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Summarisation 
The software industry is realising the importance middleware for the construction of large complex distributed 
systems. Corba is a distributed object middleware technology, which allows the communication of distributed 
objects over a shared network and can be used for construction of distributed systems. Distributed Systems 
must just like regular system be tested to validate their functionality. However, unlike regular single process 
applications, testing a distributed system is a lot more difficult. Distributed computing environments usually 
consist of several physical machines with different hardware configurations, having installed different operating 
systems and middleware software, with different characteristics of the network connections between them. 
Unfortunately, traditional tracing mechanisms were usually developed for use in single-computer environment. 
Language level debuggers are therefore not very suitable for testing Corba applications because they are bound 
to a specific programming language, have no knowledge of components and manage distributions in proprietary 
ways. 
 
In order to validate a distributed system, the tester must be able to observe the inside of a distributed system by 
tracing the internal communication events between all distributed objects. However, the internal communication 
in a distributed object middleware is normally hidden from the outside world. We therefore need tracing 
mechanisms, which can extend the middleware with tracing functionality. In order for a tracing mechanism to 
collect tracing data, we need to know which techniques are available to intercept communication from a 
distributed system. Our thesis will therefore evaluate several Corba techniques for interception tracing data. 
Besides conventional tracing programming techniques, we also looked at tracing potentials of existing Corba 
meta-programming mechanisms. All tracing techniques are eventually compared based on the characteristics, 
which are valuable for the construction of a tracing mechanism. For one of the meta-programming techniques, 
the portable request interceptor, we analysed how the technology could be used for the construction of a fully 
transparent tracing mechanism.  
 
Because today’s system consists of highly heterogeneous distributed computing environments, a trace of a 
distributed application can cross multiple technology boundaries. Our thesis addresses this problem by 
introducing a high level design for generic tracing framework. The generic tracing framework is designed to allow 
multiple middleware tracing mechanisms to collect tracing data and present it to the tester from a single monitor 
interface. Besides the design for a new testing tool, we also looked at several existing tools, which are designed 
to test Corba applications. Our thesis contains a detailed evaluation of several Corba testing tools, analyses 
their tracing mechanism and compares them based on a comprehensive list of criteria. 
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1 THESIS INTRODUCTION 
In this chapter has the following structure: 
 
• Paragraph 1.1: Background. In the first paragraph, we tell something about the background information of our 

thesis at Thales Netherlands.  
• Paragraph 1.2: Problem Definition. In this paragraph, we explain the Corba testing problem and why 

additional testing techniques or test tools are required. 
• Paragraph 1.3: Objectives & Research questions. In this paragraph, we explain on what main questions we 

have tried to find an answer during our internship. 
• Paragraph 1.4: Thesis Arrangement. In this paragraph, we will give a short overview of how we arranged the 

chapters, what to expect and how the thesis can be read. 
• Paragraph 1.5: Research results. In our final paragraph of this chapter, we discuss the results of thesis and 

its value for Thales. 
  

1.1 Background  
Because we conducted our research at Thales Netherlands, we will first tell sometime about Thales their 
products and technology, history and plans to use Corba middleware as part of their middleware architecture. 
 

1.1.1 Products & Technology 
Thales Netherlands creates high-tech defence solutions for naval and ground based environments. They 
combine their extensive and long experience with ongoing search for new techniques and technologies. This 
has resulted in a vast expertise in the field of radar, infrared, weapon control, display technology, communication 
equipment, and software support. The product range of Thales Naval Netherlands compromises system suitable 
for all classes and types of naval vessels, any weapon systems and any mission. Modern and highly capable 
sensor suites, together with the combat management system TACTICOS, equip new generation of frigates, 
corvettes and fast attack craft throughout the world. The naval capabilities include sophisticated anti-air warfare 
systems featuring APAR, GOALKEEPER, SMART-L and SIRUS. Thales Ground Based Systems provides 
solution for integrating air defence surveillance, track, and fire control purposes, as well as for border and 
battlefield surveillance purposes. 
 

 
 
 
 

1.1.2 Thales History 
Thales Netherlands history goes back a long way: 
• In 1922, Thales Netherlands was founded under the name “NV Hazameyer’s Fabriek van Signaalapparaten” 

to produce fire control equipment. The company grew rapidly and welcomed costumes from Sweden, Spain, 
and Greece.  

• During World War II, the German army captured the factory virtually intact. Fortunately, a large number of 
the staff were able to escape to the United Kingdom and continued to work on there on fire control systems  

• After the war, the Dutch government bought the factory and continued the company under the name “N.V. 
Hollandse Signaalapparaten”. In those years a lot of new techniques and technologies were developed, 
such as radar, fire control, computers, and air control equipment.  

Figure 1.1: Some of Thales products: (from left to right): SMART-L, APAR, GOALKEEPER 
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• In 1956, PHILIPS bought a large part of the shares from the government and became the main shareholder. 
The company flourished and opened plants in several cities across the country. Near the end of the eighties, 
Signaal employed over 5000 people and served customers in over 35 countries. 

• After Cold War ended, Signaal was forced to reorganise and reduce staff due to the changed political 
theatre. Meanwhile PHILIPS decided Defence and Control Systems were not part of it core-business and 
therefore sold it in 1990 to Thomson-CSF. After the reorganisation and merger with Thomson-CSF, the 
company regained a new driving force. New systems were deigned, taking a leap in defence equipment and 
combat system. 

• In 2000, Thomson-CSF changed its name to Thales. Being a member of this group, Thomson-CSF Signaal 
changed its name to Thales Netherlands. 

1.1.3 Thales Middleware Technology 
In the last twenty years, there has been a trend from custom build software and hardware systems to 
Commercial Off-The-Shelf (COTS) based systems. The practice of COTS is known in the engineering world to 
reduce cost, time, and risk. Building software systems based on COTS also offers several other advantages like 
the availability of tools and people specialised in standard software technologies. Because the advantages of 
COTS, the market is increasingly, demanding generic software solution based on COTS standards.  
 
Customers of Thales are no exception to these market changes are demanding software solutions build with 
middleware standards. The role of the middleware is to ease the task of designing, programming and managing 
distributed applications by providing a simple, consistent and integrated distributed programming environment. 
Essentially the middleware is a distributed software layer/platform, which abstracts over the complexity and 
heterogeneity of the underlying distributed software with its multitude of network technologies, machine 
architectures, operating systems, and programming languages. 
 
Thales originally developed all their middleware based on their own system requirements. Thales middleware 
solution, called SPLICE, is a data distribution software product designed specifically to let the operational 
software processes (TACTICOS) exchange data with each other and with Thales radar systems like 
APAR/SMART-L. SPLICE is a real-time distributed database management system (RDBMS) based on the 
publish-subscribe paradigm. In a publish-subscribe paradigm, client and server process are decoupled from 
each other and communication is one directional. A client process therefore does not communicate directly with 
a server process directly (point to point) but indirectly trough Topics. The SPLICE middleware takes care of 
delivering Topics published by servers to clients processes subscribed on a that Topic. Multiple server 
processes can publish the same Topics while a client can subscribe on multiple Topics. The advantage of this 
mechanism is that there is no single point of failure. For example, if a radar system on a ship fails to produce 
track data, redundant radar systems can transparently take over it functionality without having to reconfiguring 
the clients subscribed on this track data.  
 
In the light of customer standardisation requirements, Thales wants to evolve their distributed system based on 
proprietary middleware to software systems base one generic middleware standard. However, some of Thales 
systems have very high performance and technical requirements, which could not be replaced by equivalent 
middleware technology. Thales Naval builds, very large complex systems with very diverse performance 
requirements. Therefore based on the system performance requirements (real-time, near real-time and non real-
time), Thales divided their system architecture in three separate segments; Command Execution, Command & 
Control and Command Support. Combat Execution, is used for tactical operations like controlling weapon 
systems, Combat Control is used for radar systems and Combat Support for administrative systems. In figure 
1.2 we can see that each segment consists of tree separate layers, the application layer, the business layer, and 
the data layer. This three-tier architecture, which makes an abstract distinction between presentation, business 
logic, and information storage, allows Thales the construction of large, scalable, reusable systems. 
 
Although SPLICE is a highly effective versatile software product, it was never intended as a standard. However, 
the fast response times and fault tolerance requirement that are crucial for the effectiveness of Combat 
Execution, could not be replaced by any exiting COTS middleware solution. Thales therefore is currently in the 
process of standardising their SPLICE technology (SPLICE-2) as the new Data Distribution Standard (DDS) 
standard at the Object Management Group (OMG). The OMG is a consortium, which includes over 800+ 
companies represents the entire spectrum of the computer industry. 
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The Command & Control, and Command Support segments one the other hand, have much lower performance 
requirements and can be replaced by existing COTS software solutions. One of these COTS middleware 
solutions found suitable to replace SPLICE middleware is the recently adopted OMG Corba Component Model 
(CCM). Because there was no suitable implemented version of CCM, Thales had to develop lightweight 
implementation of CCM themselves, which they called PERCO. In order to support the same functionary as 
SPLICE, PERCO also implements many other services like fault tolerance (FT-Corba) and Real-time 
functionality (RT-Corba). Thales plans to integrate PERCO in its development process and is currently looking at 
new tools, which can support the construction of high quality software. 

1.2 Problem Definition 
In the previous paragraph, we explained why Thales wants to use Corba middleware technology in their system 
architecture. In this paragraph, we explain the challenges Thales is faced with in respect to the integration of 
Corba technology. Although testing services are on the PERCO roadmap, other services currently have a higher 
priority. However, the construction of reliable Corba applications requires more than the availability of a CCM 
middleware implementation, they also require the tools to develop them. 
 
Verifying Corba applications consisting of multiple individual software modules running in a distributed 
environment is not an easy task. Corba software modules collaborate with each other in complex ways to 
achieve the application goals. Although Thales SPLICE applications have to achieve similar goals, in contrast to 
Corba, SPLICE processes are a lot easier to diagnose. While it is sufficient for testers verify SPLICE application 
functionality by monitoring input and output of the individual Splice processes, a tester would quickly lose track 
of the overall distributed functionality when trying to diagnose a Corba application in a similar way. This is 
because Corba message communication is in contrast to Topic communication, a lot more diverse and context 
sensitive.  
 
Testers therefore need to diagnose a distributed system at the abstraction level of a distributed system. To verify 
the correct behaviour of a distributed system, we need a tracing mechanism, which can trace an application 
‘step by step’. Tracing a Corba application ‘step by step’ allows the tester not only to verify behaviour and 
integrity of each separate Corba process, but also the interactions between the processes. While SPLICE Topic 
messages that can are retrieved from the Splice RDBMS with a Splice tool, there is no similar tool available for 
Corba. Corba messages communication only travel directly or indirectly trough services between Corba 
processes and will be lost after a message reached its destination. Our tracing mechanism therefore needs to 
intercept the communication before it becomes lost.  

      Page 2
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In order for the tracing mechanism to intercept the Corba message communication flowing through a Distributed 
System, the system must be extended with tracing functionality. However, care should be taken not affect the 
functionality the existing distributed system or the development new distributed applications. The testing 
mechanism should therefore be as transparent as possible, which means that it should be able to test Corba 
application without altering its source code. 
 
Although one would expect that tracing is hot topic in Corba, tracing currently does not receive the attention it 
deserves in the Corba community. Although the OMG has specified a Corba Scripting language [IDLScript] for 
testing Corba Applications, none of their specification documents mention the words monitoring or tracing 
anywhere and neither is there any OMG special interest group investigating Corba the testing problems. Instead, 
the OMG Corba community is mostly focused on adding additional middleware functionality like fault tolerance 
and security services.  

1.3 Objectives & Research Questions 
Our initial goal was to find a solution for “Thales Corba testing problem”. More specifically, we wanted to find the 
answer on the question: “What is required to test Thales Corba Applications? ”. Because Corba is a standard 
middleware product, the same research question is therefore also be applicable outside Thales. We can 
therefore rephrase the question to “What is required to test Corba system? ”. However the answer to this 
question soon turned out to be too diverse, therefore we narrowed the thesis question down to the part which 
proved to be most interesting aspect of test Corba application, which is “How to Trace Corba applications? ”. 
Because this report is mainly written as an advice for Thales Netherlands, we divided the thesis research 
question into two research questions, which is “how to test Corba applications with existing tools?” and “how to 
create a new Corba application tracing tool”. Each of these questions is further divided further in sub questions: 
 

How to test Corba applications with existing tools? 
• What are the problems when tracing Corba Applications? We answer this question by looking at the 

common problems when testing distributed applications. 
• What should a good Corba tracing tool be able to do? We answer this question by listing the criteria for our 

ideal tracing tool. 
• What tools exist for testing Corba applications? We will answer this question by reviewing several tools and 

compare them with each other based on the criteria we already set.  
 
