceptors cannot generate this information because
interceptors can only be installed on an Orb that is shared by multiple components in the container. A request
interceptor installed on a Container Orb therefore has no way of knowing which component did an invocation.

The DSC framework therefore uses a combination of Request Interceptors to transmit context data and stub and
skeletons instrumentation for accessing the message contents data and client/server identity. The context
information (logical clock and identification data), which has to be exchanged between stub/skeleton and
interceptors, is achieved by using a slot in the PICurrent (for details see appendix J). Figure 6.5 illustrates how
multiple components use the PICurrent to transfer context information to the interceptor

 CCM CONTAINER

Component A

PICurrent slot

Component A

Component A

PICurrent slot

PICurrent slot

CORBA ORB

Inter ORB
communication

PICurrent slot

Figure 6.5: DSC Client Context Data Flow

Stub

Stub

Stub

Request
Interceptor

Legend Normal Communication
Context Data communication

The initial implementation of the DSC test tool used a post IDL processor to instrument the stub and skeleton
generated by the IDL compiler. The post IDL processor used standard syntactical analysis techniques to
instrument the stubs and skeletons with additional tracing code. Because this instrumentation technique proved
to be more complex than anticipated, they are now using an instrumented IDL compiler for the generation of
Java stub and skeletons. Although their Java IDL compiler depends heavily on the JacOrb IDL compiler, it is
only marginally modified. The stubs and skeletons generated by this JAVA IDL compiler are exchangeable by all
possible Java Orb implementations. This is because the stub and skeleton classes in Java have to conform to a
specification. However, this will not work for C++ stub and skeletons, for which no standard stub or skeleton
class specification exists. The prototype C++ IDL compiler must therefore be manually instrumented for usage
other that the currently supported Corba implementations. Fortunately, the instrumentation is relatively simple to
perform by the developers at Lucent Technology. Summarising we can conclude that the DSC Toolkit offers
both a good tracing framework for the verification of most Corba middleware applications.

Unclassified

Date: 30-06-04 Page: 66

6.2.2 Corba Trace
Corba Trace [Corba Trace] is an open source Corba Java tracing tool, which can be downloaded and used
under the free license of the Free Software Foundation. The tool is developed over a period of two years (2000-
2002) by a team of students at the University of Nantes in France. Although Corba trace is written in SunJava
1.4, the blue prints are available to rewrite it in any other Corba compatible language. However, the
downloadable Corba trace version only supports Sun JDK 1.3.1 / 1.4 with Orbacus Orb 1.4.0 / 1.3.4 on the
Windows 2000 or Linux operating system. Although they provide the full design documentation of Corba Trace,
it is only available in French.

Corba Trace tracing mechanism is based on combination of Request Interceptors (see paragraph 5.2.1) and
Adapter Instrumentation (see paragraph 5.1.3). In the figure 6.6, we can see the Adapter in active state after
deployment. The Adapter, which is located between the Corba object and Stub/Skeleton, collects contents data
(in and out parameters) and context information (component name). The Request Interceptor is used for
transmitting tracing context data between the Orbs.

Adapter

Corba Object

Figure 6.6: Adapter wraps Orb interface and logs contents information

XML Log
file

Stub/
Skelton

Orb object

Logs contents data +
context data

Log message
communication events

Interface
Reference

Object

Request Interceptor

wraps

Proxy

String_to_object

narrow

wraps

creates

During the execution of the Corba Application, the tracing
mechanism intercepts Corba communication and stores it
locally in logs. After the tracing process is finished, the
produced logs (which have been created in XML format) are
processed with the Log2SequenceDiagram utility into
message sequence diagram. In figure 6.7, we can see how
Log2XMG processes the XML produced by an interceptor
into XMI, which can be viewed by UML sequence diagram
viewer.

Before any tracing data can be visualised, the log files
created by tracing mechanism must first be collected, filtered,
and processed. However, Corba Trace does not contain any
integrated data distribution framework like the DSC Toolkit
(see paragraph 6.2.1). The user therefore must transmit the
intercepted tracing data manually. Fortunately, Corba Trace
makes life a little easier by offering an integrated FTP client
tool, which allows the user to download Log files from traced
systems.

Before the intercepted tracing data can be analysed by a viewer, the collected Log files must first be processed
into a readable format with the Log2SequenceDiagram utility.

Figure 6.7: Processing of intercepted tracing data into

Unclassified

Date: 30-06-04 Page: 67

The Log2SequenceDiagram utility performs the following processing tasks:

• Parses log files, and merge all partial-messages to get full message.
• Synchronises all local objects clocks to a common clock.
• Applies some used defined filters to get to filter out undesired information.
• Generates a sequence diagram in some common file format, which can be directly display by a viewer.

Figure 6.8: Corba Trace Filter GUI

Because intercepted tracing data can contain irrelevant
tracing data, the Corba Trace Log2SequenceDiagram
utility can apply filters on the collected log files before the
final sequence diagram is generated (see figure 6.8).

The following types of filters (see figures 6.9, 6,10, 6,11)
can be applied on the log files:
• Message type filter allows the filtering of intercepted

messages based of the type of communication event.
• Date Time filter allows the filtering on the interception

timestamps generated by the tracing mechanism.
There are three types of date filters: after a date,
before a date, or between two dates.

• Method Contents filter. For each operation, the
interface name and operation arguments' values can
be specified. Defined argument types can be one
specific type and value, or an exact argument position
and specific value.

Although the filter mechanism does not allow the
automatic clustering of objects with a casual relation ship,
the user narrow a sequence diagram to a set of
interaction objects by applying filters on either object level
global level.

Although intercepted Corba communication cannot be
monitored online, the message contents data and message interaction data can be analysed offline by
inspecting the generated files with a compatible viewer.

The Log2sequencediagram utility can generate the following common formats:

Figure 6.9: Message Event selection

Figure 6.10: Message Data selection

Figure 6.11: Message Method selection

Unclassified

Date: 30-06-04 Page: 68

• SVG is the format recommended by Corba Trace because it provides the best graphical quality and is

provided with the tool
• XMI is the most common formats and can be viewed by any tool that supports the XMI format like common

UML tools such as MagicDraw (see figures 6.12 and figure 6.13) and Rational Rose.
• Latex is also a common format, which can be viewed by any compatible Latex viewer.

Figure 6.12: MagicDraw Message Data Tree Viewer

Figure 6.13: MagicDraw Message Sequence Diagram Viewer

Unclassified

Date: 30-06-04 Page: 69

Although the ‘Corba Trace’ tracing mechanism cannot be configured at real time, it can be set manually by
setting the active logging policy level. Before any Corba messages can be traced, both client and server source
code must be instrumented with additional tracing code. In the two source code examples below we can see
how existing component are instrumented with a proxy object, which only need to initialise the Adapter with an
existing object reference. While this is an insignificant modification in cases where the source code of
components is available, it precludes the use of this tracing mechanism in incases where commercial off-the-
shelf (COTS) components are used.

Once initialised, the proxy object behaves exactly the same original object reference object. The instrumentation
will trick the Corba object thinking that it is communicating with the stub or skeleton while in fact it communicates
with an intermediate proxy object. Although this programming technique minimises the instrumentation required
in a source code, an adapter is very Orb implementation dependant. This is because every Orb implementation
behaves slightly different and offers different functionality. Fortunately, the design documentation can be used to
make the Adapter compatible with other Orb distributions.

A bigger problem however, is that this instrumentation technique will not work in CCM. That is because Corba
Trace initialisation procedure requires an object reference and Orb object. Both are not available in a CCM
Component. Although underneath, CCM still uses Orb object and object reference, you will not find them in the
client or server source code. Instead, they located in the component home, which maintains all object reference
and the container, which initialises the Orb. Nevertheless, Corba trace is still a useful tool for testing Simple
Corba applications. Further study should therefore be done to determine whether Corba Trace mechanism could
be adapted for CCM applications.

Instrumented server source example

Instrumented client source example

import corbaTrace.InterceptorServer;
...
class MyClass {
 ...
 interceptorServer= new InterceptorServer();
 ...
 Orb orb = org.omg.Corba.Orb.init(args,props);
 obj = orb.resolve_initial_references("RootPOA");
 POA rootPOA = org.omg.PortableServer.POAHelper.narrow(obj);
 poa_interceptor = interceptorServer.create_poa(orb, rootPOA, "myHelloPOA");
 ...
 obj = interceptorServer.activate_object(poa, helloImpl,"My Component");
 Hello hello = HelloHelper.narrow(obj);
 ...
 orb.run();
 orb.destroy();
}

import corbatrace.InterceptorClient;
...
class MyClass {
 ...
 interceptorClient = new InterceptorClient();
 ...
 Orb orb = Orb.init(args, props);
 ...
 obj = orb.string_to_object(ref);
 obj = interceptorClient.active_interception(obj, orb);
 interceptorClient.activate_log(orb, "My Component");
 ...
 Hello hello = HelloHelper.narrow(obj);
 ...
}

Unclassified

Date: 30-06-04 Page: 70

6.2.3 The Silk Testing Toolkit
Segue Software has one the largest e-Business testing customer bases and describes their Silk product family
as 'e-business reliability solutions'. They have developed a large range of commercial available tools for testing
distributed systems, which can operate standalone or in combination with each other. They divided their testing
framework into separate tools, each aiming to cover different aspects of testing.

Because one of these tools, called Silk Observer was specifically made to trace Corba applications, we were
very anxious to take a closer look at this tool. Unfortunately, the tool is no longer commercially available. Due to
lack of interest from the industry, and the introduction of other component technologies like .NET and Java
Beans which have a much larger market, Segue quit all support for their tracing tool. They claimed to have
integrated some of tracing technology of Silk Observer into a special edition of Silk Performer, called Silk
Performer Component Test Edition (see figure 6.15). Although, the Silk Performer Component Test Edition
currently does not support Corba at all, Segue Software has revealed that there are plans to integrate Corba in
their Component-testing product in future version. Their tool would then be able to trace Component based
application consisting of multiple component models including Corba/CCM.

Because Segue Software offers many testing tools, we will restrict ourselves to the most interesting tools for
creating a testing framework. In the next sub paragraphs we describe following segue testing tools:
• Silk Observer: a message tracing and monitor tool
• Silk Test: a actor/reactor test tool with script automation
• Silk Performer: a message record and workload generation tool

6.2.3.1 Silk Observer
Silk Observer facilitates monitoring and diagnostics in a distributed application environment by capturing and
presenting communication details between Corba objects. Silk Observer was on of the first testing tools
designed specifically for tracing Corba applications. Black and White Studios developed the Silk Observer,
which was originally called Object Observer. In 2000, Black and White Studios was taken over by Segue
Software, which made the tracing tool part of their testing tool family and re-branded the tracing tool to Silk
Observer.

Silk Observer provides the following testing tool support:

• A Profile Editor allows the user to specify where to monitor traffic ‘on-the-fly’. By selecting which parameter,

return values, methods, object types should be monitored, the user can define filter sharp profiles to scope
the traffic to only the interfaces of interest. The Profile Editor is able support these features thanks to the
Corba interface repository. Moreover, the user can specify the monitoring points i.e. client sending, server
receiving, server sending or client receiving. The configuration is saved in files and can be assigned to an
instrumented Corba object at runtime.

• A Monitor for graphical display of the data. Using the viewer, a tester can selectively monitor and record
method invocations and exceptions to avoid or eliminate bottlenecks, race conditions and other potential
failures that can impact the performance of an application. Information presented includes which application
components are running, which objects are being accessed, and the methods being invoked (including
parameter values and thrown exceptions).

• An Analysis Tool in which data recorder combined with a parser for off-line request-reply timing analysis of
tracing data stored in log files. The parser provides some communication timing analysis functionality by
computing request latency measures from the timestamps of the request reports. Object/Observer has to
parse the message buffers completely in order to retrieve and reconstruct the parameter and return values
of the requests.

Although Silk Observer supports monitoring of both Java and C++ applications, it can do so only with the Orbix
and Visibroker Orbs on the Windows or Unix operating systems. Silk Observer tracing functionality is based on a
combination of instrumentation of the component source code and a proprietary message logging facility. The
instrumentation, which is similar to Corba Trace (6.2.2), is achieved by linking an additional class library to the
source and by initializing the tracing mechanism with the interface object reference of the servant.

Each CORBA object that is to be monitored must instantiate a so-called Probe object. The Probe object collects
data about method invocations and stores that data in local log files. The Probe object also takes care of
retrieval of context data, process identification data, and retrieves profile data from Profile editor. The Probe can
achieve message tracing by using a proprietary filtering message logging functionality offered by the Orbix or
Visibroker Orb. This logging facility which similar to request interceptors, allows the interception of

Unclassified

Date: 30-06-04 Page: 71

communication passing from or to a Corba object. The advantage of this technique is that in contrast to request
interceptors, the filters do not have to be registered. This means Silk Observer can modify the tracing overhead
without restarting the Corba object Orb. However Silk Observer tracing mechanism reliability on proprietary
filtering, it make in impossible to use the tool with Orbs, which do not support this proprietary functionality.

Figure 6.14 illustrates the architecture of Silk Observer in which data flows from tracing mechanism to monitor
tools and from monitor tools back to tracing mechanism. On the one hand, it gathers request traces from the
Probe objects and forwards them either to the viewer GUI or to a data recorder that stores the tracing data in log
files. On the other hand, it forwards configuration requests from the viewer GUI to the corresponding
instrumented Corba objects. Silk Observer data distribution uses standard Corba objects, which open to user
specific changes because the OMG IDL interfaces from all Corba objects are available and its usage is well
documented.

For the communication between tracing mechanism and graphical user interfaces, Silk Observer tracing
mechanism uses a separate Collector object on each monitored host. In order for the Collector component to be
aware of deployed Probe objects, the Probe objects must register itself to the Collector when they are created.
The Collector object, forward the recorded information to a central component called the Observer. The
Observer keeps all information about the system in a central database. This database may be queried for new
data continuously, resulting in actual time processing. The data may also be analyzed at some later point in
time.

The amount of information recorded by the Probe objects is controlled by so-called profiles. A profile defines
which interfaces, messages and parameters should be recorded. When Probe objects are created, they request
a profile from their Collector. The Collector in turn contacts the Observer to obtain the requested profile. In order
to influence the amount of information collected at runtime, new profiles can be uploaded from a Monitor
component to deployed Probe objects in the system. The Probe objects combined with the ability to change the
filtering conditions, allows user to reduce of the amount of information that needs to be processed to a minimum.

Figure 6.14: Silk Observer Architecture

Trace data flow

Control data flow

Unclassified

Date: 30-06-04 Page: 72

6.2.3.2 SilkTest
Silk Test, originally known as Silk Pilot, is an object-level solution for validating the behaviour of Corba-based
servers. The GUI offers an easy point-and-click mechanism that allows testers to connect to Corba servers and
to issue requests based on the interface descriptions that are automatically retrieved from a Corba Interface
Repository (see also paragraph 4.1.5.1). The sequence of method calls issued during a session can be
converted into script code for later replay.

Silk Test is available in a Standard and Professional Editions. The Standard Edition is an entry-level product
featuring interactive testing of objects. The Professional Edition ads test automation and code generation
capabilities. Silk Test is aimed to allow the tester to test the behaviour of distributed objects within application’s
server components. The Silk Test supports regression testing by an integrated testing scripting language called
4Test. The 4Test scripting language is an object-oriented language specially designed for regression testing.
Because the Silk Test tool interprets the 4Test scripting language, it is also platform independent. Silk Test can
be used to test Corba servers implemented in any programming language, as well as pure Java servers through
local public interfaces and RMI. Silk Test also explicitly supports the Enterprise JavaBeans (EJB) component
model.

6.2.3.3 Silk Performer
Silk Performer provides a load testing facility for CORBA servers. Load testing is based on observation of IIOP
packages with the Internet Recorder. IIOP is Corba message format, which uses standard TCP/IP network
protocol for transmission (see also appendix B). The Internet Recorder is integrated into the socket library, and
records IIOP traffic before transmitting it to the actual clients. The IIOP packages can be replayed exactly as
recorded or configured to generate different traffic profiles. Reconfiguring and changing invocations parameters
types cannot be determined by observing IIOP only. Silk Performer therefore is able to extract parameter
information from interface definitions, which enables parameters types to be associated with IIOP messages.
With a workload wizard it is then possible to generate traffic seemingly coming from different machines with a
variable number of concurrent users with variable transaction frequency. During the load tests, results can be
presented with a GUI tool showing virtual users, transaction status, response times, data throughput, and
occurring errors.