How to create a new transparent Corba tracing tool? 
• What middleware techniques could be used to trace Corba Application? We answer this question by listing 

available techniques for tracing distributed applications and compare them with each other based on the 
characteristics, which allow the construction of a good tracing mechanism.   

• What tracing facilities does Corba middleware facilitate? We answer this question by reviewing the facilities 
available in the Corba middleware possibly could be used for tracing.  

• How can we build a transparently tracing mechanism? We answer this question by analysing the possible 
usage of interceptors for gathering tracing information transparently. 

 
Our thesis is focused on finding a solution for the above-mentioned research questions, which should allow 
Thales Netherlands get a better understanding of what is needed to test their Corba Applications. The approach 
for our thesis was therefore based on defining research questions, answering them to the best of our ability and 
evaluates them of their usefulness. 
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1.4 Thesis Arrangement 
Although our thesis is arranged in such a way that it be read from begin to end, a reader familiar with Corba 
middleware and Corba tracing techniques can skip directly to the chapter of interest. Because Corba 
applications are essentially distributed applications, we often generalise the Corba tracing problem to a generic 
tracing problem, where applicable. Our chapter and paragraphs are therefore arranged in such a way that we 
first describe the generic case before we discuss Corba specific characteristics. 
 
In figure 1.3, we can see that our thesis is arranged in such a way that each chapter build further on the contents 
described of the previous chapters. To improve the reading experience of the reader we located technical 
details, which are not of immediate importance for the reader in the appendixes.  
 

Chapter1 

Chapter 2 

Chapter 3 Chapter 4 

Chapter5 

Chapter 6 Chapter 7 

Chapter 8 
Figure 1.3: Chapter hierarchy 

 
 
Chapter 1 to 8 contains the following information: 
  
• Chapter 1: Introduction. The first chapter serves at the introduction to the rest of the thesis. The introduction 

includes a brief description of the Thales background story, problem definition, research questions we will 
answer during the length of this chapter and research results.  

• Chapter 2: Introduction to Component Testing:  This chapter serves as an introduction to components 
testing. We start by explaining the main concepts used in component based software and discuss the 
terminology used for component testing. We then explain the difficulties associated with testing Component 
Based Applications and why we need a component-testing framework. We end the chapter by explaining the 
main characteristics of a component testing framework  

• Chapter 3: A high Level Design for Generic Tracing Framework. In this chapter, we introduce a generic 
tracing framework, which would Thales to trace their components in a heterogeneous distributed 
environment. We discuss the generic architecture and tasks that should be fulfilled by the framework. 

• Chapter 4: An Introduction to Corba Middleware. In this chapter will introduce the Corba middleware 
technology. We first explain the main functionality and concepts used by Corba Object Model and then 
introduce the Corba Component Model, which build further on top of Corba Technology. 

• Chapter 5. An Evaluation of Trace Data Interception Technique for Corba. After the introduction of Corba 
technology, we investigate the common middleware programming techniques and Corba meta-programming 
techniques to collect tracing data from a distributed Corba application.  

• Chapter 6. An Evaluation of Corba Testing Tools. In this chapter, we will investigate several COTS 
solutions, which can be used to trace Corba systems.  

• Chapter 7. An Analysis for a Transparent Tracing Mechanism. In this chapter, we investigate how the 
Portable Request Interceptors can be used to realise a transparent tracing mechanism for intercepting 
tracing data in a distributed Corba system. 

• Chapter 8. Conclusion & Recommendations. In the final chapter of this thesis, we will summarise our main 
conclusions and give recommendations for the Corba testing problem. 
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1.5 Research Results 
Overall, our thesis serves as an investigation of the problems and solutions for testing Corba systems.   
 
In the context of our investigation, we have made the following research results: 
 
• In paragraph 2.4.2, we give an overview of the most important tasks and problems of a tracing framework 

and we give an insight in potential application for a tracing framework in the development of distributed 
systems. This insight will be valuable for developers that want to get a wider perspective of the benefit of a 
tracing framework. 

• In chapter 3, we introduce a high level design for generic tracing framework, which can serve a generic 
architecture for collecting tracing data in a heterogeneous environment. This design will allow the reader 
get a better insight in the problem and challenges a generic tracing framework is faced with. 

• In paragraph 5.1, we made a list of conventional middleware programming techniques, which can be used 
to retrieve tracing data from a distributed system. This information will be useful for any middleware 
developer that wants to understand the advantages and disadvantage of programming techniques, which 
can be applied on any distributed object middleware technology.  

• In paragraph 5.2, we reviewed several Corba meta-programming mechanism in the context of tracing. This 
insight will be valuable for any Corba developer that wants to understand the possibilities and limitation of 
meta-programming mechanism in the construction of Corba middleware services 

• In paragraph 5.3, we made a comparison of all discussed trace data interception techniques and compare 
them with each other.  This insight will allow the reader to get an overall picture of the advantages and 
disadvantages of the discussed techniques for the construction of a good tracing mechanism. The criteria 
used for our comparison can also serve as instrument for measuring the tracing value of programming 
techniques, which are not included in our evaluation.  

• In chapter 6, we describe several COTS Corba testing tools, which we compared with each other based on 
criteria desired for a good testing framework. Special attention has been given to a new tracing tool, which 
has recently become available on the market. This information will be valuable for testers that a looking for 
a good Corba testing tool. The criteria used for the comparison can also be used as an instrument for 
evaluating other tools, which are not included in our evaluation. 

• In chapter 7, we made an analysis of the application of the portable request interceptor for the development 
of a transparent tracing mechanism. This information allows the reader to understanding in the problems 
and possible solutions a developer is faced with when developing a tracing framework.  
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2 INTRODUCTION TO COMPONENT TESTING  
In this chapter, we will explain why and how we need to test Corba applications.  
 
We will discuss the following topics: 
• Paragraph 2.1: Component Based Development Terminology. In this paragraph, we will introduce the reader 

to some important terminology used in component-based development.  
• Paragraph 2.2: Component testing Definitions. In this paragraph we introducing the reader to component 

testing is and how we approach it. 
• Paragraph 2.3: Component testing Problems. In order to get a better understanding of component based 

testing we explain what the problems of testing distributed applications and why traditional testing 
techniques are not effective. 

• Paragraph 2.4: Component testing Environment. In this paragraph, we will explain what is required to create 
a component testing environment which can help the tester verify component based application. 

2.1 Component Based Development Terminology 
Because the goal of our thesis is to test component-based application made in Corba middleware, we will first 
discuss the main concepts used in Component Based Development (CBD).  

2.1.1 DOC Middleware 
One of the most popular middleware platforms is Distributed Object Component (DOC) Middleware. DOC 
Middleware uses an object-based programming model in which application applications are structured into 
potentially distributed objects (also called components) that interact via location transparent method invocation. 
Prime examples of this type of middleware are OMG’s Corba, Microsoft’s DCOM and .Net.  
 
DOC Middleware solutions usually offer the following standard mechanisms: 
 
• An Interface Definition Language (IDL), which is used to abstracts over the fact that objects can be 

implemented an any suitable programming language.  
• An Object Request Broker (Orb), which is responsible for transparently directing method invocations to the 

appropriate target object (servant). 
• A set of common object services (COS), which further enhance the distributed programming environment. 
 
In chapter 4, we will explain these mechanism in more detail. 

2.1.2 Components 
In contrast to normal objects, components are self-sufficient pieces of software that can inter-operate via 
standard interfaces across networks, applications, languages, and platforms. However, in practice this 
interoperability has not always happened. Certain manufactures of object technology like Microsoft (.NET) and 
Sun (JAVA Beans) have their own standards and use it primarily to simplify their development for their own 
operating system. A component is similar to a class in the sense that it defines the behaviour and structure of a 
software component instance. Components are often implemented in the form of a module, which itself is an 
executable. A running instance of such an executable could therefore be called a component instance. 
 
Components are also a way to encapsulate functionality available for reuse in other environments. They can 
offer the services of a traditional piece of code by wrapping around it and provide the interface for other services 
to use. Conceptually a software component is a software element that must conform to a component model, 
which can be independently deployed and composed without modification according to a composition standard. 
For software components to be independently deployable, they need to be clearly separated from their 
environment and from other components. To accomplish this, a software component encapsulates its 
implementation and interacts with its environment through well-defined interfaces, which we explain in the next 
paragraph. 

2.1.3 Component Interface 
A component interface provides methods to operate on and access to the public data within a component. To 
enable reuse and interconnection of components, component producers and consumers often agree on a set of 
component interfaces before the components are designed. A component interface therefore serves as a 
binding contract between a software component and its clients. The interface obligates the component to 
provide a certain set of services and tells its clients how it may use these services. Additionally, the interface 
may define certain constraints on the usage of these services, which both the component and its clients must 
adhere to. Although a component developer can decide to deploy the source code with the component, 
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developers of COTS components only want the customers to view the component by its interface definition 
language (IDL). A component interface could therefore also serves as data hiding mechanism that masks the 
component implementation from the component consumer.  

2.1.4 Component Model 
A component model defines how a component’s behaviour is described by means of interfaces, other non-
functional specifications, and appropriate documentation. Some components models, like Corba are also called 
open component standard. A component model is called an open standard if multiple vendors can implement 
the same component model. An advantage of open standard is that it can be used by any organisation that 
wishes to create a component model implementation. A disadvantage of an open standard is that components 
written for a specific component-model implementation might not always be compatible with other 
implementation component-model. The reason for this incompatibility between component model 
implementations is because of the competition between suppliers. Suppliers of component model 
implementation try to win customers by offering extra non-standardised features. If a Component Model is open 
standard, suppliers can also provide customers with the source code, which would allow enterprises to create a 
customised version of a component model implementation. The component model implementation must provide 
the necessary software to allow inter-component communication. The component model implementation is the 
dedicated set of executables software elements necessary to support the execution of components within a 
component model. A component model implementation can therefore act as a middleware technology in a three-
tier architecture. In the chapter 4, we introduce Corba object model, which forms the basis for the Corba 
Component Model (CCM).  

2.2 Component Testing Definitions 
The history of software development has shown that there is insufficient attention for the testing. This while it 
should have been an integrate part of the software development process in the first place. Component Based 
Software is still a relatively young technology. While there are many books written about testing traditional 
software, there is currently not a single book about Component testing. In addition, relatively few papers address 
the problem of testing component-based software [Whitehead]. Because there is not a standardised terminology 
in component testing, the literature uses different terms for the same component testing concepts. To prevent 
further confusion we will first give some definitions of the most frequently used terms.  

2.2.1 Component Testing  
There are many ways of testing Component based systems. By Component testing, we specifically like to 
mention that we do not mean testing the DOC Middleware that facilitates the communication e.g. the 
Component Model, but rather the Component Based Applications. For example, the Term Corba Testing often 
abused by tools that claim to ‘Test Corba’. However, they only test correct Corba Middleware behaviour, not 
functional Corba Component behaviour. What we do mean with testing Components is testing functional 
behaviour of individual Component in co-operation with each other in a component architecture environment. 
Testing component in co-operation with each other can be accomplished by tracing Component interaction, 
which will be discussed in the following paragraph. 

2.2.2 Component Tracing 
The word ‘tracing’ can often be a confusing term since it can be used for a wide range of meanings. A general 
definition [Mann] for tracing is “a step-by-step execution of a software system conducted in order to gain extra 
information or insight on how a system works, and which is not part of the normal execution output”. The 
definition leaves a lot room for different interpretations since it’s not specified what is meant by ‘step by step 
execution’.  This was left intentional under-specified to make the definition scalable for a wide range of purpose. 
For example, a ‘step’ might be represented by a very low-level step (like machine code instruction) or very high-
level step (communication between computers). Further ‘step-by-step execution’ does not necessarily mean the 
system must halt between every step but it does require the ability to observe the trace. In our distributed 
context, we are mostly interested in the lowest grain available in a distributed system, which are the 
communication event in a distributed system. Thus by tracing a distributed system, we mean tracing component 
interaction, e.g. monitoring the communication between components. Monitoring is essentially a less strict form 
of tracing since it does not require a ‘step-by-step execution’. Monitoring is often associated with following a 
process state online, over longer time period. Therefore, we prefer the term ‘tracing’ above the term ‘monitoring’ 
when observing the ‘step-by-step’ execution of a component-based application.    

2.2.3 Component Testability 
Testability is the ability to generate, evaluate, and apply tests to improve quality and minimise time-to-profit. 
Software systems with a high testability simplify the software testing process. It quantifies the extent to which a 
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design or a fielded system can be tested for the presence of manufacturing defects or failures. A testable system 
implies better fault coverage and fault isolation, shorter testing times, higher product quality, shorter time-to-
market, and lower life-cycle costs. In other words, the higher the testability, the better the tester will be able to 
guarantee the overall quality of a software system. 
 
Software system testability [Testability] can be increased from two viewpoints: 
  
• Controllability of a System indicates how easy it is to control the software system under test, how easy is it 

to simulate a testing scenario, triggering the desired operation and collect the retrieved output. High 
controllability can be achieved by using a controlled test environment (see figure below), which can execute 
a test case without interference of the outside environment. Creating a controlled component testing 
environment will be further discussed in paragraph 2.4.  

• Observability indicates how easy it is to observe a program in terms of traceability and how easy it is to 
relate invoked inputs with its observed outputs on a component interface. The traceability of a component-
based application refers to the extent of tracing the application internal behaviour. In our thesis, we are 
mainly interested in observing internal communication between components (see figure 2.1), which allows 
us to diagnose distributed system. Therefore, techniques that allow the verification of testing input with 
observed output fall outside the scope of our thesis. 

 

External test input 

External Observable Output 

Testing environment 

Component 

Component Based Application

Component

Component

Internal 
communication 

Figure 2.1: Observability & Controllability of Component Based Applications 
 

2.3 Component Testing Problems 
In this paragraph, we discuss some of the problems when testing in a distributed environment and why 
traditional software testing techniques do not work when testing component-based applications. Although 
Software components are supposed to be reusable in different environments, testing reused components is 
often an underestimated task. Due to lack of time, testers are often forced to select test cases based on the 
highest probability of finding faults in their targeted environment and are therefore based on the most commonly 
occurring inputs in a particular environment. Since these test cases can only verify a very small percentage of all 
possible test cases, a test case will only be valid in that particular environment. The assumption that that a 
tested component made in one particular component infrastructure is also valid in a new component 
infrastructure is therefore flawed. An example where this assumption had devastating consequences was in the 
infamous Ariane 5 rocket malfunction incident. The Ariane 5 rocket-guidance system reused software 
components from the Ariane 4 program, but their internal mechanism was not properly documented. 
Consequently, after a single uncaught exception caused by an integer overflow, resulting the entire control 
system shut down in mid-air. 
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Distributed systems constructed from COTS component are inherently even more complex than systems that 
are designed and written from scratch. One of the reasons for this is because of the enterprise heterogeneous 
nature of components and interfaces. The third party components often evolve in a way that is not under the 
control of the developers. This may include changes at the interface, requiring subsequent changes of the 
distributed system in order to stay compatible with newer components. Distributed systems composed of 
components from different vendors are particularly prone to problems, due to incompatibilities of versions, subtle 
differences in interfaces, and implicit requirements of the components, which are frequently undocumented. This 
is not surprising since there exists no standard way to describe the overall structure of such applications. 
Because structural information is captured only in source code, where it is not available for high-level analysis 
and documentation, the testability of a distributed system is further reduced. 

2.3.1 Distributed Programs Problems 
Distributed programs operate in a completely different environment than the single process environment. 
Besides all of the well-known problems, that makes tracing traditional single computer environment difficult to 
test, distributed software suffers from a whole range of extra problems which are part of the nature of distributed 
systems. 
 
Some examples of the common problems [Scallan] in testing distributed systems are: 
 
• Deadlocks can appear because of faults in synchronisation protocol between components, which prevents 

each other from completing their tasks. Deadlocks often only appear under special conditions and are 
therefore difficult to locate.  

• Control flow design errors, especially exceptions and failures with multiple modules can be difficult to detect. 
In comparison to single process application, the control flow through a distributed application is usually 
much more complex, leading to a variety of design errors.  

• Race conditions can occur when parallel working components of a distributed application are not properly 
synchronised to prevent different components from producing contradictory results. These synchronisation 
errors, usually the result of latencies caused by the network or by other processes, tend to occur 
sporadically and are not easy to reproduce. 

• Timeout failures resulting from delays and bottlenecks in the network can cause distributed parts of an 
application to time out and produce failures. These failures may propagate through the rest of an application 
if not handled properly. 

• Performance bottlenecks can appear in a distributed application when a complex operation is performed by 
time critical process, which can substantially slowdown application overall application performance resulting 
in race conditions. 

• Network failures can often afflict a complex network. When network failures occur, it is important that the 
tester is to be able to detect and circumvent each point of failure. 

• Network resource limitations can cause a distributed system to fail when the size of a system is ramped up. 
These scalability problems might not occur within single component testing configurations, but only appear 
at later stage deployment in the form of limited connections or insufficient bandwidth. 

2.3.2 Debugging Problems 
In traditional single process environments, tracing is often achieved by stepping through the application with a 
debugger tool. This tracing technique commonly referred a debugging, allows a programmer to trace an 
application at the level of abstraction of the programming language. Usually, compilers implement debugging by 
adding extra debugging information to the machine-level code so that every tracing step corresponds to a single 
instruction in the source code. When debugging is activated, the inserted debugging information raises an 
interrupt call at the instruction boundaries. After every interrupt call, control returns back to the debugger 
allowing the programmer to check the current state of the system before executing the next instruction. By 
repeating this debugging process, a programmer is able to walk through a single process-program “step-by-
step”.  
 
Unfortunately, this tracing mechanism will not work in component-based systems. In order to diagnose the 
problems mentioned in the previous paragraph, testers cannot simply debug a distributed system as if it was 
conventional single application. Distributed objects reside on separate systems, each maintaining their own 
memory and connections with other distributed objects. Moreover, distributed objects are implemented on 
different operating systems and written in different languages. Therefore in order to set up a step-by-step test 
through a distributed application with a debugger, testers would have fit every message entry and exit point 
among numerous processes in the distributed system with a separate code debugger. Although it is possible to 
set up debuggers at every process and step through a distributed application this way, it would be very time 
consuming and awkward. Detecting scalability problems with debuggers would be outright impossible because 
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of the large number of processes debuggers required. In addition, because every debug step effectively halts 
the distributed system, timeout problems can occur resulting in the total crash of distributed application.  
 
Beside all the practical problems of debugging, debuggers would never be able to detect time critical failures 
such as bottlenecks, race conditions, deadlocks and timeout failures because that would require real execution 
time. Therefore, component-based applications require a completely different level of monitoring than traditional 
single-process applications. One effective way of diagnosing a distributed application would be to use 
component-testing environment, which will be explained in next paragraph. 

2.4 Component Testing Environment 
A DOC Middleware solution (like Corba) supports the construction of distributed systems containing many 
components. These components can interact in complex ways, not necessarily conforming to a client-server 
model. This is it is also the reason why testing these systems in isolation is so difficult because each component 
can have complex dependencies on any number of components. 
  
We have explained that Language level debuggers are not very suitable for testing component based systems 
because they have no knowledge of components infrastructure and are often limited to boundaries of the same 
machine. Therefore, a tester needs techniques to verify component at the abstraction level of its design. To 
accomplish this, a tester needs a testing environment that can verify the behaviour and integrity of each 
separate component as well in co-operation with each other. In order to allow the tester to create a controlled 
test environment, the tester needs methods to trigger the components under test, monitor its interactions with 
other components, and verify the data flow through a distributed system with its system specification. We 
therefore need a test framework that is able to verify the correct behaviour of Corba Applications. By a Corba 
test framework, we mean a collection of components, which cooperate with each other to allow the tester, verify 
the behaviour of a Corba Applications with is intended behaviour.  
 
We can divide required testing framework into two separate sub frameworks: 
 
• A Control Framework, allows the construction of a controlled testing environment for the distributed system 

under test. A control framework usually consists of Active and Passive test components called Actors and 
Reactors. Actors act as client components, which can be controlled manually by the tester or automatically 
by some script. Reactors are prototyped server components that can call the services other Components 
when required.  

• A Tracing Framework, allows the observation of traceable invents inside the system under test. A tracing 
framework consists at least of a monitor tool, which allows the user to trace the events in a system and 
some tracing mechanism which can gather tracing data from a distributed system. 

 
In the next two sub paragraphs, we will further explain the characteristics and problems of each framework. 

2.4.1 Control Framework 
It is hard to test components in isolation and pairs because they can have multiple dependencies on other 
components divided over multiple operating systems, which have not been implemented yet (see figure 2.2). 
Because these components might not be available or trusted at the time of testing, they must be substituted by 
an emulator component that mimics the required component services. Beside unit testing, where one 
component must be tested in isolation, server emulation is also useful for system testing, integration testing, and 
conformance testing by provide a more controlled testing environment. 
 
Although a tester could build a test environment for every test case, it would require considerable time and effort 
to create a simple emulation that can be used to replace an actual server in a testing scenario. This is a 
significant problem because it would require the redevelopment and rebuild of the test application whenever a 
change has to be made in the test case. To solve this problem, a tester could use an Actor/Reactor generation 
Testing tool, like MCITT (see also paragraph 6.2.5), which can automatically generates test clients/servers from 
a test scenario script. The main difference between Actor and Reactor is that Actor initiates request while 
Reactor reacts to request done by other components. 
 
Most Corba vendors facilitate programmers with more or less integrated test Reactor generation tools, like Orbix 
Code Generation Toolkit (OCGT), that can generate client or server component from Corba scripting definition 
language. The problem of using these tools is that they often rely on propriety services from a specific Corba 
implementation, which might pose migration problems later on when switching between Corba middleware 
implementations.  
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Figure 2.2: A Component requiring the services of other component, which are not available or trusted 
 

Scripting languages are often also used to prototype a client or server component before it is implemented in the 
final language.  
 
Scripting Languages offer the following generic advantages: 
 
• Simplicity of usage, In comparison to static programming languages like C++, scripting languages are much 

easier to use for construction of simple test reactors. That is because scripting languages, offers a high-level 
abstraction mechanism that hides low level programming details like memory management and interface-
calling conventions, which will help the user focus on the real problem. 

• Portability. Because script is an interpreted language, script is portable to other operating systems different 
from the one it was developed on.  This also encourages the exchange of scripts between users. 

• Reusability. Script languages also offer the benefit to be used for performing regression testing performed 
after a modification the component.  

• Enhanced productivity. Another advantage of scripting languages is that they do not require recompilation 
and re-linking after each change like statically compiled languages have to.  

• Easy to learn. The ability to learn a scripting language is often more simple than a traditional language like 
C++, which requires all kinds of low level programming knowledge to use it effectively. 

• Reduced cost: Simplicity and productivity respectively mean reduced training costs for users and reduced 
operating costs in conventional computer environments. 

 
There are many languages, which can be used as a scripting language for testing Corba. We can identify 
several scripting language types: 
 
• Propriety Testing Scripting Languages. These scripting languages are made specifically for one specific tool 

and are not portable to any other tool. An example of a proprietary language is the scripting language used 
by the MCITT tool, which we will describe in paragraph 6.2.5. 

• Generic Testing Scripting Languages. These languages are designed as a standard scripting language, 
which are supposed to be portable between testing tools. A disadvantage of these languages is that they 
are often limited in their capabilities due to their drive to remain generic. In appendix D: OMG Corba 
scripting language, we will give a example of a Generic scripting language.  