Segue Software now also offers a special version of Silk Performer called Silk Performer Component Test
Edition which can verify the performance and interoperability of remote components. Unlike unit testing tools
which only evaluate the functionality of a remote component being accessed by one user, Silk Performer
Component Test Edition can tests components under concurrent access by up to five virtual users to emulating
realistic server conditions (see picture below). However, the new tool supports almost all popular middleware
products (including Microsoft new middleware product .NET) except for Corba.

Figure 6.15: Silk Performer Component Edition Performance Test

Unclassified

Date: 30-06-04 Page: 73

6.2.4 Ethereal
Ethereal is an open source, freeware network sniffer that is able to capture network traffic. Data can be captured
“off the wire” from a live network connection, or read from a captured file. Live data can be read from many types
of network including Ethernet used by the Internet. The main advantage of this approach is that it is completely
transparent because neither the middleware nor the component needs any change. However, tracing Network
communication involves very low level and tedious work. Besides logging network traffic, the sniffing tool also
allows observer to analyse communication statistics. These statistics are useful for detecting network traffic
problems. The main feature which makes Ethereal a possible candidate for Corba tracing tool is its ability to filter
it captured traffic. A filter creation GUI allows users to create filters on any protocol or field that Ethereal knows
about. Ethereal Version 0.9.14 currently supports over 407 protocols, including GIOP, Corba communication
protocol (see appendix B). By applying a special GIOP filters, Corba messages could be separated from the
network traffic noise (see figure 6.15). Note however that communication between components hosted on the
same machine cannot be inspected because these messages do not travel over the network. Although it
theoretically possible to use Ethereal sniffing tool to trace Corba Application on a Host to Host level, it will be
very impractical to pull it off. Each captured raw Corba message must manually dissected into useful tracing
information and large distributed can only be performed offline from captured files. On the other hand, it is fully
transparent and can be used with virtually no latency overhead to the distributed application.

Figure 6.16: Ethereal Message viewer

Unclassified

Date: 30-06-04 Page: 74

6.2.5 MCITT
The Manufacturer's CORBA Interface Testing Toolkit (MCITT, pronounced "M-kit") reduces the amount of labour
required to verify the behaviour of components in a complex distributed system. It was developed in support of a
project co-funded by the NIST Advanced Technology Program. Although the project has ended and no future
releases are expected, It is now a freeware stand-alone tool which can be freely download directly from the
OMG website.

The MCITT toolkit minimises the amount of effort needed to produce simple emulations (dummy components)
that can be used to replace servers in a testing scenario. The MCITT accomplishes this by allowing the user to
generate source code files in a higher programming language like C++ or Java. The generated test emulation
application consist of CORBA boilerplate code, memory management, and stubs for unused operations. The
generated emulation code also provides conformance test assertions, automatic inclusion of conformance test
boilerplate, and timed loops for performance evaluation. Test assertions can even be derived automatically from
Component Interaction Specifications. Although MCITT can create automated controlled environment with
minimal afford, the definition language only supports static testing scenarios and does not supports any
interactive manual invocation modes.

There are two complementary ways of defining behaviours for dummy components:
• The Procedural way, by using Interface Testing Language (ITL). ITL is a super-simplified procedural

language for specifying and testing the behaviour of Corba clients and servers. Besides the obvious
advantage of script languages, ITL also offers specialised support for conformance testing, performance
testing and server emulation. The ITL compiler uses a set of files called a binding to translate ITL into the
implementation language. Different bindings can be created to absorb the differences between one platform
and the language, thus achieving a higher degree of platform independence.

• The Declarative way, by using Component Interaction Specifications (CISs). Unlike an ITL file, which
specifies the behaviour for one component only, a CIS can describe all of the interactions between all of the
components in the system. A CIS can be used to generate multiple servers that will execute the scenario
that it describes. An interaction scenario consists of a tree of Corba request having specified input, outputs,
and/or returns values. The tree is rooted at the test client that initiates the entire chain of events. In order to
capture the tree structure of the interceptions in a flat ASCII script, an outline numbering convention similar
to that UML Collaboration Diagrams is used.

The figure right illustrates the process by which a server is built using MCITT. The process is similar to that used
to build a CORBA server from IDL (see also paragraph 4.1.4) and a C++ implementation, but in this case the
C++ implementation is generated by MCITT from the ITL and/or CIS files that the user provides. The advantage
is that it is less labor-intensive and less error-prone to specify the behaviours needed for a testing scenario in
ITL or CIS, letting MCITT generate all of the boilerplate code and stubbed-out operations, than it is to implement
the entire scenario directly in C++. A "smaller win" is that equivalent servers can then be generated for different
platforms with relative ease by selecting different bindings when MCITT is invoked. Another advantage of static
generated test servers is that it can be used in combination with any tracing instrumentation technique.

Figure 6.17: MCITT Test Server generation

Unclassified

Date: 30-06-04 Page: 75

Currently, the MCITT distribution comes with bindings for Orbix 2 with the Sun C++ compiler (Solaris) and the
Visual C++ compiler (Windows NT 4.0), and a partial binding for OrbixWeb 3. By copying and modifying the
existing bindings with a text editor, developers can easily create bindings for other platforms. The platform
changes can then be applied to all ITL compilations that select the new bindings.

Beside ITL and CIS functionality, the MCITT offers also following supporting tools:
• Idlmkmf is a specialised IDL make makefile utility. It generates makefile rules for all the IDL files in the

working directory, plus a few useful variable definitions. Then it is only necessary to add rules specific to the
clients and server being build to produce a complete makefile for the Corba application.

• TEd is the NITS Test Editor. It is a tool for non-interactive editing of test scripts and programs. Ted is used
for example to automate the migration of ITL files from a C++ binding to JAVA. Written for the NITS SQL
conformance-testing program, it provides much of the functionality of the standard Unix tool sed, but is
more portable and has some operational differences that make it better suited for editing test cases.
Because of its usefulness in this regard, it has been included in MCITT.

Although MCITT cannot be used to trace the interaction between components directly, it can be used for the
construction of a controlled testing environment, which logs all Corba communication between interfaces.

6.3 An Evaluation Of Corba Test Frameworks
In this paragraph, we will try to compare the different Corba testing tool based on the criteria specified by
paragraph 6.1. For every criteria group, we made a separate subparagraph containing a table, in which we rated
every individual criterion for every evaluated tool. Note that criteria that could not be compared validly are rated
as not applicable (n.a.). In the last subparagraphs, we will make our final comparison based on the information
of the previous subparagraphs and give our recommendation of the best tracing for Thales.

6.3.1 Controllability Functionality
Based on the information available to us we evaluated the performance of the controllability functionality of the
Corba testing tools with the following conclusions:

Test Tool Functionality Comment Rating

Dynamic
Invocation

By using Corba Interface Repository, DII and DSI, the DSC tool is able to offers a
user-friendly GUI, which supports the dynamic selection and connection with
components interface and helps the user create a correct message by constraining
message input.

++

Manual Invocation The DSC actor/reactor tool can be used in manual mode, interactive mode
(interruption mode) and fully automated mode.

++

Automatic
Invocation

For automation the actor/reactor utility can use the popular Tcl scripting language,
which allows the simulation complex component behaviour.

+

DSC Testing
Toolkit

Workload
Invocation

Although DSC does not offer active workload support, testers can use multiple
scripted actor/reactor utilities to create a realistic workload.

+/-

Corba Trace Corba trace does not support any controllability functionality itself and relies on
the usage of external test tools.

n.a.

Dynamic
Invocation

The Silk Test GUI can connect and issue request based on the interface
descriptions that are automatically retrieve from the Corba Interface Repository.

+

Manual Invocation Although Silk Observer self cannot invocate any component, Silk Test offers
good manual invocation functionality.

+

Automatic
Invocation

The Silk Test supports regression testing by a proprietary integrated testing
scripting language called 4Test. However, the 4Test scripting language is an
object-oriented language specially designed for regression testing.

+

Silk
Observer/Test/
Performer

Workload
Invocation

Silk Performer is able to record IIOP traffic, modify its parameters and use it to
generate a large workload

++

Ethereal Sniffer Ethereal network sniffer does not support any controllability functionality and
relies on the usage of external test tools.

n.a.

Dynamic
Invocation

The MCITT will use Corba DSI and DII services for the connection to other
components.

+

Manual Invocation Although the MCITT tool cannot send a simple invocation directly, it is able to
generate and launch a small scripted component performing the same action.

+/-

Automatic
Invocation

MCITT can generate multiple automated test components from a single definition
file, which will save the tester time and prevents.

++

MCITT

Workload
Invocation

Although MCITT was not originally indented for this purpose, the ability to
generate multiple test component from a single file can be exploited to create a
large group of test component producing a large invocation workload

+

Unclassified

Date: 30-06-04 Page: 76

6.3.2 Trace Observability Functionality
Test Tool Functionality Comment Rating

Message tracing The DSC toolkit is able to trace all message communication flowing through distributed
system including those generated by DSC control utilities

++

Message
visualisation

The DSC toolkit generates a sequence diagram from all traced communication events. The
sequence diagram contains invocation information and can be zoomed.

+

Message context An invocation message contains both a client and server name, which is automatically
derived from the IDL file. In order to make instance uniquely identifiable, the component
name is concatenated with a generated postfix

++

Message contents The DSC toolkit is able to read all message contents information with it instrumented stubs
and skeletons, which is exchangeable with all Corba implementations.

++

Message casualty Message casually plays a central role in the DSC trace framework. The DSC tracing
mechanism collects causality information at all interception points, which can be separately
visualised in the sequence diagram.

++

Message timing Although DSC tracing mechanism collect tracing information, it must be manually analysed
by the tester.

+

DSC
Testing
Toolkit

Message filtering The DSC of some basic message filtering behaviour, which can be set by modifying the
property files.

+

Message tracing Although Corba Trace is able trace most Corba message communication, it will not be able
to trace message produced by external component testing tools. This is because the tracing
mechanism requires the modification of it control tool source code which not always
available. Corba trace therefore requires the tester to create his own instrument

+

Message
visualisation

Corba trace can generate a UML sequence diagram based on log files, message types,
message contents and time stamps a view in multiple formats

++

Message context Although an intercepted invocation can contain both client and server name, it name must
be manually instrumented in the Corba objects source code.

+

Message contents Although The Corba trace is able to read all information inside a message with adapter
mechanism, it must manually instrumented in every Corba object source code.

+

Message casualty Although the sequence diagrams produced by Corba Trace can be used to derive some
casual relation between message, it will does not actively support causality tracing.

+/-

Message timing Although Corba tracing mechanism can collect timing information, it must be manually
analysed by the tester.

+

Corba
Trace

Message filtering Although Corba trace mechanism offers some filtering capability, it must be manually set in
the Corba object source code.

+

Message tracing Silk Observer is able to trace all message communication generated by component using the
instrumented libraries.

+

Message
visualisation

Although we know Silk Observer can visualised intercepted message with a viewer, we
know little of the characteristics of the viewer.

+

Message context With the classes instrumented in the source code, Silk Observer is able to collect context
data

+

Message contents Because the tracing code is instrumented in Orb itself, it is able to access all message
contents information.

++

Message casualty Although Silk Observer does not actively supports causality tracing, Silk observer can be
used to determine the relation between messages by comparing timestamps.

+/-

Message timing
analyses

Silk Observer support the ability to perform automatic timing analysis of intercepted
message

++

Silk
Observer

Message filtering Silk Observer allows tester to define filter profiles to scope the traffic to only the interfaces,
methods, or parameters of interest.

++

Message tracing Although The Ethereal network sniffer is able to intercept all message communication
between computers, message communication between components located on the same
computer cannot be detected.

+/-

Message
visualisation

Ethereal sniffer does not support any visualisation of messages. --

Message context Messages only contain the name of the interface being invoked, not the component name of
either client or server.

-

Message contents Although Ethereal sniffer is able to capture, filter, and transform the message contents into
some readable format, it will be very hard to determine which component produced it.

+

Message
causality

By comparing timestamps, a tester could reconstruct the causality between messages
created by simple test cases. However, it will quickly become very hard for complex test
cases.

-

Message timing
analyse

Although Etherial offers some good statistical time analysis function, the fact that it can
only analyse intercepted network message limit its use

+/-

Ethereal
network
sniffer

Message filtering Etherial filter mechanism allow the exclusion of undesired messages +
MCITT Except for the invocation results returned by its non-interactive test components are not able

to observe any internal Corba communication.
n.a.

Unclassified

Date: 30-06-04 Page: 77

6.3.3 Tool Performance
Test Tool Functionality Comment Rating

Distributed tracing Locally intercepted messages data is automatically distributed to global trace server,
which can distribute the tracing data further to multiple viewers.

++

Runtime tracing Because DSC tracing framework uses asynchronous communication for the distribution
of intercepted trace data, Corba applications under test will not be interrupted. However,
there exist a small chance the extra communication overhead will overload the Orb
causing brief interruption to the Corba application.

+/-

Online tracing The DSC tracing distribution framework allows tester to analyse intercepted tracing
messages online during the interception process.

+

Offline tracing Every viewer will locally store received tracing data, which can be viewed offline
anytime. However, the locally stored tracing data cannot be modified.

+

Tracing overhead In order to minimise overhead, intercepted trace data is locally buffered before it
distributed to the viewers. However, due to the extra overhead caused by the trace data
streams, context data and interceptors, both the application under test as the overall
system will slightly be reduced.

+

DSC
Testing
Toolkit

Trace configuration Although DSC does support an integrated online configuration interface which allows a
user to select the desired interface directly in the monitor. In order to activate the DSC
tracing mechanism, the user must set some local configuration files, call the
corresponding makefile and redistribute the components files to the distributed location.

+

Distributed tracing Although the user must manually collect tracing data located in local stored log files,
the GUI has a build-in FTP client that can help the user download all log files to one
central location.

-

Runtime tracing By storing intercepted tracing data in local log files, the tracing framework will not
interrupt Corba applications

+

Online tracing Tracing information can only be analysed effectively after the test completed, the log
files has been collected, filtered, and processing into a viewable format.

--

Offline tracing Collected tracing data can be analysed offline any time afterward by standard viewers,
even by users who do not have installed the Corba trace tools. Normal text editors can
modify both raw log files and trace export files.

++

Tracing overhead By storing tracing locally in log files, the trace mechanism does not generate additional
communication overhead. However, the usage op Corba Portable Interceptor will
always introduce a small delay.

+

Corba
Trace

Trace configuration Each Corba application must be manually instrumented with some specific library calls. -
Distributed tracing The Silk Observer tracing mechanism is able to collect tracing data from multiple hosts

and send it to a central viewer
+

Runtime tracing All instrumented object can be traced at runtime +
Online tracing The viewer is able to display intercepted tracing while the tracing mechanism is still in

progress.
++

Offline tracing Tracing data is stored in log files, which can be analysed offline. +
Tracing overhead The trace data distribution steams generate most trace overhead. +

Silk
Observer

Trace configuration Although all components under test must be manually instrumented with a single library
call, once instrumented the tracing mechanism can be configured from a central
graphical user interface.

+

Distributed tracing Although Ethereal sniffer can capture broadcasted network message communication
from multiple systems, it does not support distributed tracing from multiple sniffing
locations.

+/-

Runtime tracing Because Etherial sniffer only listens to existing network traffic, it will not change the
runtime behaviour at all.

++

Online tracing Captured network messages can be inspected on arrival. ++
Offline tracing Captured network messages can be manually stored and can be analysed afterwards. +
Tracing overhead When Etherial sniffer tool is deployed on a computer system, which does not contain

any components, the Corba application will not be interfered in any way.
++

Ethereal
network
sniffer

Trace configuration Etherial network sniffer does not need to be configured. ++

MCITT MCITT does not support any tracing functionality n.a.

Unclassified

Date: 30-06-04 Page: 78

6.3.4 Tool Interoperability
Test Tool Functionality Comment Rating

Component Transparency Although the component source code does not have to be instrumented, the stub
and skeleton do. Fortunately, a modified IDL compiler automatically performs all
instrumentation.

+

Language Independence Originally, the DSC trace framework could only be applied on component written
in Java. Fortunately, Lucent has also worked on a C++ extension, which allows
DSC Toolkit to trace Corba applications consisting of components written in
JAVA or C++.

+

Platform Independence The Java version of DSC Toolkit is applicable in any JAVA enabled operating
system. The C++ version of DSC Toolkit is available for Windows and Unix.