• Extended Scripting Functionality. Instead of creating entirely new scripting languages, some scripting 
languages extend an existing well known scripting language with extra testing functionality. An advantage of 
these scripting languages is that they can make use of existing tool support of the extended scripting 
language. In appendix E: Tcl Combat, we give an example of a scripting language, which is extended with 
testing functionality. 
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2.4.2 Tracing Framework 
When the result of a component-based application, consisting of multiple components, is not what we were 
expecting, we want to know exactly what caused the problem. However, distributed applications can be 
regarded as black box that tries to hides its internal functionality. To solve this traceability problem, programmers 
need to know the exact component that behaved malfunctions and under what circumstances the error 
manifested. Because the smallest elements in a component-based system are components, and the smallest 
event is a communication between components, a tester will be mainly interested in tracing communication 
events between components.  
 
In order to find a malfunction component, testers need to be able to observe the execution of a distributed 
application, ‘step-by-step’ without altering its behaviour. However, because distributed application can consist of 
multiple components, we cannot use a simple single threaded application and hope intercept all communication 
in a distributed system. We therefore need a framework, which can use several processes concurrently working 
together to collect tracing information and present it to a tester. We therefore call it a tracing framework because 
it allows testers to trace component communication events in a distributed system.  
 
Although it can be argued that large scale distributed systems can be tested relying exclusively on component 
units test, a tracing framework allows testers to find problems faster. By finding problems at an early stage in the 
development, which would otherwise remain unnoticed until it manifests at a later stage in the development 
process, the development cost of distributed systems could be reduced dramatically. 
 
A typical tracing framework achieves support for the following actions: 
 
• Trace Data Interception. Because the communication in a distributed system is hidden and lost as soon an 

event has taken place, the trace framework must be able intercept communication events taking place 
between components at real time.  

• Trace Data Transportation. Because distributed systems can consist of multiple systems, the tracing 
framework should support the user transport the tracing data to a central location where is can be analysed 
offline. 

• Trace Data Processing. Because of the size and complexity of communication event, the tracing framework 
must be able to process into a readable format, which the tester can understand.  

• Framework Configuration. Because internal communication events are invisible, the tracing framework must 
somehow alter the distributed system to collect this data. The framework should therefore support the user in 
the configuration of a tracing mechanism. 

 
Collecting trace data collected by a tracing framework can be used for a wide range of utilisations in 
development of component-based applications: 
 
• Insight. The ability to trace ‘step-by-step’ trough a distributed program is invaluable for gaining an 

understanding into the functional behaviour of a system. A Corba trace could help the viewer to obtain a 
picture of how existing components co-operate with each other. After gaining insight into the behaviour of a 
distributed application, testers might notice possible problems faster and programmers will see possible 
improvement sooner.  

• Educational. Besides gaining insight for operational purposes, if adequately visualised, tracing is also useful 
for educational purposes. A trace of the execution of single application visualised as a sequence diagram is 
relatively easy to understand, yet powerful enough to visualise complex problems. Tracing can therefore be 
used in courses for trainees or students to learn how Corba Components communicate or more in general, 
how a distributed system functions.   

• Checking Correctness. It is obvious that testers and programmers want to validate the implementation with 
the specification of a distributed application. By tracing a distributed application step-by-step, a tester will be 
able to observe every step and verify the observed behaviour with the specified correct behaviour.  

• Locating Errors. Once detected that that the application does not behave as specified, tracing framework will 
allow the programmer to locate the first trace where erroneous behaviour was detected. By investigating the 
exact parameter values of the message, which triggered a component to produce the erroneous trace, the 
bug could be pinpointed to the source. The erroneous component can then be further inspected with a 
language debugger to find the exact line of code the problem started.  

• Analyse Scalability. Component Based Applications must besides verified for correct behaviour of a single 
test case also be verified on correct behaviour of multiple invocations happening simultaneously or in short 
bursts. The tracing mechanism must there be able to discriminate individual test cases and allow the tester 
to analyse the scalability of the distributed application under test. 
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• Stress Simulation. In order to anticipate possible timeout problems, the tracing mechanism can be used to 
delay communication. A tracing mechanism, which allows the tester to add delays between trace events, 
allows the tester to simulate a system under stress.  

• Monitoring. Even after a system has passed every test thrown at it, it might still fail when used over longer 
periods. Especially in mission critical systems, where constant uptime is of crucial importance, you want to 
be able to detect malfunction behaviour and if possible take appropriate action at real time. Because 
monitoring is over a longer period, the tracing framework data storage must be scalable enough to harbour 
huge quantity of tracing data. A tester would then be able to analyse the logged traces offline and use the 
results to prevent the malfunction from happening again. 

• Fault Tolerance Testing. A tracing mechanism, which can intentionally sabotage component communication, 
for example by halting message communication, could be used to test the fault tolerance of a component-
based application. 

• Fault Recovery. Once a trace failure is detected, the system could use logged traces to recover the system 
back to a functional state. In the event of a system crash, the last recorded outgoing messages could be 
used to redirect all communication to another servant fulfilling the same functionality.  

• Timing Analysis. If tracing does not significantly influence speed and a tracing mechanism can accurately 
measure the time traces occurred, tracing can be used to analyse the performance of components and 
communication performance of a distributed application. Assuming a message will generate at least two 
trace events, the event where a message is send from a component and the event where a message enters 
another component, we can calculate the communication latency. By measuring, the time elapsed between 
trace events succeeded after each other; the performance of individual Components can be calculated.   

• Detecting Security Breaches. Another application for tracing is automatically detecting vulnerabilities of 
privileged programs by recognising program states that exhibit potential danger for the integrity of security 
problems. Once a possible security breach is detected, the system could employ counter measures to 
secure the system from harm. 

• Extracting Documentation. If traces are logged into a persistent storage device, they can be used to 
automatically analyse and generate dynamic documentation about the dynamic behaviour of a software 
system. The dynamic documentation could be a great asset to static documentation techniques like 
inheritance graphs, which can be automatically extracted from component source code.  

• Message Replaying. Traced messages can be used to automatically generate a component, which mimics 
the exact same behaviour as the traced component. This could for example be accomplished by distracting 
a script from component instance interactions and use it as output for a Actor/Reactor component. 

 
We have seen that tracing framework has many possible uses. Nevertheless, collecting tracing data is plagued 
with several problems, which has to be solved or minimised.  
 
A Tracing framework must solve or minimise the following problems: 
  
• Framework Overhead. Because distributed system normal does not allow the observation of its internal 

communication event, it must be extended with tracing functionality. However, any kind of modification to a 
distributed system requires additional action to be carried out, resulting in a delay of the original program. 
This delay causes problems especially for performance analysis, where the execution times have to be 
measured as accurately as possible. The tracing framework must therefore minimise the overhead cause by 
the tracing mechanism. 

• Transparency Problems. The problem of modifying a distributed system, is that is lowers the distributed 
system portability to other environment requirements. For example, the instrumentation of a component 
source code for collecting tracing data, excludes the use of COTS component, from which the source code is 
not available. The tracing framework should therefore minimise the loss of transparency. 

• Time Synchronisation Problems. In distributed systems, the time of the local clocks may differ from machine 
to machine. The problem is that this influences the ordering of communication events collect by the tracing 
framework, when using time as an ordering criteria. The tracing framework must therefore use some 
mechanism to make the event order back into its true order. 

• Identity Problems. Traceability was not a design criterion when communication protocols were designed. 
Middleware communication protocols often do not contain the identity of a source. That because the 
middleware does not need it; they use the callback mechanism of network protocol for the delivery of a reply 
message. Although it is an efficient and effective design, this design feature makes tracing a lot more difficult. 
The tracing framework must there employ mechanism to derive the client identity. 

• Heterogeneity Problems. Nowadays it is common that distributed applications consist of components using 
multiple programming languages, middleware types, and operating system systems. Thales Netherlands for 
example uses JAVA, C++, Corba, Java Beans, SPLICE, Windows, and several UNIX operating systems. 
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Although the value of tracing an application spanning multiple standards is commonly understood, the trend 
is that most tracing frameworks only focus on one specific middleware and programming language.  

• Open Standard Problems. Although open component model allows a larger diversity in vendor solutions, they 
introduce a their own problems. Vendors often try to help developers by offering functionality, which is not 
part of the standard. Although this propriety functionality can be very useful in the construction of tracing 
framework, their application limits it usage with other implementation of the component model. 

  
Now that we have introduced the basic characteristics, possibilities and problems of tracing frameworks, we 
introduce a generic design for a tracing framework, which allow high flexibility. 
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3 A HIGH LEVEL DESIGN FOR A GENERIC CORBA FRAMEWORK  
In this chapter, we introduce the reader to high-level design for a generic tracing framework, which will allow 
tester to diagnose a heterogeneous component-based system. In contrast to other tracing frameworks, our 
tracing framework is mend to be context free from any technology dependencies like operating system, 
language, and middleware. That means we do not specify the technology that must be used to realize it. We 
only specify the architecture and functional requirements that should be fulfilled by the framework 
implementation. 
 
Our strategy to achieve heterogeneously and platform independence is to use a tree tier architecture. In figure 
3.1, we can see that our tracing framework is divided into tree abstract layers. Each layer conceptually fulfils a 
separate set of responsibility in the tracing framework: 
 
• Tracing Layer. The responsibility of the tracing layer is to collect tracing data from a distributed system and 

supply it the Information layer. The tracing layer consist of one or more tracing mechanisms, each 
intercepting tracing data from communicating components, processing the tracing data into a universal 
tracing data, and storing it in the generic Information system located in the information layer. 

• Information Layer. From an architectural point of view, the Information layer serves as the glue between the 
tracing layer and the monitor layer. The responsibility of information layer is to provide a generic information 
system that allows tracing mechanisms to store tracing data, and to allow monitoring tools to retrieve 
generic tracing data en present it to the tester. 

• Monitor Layer. The responsibility of the monitor layer is to allow the tester to analyse collected tracing data. 
The Monitor layer should consists of one ore more Monitor Tools that allow a tester to diagnose a 
component-based application based on tracing information stored in the information layer.  

 
 Information Layer Monitor Layer Tracing Layer 

Figure 3.1: Tracing Framework Tree Layers Architecture 
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This tree layer architecture has the following advantaged: 
 
• Layer Transparency. One of the big advantages of dividing tracing layer and monitor layer in a separate 

information layers is that both layers only have to deal with one intermediate communication protocol. 
Because if you would not separate them, either the tracing layer or the monitor layer would be forced to use 
each other communication protocol.  

• Heterogeneous Transparency. Another advantage is that the used tracing mechanism is not forced to a 
single middleware technology and tracing technique. Tracing mechanisms are therefore free to utilise any 
combination of platform, middleware, programming language, and tracing techniques. 
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The next tree sub paragraphs will describe each layer in more detail 

3.1 Tracing Layer  
In this paragraph, we discuss the requirement for the tracing layer in our tracing framework. Figure 3.2 illustrates 
the Tracing Layer as a Data Flow Chart. Each arrow arriving at the tracing layer represents an incoming 
information flow and each arrow that is leaving represents an outgoing information flow. Each box represents a 
process that can be split further into a new Data Flow Chart. Depending on the direction an arrow enters or 
leaves a task box, a different type of information type is meant.  
 
 
  
 

 
Tracing Layer

Deployment 

Management 

Interception Processing
Input stream 

Control stream 

Output stream 

Initialisation stream 

Figure 3.2: Tracing Mechanism Information Streams 
 

 
For each arrow arriving or leaving at our Tracing Layer, we can identify a separate task that must be fulfilled by 
the tracing layer. Because there are four information streams, we can also define four separate tasks:  
 
• Interception. The Interception task is the actual capturing of tracing data from distributed system. The 

information retrieved must gather sufficient information to allow the Processing tasks to populate the tracing 
information with generic tracing information.   

• Processing. The Processing task is all actions that must be performed to fill the tracing layer with retrieved 
tracing data. This task includes at least at the transportation and processing of context sensitive tracing data 
into generic tracing format. 

• Deployment. By deployment, we mean all actions that must be undertaken by the framework to install the 
tracing mechanism in a distributed system.  

• Management. Once a tracing later is properly installed, the dynamic behaviour of the tracing layer should be 
actively manageable by some management mechanism. 

 
For each task, we will now dedicate a separate paragraph. 

3.1.1 Trace Retrieval & Processing 
In this paragraph, we give an architecture that could fulfil the retrieval and processing tasks required by the 
tracing layer. The Tracing mechanism can be implemented by separating the retrieval task into tree separate 
components. Figure 3.3 illustrates how the components cooperate with each other to retrieve tracing data and 
transport it to the other layers. The Tracing layer can be achieved by the collaboration of the following three 
components, each playing a different role: 
 
• Tracer: A Tracer represent the trace data interception mechanism in the middleware that is responsible for 

intercepting communication events in a distributed system and send it further to the locally hosted Collector 
component. The Tracer should strive to be as transparent to the distributed system as possible. 



Unclassified  
 

 
Date: 30-06-04  Page: 29

 

• Collector: Although Tracers could send intercepted communication directly from to the Processor. It offers 
several advantages to use an intermediate component. By locally buffering intercepted tracing data before 
its being sent to the Processor component, the communication overhead is minimised. Because internal 
communication causes no network traffic overhead, they can also function as gatekeepers, by blocking 
tracing events that are undesired by the user.  

• Processor: The Processor is the component closest to the Information system. By locating the processor on 
a different host than systems that is being traced, the overhead of the Processor on the distributed system 
under test will be minimised. Its main task is to complete the final steps in the tracing mechanism, which is 
to supply the information layer with tracing data. Before the tracing data can be stored in the information 
layer, it must first be processed. Processing consists of filtering and combining the tracing events received 
from the Collectors into the generic tracing format and storing it in the information system.  
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Figure 3.3: Tracing Mechanism Architecture 
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3.1.2 Deployment 
A tracing layer often requires the modification of the distributed system before monitoring can commence. 
Deploying, registering, compiling, linking, starting and eventually uninstalling multiple Framework components 
for every time a component needs to be traced, is something the tester rather would like to see automated. 
However, deployment is often an overlooked problem in testing solutions. If a framework does not supported 
properly, the deployment of a tracing layer can easily delay a test process due to unforeseen deployment 
difficulties.  

3.1.3 Management 
Often, tracing all communication events is not always desired because most tracing events will be uninteresting 
and therefore only introduce unnecessary overhead. While trying to minimise the overhead in tracing 
mechanism is desirable in most cases, there are cases where an extra artificial delay is actually useful. By 
introducing artificial delays during message interception, the tracing mechanism could be used to simulate 
process or communication latency. Therefore, in order to prevent unnecessary tracing overhead or artificially 
introduce extra overhead, the tracing mechanism should be fitted with additional management functionality. The 
management functionality would have to locally maintain a profile, which would determine the tracing 
mechanism behaviour during tracing events. For example, a profile could contain a filter condition that specifies 
the communication events that should be discarded for tracing. In order to modify these tracing profiles, the 
tracing mechanism should therefore be fitted with some management control mechanism, which can alter the 
behaviour of the tracing mechanism.  
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3.2 Information layer 
The Information layer must fulfil the following requirements: 
 
• Persistent Data Storage. One of the characteristics for a good tracing framework is the ability analyse the 

intercepted tracing data offline, long after the trace of a distributed application through has taken place. In 
order to analyse tracing data offline, the information layer must therefore be able to store the data on a 
persistent data storage which can be retrieved at a future point of time. 

• Open Interface. Another characteristic of a good tracing framework is that it offers an open framework with 
open well-defined interfaces. The tracing layer and the monitor layer can use this interface for exchanging 
tracing and management information between the layers. An open interface also allows easier development 
of the other tools that want to access or modify the information stored in the information layer..  

• Generic Tracing Information System. The information system should try to store basic tracing information in 
an as much generic way as possible. This will allow the information system to trace system independently of 
the observed middleware technology.  

• Self-Describing Contents Data. Contents data is the data exchanged between processes. The captured 
tracing contents data from a distributed system can vary widely in types and structures. In order to allow the 
other layers have certain flexibility in the storage of complex data types, the contents data should be self-
describing with multiple levels of abstraction. Self-describing data specifies the data structures and types 
used to represent the data in the correct way. 

 
Storing information in a generic format can be achieved by restricting tracing data to atomic tracing information 
supplemented with self-describing meta-data. The smallest atomic tracing information in a in any network-
oriented middleware is a message event between two processes. The generic tracing information model should 
therefore contain at least the following required tracing data (see table below). 
 
Trace data Description 
Message ID Uniquely identifies a message  
Source Process ID Uniquely identifies the source process of a message 
Designation Process ID Uniquely identifies the destination process message 
Source Process Time The exact global time at which the communication started at the source 
Destination Process Time The exact global time at which the communication ended at the destination 

 
Note that a process is an abstract concept, which depending on the level of abstraction can have different 
meaning. Although a Process ID uniquely identifies a process in the tracing framework, there should also be 
some context information linked with every process ID, which describes it location of a process in its context. 
Because we often can differentiate multiple levels of abstraction in a distributed system, a process can be scaled 
to a higher context level. For example, a process ID in a Corba/CCM environment can be scaled up and down 
through following levels of abstractions (see table below). This context information of a process can be used by 
the monitor layer to group processes together. 
 
Abstraction 
level 

Context data Description  

7 Building  The building at which the computer is located 
6 Network  The network at which on the computer is located 
5 Computer  The computer which contains the process 
4 Processor  The processor which runs the process  
3 Container / Orb The container/ orb associated with the Component/Object 
2 Component / Object The component which uses the Object Request Broker  
1 Interface  The facet or receptacle which was uses for communication 
0 Thread  The thread from which the communication event was intercepted 

3.3 Monitor Layer 
In Monitor Layer, the tester will be able to analyse the tracing data stored in the information layer. The monitor 
layer could make use of several visualisation techniques to visualise tracing data. Although we will not describe 
a design for the monitor layer, we will discuss how the tracing data could be visualised by a monitor tool.  
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Tracing data can be analysed at different levels of abstraction: 
 
• Message level, is the lowest level of abstraction. It should allow a user to inspect a message contents, the 

source and destination identity of message. A standard visualisation technique which is can be used to 
display the message level is a hierarchically structured parameter tree. 

• Process level, allows user to analyse how unique processes exchange messages with each other. A 
standard visualisation technique, which is often used to analyse message communication at the process 
level are sequence diagrams.  

• System level, allows a user to analyse an overall distributed system. This is often achieved by performing 
automated statistic analysis over all intercepted communication. Although this technique can quickly identify 
communication anomalies, it might miss important problems. In the next paragraph, we introduce new 
visualisation technique, which can help the tester analyse messages at the system level. 

3.3.1 A New Application of Network Diagrams 
Testers that need to diagnose multiple invocations made on the component based application need some 
effective way of visualisation. A technique, which is often used to visualise invocations between processes, is 
the sequence diagram. A sequence diagram is a standard visualisation technique where the interaction between 
processes can be analysed. Processes are visualised as vertical lines while invocations a visualised as arrows. 
Because western cultures read from top to bottom, from left to right, it is custom to visualise a sequence diagram 
in the same format. The advantage of this visualisation technique is that it allows the viewer to observe all 
communication actions of a process, chronological ordered by time. Sequence diagrams can also be used to 
visualise the interaction between component instances. Although a real component instance may in fact use 
multiple processes, we can model a component instance by a single process. Because all communication 
between network-oriented middleware is based on directed messages, we can model all directed message 
communication as a sequence invocation between processes. In the figure 3.4, we can see how each arrow in 
the collaboration diagram can be represented as a arrow in the sequence diagram. 
 

Component A 

Component B 

Component C 

1 
4 

2 

3 

Component D

5 6 
7 

A B C 

2 

D 

3 

4 
5 

6 

1 

7

8 

Figure 3.4: A collaboration diagram visualised as a sequence diagram  
 

Although a sequence diagram allow the viewer to observe parallelism, crossing sequence lines can easily clutter 
a sequence diagrams (see figure 3.4). Using sequence diagram for system level analysis is therefore insufficient 
for this task because the system overview can easily be lost. Instead, we need a visualisation technique that 
emphasises the phenomenon’s, which that are most interest for system level analysis. When analysing the 
parallel behaviour of a distributed system, the phenomenon’s, which are most interesting is the latency between 
the trace events and casual relationship between tracing events. A visualisation technique, which could satisfy 
these demands, is to usage network diagrams. Network diagrams are used to visualise the time critical relation 
ship between parallel events. Network diagram consists out two main building blocks, nodes and directed 
arrows. The nodes in a network diagram represent unique events or disjoint group of events. A directed arrow 
that connects two nodes represents a transition between the two nodes. We can transform every message 
diagram isomorph into a labelled network diagram. In figure 3.5, we can see how a sequence diagram can be 
transformed into a network diagram in which every node represents a trace event and the connection lines can 
either represent an invocation of a process.  
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Figure 3.5: Sequence diagram visualised as network diagram   
 
Depending on the number of incoming and outgoing arrows, different parallel events can be observed in a 
network diagram: 
 
• Nodes that are only connected by two arrows (one incoming and one outgoing) visualise an event 

communication chain. Notice in figure 3.5 that we can now clearly see how these communication chains 
visualise two parallel processes in sequential order.  

• When nodes contain two outgoing arrows, it means an event is followed by two simultaneously 
communication chains. These nodes, which mark the start a new chain of sequential events, effectively 
visualising to creation of a parallel process. 

• When nodes contain two incoming arrows, it means that beforehand of the event, two simultaneously 
transitions happen. Notice in figure 3.5 that the nodes that mark the end a chain of sequential events 
effectively visualise a possible synchronisation between two communication chains. 

 

3.4 Evaluation. 
We have presented high level architecture and functional requirements for the construction of a generic tracing 
framework. By separating the framework into three separate layers, we achieve a higher level of flexibility able to 
function in a heterogeneous environment. For the tracing layer we have shown a universally applicable 
architecture for collecting and transferring tracing data from a distributed system to the information system. The 
generic information model allows the tracing mechanism to collect tracing data from any network-oriented 
middleware. In chapter 7, we will show how a tracing layer functional requirements can be fulfilled by a 
transparent Corba tracing mechanism. 
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4 INTRODUCTION TO CORBA MIDDLEWARE 
Now that we introduced the reader to the main concepts and problems behind Component Testing, and 
introduced a generic tracing framework for diagnosing middleware we will look at the middleware we want to 
monitor, which is Corba Middleware. This chapter is by no means a complete description of the Corba 
middleware but is merely mend as an introduction to Corba middleware technology. 
 
This chapter will have has the following structure: 
 
• Paragraph 4.1: Corba Object Model. In the first paragraph of this chapter, we introduce the reader to Corba 

object model and explain some important concept and mechanism. The basic Corba concepts introduced in 
this paragraph will be essential for understanding the following chapters.  

• Paragraph 4.2: Corba Component Model. In the last paragraph we tell something about the Corba 
Component Model, which builds further on top of the Corba Object Model. 

4.1 Corba Object Model 
Corba Object Model is the product of a consortium called the Object Management Group (OMG). The OMG 
objectives are to foster the growth of technology and influence its direction by establishing the Object 
Management Architecture (OMA). The OMA Reference Architecture defines an underlying infrastructure of 
services and mechanisms that allow objects to intemperate. Corba allows object to be executed in any 
Operating System such as Microsoft Windows or UNIX using an Operating System specific Object Request 
Brokers (Orb). Unlike other Object Models like Microsoft DCOM, Corba is an open standard, which means that 
the OMG promotes the standard, but is not a middleware producer that provides the middleware 
implementation. 
 
The basic structure of this paragraph will be as follows: 
  
• Paragraph 4.1.1: We introduce the basic Architecture of the Corba Object Model 
• Paragraph 4.1.2: We explain how a basic connection between Corba Object can be established 
• Paragraph 4.1.3: We describe how client server applications can be constructed. 
• Paragraph 4.1.4: We describe some important Corba services used for the construction of Corba 

applications.  

4.1.1  The Object Request Broker 
In the Corba Object Model, the Object Request Broker (Orb) plays a central role in all Corba communication. It 
allows clients to connect and call a remote object without knowing where the distributed object resides on, in 
what operating system it executes on, or in what programming language the object is implemented in. Because 
neither the client nor the server has to worry about the location of each other, we say the Orb functions as a 
transparent communication layer between client and server. The Orb will automatically take care of all message 
routing between client and server. The next paragraph describes how client and servant are able to 
communicate with each other. 