+

Middleware Independence Because of the proxy instrumentation tracing technique applied by DSC Testing
toolkit is shared by all static Corba applications, the tool is applicable in most
stand alone Corba implementation as well as CCM solutions.

+

Monitor Independence The DSC viewer, which is written in JAVA, is able to monitor both C++
components as well as JAVA components.

++

Open Framework Although DSC testing toolkit an open framework, it does not supply the source
code. Fortunately, Lucent is willing to extend their tool with additional
functionality.

+

Standard Based DSC tracing framework uses Portable Interceptors, which is well known Corba
standard supported by most modern Orb implementations.

+

DSC
Testing
Toolkit

Vendor Adaptability Using other Java Orb implementation than those already supported can easily be
accomplished by modifying specific initialisation files. However using other C++
Orb is more difficult but can be done by calling help from Lucent.

+

Component Transparency Corba Trace requires the manual instrumentation of all components
implementation source code before any Corba application can be traced.

--

Language Independence Although Corba Trace only supports JAVA, because of the lack of support it is
not unlikely new version of Java will not be compatible.

--

Platform Independence Corba Trace support the Microsoft Windows and Unix operating system +
Middleware Independence Corba Trace is designed for standard Corba objects, which initiate their own

pivate Orb. Corba Trace contents tracing functionality is based on replacing the
private Orb object with an adapter object. However, Corba components do not
have a private Orb. Corba trace therefore cannot work in conjunction with CCM.

-

Monitor Independence Corba trace can generate a sequence diagram in multiple common formats, which
can be analysed by any compatible viewer.

++

Open Framework Corba Trace includes the tool source code and design documentation. Note
however that the design documentation is only available in French.

+

Standard Based The interception of message is based op Corba portable interceptor. +

Corba
Trace

Vendor Adaptability Although Corba Trace only contains library support for Sun JDK and Orbacus
Orb, Corba Trace supplies the design documentation which can be used to make
the framework compatible with Orbs from other vendors that support Corba
portable interceptors

+

Component Transparency Although the tracing mechanism requires the instrumentation of the component
source code with a single library call, once instrumented and the tracing
mechanism can be activated/deactivated after a single mouse click.

-

Language Independence Silk Observer supports both Java and C++ programming language. +
Platform Independence Silk Observer supports both Windows and Unix operating system +
Middleware Independence Silk Observer is only able to trace the Visbroker and Orbix Middleware solutions. -
Monitor Independence The tool can be used in Microsoft windows or UNIX operating system. +
Open Framework Silk Observer is in the first place a commercial tool, which is not intended as an

open framework. However, the server component contains an open DLL interface
definition, which could potentially be used to extend Silk Observer tracing
framework with additional functionality.

+/-

Standard Based Except from the supported programming languages, operating system and
middleware, the Silk Observer tool does not support any other standards.

--

Silk
Observer

Vendor Adaptability Because of it dependence on proprietary message filter functionality, the tracing
framework is only compatible with the Visibroker and Orbix Orb.

--

Component Transparency Ethereal network sniffer is fully transparent ++
Language Independence Ethereal network sniffer is fully language dependant ++
Platform Independence Ethereal network sniffer is supports Mircrosoft Windows and Unix OS +
Middleware Independence Ethereal network sniffer can trace any non encrypted network message +
Monitor Independence Ethereal network sniffer is supports Mircrosoft Windows and Unix OS +
Open Framework Ethereal network sniffer is open source and contains development documentation ++
Standard Based Ethereal network sniffer support almost all known network message protocols. ++

Ethereal
network
sniffer

Vendor Adaptability Although Ethereal network sniffer already contains over 400 build-in filters, the
user can manually construct new filters.

++

Unclassified

Date: 30-06-04 Page: 79

MCITT MCITT Interoperability cannot be validly compared with the other tracing tools n.a.

6.3.5 Final Comparison
We will now make our final comparison. For overview, we collected all ratings from the previous tables into a
single comparison table. Note that we added an extra criterion to the table, which we did not rate in any of the
previous tables. Although ‘cost’ was not a criterion, we added in into the final comparison table because it can
play a relevant role in our final caparison.

Group Functionality Lucent DSC

Testing toolkit
Corba
Trace

Silk
Observer

Ethereal sniffer MCITT

Dynamic Invocation ++ n.a. + n.a. +
Manual Invocation ++ n.a. + n.a. +/-
Automatic Invocation + n.a. + n.a. ++

Message
Controllability

Workload Invocation +/- n.a. ++ n.a. +
Message tracing ++ + + +/- n.a.
Message visualisation + ++ + -- n.a.
Message context ++ +/- + - n.a.
Message contents ++ + ++ + n.a.
Message casualty ++ +/- +/- - n.a.
Message timing + + ++ +/- n.a.

Message
Observability

Message filtering + + ++ + n.a.
Distributed tracing ++ - + +/- n.a.
Runtime tracing +/- + + ++ n.a.
Online tracing + -- + ++ n.a.
Offline tracing + ++ + + n.a.
Tracing overhead + + + ++ n.a.

Tracing
Framework
Performance

Trace configuration + - + ++ n.a.
Component Transparency + -- + ++ n.a.
Language Independence + -- + ++ n.a.
Platform Independence + + + + n.a.
Middleware Independence + - + + n.a.
Monitor Independence ++ ++ + + n.a.
Open Framework + + +/- ++ n.a.
Standard Based + + + ++ n.a.

Tracing
Framework
Interoperability

Vendor Adaptability + + +/- ++ n.a.
extra Cost -- ++ ? ++ +

For each criteria group we first discuss the best tool:

• Message Controllability. For controllability, we can identify a clear winner. While the DSC Control tools are

very useful for quick testing, the MCITT tool is very good creating an automated test environment and Segue
tool family shines in generating large workloads.

• Message Observability. The DSC offers clearly offers the best message observability. Especially the
causality tracing functionality will be very useful when tracing multiple Corba application at the same. Second
best is Silk observer because of it of it excellent timing analysis functionality. Third comes Corba Trace,
which offer some Observability but limited. Ethereal network sniffer has the worst communication
observability. The IIOP network messages captured by the Ethereal sniffer is lacking context information, is
limited to communication between hosts and cannot be visualise in a sequence diagram.

• Tracing Framework Performance. Although Ethereal sniffers has the best framework performance, its
comparison to other trace tools is rather unfair. While the other tracing tools must deploy complex tracing
mechanisms, Ethereal sniffer cheats performance by not deploying any tracing mechanism. Instead, it
intercepts tracing data by simply listening to all broadcasted network message traffic. The honour of best
tracing framework performance is shared between Silk Observer and DSC Toolkit. Both tools are able to
configure the tracing framework from a distributed graphic user interface and allow users to view a sequence
diagram being build up at real time. Corba Trace ends on the last place because of its inability to trace
applications online and its lack of configuration support.

• Tracing Framework Interoperability. Not surprisingly, the Ethereal network sniffer also shows the best
interoperability because except from encrypted messages, it can read any network message and thanks to it
availability of the source code it is portable to almost any operating system. Second best is without a doubt,
Lucent DSC tracing tool. Thanks to its stub/skeleton instrumentation and usage of Corba Portable

Unclassified

Date: 30-06-04 Page: 80

Interceptors standard, Lucent DSC Toolkit, is able to trace any statically linked Corba/CCM application.
Combined with their support for multiple programming languages, operation systems, Orbs, and adaptability
to other orb implementations, makes DSC the second best interoperable tool in our test. Third comes Corba
Trace. Their tracing framework should be applicable to pure Corba application build on any Orb that supports
Corba Portable Interceptor specification. Its interoperability is mainly limited to by instrumentation technique
applied. It requires the instrumentation of both client and server source code and requires the usage of the
object reference, which is not directly accessible in CCM client/server source. The tool with the worst
interoperability in our comparison is the Silk Observer. It requires both the instrumentation of the source code
similar to Corba Trace but beside that only function with Orb implementations supporting a specific
proprietary filtered logging facility.

Our overall tool recommendation is a mixed bag. All tools offer some advantages and disadvantage compared to
each other. We therefore cannot point is single best tracing tool. We therefore must decide on criteria, which are
most important for Thales.

Ranging from most important criteria to less important criteria, we can make the following notes:

• Most importantly, the tool must be available to now, which excludes the Silk Observer tool because the

official distributor no longer sells its tracing tool. Note however, that Silk Observer successor, Silk Performer
Component Tester, will support Corba tracing in the future.

• Secondly, the tool must be able to trace the systems real behaviour, which excludes the MCITT tool because
its proxy technique alters the architecture of a component-based software system and therefore its runtime
behaviour.

• Thirdly, it must be able to trace all Corba communication, not just the network messages or invocation
results. This requirement excludes the Ethereal network sniffer because it can only intercept message
travelling between hosts.

• Thales requires the tool must be able to trace communication online and at runtime, which excludes Corba
trace because can only trace offline after the test is completed.

The only tool that remains, is the DSC Testing toolkit created by Lucent Technologies. Their tool can be applied
to statically linked Corba environment. Because PERCO CCM implementation links all component statically, all
CCM Corba application developed with PERCO should therefore be traceable with Lucent tracing framework.

Although DSC will currently only supports component written in Java, they have a prototype for tracing C++
components and are willing to help Thales integrate their tracing technology into Thales Middleware technology.
An alternative to the Lucent DSC Toolkit would be to use Corba Trace. Although it does not support online
tracing and configuration, it can produce good sequence diagrams and it extendable. The source code and
French design documentation would allows Thales to ingrate Corba Trace into their CCM implementation and
extent the tool with missing tracing framework functionality like configuration and online tracing.

Unclassified

Date: 30-06-04 Page: 81

Unclassified

Date: 30-06-04 Page: 82

Unclassified

Date: 30-06-04 Page: 83

7 AN ANALYSIS FOR A TRANSPARENT CORBA TRACING MECHANISM
In chapter 3 we introduced a high level design for the construction of a tracing framework that could habour
multiple tracing mechanims. In chapters 5, we descused several trace data inteception techniques that might be
used for the construction of a Corba tracing framework. In this chapter, we analyse the possibilities for the
construction of transparent tracing mechanism, based only on the request interceptor (see paragraph 5.2.1).
Although there are other tools that have done something similar, our solution does not require alteration the
component source or middleware and can trace Java Corba objects.

The reason we use Request Inteceptors is because it currently the only trace data inteception technique that it
allows the transparent inteception of all message communication events at both client and server side, can
transparently transer context data between inteceptors and can be transparently deployed. The only two
requirement on the testing requirement is are that that every Corba object initiates its own unique Orb object and
that the Orb supports the registration itercepors by parameters.

Based on the tasks required by tracing mechanism, we will analyse the following tasks:
• Paragraph 7.1 Tracing Data Interception: the interception of message data in from the middleware
• Paragraph 7.2 Tracing Data Processing: the retrieval and processing of trace data
• Paragraph 7.3 Tracing mechanism Management: the management of the mechanism tracing behaviour
• Paragraph 7.4 Tracing mechanism Deployment: the deployment of the trace data interception mechanism

7.1 Tracing Data Interception
In this paragraph, we explain how we want to retrieve tracing data from Corba applications. As already
explained, we want to use request interceptor to retrieve tracing data from the system under test. In order to
trace Corba applications, Request Interceptors must collect the following tracing data types:

• Communication Message ID. Because a Corba message can be intercepted multiple times during a

message reply sequence, and our tracing framework is only interested in atomic information flows, the
tracing mechanism needs some way to discard duplicate message information. A possible way to achieve
this is uniquely identify messages within our system. When processing intercepted messages, the tracing
layer can combine the intercepted information with the same communication message ID into an atomic
information flow entrance.

• Timing Data. The goal of Timing Data is two folds. It allows testers to measure the performance of a system
and to analyse the casual relationship between tracing events. The performance of a system can be
measured by calculating the time difference between tracing events. Casual relationship between tracing
events can be derived from sorting communication events in chronological order.

• Context Data. Although a unique component instance ID allows a tester to identify a Component instance, it
will be of little meaning if he does not know what component he is dealing with. The collected tracing data
should therefore also include meaning component name. The Component name does necessary have to be
unique, it should however allow the tester a indication what to look for

• Instance ID. Our high level tracing mechanism requires that that the smallest unit of operation, a component
instance, is uniquely identifiable within our framework. The ability to uniquely identify a component instance
is very important in tracing because a tester needs to be able to verify the in and output of a unique
identifiable process.

• Contents Data. Message Content Data is all information exchanged between client and server. This
information includes input parameters, output parameters, return value and function name called by the
client. By comparing the input parameters with out parameters and return value, a tester is able to verify the
correct functional behaviour of a component

In the following sub paragraphs, we explain how each tracing data types can be retrieved using request
interceptors.

7.1.1 Message Communication ID
A unique communication ID allows the tracing mechanism to group communication events belonging to the
same remote message invocation. In this paragraph, we will look at how intercepted messages can be made
uniquely identifiable within our tracing framework. Similar to the generation of a component instance ID, a
Central ID Broker component could be use retrieve a unique communication message ID. However, because the
tracing interceptor would have to wait on the Broker to return a Message ID, a huge non-negligible overhead to
all traced communication would be created. Therefore, we should look for techniques, which can create a
communication message ID locally.

Unclassified

Date: 30-06-04 Page: 84

A natural course of action would be use the attributes contained in the intercepted message (see Interceptor
Request Info). We cannot use the request_id as an identifier because it only identifies an active request reply
sequence between two Orbs. Once a request reply message is concluded, the same request_id might be
used again. It is therefore theoretically possible that two non-related messages are send with exactly the same
attribute values. Although we cannot uniquely identify a message by any combination of the attributes retrieved
from the message, there are several techniques to uniquely identify a message:

• Physical Timestamp. We can make the message uniquely identifiable by combining the request_id,

target_id with a physical stamp. We can create a physical timestamp by simply taking the current system
time. Timestamp. Because our tracing frameworks required a physical timestamp anyway, this technique is
the easiest way to achieve message uniqueness. Note however, that special care must be taking in the
granularity of the physical time stamp. The time stamp must be precise enough to prevent duplicate
message from occurring ever occurring, which might not always be the case.

• Logical Timestamp. We can make a message also uniquely identifiable by combining interceptor ID with a
logical timestamp. A logical timestamp is a locally maintained counter that is incremented after every usage.
Care should be taken to prevent overflow by using a sufficient large counter. The interceptor ID must be
able to uniquely identify the counter instance. The advantage of a logical timestamp is that the uniqueness is
always guaranteed.

The Message ID should be created for every unique message, the first time it is intercepted by any of the
deployed tracing interceptors. The message ID should be transmitted along with other tracing data to the next
interception point. The picture below illustrates the message ID flows between interception points during a
request reply sequence. Between the outbound client to server and inbound server to client interceptions points,
the information transmitted by context data, and between server outbound and inbound interception point, the
information travels with the Orbs shared memory mechanism, PICurent (see appendix J).

Servant

IIOP Message

Request Service Context
Message ID

Send Request (interceptor interface)

Outbound Message

Receive Context

Message ID Message ID
Current
Message ID

Add Read

Send Reply

Client

PICurrent
Message ID

PICurrent
Message ID

Store

IIOP Message

Reply Service Context
Message ID

Inbound Message

Message ID

Create

Logical
Copy

Logical
Copy

Add

Retrieve

Receive Reply (interceptor interface)

Message ID
Read

Timestamp

Figure 7.1: Message ID travelling by service context mechanism and PICurrent

7.1.2 Timing Data
Timing data is any information that tells us something about the ordering of events through time. A single timed
event therefore has no meaning itself. A timed event only has meaning if it can be validly compared with another
timed events.

We can identify two main purposes of timing data:
• Time Measuring. By measuring the time between two related events, we can measure the commutative time

it took for processes happening between the first and last event to complete. The events that happen during
a process can vary widely. A process could only be a simple component instance returning a reply but it
could also be complex process that negotiated with hundred other processes before returning a result. A
measured time can tell interesting context sensitive information. For example, the time difference between a
request message arriving at a component instance and a reply message leaving the same component
instance can tell us something about the response time of the component instance.