4.1.2 Stubs and Skeletons 
A Corba client request is not handled directly by the Orb but by a stub instance. Stubs implement the proxy 
pattern [Gamma] that marshals operation information and typed parameters into a standardised request. 
Likewise, a Corba object does not respond to an Orb directly but through a skeleton (see figure 4.1). The 
skeleton implements the Adapter pattern [Gamma], which un-marshals the operation information and typed 
parameters information located in the standardised request format. The stub and skeleton therefore serve as the 
“glue” between the servant and Orb, allowing an invocation on a client object to pass through a stub instance on 
exit and through a skeleton on entry.  



Unclassified  
 

 
Date: 30-06-04  Page: 36

 

 

Microsoft Windows Machine 

ORB 

Unix Machine 

ORB 

Client Servant 

Transparent 
Communication 

OS OS 

Network 
communication 

Figure 4.1: Distributed Communication through ORB 

Stub Skeleton 

 

4.1.3 The Interposable Object Reference 
The only thing a client needs to do is to call upon the services of a distributed object is to acquire the interface 
object reference. Because an interface object reference has no meaning outside the context of the Orb, a client 
must first generate an interface object reference from an Interoperable Object Reference (IOR). An IOR is a 
generic format for identifying Corba objects generated by the Portable Object Adapter (for more details see 
appendix A). In order to acquire an IOR, a client could retrieve the address from a file made by the server or use 
a specialised common object service (COS) like Corba Naming or Corba Trading service. The Corba Naming 
service functions like a telephone ‘White pages’ for objects in the sense that allows a client to find object 
reference by name. The Trader Service is like a telephone ‘Yellow Pages’, which allows object services. Once 
an application has acquired IOR, it has all the information it needs to connect to the object and make remote 
invocations on the remote objects.  

4.1.4 The Interface Definition Language  
The stub and skeleton implementation source code does not have to be written manually but is automatically 
generated from schemas defined using the Interface Definition Language (IDL). Figure 4.2 show how an IDL 
compiler generates a stub and skeleton file from an IDL file. The stub and skeleton is then included by client and 
server source file, which is eventually generated into a client and server application by a normal language 
compiler. 
 
The stub and skeleton generated by an IDL compiler are fixed, e.g. the code emitted by the IDL compiler is 
determined at translation time. An advantage of statically generated stubs and skeletons is that it eliminates 
common sources of network programming errors and provides a mechanism for providing language and 
platform transparency. A disadvantage of using statically generated stubs and skeletons [Nonbour] is that the 
fixed behaviour is not always be sufficient to perform middleware specific functionality, such as tracing or 
security. To overcome these problems, developers could instrument the stub or skeleton or employ meta-
programming techniques explained in the next chapter. 
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4.1.5 Corba Services 
Services are extremely generic and are independent of any application domain. Although we already introduced 
some COS Corba services like the naming and trading service, in this paragraph will now explain some other 
Corba services, which can play an important role in the construction of a testing framework. 
  
Corba offers the following generic services, which are useful for creating a Corba testing framework:  
 
• Interface Repository. This interface allows the developer to retrieve metadata information on the available 

interfaces and components. This will be useful for the actor application to list available interfaces and help to 
innovating them it the right way. Another very useful application of the interface repository is to translate a 
intercepted IOR address back to a object name 

• Dynamic Invocation Interface (DII). This interface allows a client application to establish a connection to a 
Corba component at run time. This will be especially useful in actor applications, which has to connect to a 
component, on the fly.  

• Dynamic skeleton interface (DSI). The DSI is the server variant of the DII. This interface allows an Object 
Request Broker (Orb) to deliver requests to object implementations that have no compile-time knowledge of 
the interfaces they implement defined using Corba IDL. 

 
The next sub paragraphs will give a short description of the mentioned Corba services. 

4.1.5.1 Interface Repository 
Corba is a self-describing system. In fact, every component, system level object, every service that lives on a 
Corba bus (Orb), even the bus itself is self-describing. Self-describing data, which also referred as metadata, 
allows independent developed components to dynamically discover each other existence and collaboration. 
Tools such as Actor/Reactor tools can use this metadata to obtain inheritance structures and class definition at 
run time. 
 
In Corba, metadata is derived from the metadata located in IDL files. All Corba available metadata is stored into 
retrievable metadata repository called the Interface Repository. The Interface Repository is hierarchy ordered 
set of classes whose object instances represent the information that is in the repository. The Interface 
Repository classes provide operations that allow a Corba object to read, write, or destroy the metadata that is 
stored in a metadata repository. The Interface Repository is automatically populated with metadata by the 
statically or dynamically generated stubs and skeletons, or manually through the Interface Repository write 
functions.  

4.1.5.2 Dynamic Invocation Interface & Dynamic Skeleton Interface 
Normal Corba client to servant communication use stubs and skeletons, which has to be statically generated by 
a IDL compiler (see also paragraph 4.1.4). A disadvantage of static generated stubs and skeletons is that the 
communication link between client and servant must be known before compilation. The Dynamic Invocation 
Interface (DII) and Dynamic Skeleton Interface (DSI) enable a client and servant to establish a connection at 
run-time. The DII and DSI is essential the mechanism which allows an Actor and Reactor tools to connect to a 
component under test without recompilation. Without it, an Actor tool would have to be recompiled for every time 
it switches connections. The DII and DSI also enable deferred synchronous interaction clients client and server 
object where a client can decide whether to wait for a response. This asynchronous form of communication 
allows monitor mechanisms to send tracing information to a central location that can further process the tracing 
data. While the DII provides more flexibility over a compiler-generated stub/skeleton, it is also more resource 
costlier because with the DII, a remote request cannot be made in a single Remote Procedure Call (RPC).  

4.2 Corba Component Model 
Because Thales Netherlands will use PERCO, a Corba Component Model (CCM) implementation for the 
development of Corba applications, we now give a brief overview of CCM. CCM is designed for large-scale, 
distributed enterprises and Internet applications that need to run with transactional assurance, security, and high 
throughput. Although Corba offers a tremendous amount of flexibility in creating distributed systems, it still 
requires a fair amount of technical knowledge to program with it. This is because POA policies, transactions, 
security, and other resources combine in thousand of different ways and it would require considerable skill to 
select the best combination out of all the alternatives. Of these combinations, a few patterns have proven to be 
very successful, have demonstrated that it is usually not necessary to consider the others. 
 
By introducing CCM components and the container-programming model, the Object Management Group (OMG) 
realises a true Component Model standard that enables developers to assemble application from reusable 
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Corba components instead of developing them from traditional Corba objects which have to implement lots of 
low level middleware functionality by themselves.  
 
With the introduction of the new Corba standard (version 3.0), OMG also aims to reduce the complexity of 
constructing Corba applications and lowering the steep learning curve for starting Corba developers. The CCM 
Container Programming Model wraps complex Corba services in a layer that exposes a simpler, higher-level 
interface with fewer choices.  
 
The basic structure of this paragraph will as following: 
 
• Paragraph 4.2.1. In this paragraph, we explain what containers are how they affect tracing 
• Paragraph 4.2.2. In this paragraph, we explain CCM components. 
• Paragraph 4.2.3. In this paragraph, we explain how component are managed. 
• Paragraph 4.2.4. In this paragraph, we explain more about Corba communication techniques.  

4.2.1 Component Container 
In this paragraph, we will give the readers a brief overview of the component container-programming model and 
how it affects tracing. Containers were designed to support scalable servers which allows an application to set 
policies that control among other things activation/ deactivation patterns for the executing code and data that 
constitutes a Corba Component instance. In figure 4.3, we can see that the CCM container is an essentiality 
specialised Corba Portable Object Adapter (POA), which hides all low-level middleware functionality from 
components it contains. In contrast to Corba servants, that have to establish a connection to the Orb and 
maintain their own life cycle with the POA, CCM components do not have to perform any low level Corba 
operations. In fact, they do not even have access to them. This causes a problem with any Corba object 
programming technique, which have to perform any low level Corba operations like Orb initialisation, and object 
reference operations. 
 
A component container offers the following main functionality: 
 
• Internal interfaces that enable the component to connect with the container 
• Manage the life cycle of components by activating them at the request of a client and deactivate them to 

preserve system resources. 
• Automatically Forwards client request to Corba Services 
• Provide Call-back mechanisms to inform component about interesting events, such as new messages from 

the transaction or notification services 
 
Although the OMG attempts to make the development of distributed systems al tot easier with their introduction 
of the new CCM container, they neglect to specify any services that can help testers to trace components. 
However, outside OMG group, there are currently some groups working on services, which are potentially useful 
for tracing Cobra. As part of PERCO Container Programming Model, Thales France is in currently in the process 
of developing logging services which can log communication at the component level [Philips].  
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4.2.2 CCM components 
With CCM components, OMG realises the promise of creating self-contained units of software code consisting of 
its own data and logic, with well-defined connections or interfaces exposed for communication. To allow CCM 
component to be compatible with other component object models, like Java beans, CCM makes a clear 
distinction between Basic components and Extended components.  
 
Although basic component has to conform to the much stricter Corba Component Model, they are almost 
identical traditional Corba Objects and are therefore compatible. Basic components only expose an equivalent 
interface which consists of operations and attributes inherited from supported interfaces, attributes in the 
component body, and a number of standard base interfaces that a component are required to have.  
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Figure 4.4: Component Type Inheritance 
 

In figure 4.4, we can see that an extended component is a specialisation of a basic component because it 
inherits all requirements of a basic component and adds additional features to them. Although the extra features 
enhance component reusability when compared to traditional Corba objects, the drawback is that they make 
extended components incompatible with traditional objects. The extra features of extended components are 
made available through ports (see figure 4.5). Ports are additional interfaces that allow a component to have 
event driven communication or provide extra interfaces other than those it inherits. The extra interfaces, called 
facets, allow components to expose different views to it clients. Clients that want to establish a synchronous 
connect to one of these facets can use Receptacles obtain the object reference to the component instance. This 
object reference can than be used to delegate operations on server component.  
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Figure 4.5: Extended Component 
 

4.2.3 Component Home  
In contrast to Corba, where a client has to establish a connection with a Corba object itself, CCM clients cannot 
create component instances directly but they have to use a component home to find an existing component 
instance or create a new component instance for them. A CCM client therefore has no access to low level 
objects like interface object reference and Orb object. The interface of a component home provides operations 
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to manage component life cycles, and optionally manage associations between component instances. In order 
to allow the client to find a component home in the first place, there is a special finder interface available, which 
functions much like the Corba Naming System. 

4.2.4 Corba Communication 
Because communication plays an important role in the construction of Corba tracing framework, we will explain 
some of the communication available in Corba/CCM: 
 
• Two- way message communication. Synchronous Two-way message communication is the basic way of 

communicating between Corba objects. Although this method is relatively simple to use, the biggest 
disadvantage is the low performance caused by the communication. That because a client is locked during 
send and requirement of a remote procedure call.  

• One-way message communication. This method of communication allows clients to send a message to a 
target object directly without expecting any return. This technique it relatively complicated to implement 
properly because the client must establish and maintain reliable a communication link with the destination 
object. That is because there is no guarantee that a one-way Corba message will arrive at it destination. 
However properly implemented it could potentially achieve the best performance possible by a Corba 
middleware solution. 

• Indirect message communication. Instead of communicating the information directly between Client and 
Servant, a message is sent indirectly trough standard Corba Event/Notification service. Although the 
Event/Notification service uses standard one-way communication internally, this event-based 
communication mechanism allows the communication between client and server to be de-coupled. Corba 
Event/Notification service therefore allows clients to send information to multiple servants without knowing of 
their existence. The notification service also offers a Quality of Assurance functionality, which guarantees 
the delivery of all send messages, and optional offers the usage of filters, which can block undesired events. 
Although the usage of the Event/Notification service makes event based communication a lot more simple, a 
Corba Object still has to perform many actions to implement it. 

• Publish-Subscribe message communication. The CCM standard also offers a publish-subscribe 
communication technique in the form of event sources and event sinks. Although component use standard 
Corba Event/Notification services under the hood, the developer won’t be bothered with any of 
communication issues and can therefore focus more on the functionality of the component. 
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5  AN EVALUATION OF TRACE DATA INTERCEPTION TECHNIQUES FOR CORBA  
To verify correct behaviour of Corba applications, and pinpoint a misbehaving component, it is necessary to 
trace the exact propagation of messages as they flow through a distributed system, entering and leaving 
components. In chapter 3, we described a generic tracing framework design containing a tracing layer 
architecture, which has to collect tracing data from a distributed system. However, except for the messages a 
client sends and receives from a server component, the internal Corba application data flow is hidden from the 
client by the middleware and must be intercepted somehow. Therefore, we will now investigate the possible 
techniques to intercept this trace data from a Corba application. In chapter 7, we further analyse one of the 
techniques for the construction of a transparent tracing layer. 
 
In this chapter, we will discuss the following topics: 
 
• Paragraph 5.1 Middleware Interception Programming Techniques. In this paragraph, we look at several 

programming technique, which enable us to collect tracing data independently of the used middleware 
technology.  

• Paragraph 5.2: Corba Meta programming Interception techniques. Corba offers several Meta programming 
mechanisms and facilities, which can be used intercept Corba communication events. Programmers can 
use Meta-programming mechanisms to transparently change the Corba middleware behaviour to collect 
tracing information whiteout modifying the middleware or components.  

• Paragraph 5.3: Comparison of Trace Data Interception Techniques. In the final paragraph of this chapter, 
we compare all tracing techniques we discussed in this chapter based on the characteristics that are 
important for developing an effective tracing mechanism. 

5.1 Middleware Interception Programming Techniques 
In this paragraph, we will explain several middleware-programming techniques, which can be used to intercept 
trace data and look at their strong and weak points. Each middleware interception technique is described in a 
separate sub-paragraph. 

5.1.1 Debug instrumentation  
Debugging instrumentation is probably one of most used programming technique by developers to trace 
distributed systems. This programming technique is similar to adding debugging code to the source code, could 
for example be implemented by calling a logger object just before and after a procedure call. Typically, a logger 
object provides some functions for this, so it can receive a client parameters or result as in arguments. For 
example, in the client source code, every remote procedure call to a distributed object could be preceded and 
followed by a call to the Logger object (see figure 5.1). 
 
 // Log before RPC is send

Logger->beforeRPC(this, ServerObj, sum, 1 , 2); 
 
// Do a RPC call on server object 
result = ServerObj->sum(1, 2) 
 
// Log RPC result 
Logger->afterRPC(this, ServerObj, sum, 1 , 2, result); 

 
 
// Do a RPC call on server object 
result = ServerObj->sum(1, 2) 
 
 

Figure 5.1: Instrumentation client source (before and after) 
 

On the server object, the Logger object could be called just after the start and just before the end of a method 
(see figure 5.2). 
 Class ServerObj

{ 
   Int Sum (int left, int right); 
   { 
 // Log received RPC   
 Logger->recieveRPC(this, left, right);
 
 // Calculate sum method 
 result = left + right; 

 
// Log result just before returning  

 Logger->recieveRPC(this, left, right);
 Return result; 
   } 
} 

Class ServerObj 
   Int Sum (int left, int right); 
   { 
      // Calculate sum method 
      result = left + right; 
 
      Return result; 
   } 
} 

Figure 5.2: Instrumentation of server source code (before and after)  
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Another advantage of this technique is relatively simply to implement because no complex programming 
techniques are required. Another advantages of instrumentation of the component source code is that it allows 
access to all information in a component. This includes the all contents data exchanged between components 
which allows tester to verify the input parameters with the output parameters.  
 
However, this technique is not very elegant because all the modifications blow up the source code, reducing the 
readability, and increasing the chances on mistakes. Although this technique is relatively simply to implement on 
the short term, in the long term it will cost time because manual instrumentation is labour intensive and error 
prone. Another disadvantage however, is that component instrumentation cannot intercept message 
communication like exceptions and other middleware communication events. Component instrumentation is 
therefore often used in combination with other tracing techniques, which do not have access to this information. 
Although this instrumentation technique can only be applied when the component source-code is available, this 
technique is middleware independent because it can be applied completely separate from any middleware 
architecture. 

5.1.2 Pre-processing Instrumentation 
By automating all instrumentation tasks, Pre-processing solves the some of problems, which plagued Debug 
instrumentation. Automated instrumentation can be achieved by using techniques like lexical and syntactic 
analysis to find the locations of interest and automatically instrument them with tracing code. The rules actually 
describe the location where a RPC enters or leaves an object, can be defined by describing the tracing points 
and program, script, etc that must be inserts the instrumentation into component code. Using a parser with 
access to a middleware interface repository could also automatically derive this information. An example of 
where this principle is applied is in the TMT Monitor framework that allows automated tracing for the Middleware 
standards DCOM, Corba, and Java RMI [TMT]. However, adding extra lines of tracing code in the original 
source code is not a very elegant solution. The source code becomes longer and becomes tied with a specific 
tracing technique. To un-tie a component implementation from the instrumentation technique, we have to 
separate the original source code from the instrumented source code. The separation between original file and 
instrumentation is achieved by using a pre-compiler that makes a copy from the original source file, which it 
instrument with tracing code. Figure 5.3 visualises how the instrumented file produced by pre processor would 
have to be further compiled into an object file by a traditional language compiler. This technique would separate 
the original clean source code from the instrumented source code creating a transparent instrumentation 
technique, which does not alter the original source code. However, because the source code must still be 
recompiled, it is not fully transparent. 
 

P re-Pro cesso r 

// Log before RPC is send 
Logger->beforeRPC(this, ObjectA, sum, 1 , 2); 
 
// Do a RPC call on server object 
result = ObjectA ->sum(1, 2) 
 
// Log RPC result 
Logger->afterRPC(this, ObjectA, sum, 1 , 2, result);  

O rigin al so u rce file  

Traceab le o b ject co d e 

N ew  In stru m en ted  so u rce file  

10110101010101011010101010101010000001010
01010101101000110100101010101011101010101
11010101010101010100101011010110010101010
10101101001011010101010011010101110101010
10101010101010101010101010101010101010101

Lan gu age C o mp iler 

ObjectA 
.. 

In terface n ames

copy 
// Do a RPC call on server  
result = ObjectA ->sum(1,2)  

F igure 5 .3 : sepa ra tio n  betw een  o rigina l so urce a nd  instrum ented  so urce 
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5.1.3 Adapter Instrumentation 
An Adapter is an object that does not implement target interface itself but only performs some tracing actions 
and wraps to interface similar with the original interface. By offering the same interface as the target object, a 
Corba object can use the adapter exactly as the original. Because an adapter conceptually located between the 
Corba object and the target object, it can be used to intercept all communication flowing between an application 
and target object. An example of how the adapter programming technique is applied is during the connection 
between client and server. Adapter wraps Corba Interface object reference and creates a proxy object between 
the application and the stub/skeleton interface object. Because the proxy object will be invoked every time 
information flows between application and stub/skeleton, it can be used to log all communalisation flowing 
between client and servant interface. Besides intercepting message contents, the proxy object can also 
generate context information by linking intercepted parameter values with the component name and unique 
identifier. In chapter 7 we will see how a tools uses this technique is to collect tracing data  (see also paragraph 
6.2.2).  

5.1.4 Stub and Skeleton Instrumentation  
The standard Corba object model uses a fixed stub generation mechanism. An IDL post processor can 
instrument these statically generated proxies with tracing code, which intercepts and logs all communication 
events. The advantage of this technique is that it requires neither modification of the component, nor 
modification of the middleware libraries. However, changing the stub code is not easy because it requires 
specific knowledge about the stub communication mechanism and costs a lot of time to modify the code every 
time the IDL file is compiled. Although stubs and skeletons generated by a Java IDL compiler are equal, a 
separate instrumentation is required for stubs and skeletons generated by IDL compiler generated in different 
languages, like C++. Another problem is that this instrumentation technique can only be applied on stubs or 
skeletons generated by an IDL compiler. Dynamically created stubs, generated by the DII and DSI  (see 
paragraph 4.1.5.2) cannot be instrumented and therefore not extended with tracing functionality. In chapter 6 we 
will see how the DSC Toolkit uses this instrumentation technique to collect tracing data  (see also paragraph 
6.2.1). 

5.1.5 Middleware Instrumentation.  
Because Corba middleware is responsible for establishing and maintaining a communication links Corba 
objects, they have access to all Corba communication events. Some Corba distributions like ACE TAO or 
JacOrb, provide the complete middleware library source code. With enough understanding of the Corba 
implementation, developers can instrument these libraries to extent a middleware with additional tracing 
functionality. Once the instrumented libraries are recompiled, all components using the instrumented libraries 
can be transparently traced without any changes the components source code. Note however, that depending 
whether or not these libraries are static or dynamically loaded, component need to be recompiled (static) or not 
(dynamic) for first time usage. The main problem of middleware instrumentation is that it effectively creates a 
proprietary middleware solution, which will have to be maintained. Moreover, the effort and cost of changing to 
another middleware implementation greatly increased or becomes impossible by the lack of middleware source 
code. Because Corba is still under development, it is expected that vendors will continue create new versions of 
their Corba implementation, which increases performance, repair bugs or add new Corba features. Beside that, 
modifying the middleware is often simply not possible because the vendor does not supply the middleware 
source code. Therefore, in order to remain middleware transparent, we have to stay away from any proprietary 
middleware instrumentation solution.    

5.1.6 Interface Wrapping.  
One simple technique that is commonly used to trace the communication between components is to use a 
Wrapper. A Wrapper is a component, which function a proxy between client and server and which can log all 
invocation communication between client and server. The basic strategy is to rename the original component to 
a different name and to introduce a wrapper, which identifies itself as the original component. In Corba, this is 
accomplished by changing the server registration in the naming service in the following way. First, the original 
server, which interface has to be monitored, is deleted from the naming service and reregistered under different 
name. Then, a new component, called the wrapper, is registered with the name of the original server. The result 
is that any client that wishes accesses the monitored server will automatically call the wrapper, which logs all 
invocation before it finally calls the original server interface. However, because all clients that use the same 
server will call the wrapper, and the wrapper has no method of knowing where invocation originated from, the 
intercepted invocation cannot be linked with a single component instance, and is therefore not uniquely 
identifiable. Note that in order to make the interception mechanism work, the Wrapper must take special care to 
perform its renaming actions after the original server has been registered but also before the client can retrieve 
the original object reference, otherwise a client will never call the Wrapper. Although, a Wrapper will alter neither 
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the client nor the server source code, the message arriving at the server is not exactly the same as the message 
that was send by client. This is a problem because the message send between wrapper and server is a new 
message, and therefore not message transparent.   

5.1.7 Network Message Tracing  
A completely different technique of intercepting trace data from a distributed system is to use network sniffers. 
Network sniffers can collect and analyse Corba network messages by listening directly to all communication on 
Local Area Network (LAN). By intercepting these network messages and decode them based on their IIOP 
message protocol (see appendix B for details), it will be possible to deduce the method invocations between 
components. The advantage of this technique is that it is completely transparent because it does not alter a 
system in any way. However, the interception will be restricted to the information contained in the IIOP. The 
problem is that except from opaque message identifiers IP address and port number, a message cannot pinpoint 
the exact source of the invocation. Another problem is that network sniffers can only capture broadcasted IIOP 
message travelling between components hosted by different computers. In the next chapter, we will give an 
example of a network sniffer.  

5.2 Corba Meta Programming Mechanisms  
Now that we have shown some common trace data interception technique, we will discuss how the Corba 
middleware itself can facilitate tracing. We will explain what Corba meta-programming mechanism is available 
and how they can potentially be utilised for constructing a tracing mechanism. We assume the reader has 
sufficient knowledge about Corba Middleware we described in the previous chapter. 
 
Although the original Corba core provided many self-describing features like the interface repository (see 
paragraph 4.1.5.1), support for tracing, was simply not considered. Fortunately, the Corba community is starting 
to realise that we need (meta-object) additions to Corba core that will make tracing possible. The result is that 
the Corba community has introduced several new meta-programming mechanisms. Corba can use these meta-
programming mechanisms to improve the adaptability and flexibility of distributed application, while avoiding 
obstructive changes to existing applications and middleware.  
 
In order, to modify the behaviour of Corba middleware in a transparent manner we need ways to change the 
meta-objects that lay on the invocation path between client and server [Nanbour]. Meta object are 
programmable objects, that refine the capability of base-level objects, which are the objects comprising the bulk 
of application programs [Zimmerman]. As all operation invocations pass through meta-objects, certain aspects of 
application and middleware behaviour can be adapted transparently when system requirements and 
environmental conditions change by simply modifying the meta-objects. 
 