• Time Sorting. Eventually, a tester would like to display communication events in chronological order. When
all intercepted communication events are accompanied by a timestamp, the tracing framework is able to
reconstruct a sequence diagram visualising the communication between component instances. Tracing
Interceptors can create a timestamp by acquiring the internal clock value directly after the Orb triggers an
interception point. By chronologically sorting the communication events, the tracing framework can also
discover the casual relationship between messages. For example, when a message is send by a component

Unclassified

Date: 30-06-04 Page: 85

instance after receiving a message from another component instance, our tracing framework could conclude
that there is a casual relationship between the incoming and outgoing message. When sufficient messages
can be found with a casual relationship, the tracing framework would allow the tester to trace a message
flow through a system from beginning to end.

It may seem simple to sort communication events based on the timestamp taken from the interception point
internal clock. However, acquiring reliable timing data in a distributed system is not a trivial matter. That is
because distributed system systems lack a globally maintained and directly accessible clock value. Instead,
every computer in the distributed system maintains its own physical internal clock. When trying to compare
timed events taken from different systems with non synchronised physical clock values, the derived information
can be unreliable or result in tachyons. Tachyons are contradicting measurement, which logically cannot be true.
In figure 7.2, we see an example of a tachyon. When the clock value of the client is higher than the clock value
of the server, an intercepted request at the server might appear to be received earlier than the same intercepted
request send from the client. Unless either component travelled trough time, this could of course not be possible.
The next paragraph will investigate the possible solutions the this problem

time event
0.03 Send message 1

time message
0.02 Receive message 1

Client Component Server Component

Figure 7.2: Tachyon Example

0.03 > 0.02

Request
Message 1

Fortunately, distributed clock problem is a well-known problem for which several solutions are available. We will
sketch some of them an discuss how they could be applied by our tracing mechanism:

• External Synchronised Clocks. If the all clocks in the distributed system are synchronised with some

external synchronisation mechanism, our tracing mechanism could simply use the system internal clock
value for timestamping all intercepted communication events. This could for example be achieved using the
Network Time Protocol (NTP) or by embedded atomic clock radio receiver synchronising the clock after
receiving a pulse. Since every host in our tracing framework is fitted with a Collector, the Collector would
also be the logical place to synchronise the host local clocks value.

• Time Service. Since the problem of inconsistent local physical clocks arises in many distributed applications,
the OMG defined a Corba Time Service specification [26]. This service can be used to obtain consistent
timestamps along with error estimates. Unfortunately, the Corba Time Service is only implemented in only
fraction of all Orb implementations.

• Logical Clock. When the precision of the available clock is lacking, or even if there is no physical clock
available at all, the tracing mechanism should use an alternative time mechanism. Instead of using a real
clock value, the tracing mechanism could also employ a logical clock for chronologically sorting events on
time. That is because a logical clock reflects the ‘happened-before’ relation or causality relationship. By
guaranteeing to be consistent with the partial order defined by the relation of logical precedence, a logical
clock can prevent tachyons from ever occurring. In order to prevent tackyons between components, the
local counter value is sent along with every message. This can be easily implemented by sending service
context between request interceptors. The basic idea is that the Tracer installed on a Corba object maintains
a counter, which represent the current logical clock state of a Corba instance. After every communication
event, the Tracer sends its logical clock value along with other intercepted information to the locally hosted
Collector for further processing. Depending on the logical clock value received, the Tracer takes different
actions. When the tracer receives a logical clock value lower or equal to its own logical value, it will simple
increment it logical value. When a component receives a logical clock higher than its current logical clock, it
will simply set it local logical clock one value higher than received value. If the component received no
logical clock from the other component, it will only increment it current logical clock value. By synchronising
the logical clock value after every communication event, it is ensured that the logical clock value of a server
receiving a message is always larger than the logic clock of the sender. However, there are some problems
associated with the logical clock, which will be further explained appendix C.

Unclassified

Date: 30-06-04 Page: 86

• Physical Clock with Logical Clock Correction. Another possibility to creating a more reliable autonomous
clock is to use physical clocks with logical clock correction. This approach tries to combine the benefits of a
physical with a logical clock. While the physical clock is mainly used timestamping, the physical clock value
is just as a logical clock sent along with every message. Just as with logical clocks, the receiver can check if
a tachyon would be generated, and it can be avoided by setting the receiver’s physical clock accordingly. If
however the receiver does not have the permissions to change the system clock, the tracing mechanism
could simply maintain a displacement, which starts at 0, and updates the displacements in such cases.
Although the time-stamps do not reflect the physical time precisely, today’s computer are usually equipped
with clocks of high precision so that in practice, the time stamps generated this way provide a good
approximation of the physical time.

7.1.3 Context Data
Gaining access to a meaningful object/component name is one of the most difficult problems when tracing
Corba Applications. Although at the server side, we can easily identify a server by the target_id, on the client
side this simply not possible because Corba message do not contain any source_id identifying the client
object/component. The tracing mechanism can use the request interceptor to gain access to a meaningful name,
by one of the following techniques:

• Dynamically by using Interface Repository. Corba Interface Repository (also see paragraph 4.1.5.1) can be

used to derive a meaningful name dynamically. Although IOR itself does not uniquely identify a Corba
object, by retrieving component contents information linked to an IOR, the Interface repository can be used
to reconstruct a meaningful Component name. The request interceptor can gain access to his own IOR after
the first time a request interceptor receives a message from another component, it can read his own IOR
contained target_id attribute (for more details see appendix H). In figure 7.3, we can see that the IOR is
captured by the request interceptors, transmitted through the collector to the processor, and used to retrieve
a meaningful name from the interface repository before it if finally stored in the Trace information model.

• Statically by constant declaration. A meaningful name could be statically implemented as a constant string
declaration located in the Interceptor source code. This technique however requires extra deployment
preparation because every Orb must be initialised with a unique interceptor implementation containing a
unique string. To solve this complexity, simple source code generation tools could be used which use a
template of a standard interceptor and only add a unique component name.

The Dynamic strategy is preferable above the static one because we can use a single request
interceptor implementation for all Tracers.

ORB_1

Server Request Interceptor

Collector

Message_id: 1357
Destination: IOR_1 Message_id: 2468

Destination: IOR_2

Object Draw

Client Request Interceptor

stores IOR_1 uses

GIOP message

Event type: receive request
Message_id: 1357
Component: IOR_1

Trace Event Message

Event type: send request
Message_id: 2468
Component: IOR_1

Trace Event Message

GIOP message

Processor

Event type: receive request
Message_id: 1357
Component: IOR_1

Event type: send request
Message_id: 2468
Component: IOR_1

Batch Trace Event Message

Corba interface
Repository

Corba Object

Trace Information Model
uses

ORB_1

Server Request Interceptor

Collector

Object Circle

Client Request Interceptor

stores IOR_2 uses

Event type: receive request
Message_id: 2468
Component: IOR_2

Batch Trace Event Message

Corba Object

Event type: receive request
Message_id: 2468
Component: IOR_1

Messag_id: 2468
Source: Draw
Destination: Circle

Figure 7.3: retrieval of source and destination context from IOR

Unclassified

Date: 30-06-04 Page: 87

7.1.4 Component Instance ID
As explained before, Corba uses IOR to connect Corba objects with each other (see also appendix A). Although
IOR uniquely identifies a Corba Object, they cannot be used as an instance ID because IOR identify Corba
object implementations, not an instance. Client objects that do not implement any Corba interface simply do not
even have an IOR. Moreover, a Corba Object may contain several Orb instances, and may consequently be
associated with multiple IORs. Therefore, component instance IDs have to be generated somehow.

Many methods could be used to create a unique component instance ID. Because we cannot list all possibilities,
we restrict our selves to three methods:

• Centralized ID Generation. In the centralized method a special ID broker component is used for the

distribution of Component Instance ID. This ID Broker component would maintain a global counter, which
would be incremented after every time a new ID was requested. At startup, or the first time that a
communication event occurs, every component registers itself with the ID Broker, whereupon it gets a
unique ID, together with some policy information. In order guarantee uniqueness of every ID, The counter
would have to large enough to prevent overflow and semaphores could be used to force every ID
distribution to become single atomic step. A disadvantage of Centralized ID generation is that create extra
overhead, but this is negligible because it only occurs at the start.

• Decentralized ID Generation. In the decentralized method, components themselves generate a their own
unique id. By combining a unique object ID with a globally maintained counter, a unique component instance
ID can be constructed. An Instance ID can be constructed by generating a pseudo random number.
Although absolute guarantee for uniqueness can never be achieved, we can however make it extremely
unlikely duplicate ID occurring by seeding the random generator with context sensitive data like IP number,
time stamp and process ID.

• Prepared ID Generation. Prepared ID Generation is a combination of the two former techniques. Just like
Decentralized ID Generation method, a new Component Instance identifier is constructed by combining the
Component ID with an instance counter. The difference lies in the way the Component ID a created. Instead
of generating a Component ID at run time, a Component ID generated centralized fashion before
compilation. For every new component a unique ID is generated a registered at a central location for future
usage. The serial number is simply implemented as a constant declaration in the source code. By deploying
every component with a unique tracing interceptor containing a unique ID, interceptors can use the
Component serial key to create a unique component instance ID. An advantage of this technique is that
Components will always bear the same component ID, even after recompilation. A disadvantage is that
every trace interceptor must contain a different component serial number.

7.1.5 Message Contents Data
By Message content data, we mean the information exchanged by method invocation calls, which contains in
and output parameters and function name. The reply message contains beside all outbound information, output
variables, and result value. The Tracer can collect the Message contents data together with other information
contained in the Corba message by accessing the attributes in the request info object, which the request
interceptor received from the Orb (see appendix H for more details).

Not every interface of the request interceptor can access this contents information. Request and reply message
Contents data can only be read at four interception points (send_request, receive_request,
send_reply, receive_reply). In figure 7.4, we can see how the four tracing points can be used to retrieve
context data from request and reply message from client and server and send it to the Collector.

Unclassified

Date: 30-06-04 Page: 88

ORB

Client Request Interceptor

ORB

Server Request Interceptor
send_request receive_request

receive reply send reply

Collector Collector

Client Server

Figure 7.4: Intercepting Content information

Request message

Reply message

Processor

Although the reply contains all available message content data, we could theoretically intercept all contents data
by implementing only a single interception interface. However, we risk missing important tracing data because
something might go wrong during communication. For example, a client method invocation might never reach its
destination or a server throws an exception causing our interception point never to be invoked. Therefore, the
safest strategy would be to use all 4 interception interfaces for collecting contents data. To increase
performance, the interceptor behaviour could use a trace profile to determine which interception points will send
trace events to the Collector. However, even if we use four interception points, we still have some circumstances
that could jeopardise tracing process.

As already mentioned, request interceptors on a Java Orb are not able to access the message contents (see
paragraph 5.2.1). As long as either client or server is not made in Java, we will be able to access the message
contents information on the non Java Orb. However, when both client and servant component are implemented
in Java, our tracing interceptors will not be able to access all required fields in the intercepted message. To
overcome this Java shortcoming, the literature proposes using a proxy pattern with client side redirection
[Marchetti]. Figure 7.5 illustrates how a client request interceptor is used to redirect an operation from the
original server object to a locally hosted proxy object. The Proxy pattern mechanism is similar to a Wrapper (see
also paragraph 5.1.6), in the fact that it wraps the server interface, and calls the original server interface through
another connection. However, in contrast to Wrapping, the redirection is not achieved by renaming the server
but by redirecting the message with a forward exception thrown by request interceptors. The proxy object would
then be able to log all missing data by simply storing the input parameters received from client and by storing the
parameters and by reading the result of the server invocation.

Proxy object

Java
Client

Java
Server

Operation

Client ORB Proxy ORB Proxy ORB

Interface

Interface

Client Request Interceptor

Network
traffic

Figure 7.5: Proxy Pattern

Although this might seem the solution to a Java problem, there are however several problems with this Proxy
Pattern technique:

• Information Loss. Once the re-invoked message receives at the Java server, it has lost all security, fault

tolerance, or any context information. That is because this information gets lost once the original request

Unclassified

Date: 30-06-04 Page: 89

message enters the proxy object. Therefore, it would become incompatible with any Orb, which sends
additional data trough the GIOP message.

• Overhead. A defensive strategy would require using a proxy pattern for all communication between
components, which would slows down communication. In order to minimise communication overhead, the
client Request Interceptor should only forward the message to a proxy object when both client and server
Interceptors are unable to read parameters (e.g. both Java). However, this requires that the client Request
Interceptor have knowledge whether or not any Request Interceptor installed on the server-side is able to
read and store all Request Information.

• Complexity Because a proxy object is hosted locally, the Proxy Pattern requires a separate proxy object
between every client and server. To prevent the usage separate proxy objects between every connection,
the tracing mechanism needs to know which client and server object communicate with each other, which
will make tracing deployment more difficult.

In the next sub paragraph, we will introduce a message contents tracing technique, which solves the problems
of the Proxy Pattern.

7.1.5.1 A New Transparent Proxy Mechanism for tracing message contents
To overcome this loss of message transparency, we need solution that allows our tracing mechanism to access
the message contents but also ensure that the message does not lose information. Although request
Interceptors can forward a request only to a one alternative address, there no limitation on the number of times a
message can be forwarded. We can exploit this functionality to transparently position a proxy object between
client and server without losing message information. In figure 7.6 we can see how forwarding mechanism can
be exploited to forward the same message to multiple servants by link them like a daisy chain each forwarding
the message to the next servant in the chain. Instead of using a proxy that wraps the interface of the server, we
use C++ dummy object with a server request interceptor installed. In contrast to the proxy object that re-invokes
the server object, the Dummy object is an empty object that will not do anything. Because the Dummy Server is
a C++ Orb, the C++ request interceptor is able to access all message contents. After logging the missing
attributes, the request interceptor throws a second forward exception, which diverts the message back to its
original destination, the Java server. Because the message received from the client is not altered (except the
forward address fields), the server will receive the same message send by the client. The request interceptor
knows the address of the intended servant by reading the target attribute located in the GIOP message.

Client Request
Interceptor

C++dummy
object

Java
Client

Java
Server

Operation

Client ORB Proxy ORB Server ORB

Interface

Client Request
Interceptor

Network
traffic

Server Request
Interceptor Server Request

Interceptor

Figure 7.6: Transparent Proxy Mechanism

The request interceptor can use two redirection methods techniques to divert a message to an alternative
destination, by calling a permanent forward exception, or a non-permanent forward exception. A permanent
forward exception is in comparison with a non-permanent forward exception a lot faster because it only has to
be thrown once to divert all messages automatically to an alternative location. The non-permanent forward
technique is on the other hand a lot more flexible because it can redirect message on a per-message basis.
Non-permanent forwarding allows the construction of a tracing interceptor, which could be used to trace all
clients to server connections. However, for performance reasons, it is advised to use a separate trace object
with interceptors for every hosted servant object. Figure 7.7 shows how by deploying the Trace object on the
same host as the target object, the tracing mechanism only requires a single Trace object for every Java
Servant and multiple Java clients can use the same Trace object

Unclassified

Date: 30-06-04 Page: 90

Trace
object

Client

Trace
object

Server

Server

Client

Client

Client

Figure 7.7: Configuration Proxies

HOST A

HOST B

Because of performance reasons and the problems associated with forwarding (see paragraph 5.2.1), a tracing
mechanism should only use the forwarding technique when both client and server are unable to access the
message contents information. Although this can be achieved by instructing the request interceptor statically in
the source code, it can also be achieved at run time with minimum overhead. In order to allow the client request
interceptor make this decision, it can use Corba callback mechanism to determine whether a server request
interceptor is able to access the contents data in a message. By sending the success of a server request
interceptor along with the reply service context, a client request interceptor will know if forwarding to the proxy
object is required. Note that when the client receives a message that does not contain any service context, it
know indicate that none of our server request interceptors touched the reply message.

Figure 7.8 illustrates the interceptor stack model. The interceptor stack is a last-in-first-out (LIFO) buffer
mechanism that guarantees that all interceptors in the stack will always have their ending interception point
called in reverse order. Whenever the Orb (without the occurrence of a user exception) successfully calls a
Request Interceptor, the interceptor is placed on a Flow Stack. However, if an interceptor raised a
ForwardRequest exception in response to a call of an interceptor, no other interception is called for that
interception point. This means that forward exception can only be called once per interception point. The
remaining interceptors in the Flow Stack (which are already successfully called once by the Orb) have their
appropriate ending interception point called. On the client, this will be receive_other interface and on the
server send_other interface.

This interceptor behaviour has the following consequences for any interceptor using forwarding:
• Proceeding Forwarding Problem. Any proceeding interceptors (that would normally called after our

interceptor) are consequently never called by the Orb; thereby disrupting their proper functionality.
Although, all preceding interceptors (that are already called are called before our interceptor) are notified of
the forward exception, the Corba Portable Interceptor specification does not specify any mechanism to
warn interceptors that they missed a Orb interception call.

• Preceding Forwarding Problem. The other-way could also be true. When another request interceptor, closer
to the client object has already thrown interrupt exception. In that case, our client request interceptor that
wants to divert the message to the proxy will never be called, causing our client side tracing mechanism to
fall. Our client request interceptor will therefore be unable intercept the message and to re-route the
message to our proxy Orb.

Unclassified

Date: 30-06-04 Page: 91

Inter Orb Protocol

ORB

Request Interceptor 1

Flow stack

Request Interceptor 2

Request Interceptor 3

O
ut

bo
un

d
C

om
m

un
ic

at
io

n

Request Interceptor 3

Request Interceptor 2

Request Interceptor 1

Client

Figure 7.8: Request Interceptor Stack Model

Although we can prevent the proceeding forward problem from occurring by installing our request interceptor
after other request, when another Client Request Interceptor with a higher priority in the stack, throws a forward
exception (for example a fault tolerance service), the Orb will never call our client request interceptor.

To solve client side forward problem we have to forward a message at the server side to Proxy Orb. On the
server side, the server request interceptor can detect whether or not the parameters have been read, by
inspecting the service context. The server can detect this because every request interceptor, insert context data
concerning the success on reading the parameters. After request interceptor has detected that the parameters
have not been read it can employ server forward proxy technique.

The server proxy forward technique consist the following steps:
• The first time a server request interceptor receives an unread message it pushes the request_id on a

stack buffer and throws a forward exception that diverts the message to the Proxy Orb.
• After the diverted messages arrive at the Proxy Orb, it triggers the receive_request interface of the

server request interceptor. The Proxy Orb request interceptor reads the parameter data and throws a
second forward the message

• The second time the same message is intercepted by the message, the request interceptor is able to
recognise the same message by it request_id stored in it stack buffer. The request interceptor pops the
request_id from its stack buffer and permits access to the target object like normal.

• After the target object returns the reply message on the request, the message travels back in reverse order
triggering send reply interface, allow server request interceptor on the Proxy Orb to access the output
parameters.

Request Interceptor

Dummy
object

Java
Client

Java
Server Operation

Client ORB
Java Server ORB Proxy ORB

Interface

Request Interceptor

Unknown

Events

Figure 7.9: Transparent Mirror Mechanism

Unclassified

Date: 30-06-04 Page: 92

The disadvantage of this redirection technique is that is a slower than the client proxy forward technique. This is
because the target request interceptors cannot use the permanent forwarding technique applied with the
transparent proxy technique. Instead, the request interceptor on the target Orb must use per request forwarding,
which is a lot slower than permanent forwarding.

7.2 Tracing Mechanism Deployment
In this paragraph, we explain how we could to deploy the tracing mechanism. Although we will not give a full
design for deployment of the tracing framework, we will discuss several techniques for deployment of request
interceptors.

We differentiate tree technique for deploying portable interceptors:

• Parameters: By calling the Orb executable with a portable interceptor as a parameter. The advantage of this

method of deployment is that it requires no modifications to the component source code and is therefore
fully transparent. All Java Orbs are able to use parameters; in fact, it is the only way Java Orbs can install
interceptors (for details see appendix L). Although this installation technique is proprietary, most vendors
have realised the significance of this problems and support some the installation of interceptors by
parameters in their Orb. To solve the portability problems when switching vendors, the tracing framework
could maintain a single configuration for each Orb vendor containing the proprietary usage of the Orb
parameters.

• Statically: By registering the interceptor in the Orb before initialisation. The current Corba specification only
allows the installation of interceptors by statically registering an interceptor in the Orb before it becomes
initialised. The Problem of statically registering interceptors is that it is requires the manually modification the
part that initialises the Orbs. Normally this means, programmers must either change all components/object
source code to allow the Tracer to intercept its communication, or modify the Orbs source code itself by
registering the interceptors just before the Orb calls it final initialisation method.

• Dynamically: By default, compiling a Corba object with a request interceptor requires the availability of the
implementation of request interceptor. As an alternative, we could use a dynamic registration technique that
allows programmers/testers to install interceptors on a Orb without recompiling the Corba object source
code. By packaging the registration code and interceptor implementation code into a DLL file, the
registration code can be executed at run time. With the C++ function DLLOpen and DLLSim, a generic
initialisation function can load and execute the interceptor registration code just before Orb initialisation.
Figure 7.10, illustrates (in pseudo code) how an interceptor logging service, packaged as a plug-in, is
registered dynamically into the Orb. The advantage of this mechanism is that it allows the transparent
registrations of request interceptors without using propriety Orb parameters initialisation. Although this
technique is perfect for components that are build in house, fact remains that it still requires the
instrumentation of the component source code with a single initialisation method call and will therefore never
be fully transparent until Corba specifies a standardised mechanism for registering interceptors
transparently.

Although interceptor installation by parameters is proprietary solution, it is still the best method for installing our
Tracers. The main reason is that installation by parameters it currently is the only technique, which offers
complete transparency. The second reason is that installation by parameters also allows control over the order
of the interceptors which is important to prevent forwarding exception problems.

Unclassified

Date: 30-06-04 Page: 93

// registers and initialises Interceptor
Logger

// registers and initialises Interceptor
Logger

Client/Servant/Orb Source Code

//Orb initialisation

Generic_Orb_Initialisation

// universal initialisation function
Create Orb_instance

Pluginlist CreatePluginList

For each Plugin in Pluginlist
{
 // load interceptor plugin
 OrbInitialiser Plugin.get_initialiser
 // registers OrbInitialiser to Orb_instance
 register_orb_initializer (OrbInitialiser)
}

Generic Orb Initialisation

Interceptor plugin
directory

DLL DLL DLL

//Create a list of Orb
Initialisers from DLL’s in
plugin folder

for each file in Directory
{
 // open plugin file
 DLLOpen
 // create dynamic link
 DLLSim OrbInitialiser
}

Create Plugin_list

// registers and initialises
Interceptor

add_client_request_interceptor

// initialisation of Orb

Preinit (info)
Postinit (info)

OrbInitialiser post_init

Orb Orbinit

//Logs all Corba
Communication

Interceptor logging
service

Interceptor +
OrbInitialise

Compiled &
packaged

calls

calls

calls

registers

calls
registers

Figure 7.10: Dynamic Interceptor Installation Mechanism

7.3 Tracing Mechanism Management
Because our tracing Interceptors contains profiles, our tracing framework must be to modify the active profile
settings. However as already explained, Corba does not support any interface which could be used for
managing installed request interceptor.

There are several techniques to consider for managing the tracing interceptors:
• Call-back mechanism. Instead of attempting to manage the Tracer from the outside, The Trace could be

made responsible for keeping its profile settings up to date. The tracer could use Corba call-back
mechanism to transfer management data between tracing interceptors and Collector component. The
management data would update its profile data after it received the reply received from the Collector.
Although the Collector component is located on the same host, this would still introduce an extra latency.
This is because the interceptor must wait until the reply message from Collector component returns. Also
because the reply message will not contain any new management most of the time, will therefore be a waste
latency and resources.

• Event Filter mechanism. The Corba notification service standard defines event filters. These filters
encapsulate the request of a consumer application for particular events. Because event filters are
propagated from consumers through the notification service, to the source of the events. Tracers can use
the event filters for retrieving management data from the Collector without introducing a large overhead.
However, the information in the filter is limited to a single format.

• Actor Piggyback mechanism. By using the Actor and Corba piggyback mechanism, management data can
be send to all used component transparently (see figure 7.11). This information flow would have to be
initiated by the first interceptor activated during invocation chain through a Corba application. For every time
new management data becomes available at the Collector, it would update the profile setting of the Actor
component. The interceptor installed on the Actor orb would then receive the management data and send a
copy of the new management data along the first request message send to another target. The main
advantage of this technique is that there is no additional latency overhead during the execution of the trace
interceptor. A disadvantage of piggybacking is that extra management context data send along message
temporarily increase the size of the message, degrading performance. However, because management data
will rarely change, the extra overhead will only effect during the change of management data.

In all techniques, the Collector Component is used to locally buffer management data at the host. In order for the
Collector to keep its management data up to date, the Collector could use Corba publish-subscribe mechanism,

Unclassified

Date: 30-06-04 Page: 94

to received update management data. The Processor component, which is also used for the processing and
storage of retrieved, tracing data, could be fitted with an event source, publishing management data events.

Legend

Hoct C

Host B

Host A

Collector
Component Processor

Component Management
information

storage

Collector
Component

Collector
Component

Actor

Tracer

Tracer

Tracer

Tracer

Tracer

Notification
service

Management events

Management

Interface

Management information system flow

Information Layer Monitor Layer Tracing Layer

Piggybacked Management Data Figure 7.11: Management Data delivery

7.4 Tracing Mechanism Processing
The tracing data intercepted by the Tracers must somehow be communicated and processed through the tracing
layer to their eventual destination in the information system. The Processing of intercepted Corba tracing data is
achieved by the collaboration of the Collector and the Processor. In this paragraph, we describe how the Collect
and Processor Component can be implemented using Corba technology.

In paragraph 4.2.4 we compared several Corba communication techniques. The best communication technique,
which is most suited for transmitting communication between Collector and Processor is event based
communication. The reason is that event communication is easier for distribution of tracing data and because it
is faster. Although there are several ways to realise Collectors and Processes with event based communication,
we will limit ourselves to describing the most interesting technologies, which is Telecom Logging Service.
Telecom Logging services service has many build in facilities, which makes the implementation of a lot easier. In
figure 7.12 illustrates how the Telecom logging service can be using to implement in the construction of the
tracing mechanism.

There are several reasons why the telecom services are useful for implementation:
• Storage: The Telecom Log service provides all mechanism used for storing and retrieving tracing events.

The Collector can use this service for the temporally storage raw intercepted tracing data and the Processor
can use it to pertinently store intercepted tracing data in generic trace information system

• Forwarding. The Collector component can use the forwarding capability of the Telecom Log Service to
directly forward tracing event received by Tracer component to the Processor Component. This increases
the performance of the framework simplifies the tracing layer implementation.

• Filtering. Both Collector and Processor can make use of the filtering capabilities of the notification services
derived by the Log Service. The filter can be set to only allow event trough in which the Collector or the
Processor are interested in.

• Communication. The Notification service, which derived by the Log services, simplifies the event
communication as there is no need for packing intercepted tracing information into an Any at the sending
begin or unpacking at receiving end.

For more details about Telecom Logging Service, see appendix C

Unclassified

Date: 30-06-04 Page: 95

Collector

Local buffering

Log
service

Collector

Local buffering

Log
service

Processor

Information
system

Tracer

Tracer

Tracer

Tracer

Tracer

Tracer

Notification
service

Legend Trace events

Notification
service

Log
service

Collector

Local buffering

Log
service

Notification
service

Notification
service

Data storage

Figure 7.12: Using Telecom logging service for Tracing Framework.

7.5 Evaluation
Although we were unable to implement our transparent tracing mechanism, we will evaluate problems and value
of our transparent tracing mechanism. We will evaluate at the advantages of our tracing framework, and then the
disadvantages.

The tracing mechanism has the following advantages:
• High compatibility. The techniques used by our tracing mechanism are compatible with most Orb

implementations.
• Language transparency. The tracing framework will be able to retrieve all tracing data written in all

programming languages, including Java.
• Maximum Component source transparency. Neither the client nor server needs to be instrumented.
• Maximum Middleware source transparency. The middleware does not require any modifications.
• High Invocation transparency. Thanks to the forwarding techniques, a server will receive the exact same

messages as the client has send.
• Dynamic Invocation Traceability. The tracing mechanism is able to trace dynamic invocations.
• Simple deployment. By using exclusively dynamic techniques, the same request interceptor implementation

can be used to trace all Corba objects in a distributed system.
• Centralised real-time tracing with minimal overhead. Thanks to the event based communication, local

buffering and minimum service context data usage, the tracing mechanism will be able to collect tracing at
real time data with minimal impact on the distributed system.

• Centralised real-time Management with minimal overhead. The management mechanisms proposed will
allows real-time management of tracing mechanism with minimal overhead.

The main disadvantage is that our tracing framework will not be able to trace collocated objects. Although we
have shown that a Corba object with own unique Orb is able to collect a tracing data required by a tracing
framework, not all Corba Objects have the luxury of a unique Orb for themselves. It is technically possible that
multiple Corba Object share the same Orb. In figure 7.13, we can see how multiple components in a CCM
container (see also paragraph 4.2.1) share a single Orb. Although we have seen that the request interceptor can
derive the identity server is from target_id field located in the GIOP message (see paragraph 7.1.3), the request
interceptor support no functionality to determine the identity of client (for details appendix H). Because the Orb in
a container is shared by multiple components, we cannot link the usage of the request interceptor with a single
client. We can therefore conclude that our tracing mechanism will not be able to uniquely identify Corba clients,
which share a single Orb.

Unclassified

Date: 30-06-04 Page: 96

 Container Container

Component
1

Component
2

Component
3

ORB

Client Request
interceptor

Source unknown

Source unknown

Source unknown

Component
A

Component
B

Component
C

ORB

Server Request
interceptor

Destination A

Destination C

Destination B

Figure 7.13 Component source identification problem

In order to solve the client identification problem we must some proxy object, which is uniquely identifiable in
relation with the client (see figure 7.14). The proxy object, which must have a one-to-one or many-to-one
association with the client, collects client context data of the client en transmits it further to the request
interceptor after every communication event. The transmission of client context data between proxy object and
the request interceptor can be accomplished by sending the missing data to the to the request interceptor with a
slot in the PICurrent.

Orb

Proxy
Object

Client 1 1

Client Proxy
Object

1 1 Request interceptor

Figure 7.14: cardinality Proxy Object with Client

For the implementation proxy object of the proxy object, we can either use one of the instrumentation techniques
described in paragraph 5.1 or the meta programming techniques described in paragraph 5.2. Our preference
would be to use a transparent technique like stub/skeleton instrumentation or smart proxies. The reason we did
not use them in our tracing mechanism solution is because stub/skeleton instrumentation does not allow tracing
of dynamic invocation, and smart proxies is not supported by many Orb vendors, and therefore not portable.

7.6 Tool Development recommendations
Whether or not we should implement a generic tracing framework with our transparent tracing mechanism, we
would advise against it. Although the ability to trace Corba application relying exclusively request intercepts in
useful in some circumstances (Corba objects from which the source code is unavailable or Corba application
that use dynamic connections)

Looking at other Corba tracing tools that took several years, it would be ineffective use of resources to create a
tracing framework from scratch. In chapter 6, we have seen several tools that are already offer adequate tracing
framework and which have great potential to be fitted with additional tracing functionality. Although they might
not be fully transparent and interoperable with multiple middleware solutions, they fulfil the most import
functionality, which is to trace regular Corba applications.

DSC Toolkit and Corba Trace could both adapted with new tracing functionality either by Thales themselves or
in cooperation with the toolkit developers (Lucent). Both tools for could be made more transparent by using other
transparent tracing mechanisms. Once TAO Smart Proxies or pluggable protocol become standardised, they
could be used to optionally replace a tools existing trace data interception technique by the more effective or
transparent data interception technique.

Unclassified

Date: 30-06-04 Page: 97

8 Conclusion
Tracing currently does not receive the attention it deserves. The OMG Corba specification documents do not
mention the words monitoring/tracing anywhere and neither is there any OMG special interest group
investigating the problem. Instead, the OMG Corba community is mostly focused on adding additional
middleware functionality like fault tolerance and security services. Although the OMG attempts to make the
development of distributed systems al tot easier with their introduction of the new CCM specification, they
neglect to specify any services that can help testers to trace them properly.

This lack of interest from the Corba community is also reflected by market for Corba testing tools. The market for
tracing tools is bad to almost non-existent. There are not any established Corba testing tools available, which
allow the tester to trace a Corba application at the component level. Most commercial Corba testing tools
available are limited to a interface testing tool and use proprietary solutions, which only support one specific
Vendor Corba middleware solution.

The only established commercially available Corba testing tool with relevant tracing functionality, Silk Observer,
died quietly due to lack of sufficient interest from the industry. Although Silk Observer successor, Silk Performer
Component Edition, currently does not support Corba, Segue Software roadmap includes plans to extend their
tool with future Corba support. However, it remains to be seen whether it will be a generic Corba testing tool or
becomes a proprietary tool just like its predecessor. Silk Observer tracing mechanism depended on propriety
Orbix message filters renders their tool unsuitable for Thales, which uses Orb implementations that are
unsupported by Silk Observer.

Fortunately, a new tool has become available on the market. Lucent Technologies, the developer of the DSC
toolkit, has recently decided to offer their product under licence. Lucent DSC Toolkit has shown in our tools
evaluation to offer the best testing solution for Thales Corba testing problem. Although the DSC Testing Tool
was originally made for a proprietary CCM middleware solution, it can be made compatible with most Orb
implementations. The toolkit offers user-friendly scriptable actor/reactor utility, which allows the construction of a
controllable testing environment, is flexible enough to evaluate any test case. The DSC tracing framework
contains a powerful monitor tool, which allows both online and offline analysis of intercepted tracing datae. The
tracing framework automatically retrieves trace data intercepted by the Corba request interceptor and
instrumented stub/skeletons without causing too much overhead to the system. Because the DSC Toolkit tracing
mechanism is based on the collaboration of two best interoperable and transparent trace interception techniques
available, the resulting framework is a transparent and interoperable tracing solution. Although the toolkit current
version only fully supports Java Orbs, Lucent Technologies has shown us a workable C++ prototype version of
their tracing tool.

Another tool, which possesses some of qualities of a good tracing framework, is the freely available Corba Trace
tool. Although the tools does not support advanced framework features like online tracing and an integrated
framework, it is open source, it can intercept Corba communication and generate a sequence diagram in
multiple formats. Note however, that the tracing mechanism uses an Adapter instrumentation technique, which
must be initialised with an object reference and Orb. A consequence is that the Adapter must be instrumented in
the Corba object source code or integrated in CCM Component home and CCM Container. Because the
development documentation is available, it could be used for the construction of a tracing framework. Although
Thales could integrate the tool into PERCO, the tool would still not provide sufficient functionality to satisfy
Thales testing requirements.

Because the market was quite disappointing in the number of mature Corba tracing utilities, we also investigated
the possibility of developing a tracing framework ourselves. We soon discovered that traditional debugging
techniques would not work for testing distributed Corba Applications. We therefore analysed several Corba trace
data interception techniques and compared them based the characteristics important for creating a good tracing
mechanism. One particular group of these techniques, the usage of meta-programming mechanisms, promised
to be most preferable solution because they allow the modification the middleware behaviour without sacrificing
transparency. Although TAO Smart Proxy and Pluggable Protocol framework are very promising tracing
technologies for the near future, the Portable Request Interceptor is currently the only transparent meta-
programming mechanism that is supported by most Orb implementations. Although Request Interceptors were
never intended for tracing, they offer many features that are useful for development of a transparent tracing
mechanism. Two of the most interesting tracing features of the Portable Interceptor is the ability to transparently
send service context information along with normal messages and its ability transparently intercepts Corba
message from both client and server side. Message interception allows a tracing mechanism to collect contents
data while service context data allows a tracing mechanism to sort messages chronologically. Unfortunately, the
Portable Interceptor also exhibits many limitations that become a problem when using them as a main tracing
mechanism. One of these problems is inability to access the contents of a message on a Java Orb. We have

Unclassified

Date: 30-06-04 Page: 98

shown that by forwarding the message to a C++ request interceptor, which can access the message contents
before forwarding it to its original target, we partially solve the Java problem. Unfortunately, this technique also
introduces new problems that can make the tracing framework incompatible with other Corba services, which
use Request Interceptors.

Although we have shown that we can push the Corba technology to create a transparent tracing mechanism
based solely on the request interceptors, its application remains limited by its main flaw. The request interceptor
main flaw is inability to detect the source of a message in an environment where multiple clients share a single
Orb. The reason why interceptors cannot detect a client source is that a Corba message simply does not contain
any information that can be used to derive a client address. That is because Corba callback mechanism is
based on the lower network protocol, which contains a reply network (IP/port) address and an opaque message
ID field, which only has meaning to client Orb.

There is however light on the other side of the tunnel. The Smart Proxy meta-programming mechanism, which
allows access to the same tracing data as the stub/skeleton instrumentation technique could fill the information
gap that the request interceptor lacked. Another meta-programming mechanism, the Pluggable Protocol has the
potential to completely replace a request interceptor because it allows access to the same tracing as middleware
instrumentation, which is practically all data. Further study should be done one their effective usage as a tracing
mechanism. Both meta-programming mechanism are expected become a standard specification just like
Portable Interceptors. Once they become standardised by the OMG and supported by implemented by Orb
vendors, they allows the construction of a portable, fully transparent tracing mechanism. However, looking back
at the development of the Portable Interceptors, which took many years before anything useful became
available, the same history likely to repeat for the Smart Proxy specification.

We also introduced a high level design for a generic tracing framework, which can trace a distributed application
crossing multiple middleware boundaries. However, Thales needs a good tracing tool soon and simply does not
have the luxury to wait until a new tracing tool is developed. The costs of developing a new tracing framework
far outweigh the advantages of building tracing framework scratch when there are already good tracing
framework available that can fulfil most of Thales testing requirements. If Thales want to take the tracing
seriously, we recommend licensing Lucent DSC Toolkit and use it for all Corba testing. In our view, Lucent
Technologies has proven being the leading authority on Corba tracing tooling. Although Thales would be one of
the first companies to licence the DSC toolkit, we are confidant that with support of Lucent technologies, Thales
will be able to integrate the DSC toolkit in their testing strategy in no time.

Unclassified

Date: 30-06-04 Page: 99

Unclassified

Date: 30-06-04 Page: 100

Unclassified

Date: 30-06-04 Page: 101

Bibliography

[CBSEbook] Component Based Software Engendering
[Instant] Robert Orfali, Dan Harkey, Jeri Edwards, Instant Corba, 1997, ISBN 0-417-18333-4
[Reference] Alan Pope, The Corba reference Guide, Understanding the Common Object Request Broker

Architecture, 1997, ISBN 0-201-63386-8
[Bill] Bill Councill, George T.Heineman, Definition of Component and its Elements, Chapter 1, located

in Component-Based Software Engineering, Putting the pieces together, George T.Heineman,
William T.Counsill

[Whitehead] Katharine Whitehead, Component-based Development, principles, and planning for Business
Systems, ISBN 0-201-6728-5, 2002

[Schmidt] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented Software Architecture:
Patterns for Concurrency and Distributed Objects, Volume 2. New York, NY: Wiley & Sons,
2000.

[MCITT] The Manufacture’s Corba Interface Testing Toolkit, http://www.mel.nis.gov/msidstaff/flater/mcitt/
[DSCDoc] Documentation DSC 3.2
[Corba Trace] http://corbatrace.tuxfamily.org/
[Corba 2.4] Object Management Group, The Common Object Request Broker: Architecture and

Specification, 2.4 ed., Oct. 2000
[IDLScript] OMG, Corba Scripting Language, Specification, February 2003, Version 1.1,

formal/03-02-01
[Proposal] OMG portable interceptors request for proposals, ftp://ftp.omg.org/pub/docs/orbos/98-09-11.
[Revised] Portable interceptors joint revised submission, ftp://ftp.omg.omg/pub/docs/orbos/99-12-02,

1999.
[Jerry] Jerry Gao, Ph.D. Testing Component-Based Software, San Jose, State University, One

Washington Square, San Jose, CA 95192-0180, gaojerry@email.sjsu.edu
[OMG2000] Object Magement Group, Telecom Log Sevice Specification, Version 1.0 January 2000, OMG

Headquaters, 250 First Anenue, Suite 201, Needham, MA 02494 USA, Tel: +1-781-444-0404,
Fax: +1-781-444-0320, pubs@omg.org, http://www.omg.org

[Priya] Priya Narasimhan, Louise E. Moser, P.M. Melliar-Smith, University of Carlifornia, Santa
Barbara, Using interceptors to Enhance Corba, 0018/9162/99/$10.00 © 1999 IEEE

[Szyperski] Szyperski, 1998; Brown and Wallnau, 1998; Gartner Group, Butler Group, 1998]
[Testability] Roy S. Freedman, “Testability of Software Components” IEEE Transactions on Software

Engenering. Vol. 17, No.6, June 1991
[Gamma] E.Gamma, R.Helm, R.Johnson, and J.Vlissides, Design Pattern: Elements of Reusable Object-

Oriented Software. Reading, MA: Addison-Wesley, 1995
[Nanbour] Nanbor Wang, Kirthaka Parameswaran, Dougles Schmidt, Ossama Othman, The Design and

Performance of Meta-Programming Mechanisms for Object Request Broker Middleware,
kirthika@cs.wustl.edu, nanbor@cs.wustl.edu Department of Computer Science Wachington
University, St.Louis, schmidt@uci.edu, ossama@uci.edu Electrical& Computer Engenering
University of California, Ivrine

[Zimmerman] C.Zimmermann, “Metalevels, MOPs and What the Fuzz is All About”, on Advances in Object-
Oriented Metalevel Architechtures and Reflection (C.Zimmerman, ed), Boca Raton, FL:CRC
Press, 1996)

[Mann] Zoltan Adam Mann and Karoly Kondorosi, Tracing system-level communication in distributed
systems, Budapest University of Technology and Economics Department of Control Engenering
and Information Technology, H-111 Budapest, Magyar Tudosok koruta 2, Hungary E-mail
mann@iii.bme.hu, kondor@iii.bme.hu, Phone: +36 1 4631425, Fax: +36 1 4632204, Copyright
2000 John Wisly & Sons, Ltd.

[ExtTrans] Object Management Group, Extensible Transport Framework for Realtime Corba, Request for
Proposal. Object Management Group, OMG Document orbos/2000-09-12 ed. Feb. 2000

[Gamma] E.Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994

[Kuhns] Fred Kuhns, Carlos O’Ryan, Douglas C. Schmidt, Ossama Othman, and Jeff Parsons, The
Design and Performance of a Pluggable Protocols Framework for Object Request Broker
Middleware, fredk@cs.wustl.edu, coryan@cs.wustl.edu, schmidt@cs.wustl.edu,
othman@cs.wustl.edu, parsons@cs.wustl.edu Department of Computer Science, Washington
University St. Louis, MO 63130, USA

[Scallan] Todd Scallan, Monitoring and Diagnostics of Corba Systems, Demystifying the Corba
communication bus to enable ‘distributed debugging’, June 2000, Java Developers Journal.com

Unclassified

Date: 30-06-04 Page: 102

[Rosenblum] David S.Rossenblum, Adequate Testing of Component Based Software, Department of
Information and Computer Science, University of Carlifornia, Irvine, CA 92697-3425, +1
714.824.6534, dsr@ici.uci.edu/`dsr/

[MDA] Miller, Joaquin; Mukerji, Jishnu, ed. (2003), MDA Guide Version 1.0.1, Object Management
Group, document number omg/2003-06-01

[Schmidt] D.C. Schmidt, M.Stal, H.Rohnert, and F.Buschmann, Pattern-Orient Software Architecture:
Patterns for Concurrent and Networked Objects, Volume 2. New York, NY: Wiley & Sons, 2000

[Philip] Mathieu Vadet* ó Philippe Merle**, Conteneurs adaptables: du modele l'architecture
[Douglas] Douglas C. Schmidt, Carlos O’Ryan, and Ossama Othman Fred Kuhns and Jeff Parsons

Applying Patterns to Develop a Pluggable Protocols Framework for ORB Middleware
[Koster] Rainer Koster and Thorsen Kramp, Loadable Smart Proxies and Native-Code Shipping for

Corba, Distributed System Groups, Dept. of Computer Science, University of Kaiserslauteren,
P.O.Box 3049, Kaiserslauteren, Germany

Unclassified

Date: 30-06-04 Page: 103

Unclassified

Date: 30-06-04 Page: 104

Unclassified

Date: 30-06-04 Page: 105

Appendixes
In the appendixes we describe some detailed information about Corba in which has relevance to our Thesis but
were too technical for out Thesis. Although they do not have to be read, they can help the reader get a better
insight in Tracing Corba technology.

.

Unclassified

Date: 30-06-04 Page: 106

Appendix A: IOR
In this paragraph, we will take a closer look at the Interoperable Object Reference (IOR). Although an IOR is
used by an application in the exact same way that an object reference is used, they are not exactly the same.
While the IOR is a specialised object reference that can be universally understood by all Corba applications, an
object reference only has meaning within the current Corba application. An object reference identifies one
instance of an object and associates one or more paths by which that object can be accessed. An object
reference therefore allows an application to establish a connection and make remote method calls on a Corba
object.

The same object may be located by different object references, e.g., if a server is re-started on a new port or
migrated to another host. Likewise, multiple server locations can be referenced by one IOR, e.g., if a server has
multiple network interfaces connecting it to distinct networks, there may be multiple network addresses.
However, because every Corba applications can convert an IOR string to an object reference and back from
object reference to IOR string, they can effectively be used interchangeably.

Once an application used the IOR to establish a connection, the client can transparently access the methods of
a remote Corba object via Corba communication protocol, GIOP (see also paragraph 0). Just as a telephone
number contains information of the whereabouts of the number, the IOR contains information of the
whereabouts of a servant object. The IOR is normally created by the POA when it starts a Corba servant. During
creation of the IOR, IOR Interceptors (see also paragraph 0) can be used to modify the information in the IOR.

Because the IOR plays an important role in the messages we intend to trace, we take a closer look at what
information is contained in the IOR format. An IOR contains one or more profiles. Profiles are essentially a one-
way communication mechanism that allows a server to tell a client which methods of communications are
available. A profile is a reference to a server location and provides an opaque, protocol-specific representation
of an object location. Profiles can be used to annotate the server location with QoS information, such as the
priority of the thread serving each endpoint or redundant addresses to increase fault tolerance.

Each profile contains all the information required to dispatch request messages and must be stand-alone. That
is, when sending a request, the client is allowed to use information from only one profile. When a client gets an
IOR, it tries to bind the request using one of the profiles. If that fails, it goes to the next profile, and so on, until it
either succeeds or runs out of profiles.

IDL:Account:1.0 2

Type id

profile

profile count

profile

0 1.1 ‘host.com’ 1571 ‘fred’ reserved

protocol version host port object key

The figure above illustrates the IOR format:
• An IOR begins with the string type_id which gives the type of the object, equivalent to the name of the IDL

interface defining the object
• A profile_count specifies the total number of profiles that the IOR Contains.
• An IOR profile starts by indicating which underlying protocol is used. In our case 0 indicates that the TCP

protocol will be used, which effectively means the IIOP communication format will be used.
• This is followed by field reserved for the Version of the protocol, which consists of a major and a minor

version number.
• The next two fields provide the address appropriate for transport protocol needed to establish

communication with the remote server. In our case, a host IP address and port number.
• The object_key is a field, which is used by the remote server to locate the object being accessed.

Although a client needs to have a copy of the object_key, as far as the client is concerned, the key is just
an opaque code which passes to a server in order to identify an object referred to

Unclassified

Date: 30-06-04 Page: 107

• There can also be additional fields at the end but these are currently not used and are reserved for future
expansion to the protocol.

Typically, the server who hosts the corresponding object creates an IOR. The IOR is then published in order to
make it available to other client processes. To assist publication of an IOR, it must be possible to convert it into a
alphanumeric string format which is not subject to any conversions when communicated from place to place. For
this reason, Corba specifies a standard alphanumeric string format (see IOR string example below).
IOR:010000001300000049444c3a546573742f48656c6c6f3a312e30000001000000000000006c0000000
10102cd0f0000007063323835312e7369676e61616c00cdfa05cdcd1b00000014010f005253549893d43f
600e0e00000000000100000001000000cd02000000000000000800000001cdcdcd004f415401000000140
0000001cdcdcd01000100000000000901010000000000
As seen in the IOR string above, it consists of the characters “IOR” followed by a series of hexadecimal
numbers. Every byte of the original IOR is translated into a two-digit hexadecimal number. Although this string
format is simple and resistant to corruption, interpreting the content of the IOR is difficult.

Unclassified

Date: 30-06-04 Page: 108

Appendix B: GIOP/IIOP
Because our tracing mechanism must trace Corba message traffic, we take a closer look at Corba message
communication protocols, GIOP and IIOP. To allow Orb-to-Orb communication, the Orb uses the General Inter-
Orb Protocol (GIOP), which was designed to work directly over any connection-oriented transport protocol like
TCP/IP. The GIOP specification provides a general framework for protocols to be built on top of specific
transport layers. The Internet Inter Orb Protocol (IIOP) protocol is a special case of the General Inter-Orb
Protocol (GIOP), which is built on top of TCP/IP transport layer. IIOP makes it possible for distributed programs
written in different programming languages to communicate over the Internet.

GIOP also specifies a Common Data Representation (CDR) for communications between Orbs. The Common
Data Representation (CDR) maps common data types defined in OMG IDL into a flat message representation.
This transfer syntax specifies a coding mechanism for all IDL types: including basic types, structured types,
object references (in the form of IORs), and pseudo-object types such as TypeCodes. Another feature of CDR is
its ability to deal with the different kinds of byte ordering required by different hardware types: both big-endian
and little-endian byte ordering is supported. The convention adopted is that the sender of a message sends data
using its native byte ordering (and sets a flag in the message header to indicate the ordering used). The receiver
of a message is obliged to detect the byte ordering used and carry out any conversion, if it is required. The
advantage of this convention is that when both sender and receiver use the same byte ordering, no conversion
is required resulting in considerable gain in efficiency.

GIOP specifies seven message format types that cover all Orb request/reply semantics. These message types
allow clients to pass invocations to servers and receive replies which can be either normal or indicate some
error. Some additional messages are available to help manage the connection. They are:

• Request Message allows a client application to invoke an operation on a remote server.
• Reply Message is normally sent by a server in response to a client Request message
• Cancel Request Message is sent by the client to the server to indicate that the client is no longer interested

in receiving a Reply to a particular message.
• Locate Request Message can be sent from client to server to probe for the location of a remote object. It is

advantageous to send this message before sending a large Request on a connection which has just been
opened

• Locate Reply Message is sent from server to client in response to a Locate Request message. The sever
can answer with UNKNOWN_OBJECT, OBJECT_HERE or OBJECT FORWARD:

• Close Connection Message is sent by the server to tell the client that it intends to close the connection
• Message Error Message can be sent by the client or by the server Orb. It is used within the IIOP protocol to

indicate that the last message received was either corrupted or incorrectly formatted in some way. It
consists only of a GIOP header with the message type set to MessageError.

Depending on the message type, a message can consist out of one, two or three parts. All message types
consist at least of the GIOP message header (see figure above). The fields in the header can be described as
follows:

• The four characters "GIOP" serve to identify the protocol.
• The GIOP version number (major and minor) is used to create the message.
• A flag byte is currently only used to indicate the byte ordering.
• An integer is used to indicate the message type.
• The message size (excluding the GIOP header itself).

Unclassified

Date: 30-06-04 Page: 109

Note that although not illustrated above, the GIOP message format also provides fields known as the Service
Context that is used to transfer context information between request interceptors (see also 5.2.1). Because the
request and reply messages are of special interest for a tracing mechanism, we will take a closer look at these
important message types in following sub paragraphs.

The Orb creates a new request message, every time client does a remote operation on the servant. The client
usually waits for a Reply message from the server (unless the operation has been declared to be one-way),
which normally contains a return value, or possibly an error condition. Since the request and reply messages are
of special interest for a tracing mechanism, we will take a closer look at these important message types in the
next two paragraphs. The Request message contains all the information needed for the invocation including the
identity of the object, the operation name, and any parameters associated with the operation. Because a
Request message is designed specifically to invoke operations declared in an IDL interface, the message format
is designed to support all of the syntax that can appear in an IDL operation definition. The message consists of a
Request header followed by a Request body. The body of the Request consists essentially of a list of the
operation parameters followed by any context strings for the operation. It is possible for the body of the Request
to be empty.

An outline of the Request header is shown in the figure below consists of the following fields:
• The service_contexts field allows service specific context-information to be passed along with a Request.

Intended for use in conjunction with the Corba services to carry extra information along with the Request2,
the service contexts are not needed in the core specification of Corba.

• The request_id field is used to uniquely identify a Request emanating from a client so that the client can
later match a received Reply with its corresponding Request (e.g. the corresponding Reply is tagged with
the same request_id).

• The response_expected flag is used to indicate whether the Request is oneway or not. A normal Request
has response_expected set equal to TRUE.

• The next field is an array of three bytes reserved for future use.
• The object_key field is used at the server end to identify the object that is being invoked by the client
• The operation field is simply a string giving the name of the operation being invoked.
• The requesting_principal field identifies the user making the request. That is, it is simply the user name of

the person running the client.

Unclassified

Date: 30-06-04 Page: 110

The Reply message consists of a GIOP header followed by a Reply header and a Reply body. The usual intent
of a Reply message is to pass back a return value for an operation and to indicate the completion status for the
operation. The Reply header does not pass as much information as a Request header and typically consists of
the following three fields:

1. The service_context field that is similar to the service context field used by the Request message.
2. The request_id field is used to match this Reply message with the client Request that gave rise to this

reply. That is, all replies messages are paired off with their corresponding Request and the request_id is
a unique identifier for active messages between Orbs.

3. The reply_status field is used to indicate whether this is a normal Reply or if some error condition
occurred in the server. The reply_status is used to toggle between a number of different Reply types so
that a Reply message is almost like four messages rolled into one. The possible values for reply_status
are NO_EXCEPTION, USER_EXCEPTION, SYSTEM_EXCEPTION or LOCATION_FORWARD

Unclassified

Date: 30-06-04 Page: 111

Appendix C: Corba Telecom Logging Services
The Object Management Group (OMG) proposed a specification for a Corba Telecom Logging Service
[OMG2000] for logging events in a pure Corba environment. The proposed Application Programming Interface
(API) services supports on top of the functionality defined in the ITU-T X.735 specification extra Corba event
logging functionality. The Telecom Log Services can be accessed by six different Log objects, which inherit
functionality from each other or from other object services (see figure below).

Each log interface object can store events as entries in an individual log repository. This Log repository can
store any type of event as long as the underlying storage, one or more files or databases can support their
storage. Conceptually an Event/Notification Log object and can be modelled as an Event/Notification Channel
(see figure below) which support both the push or pull models of event communication (see event
communication). Event/Notify Log objects can operate as an event consumer, event supplier or as an event
forwarder. Log objects can also be used to form a complex “log and forward” network. A “log and forward”
network could potentially be used to create a testing environment for event communication.

LOG

Event/Notificatio
n Channel

PS

PC

Figure Key:
• S: event/notification supplier
• W: event/notification unaware

writer
• PC: proxy consumer
• PS: proxy supplier
• C: event/notification

PC

PC

PS

PS

PS

PS

PS

S

S

S

W LOG Persistent
Store

Log filter

Write Forward

Store

Log

Event Log Basic Log Typed
Event

Notify Log

Notify
Channel

Event
Channel

Typed
Notify Log

Typed
Notification

Channel

Typed
Event

Channel

Log services

Unclassified

Date: 30-06-04 Page: 112

Appendix D: Corba Scripting Language
The OMG has specified the IDLScript language [IDLScript] designed specifically for testing Corba applications.
IDLscript is new general-purpose object-oriented scripting language that allows any user to develop their
activities by simply and interactively accessing objects available on the Corba core middleware object, the Orb.
Therefore the user is completely free to operate, administrate, configure, connect, create, and delete distributed
objects on the Orb.

IDLscript is a true high-level language comprising programming concepts such as structured procedures,
modularity, and object-oriented programming. The IDLscript language provides various syntactical constructions
such as basic values and types, expressions, assignments, control flow, statements, procedures, classes,
modern exception handling and modules. The binding between Corba and IDLscript is achieved through the
Dynamic Interface (DII) and the Interface Repository. The DII is used to construct requests at runtime and the
Interface Repository is used to check parameters types of requests. Moreover, using the DSI, IDLscript allows
one to implement OMG IDL interfaces through scripted objects. IDLscript allows scripts to invoke IDL operations,
access IDL attributes of remote Corba objects/components. The interpreter automatically does all type checks
and conversions and parameter coercions are automatically done according to IDL signatures. IDLscript
provides a simple Java-like exception mechanism that allows one to catch users’ defined IDL exceptions and
also standard Corba system exceptions. The Dynamic Invocation Interface sends Corba requests.

An IDLscript engine is the mechanism that interprets the IDLscript. It provides three execution modes: the
interactive one, the batch one, and the embedded one. In the first mode, users provide their scripts interactively.
In the second one, the interpreter loads and executes file scripts allowing batch processing or server
implementations. In the last one, the interpreter can be embedded in another program and then interprets strings
as scripts. The IDLscript engine allows the introspection of any scripting object. The introspection encompasses
object displaying and dynamic attribute, method, and type discovering. All OMG IDL concepts such as basic
types, modules, constants, enumeration’s, structures, unions, typedefs, sequences, arrays, interfaces,
exceptions, TypeCode, and Any types are directly and transparently available to scripts. The integration
between IDLscript and the Orb is fully dynamic which means there is no stubs/skeletons generation required.
The IDLscript engine discovers OMG IDL specifications through the Interface Repository. When scripts invoke
Corba objects, the Dynamic Invocation Interface and the Dynamic Skeleton Interface are internally used to send
and receive requests and the IFR is used to check parameter types at runtime. But users never use directly
these Corba dynamic mechanisms, they are totally hidden by the scripting engine.

Unclassified

Date: 30-06-04 Page: 113

Appendix E: Tcl Scripting Language
Tcl scripting is a popular open source scripting languages, which enjoys a large availability of development tools.
The Tcl Scripting Language simplifies the access and the use of computer system resources like files and
processes in the context of an operating system shell, relational database query requests in the context of SQL,
and graphic widgets in the context of Tcl/Tk. Combat is an extension to the Tcl scripting language that allows
accessing and providing Corba objects at the script level. Combat allows Tcl scripts to access Corba services or
become Corba servers themselves. The interpreted language Tcl can therefore serve as a prototype scripting
language for implementing functional test on a software component. By constructing a small set of scripts, a
tester could validate a system component in a relatively short time. Because Tcl interpreted language can be
executed without recompilation, its code can even be send across a network. This would allow a Tcl script to do
remote interactive modifications or send an extension to another server. A disadvantage of interpreted
languages is that they are slower than their equivalent code in a static programming language. The speed
decrease might be acceptable for temporary prototype, test reactor, or low priority components but a
programmer is advised to reprogram a component in a statically linked component for deployment.

There are two versions of Combat available.
• Combat/C++, does not itself include an Orb, but is a glue package that builds upon an existing Orb C++ Orb

such as Mico or Orbacus. Therefore, Combat/C++ inherits your Orbs properties such as configuration
options and protocol support.

• Combat/Tcl also includes an Orb written in pure Tcl. By not depending on any compiled code, this version
works on all platforms where Tcl is available, and can be used where compiled code is not acceptable, such
as in the Tcl browser plug-in. Naturally, packaging and deployment is much easier than with compiled code.

Unclassified

Date: 30-06-04 Page: 114

Appendix F: Logical Clock Limitations
Although Logical Clock is ideal for chronologically ordering communication events between two distributed
processes, the mechanism will start lacking in distributed systems where component instances maintain
communication links with multiple components at the same time. Figure N illustrates a possible communication
scenario where this problem manifests. Although a logical clock value will allow the tracing framework to order
events between two communicating components, logical clock values that are not connected by a message
cannot be logically ordered. For example, there is no telling whether logical clock event 3 on Component A was
before or after logical clock event 3 on Component B. However, sometimes we can estimate it by using the
available timing data. Let us assume that physical clock on Component A is the real clock time. Notice that
Component A send a request message (with Logical clock value 1) at time 0:00 and receives the reply message
(containing logical clock value 6) at time 0.04. Now compare it the times on component B. Component B
receives Logical Clock value 1 at time 0.04 and returns Logical Clock 6 at time 0:07. Notice that that both
component A and Component B require 4 seconds between Logical clock 1 and Logical clock 2. We can clearly
see now that there is an offset of 3 seconds. Now we can use this knowledge to sort logical clock 3. Because
0.05 – 0.03 > 0.00 we can conclude that logical clock event 3 at Component B happened approximately 2
seconds after logical clock event 3 at Component B

Logical Clock: 1 Logical Clock: 2

Logical Clock: 3 Logical Clock: 6

Component A
time event logical

clock
0:00 Request - 1
0:00 Send 1 2
0:00 Send 2 3
0.02 Receive 3 4
0.03 Send 4 5
0.04 Receive 6 7
0.04 Receive 5 8
0.05 Reply 8 9

Actor

Component B

Component C

Component D

Component E

Component F

time event logical
clock

0:03 Request 1 2
0:04 Send 2 3
0:05 Send 3 4
0.06 Receive 3 5
0.06 Receive 4 6
0.07 Reply 6 7

time event logical
clock

0:05 Request 3 4
0:06 Reply 4 5

time event logical
clock

0:03 Request 3 4
0:04 Reply 4 5

time event logical
clock

0:08 Request 2 3
0:09 Reply 3 5

time event logical
clock

0:05 Request 2 3
0:06 Reply 3 4

Figure N: Logical clock usage example

Unclassified

Date: 30-06-04 Page: 115

Appendix G: Request & Reply Flow
Although there are seven message types in GIOP, we focus our attention on two of the most interesting
message types for tracing purposes, which are the request and reply message. The picture below illustrates the
information flow through a client and server Orb both with active request interceptor. A client application starts
an invocation by sending a request message and receives a reply message back from the servant. This figure
shows a basic and successful request-response invocation cycle (that is, no exceptions are raised).

Client Application

Client Orb

Client Request
Interceptor Class

send_request()

receive_reply()

1

2

Server Orb

Servant Object

3

Server Request Interceptor
Class

send_reply()

receive_request()

receive_request_serice_context()

4 5

18

17

19

6

11

13

14

12

1516

8

7

9

10

In
figure above, the following events take place:
1. The request leaves the client and arrives at the client Orb.
2. The Orb calls the send_request method in the ClientRequestInterceptor Class implementation

with a RequestInfo object as in parameter
3. The client request interceptor processes the request and returns to the Orb.
4. If no user exception is returned during execution of the send_request method, the request resumes its

path toward the target object.
5. The Orb marshals the Client request into a IIOP message and sends it to the server Orb
6. IIOP message arrives at the server Orb and gets unmarshalled into client request
7. The Orb calls the receive_request_service_context interface with a RequestInfo object which

only allows access to the message service context fields (see paragraph 7.4)
8. The receive_request_service_context allows the request interceptor to read available service

context (see paragraph 7.5) and transfer it to available Portable Interceptors current slots (see paragraph
7.6) before returning to the Orb

9. The Orb calls the receive_request interface with a RequestInfo, which allows the request interceptor
access to all outbound message fields.

10. The server request interceptor processes the request and returns to the Orb
11. If no exception is raised during the execution of the receive_request operation, the request resumes its

path toward the target object.
12. The servant object processes the request and issues a response.
13. The target-side Orb calls the send_reply method in the ClientRequestInterceptor Class

implementation with a RequestInfo object as in parameter
14. The request interceptor processes the response and returns to the Orb.
15. The response is sent to back to the client Orb.
16. The response arrives back at the client Orb
17. The Orb calls the receive_reply method in the ClientRequestInterceptor Class implementation

with a RequestInfo object as in parameter
18. The interceptor processes the response and returns to the Orb.
19. The client eventually receives the servant reply message back from the servant

Unclassified

Date: 30-06-04 Page: 116

Appendix H: Request Information
When the Orb activates the request interceptor, it receives a RequestInfo object as parameter. Depending on
the message types and contents of the intercepted message, the RequestInfo object is populated with a different
set of message information.

The RequestInfo object allows the Request Interceptor to get access to the following attributes:
• Request ID, does in contrast to the intuition, not specify the source of the message. Instead, it only uniquely

identifies an active request reply sequence between two Orb instances. Once a request reply sequence is
concluded the Orb might reuse the ID. The request ID can therefore not serve as a unique message
identifier in the Corba System.

• Client/Server Service Contexts attribute allows the request interceptor to transparently transfer context
information between client and servant. The service context field is a new reserved field in the IIOP 1.1
message format (see also appendix B). Service Contexts can be used for out-of-band communication
between interceptors installed in different Orb instances. Depending on the interceptor interception point, the
client service context can be access, or modified. In the next paragraph, we will explain how Interceptors
can use this piggybacking mechanism to transparently sent context information between services.

• Reference to the target object, is the effective IOR address to the object that is being invoked by the client.
Although this information is normally not available in the GIOP, the interceptor is able to derive this address
from the Orb. This information is very useful for tracing services that want to determine the effective Corba
Object a client interacts with. Note that the reference on the reply message is the same reference in the
request message.

• Argument and attributes returns a parameter list containing the input and output arguments on the operation
being invoked. Note however that the parameters list is not supported by all Orb implementations. Due to
enforced security rules, Java Orb implementations are not able to read the arguments.

• Method attribute allows services to determine the name of method that was remotely called on a servant by
the client object. The method name is the same name defined in the IDL file. The Combination of method
and argument attributes collected on both server request interceptor and client request interceptor would
allow a tester to verify the input with output of a object (see figure below).

• Result or Exception list is the result of a method call on a Cobra object. This information is only available if
the interceptor captures a reply message from the servant. The return value is of special interest to tester to
verify a methods output with the expected output. Exceptions can give a service an indication what went
wrong. Fault tolerant services can use this information to recover from a fault without the client noticing any
problems.

• Tagged components attribute is a new read-only field in the IIOP message format, which can be modified by
IORinterceptors (see also appendix L). They general usage is for establishing secure or fault tolerance
connections. Although they cannot be used to determine the identity of a client, the information might be
useful for verifying the system fault tolerance.

Note that there is no field that returns a reference to the source of the message. The GIOP message protocol
simply does not contain any source ID. This is because Corba communication protocol is mainly focused on
establishing and maintaining a between two objects connected by an Orb, which already have network
connection on a lower communication level like TCP/IP. The Orb process IP number and port number therefore
determine a message return path. Note also that process that can initialise an Orb instance can effectively
invoke any Corba object. Clients therefore do not even have to be an object to call remote function.

O R B
C lie nt Re ques t Intecep to r C lient R eques t Intece p to r

C o rb a O b jec t

O b jec t S p ec ifica t io n

V erify

O u tb o u n d m essag e O u tb o u n d m essag e

M ethod : fu nc tion name
A rguments : va lue s

M e thod : func tion nam e
A rgume nts : va lues

F igu re: V erify a n o b ject in p u t a rgu m en t a n d o u tp u t a rgu m en ts

Unclassified

Date: 30-06-04 Page: 117

Appendix I: Service Context Data
Service Context Data is data send inside reserved field along normal Corba communication. In order to transfer
context data from client to server, there must be at least one client request interceptor installed in the client Orb
and server request interceptor installed in the server Orb at the same time. The client interceptor inserts context
data into the request message and the server request interceptor retrieves the data from the message. This
mechanism could for example be used to transparently send authentication data between client and server
security services. On the client side a security service intercepts a request message and adds authentication
data to the message, on the server side, after validating the authentication, the security service can either
confirm access, by doing nothing or refuse access by raising an exception. The flow of piggybacked information
can also be bi-directional. In bi-directional piggybacking, context data both flows from client to servant and back
from servant to client. In order to resent the same or modified context data back to the client, the client request
interceptor can make use of the Interceptor shared memory mechanism, called PICurrent (see appendix J).

Unfortunately everything comes at a price, so does flowing service context data through distributed system. Due
to the extra overhead caused by populating and retrieving the service context and transmitting the larger than
normal messages between Orbs, the context data flow will have a negative effect on the overall middleware
performance. Depending on the performance of the Orb, and the amount of bytes service context being
piggybacked, both message response time and throughput will suffer. The tables below illustrate the increment
in latency and decrement in throughput in terms of percentage caused by the interceptor flowing context data in
comparison to normal data flow without interceptors. Note that latency table also includes a column where we
can see the minimum latency overhead caused by a non-operating request interceptor. A non-operating
interceptor does nothing except slowing down an Orb through the default overhead caused by the internal
parameter conversions.

 Latency Increase
Orb 0 bytes

10 bytes

100 bytes 1000 bytes 10.000 bytes

Orbacus v.4 6,36% 13,64% 28,18% 47,23% 145,45%
Orbix 2000 1,39% 9,03% 19,44% 36,83% 91,67%
JacOrb v1.3 10% 32% 50% 69% 171%

 Throughput Decrease
Orb 10 bytes 100 bytes 1000 bytes 10.000 bytes
Orbacus v.4 15,49% 29,89% 50,32% 149,18%
Orbix 2000 9,81% 15,28% 33,20% 92,24%
JacOrb v1.3 37,54% 57,58% 79,62% 185,71%

Although the above tested Orbs are currently largely outdated, they still give us a good impression
what to expect from other Orbs. We can clearly see (in the range 10 to 10000 bytes) that latency
approximately doubles after the number of bytes is increased by a factor of ten (e.g. the latency grows
at 10log n, 10 < n < 10000, with n the number of bytes in the service context data). A similar trend can
also be seen with the Throughput that also drops at approximately the same rate.

Unclassified

Date: 30-06-04 Page: 118

Appendix J: PICurrent
The Portable Interceptor Current (PICurrent) is a data sharing mechanism that is specifically used by Request
Interceptors to transfer context information between interception points. The PICurrent is a slot table from which
the slots are used by each service to transfer their data between their data context and their request or reply’s
service context. This mechanism is especially useful for transferring Context data from Client services to Server
services. Each service that wishes to use PICurrent, reserves a slot or multiple slots during initialisation time and
uses those slots during the processing of request and replies.

The PICurrent contains two different context scopes:

• Tread scope; a thread scope PICurrent is the PICurrent that exist within a thread’s context. The thread

scope is active during the execution of all local processes. This includes the local stub or skeleton code,
which the client uses for communication.

• Request scope; a request scope PICurrent is the PICurrent associated with the request. The request scope
is active during the execution of a request interceptor.

In the figure below, we can see how Context data is transferred between the tread scope and the request scope
and used to transfer service context between client and server.

Depending on the state of the current message, the thread scope and request scope exchange information in a
different way:

• On the client-side, the thread scope is logically copied to the request scope PICurrent from the threads’s

context when a request begins and is attached to the ClientRequestInfo object.
• On the server side, the request scope PICurrent is attached to the ServerRequestInfo and follows the

request processing. It is logically copied to the threads scope PICurrent after the lists of
receive_request_sercive_context interception points are processed.

The request scope PICurrent is a logical copy of the thread scope PICurrent at the point the invocation began.
Even if a client side interceptor happens to be running in the same thread from which the invocation was made,
the request scope PICurrent and thread scope are still different. PICurrent allows portable service code to be
written regardless of the Orbs threading model. Interceptors assume that each client interception point logically
runs its own thread, with no context between it and any other thread. While an Orb implementation may not
actually behave in this manner, it is up to the Orb implementation to thread PICurrent as if it did.

Unclassified

Date: 30-06-04 Page: 119

Appendix K: Installing Interceptors
Before any interceptor can do their work, they must first be registered with a local Orb object before initialisation.
This is because interceptors must become part of the Orb architecture. In order for a client to establish a
connection with a servant, the Corba Orb architecture requires both client and servant to initialise a local Orb
object in their source code. The Orb architecture also requires that all clients use a separate local Orb object for
each connection with another servant instance.

Request interceptors are executed in a stack flow model. This means their request interceptor request methods
are invoked one after other, and pushed onto a stack by the Orb. When the reply arrives back at the client, the
interceptors are popped of the stack, and their ending method is invoked, but this time in the opposite order. The
model also guarantees the same interceptors intercept the request and reply message invocation, except when
an exception is thrown during invocation by either a client or server, then this may only be a subset of all
registered interceptors

Although activated interceptors can communicate with the outside world, once an Orb with one or more
interceptors registered is initialised, Corba offers no facilities that can alter the interface calling behaviour of an
interceptor from the inside or outside. By interface calling behaviour, we mean the Orb functionality that calls the
interfaces of each installed interceptor. In other words, there is no way of disabling or enabling an installed
interceptor, except during initialisation or killing the Orb completely.

The Official OMG Interceptor specification states that an Interceptor is registered by registering an associated
OrbInitializer that implements the OrbInitializer interface (see interface definition below).

module PortableInterceptor {
 local interface OrbInitializer {
 void pre_init (in OrbInitInfo info);
 void post_init (in OrbInitInfo info);
 };
};

Unfortunately, the activation of OrbInitializer is different for each programming language. In the case of C++, the
OrbInitializer is activated by calling register_orb_initializer defined by the PortableInterceptor name space (see
C++ specification below)

To register the service, an application would first call to the global operation, register_orb_initialiser, passing in
the service OrbInitialiser as parameter (see C++ source code example below).

After this is complete, the application would make an instantiating Orb_init call that produces an active Orb
object (see C++ source code example below).

Although the registration of request interceptors into Orb by function callsis well defined, most Orbs
implementations allow the registration of the request interceptors through external means. In fact, some Orbs do
not offer any corresponding internal method for Orb initialisation. Java Orb implementation only allows
registration of an OrbInititiaializer object by means of Orb properties. Java Orb properties can be provided for
instance by using command line arguments or by setting a special initialisation file. Although Orb properties
allow us to install interceptors without altering any client source code, it is currently Orb vendor dependant and
therefore a proprietary solution.

Once every OrbInitializer method is registered in the local Orb, a client can start the initialisation of the Orb
instance by calling the Orb_init method of the Orb object. During Orb object initialisation, it calls each registered

PortableInterceptor::register orb initializer (initializer.in ());

Namespace PortableInterceptor {
 Static void register_orb_initialiser (
 PortableInterceptor::OrbInitializer_ptr init);
};

Corba::Orb var orb = Corba::Orb init (argc, argv, "" ACE ENV ARG PARAMETER);

Unclassified

Date: 30-06-04 Page: 120

OrbInitializer once, passing it an OrbInitInfo object, which is used by its methods to register an interceptor. Note
however, that the registration code executed during initialisation should avoid using the Orb because invocations
during this state are undefined in some Corba implementations.

The OrbInitialiser interface only contains two methods; pre_init and post_init. Both interface methods are called
only once during Orb initialisation and therefore interceptors cannot be registered on an Orb after it has been
returned by a call to Orb_init . The only difference between them is that pre_init must register initial services
itself while post_init can assume that all initial reference are available. Both methods obtain an OrbInitInfo object
as in parameter, which contains methods for registering interceptors (see interface definition below).

Module PortableInterceptor {

local interface OrbInitInfo {
 typedef string ObjectID;
 exception DuplicateName {string name;};
 exception InvalidName {};

 readonly attribute Corba::StringSeq arguments
 readonly attribute string orb_id;
 readonly IOP::CodecFactory codec_factory

 void register_initial_reference (in ObjectID id, in Object obj) raises (Invalidname)
 void resolve_initial_references (in ObjectId id) raises (InvalidName)
 void add_client_request_inteceptor (in ClientRequestInterceptor interceptor) raises (DuplicateName)
 void add_server_request_interceptor (in ClientRequestInterceptor interceptor) raises (DuplicateName)
 void add_ior_interceptor (in IORInterceptor interceptor) raises (DuplicateName)
 void register_policy_factory (in Corba::PolicyType type, in PolicyFactory policy_factory);

 Slotid alocate_slot_id
}

In practice, we only have to implement either the pre_init or the post_init method and initialise and register the
interceptor with methods available in OrbInitInfo (see example below)

Void Client OrbInitializer::pre init (
 PortableInterceptor::OrbInitInfo_ptr
 ACE_ENV_ARG_DECL_NOT_USED)
 ACE_THROW_SPEC ((Corba::SystemException))
{
}

Void Client_OrbInitializer::post_init (
 PortableInterceptor::OrbInitInfo_ptr info ACE_ENV_ARG_DECL)
 ACE_THROW_SPEC ((Corba::SystemException))
{
 PortableInterceptor::ClientRequestInterceptor_ptr interceptor =
 PortableInterceptor::ClientRequestInterceptor::_nil ();

 PortableInterceptor::ClientRequestInterceptor_var
 client_interceptor = interceptor;

 info->add_client_request_interceptor (client_interceptor.in ());
}

Unclassified

Date: 30-06-04 Page: 121

Appendix L: IOR interceptors
An IOR interceptor is an object, which is invoked by the Orb when the Programmable Object Adapter (POA)
creates the IOR. The IOR interceptor allows an IOR to be customised by appending special tagged components.
These tagged components can be used in conjunction with Request Interceptors to establish Quality of Services
(QoS)

IOR interceptors can provide the following functionality:
• Tracing IORs. IOR interceptors can be used to trace IORs as they start their journey trough a system after

they are generated by the POA. This could be useful for security services that guard the spreading of IORs
or by logging services that want to track the birth of IOR.

• Modifying IORs. In some cases, a portable Orb service implementation may need to add information
describing the server’s or object’s Orb service related capabilities to object references in order to enable the
Orb service implementation in the client to function properly. For example, by associating information about
security policies with an object reference, a client and server Orb can establish a secure connection.
Another example is to augment the object reference with additional profiles that provide an alternative
Internet address for the object when the object is reachable by multiple different TCP/IP paths. In these
cases, IOR Interceptors can be used to insert service-specific information into the IOR. The IOR Interceptor
does this by establishing tagged components within an Interoperable IOR.

• Re-routing IORs. Some systems may require published object references that escape from the system to be
references to a firewall or gateway than the real object. IOR Interceptors can be used to replace the IOR of
an object with an IOR of an entirely different object, like Orb daemons.

Policies are used for specifying component security policies and can be created by implementing a special
Policy Factory. The picture below illustrates how a set of policies influences the set of tagged components
contained within the profiles of any IOR created by that POA [Interceptor v2.6.1].

IOR

POA

Creates

Tagged Component

Policies
Creates

Examine

Influences

Contains

Figure 5.6: Relation ship between IOR and other Corba concepts

In order to add tagged components to the IOR, special field must be modified embedded inside the new Corba
message format. Version 1.1 of the Corba Internet Inter Orb Protocol (IIOP) introduces an IDL attribute called
components. The new attribute contains a list of tagged components to be embedded within an IOR. This list of
tagged components provides a placeholder for an Orb to store extra information pertinent to the objects in a
component. This information can contain various types of Quality of Service (QoS) related information pertaining
to security, server thread priorities, network connections, Corba policies, or other domain-specific data.
Modifying the IOR attributes is supported through the IORInterceptor and IORInfo interfaces. The IOR
interceptor uses IORInfo object to access the several attributes contained in the IOR. The old Corba message
format (IIOP version 1.0) provided no standard way for applications or services to add tagged components into
an Orb. Services and applications that required this field were therefore forced to use proprietary Orb interfaces,
which limited their portability. The new PI specification resolves this problem by specifying IOR interceptors that
provide a meta-programming mechanism to customise components IOR.

Unclassified

Date: 30-06-04 Page: 122

Appendix M: History of the Portable Interceptor
Before Corba 2.3.1, interceptors were under specified. In contrast to the current specification, which consists out
of xxx pages, the first definition only contained nine pages. It was therefore not surprising that the first
interceptor implementations were often lacking, bugged, or simply not implemented at all. This motivated many
frustrated Orb developers to discard the original OMG specification, and develop their own interpretation of the
Interceptor. This resulted into in a large number of propriety solutions that was non-portable between the
different Orb implementations. The problem was recognised by the OMG, which issued a Request for Proposal
(RFP) in September 1998 [proposal]. After some iteration of proposals and discussions, the leading vendors of
the field came to an agreement, and handed in their Joint Submission in December 1999 [revised]. Many Orb
vendors, but not all, now have adopted the latest OMG Interceptor specification [Interceptors 2.6.1] in their list of
features.

The original PI definition also contained a specification for the message interceptor. In the new Interceptor
specification, the functionality of the message interceptor is embedded in the request interceptor. Message
interceptors were used to transfer context information transparently between different execution environments.
Message interceptors could treat the message as a structureless buffer. This means that message interceptors
could operate on messages in general without understanding how these messages relate to requests. A hooked
message interceptor is able to examine and modify a context field located in the IIOP message structure
travelling between Corba components.

To allow the examination and modification of the context field at both client side and server side, the message
interceptor differentiates between a client message interceptor and the server message interceptor. The client
message interceptor was hooked in Orb that acted as the client while the server message interceptor is hooked
in the Orb, which acted as the server (see picture below). As seen in the image, the message interceptor
operated on a lower Orb level than the request interceptor. On the client side, the message interceptor is called
after the Client request interceptor. This level of interface would be useful for performing operations on
fragmented messages or add encryption for increased security.

Server ORB

Client ORB

Server Request interceptor

Server Message interceptor Client Message interceptor

Server Object Client Object

Client Request interceptor

Figure M: Message and Request level interceptors