In a distributed objects middleware environment, stubs, skeletons, and certain points in the end–to-end 
invocation path can be treaded as meta-objects because they can be modified. When a client invokes an 
operation on a server, a stub implemented as a meta-object can act in conjunction with transport-protocol meta-
objects to access and/or transform a client operation invocation into a message and transmit it to a server. 
Corresponding meta-objects on the server apply request transformations on the operation invocation message 
and dispatch the message to its servant. An invocation result is derived in a similar fashion in reverse direction.  
 
The following meta-programming mechanism can be used for the interception of trace data: 
 
• Request Interceptors, are embedded hooks into the Orb that can intercept all messages passing through 

them. They allow the forwarding and inspection of messages, and can be used to transparently transfer 
contents information through the Corba application. 

• Smart Proxy, are customised meta-object which function as proxy object between a client and specific 
servant interface 

• Servant Managers. Is a meta-object, which can be used to forward or inspect the message contents just 
before and after it replies. Servant managers can also detect the first and last time the servant object 
instance is used and use it for the initialisation or destruction of other processes. 

• Pluggable Protocol Framework is a new Meta programming mechanism, which can modify the 
communication protocol between Orbs. 

 
Figure 5.4 gives a good overview of the several meta-programming mechanisms described above. Note that the 
figure also visualised the location of the CCM container. That is because Corba Component Container 
Framework (see also paragraph 4.2.1) can be used as meta-programming mechanism to trace the 
communication between the components. A Container extended with build-in logging service, which collect 
tracing data automatically, can implement by using request interceptors or servant manages.  
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Another mechanism that can be used to trace Corba communication is Orbix Message Filters mechanism. 
Message Filters is a propriety Orb mechanism supported only by a small group of Orb vendors (Orbix / VisiOrb). 
Similar to a request interceptor, a Message Filter can intercept communication events at the Orb. However in 
contrast of Request Interceptor, it functionality is limited to its interface. The advantage of Message Filters is that 
it does not require the registration or initialisation of any meta-object, but can be activated directly in the Orb. 
Because this mechanism is effectively a modification of standard Orb behaviour, and not a meta- programming 
mechanism, we classify it a middleware instrumentation technique. 
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Figure 5.4: Meta programming mechanism in the Corba Middleware  
 
Each meta-programming mechanism will be further detailed in separate subparagraph. 

5.2.1 Request Interceptors  
The Request Interceptor is part of Corba standardised Portable Interceptor specification. Beside the Request 
Interceptor, the Portable Interceptor also defines a second type of interceptor, named the IOR interceptor (see 
appendix L). Request Interceptors are a meta-programming mechanism used in Corba to increase the flexibility 
of both client and server applications [Nanbor]. This mechanism is useful for making invocation decisions, 
checking invocation rights, or performing other operations that apply to the entire request as a unit. Request 
Interceptors were introduced as an answer to add specific network-oriented capabilities such as authentication 
and flow control to distributed applications.  
 
Portable Interceptors are not usually part of a typical Corba environment, implementing them is considered an 
advanced programming task. Interceptors must be registered before the Orb in the client or server application 
becomes initialised. This is because in contrast to the intuition, Portable Interceptors are not linked to a Corba 
object, but to the Orb object used by the Corba object. After the Orb is initialised, all Request Interceptors 
installed on an Orb will affect all GIOP messages (see appendix B) passing through that Orb.  
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The Orb that is used by both client and server to establish a communication can be fitted with multiple 
independent Portable Interceptors. Just like triggers in a DBMS, Request Interceptors are triggered after certain 
communication events take place in the Orb. From abstract point of view, these interaction points are located at 
the boundaries of a component. Figure 5.5, shows how An interaction point can be an interface instance at entry 
or reference to a remote object at exit. Request Interceptors allow the programmer to execute its code, just after 
a message leaves an interaction point, or just before it enters an interaction point.  
 
 

Object 
A 

Object 
B 

Object 
C 

Interaction points 
Figure 5.5: Object interceptor interaction points

 
There are two types of request Interceptors; the Client Request Interceptor and the Server Request Interceptor. 
The both Request Interceptors are activated at different stages in the request reply invocation. Figure 5.6 
visualizes the different paths of invocation points a request reply message can activate. Request Interceptors 
function like hooks into the Orb through which Orb services can use to intercept the normal flow of execution of 
the Orb. There are ten different hooks from which six are used for very special purposes. We can see that each 
Request Interceptor is called at least twice during the request-response cycle of an invocation: once when a 
request is going from the client towards the servant, and once when a response returns to the client.  

 
Figure 5.6: Possible flow through Request Interceptor Hooks 

 
 
Depending on the message event, different methods (hooks) are called by the Orb: 
 
• Before sending a request message at the client:  

o When the message is a Time Independent Invocation, the Orb calls send_poll 
o Otherwise, the Orb calls send_request 

• Before a request message reaches the server, but before calling the servant manager: 
o The Orb calls receive_request_sequence_contexts (which allows access to service context 

fields)  
• Before a request message reaches the servant: 

o The Orb calls receive_request (which allows access to all information available in the message) 
• Before sending a reply message at the server: 

o If the servant throws an exception, the Orb calls send_exception 
o If the servant replies normally, the Orb calls send_reply 
o Otherwise (e.g. when the call is redirected), the Orb calls sent_other 



Unclassified  
 

 
Date: 30-06-04  Page: 49

 

• Before the reply message reaches the client:  
o If the client throws an exception, the Orb calls recieve_exception 
o If the client receives a normal reply, the Orb calls recieve_reply 
o Otherwise, the orb calls recieve_other 

 
Beside the standard interception functionality, Request Interceptors also offer following advantages and 
possibilities: 
 
• Message Redirection. A Request Interceptor can temporary or permanently redirect a request to a different 

location at any interception point other than a successful reply. This is useful for transparently redirecting a 
request to an exact copy of the initial target object when the initial object has gone offline. This error 
recovery behaviour is especially useful for creating fault tolerance services. 

• Message Blocking. A Request Interceptor can stop a request from reaching the target by raising a system 
exception in the inbound path. A system exception function like an interrupt call in the sense that forces the 
Orb to stop the current transmission and take alternative actions. This functionality is especially useful for 
authorization by security services or for the construction of proxies. 

• Message Inspection. A Request Interceptor allows read access to the request or reply fields located in 
intercepted GIOP message. Depending on the intercepted message this information includes but is not 
restricted to, target object, operation name, input parameters, output parameter, return value, and other 
fields (for details see appendix H). 

• External Invocation. During its activation, the Request Interceptor can call other Corba Components or use 
standard Corba Object Services like the naming service or Interface Repository. This feature allows the 
Request Interceptor to exchange information with external services.  

• Exception Handling. By inspecting message exception fields, Request Interceptors can be used for 
exception handling. This is both useful for Fault Tolerance services trying to recover form a communication 
failure, as well for tracing services, which want to log it as a tracing event. 

• Middleware Transparency. In contrast to other instrumentation techniques, which require the modification of 
middleware, interceptors installed by parameters, do not change any line in the middleware source code. 
This is an advantage because if the middleware remains unmodified, the middleware also remains upward 
compatible with future updates from the Corba middleware vendor. Note however that the installation of 
interceptors by parameters is different for every Corba implementation. 

• OMG Standard. The Request Interceptor has been part of OMG official Portable Interceptor standard for 
quite some time now. Although the initial request interceptor had a bad start (for details see appendix M), 
most members of the OMG now recognise the current Portable Interceptor specification as a Standard 
Corba facility. Most Orb vendors now support the OMG Portable Interceptor in their current Corba 
middleware implementation or plan to support in their future version. The advantage of using a standardised 
Corba meta- programming mechanism is that in contrast to proprietary vendor facilities, customers can 
switch Orb vendors, without too much technical difficulties. 

• Point to Point tracing. Request Interceptors can be used to collect tracing data from both sides of a 
communication and in both directions. Other meta-programming mechanism, which can also be used for 
tracing, only allow tracing at one side. For example, Smart Proxies only allow tracing at the client side while 
Servant Managers can only trace at the server side. In addition, it is important that intercepted includes all 
Orb-to-Orb information flows, not just communication between systems. This might seem trivial but a tracing 
technique like sniffing are only able to detect the communication between Component hosted on different 
systems, not between component hosted on the same system.  

• Communication Diagnosing. The ability to detect all incoming and outgoing messages allows Request 
Interceptors to detect exceptions, communication failures, and performance problems. Communication 
failures can be detected by messages that are sent but never reach their destination. Performance problems 
can be detected by determining the latency of the message communication or the processing latency 
between receiving and sending messages. All this diagnosing information allows the testers to verify the 
correct communication behaviour of both components as well as the used middleware services. 

• Piggybacking. The Request Interceptor offers two facilities which tracing framework can use to transparently 
propagate context data through a distributed Corba Application. Request Interceptors can send service 
context data embedded in GIOP messages without modifying the client, server, or Orb (for details see 
appendix I). In order to transfer the tracing data received from incoming messages to outgoing messages, 
request interceptors can use the PICurrent. This shared memory mechanism allows services to transfer 
context data between the interceptor context and application context (for details see appendix J). 
Propagating tracing data through a system is invaluable for tracking the causality relationship between 
individual messages travelling between Corba Components. By transparently propagating tracing context 
information containing a logical clock value, a tracing mechanism is able to determine the exact sequence of 
intercepted communication events.  
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Although the functionalities described above make Request Interceptor a powerful meta-programming 
mechanism, we have found many limitation and problems. The foremost reason why interceptors have these 
build-in limitations is that the integrity of the intercepted messages has to be secured. Another reason of its 
shortcomings is that they were originally developed only to facility the minimum functionality required to allow 
security services to operate. Although the literature often mentioned them as potential mechanism for tracing 
Corba, they were never designed for this purpose.  
 
We can summarize the limitations and problems of Request Interceptors as follows: 
 
• Portability problem. Although the Portable Interceptor specification has been around for quite some time 

now, there are still Orb vendors, which do not comply with the official OMG standard. Non-portable 
interceptors often were the result of the first interceptor specification (for details see appendix M). One of the 
main reasons why these propriety non-portable Interceptors still exist is because these pioneer Orb vendors 
have obligation to their existing customers, which rely on their proprietary functionality. Although most 
proprietary Request Interceptor implementations seem only different in name, they also apply different 
functionality rules during message interception making migration to OMG compatible Corba implementations 
complicated. Another problem is that Portable Interceptors must be registered in the namespace of an Orb 
instance. This means the registration of Portable Interceptors is strongly connected to that of the Orb. This is 
a problem because this mechanism is not the same for all Orb implementations and even the specification 
standard is not programming language independent.  

• Overhead problem. Although a Request Interceptor (which does not throw any exception) does not alter the 
behaviour of the Corba middleware, depending on the implementation of the installed interceptors, it 
imposes a small or larger degree of increased overhead to all Corba communication causing the overall 
system to degrade. In comparison to other Corba meta-programming mechanisms, Request Interceptors 
cause a relative large amount of latency. This is because the large number of interfaces that are called 
during an invocation and because the information related to the request is bundled into anys, which have a 
higher parameter conversion overhead for their insertion and extraction operations.  

• Limited installation. Interceptors can only be installed by registration an interceptor into the Orb before 
initialisation, not after or during initialisation. Therefore, in order to register an interceptor afterwards, a client 
or server would first have to halt and reinitialise their Orb. Although most Orb implementations allow the 
registration of interceptors through parameters, the official PI specification only defines how to register on 
interceptor by method calls. This is however, a direct violation of a transparency because a component 
source code must be altered. In addition, after altering the source code of the component, it must be 
recompiled, and linked before usage. Online Corba Component must therefore always be shut down and 
restarted before request interceptors can do their work.  

• Limited configuration. A request interceptor must always implement all interface methods defined by the 
Portable Interceptor specification. Although an method implementation of a Request Interceptor can be 
empty, upon the arrival of any communication event, the will Orb still invoke all methods before returning to 
its original tasks. Request interceptors have also no facility for uninstalling themselves at runtime. Therefore, 
once a Request Interceptor is installed on an Orb, it will always intercept all request and replies exchanged 
between client and server until the Orb is brought offline. Because an interceptor cannot be uninstalled at 
real-time, even if interceptor does nothing, it still causes 10% latency hit. 

• Limited ordering. While interceptors may be ordered administratively, there is no concept of order with 
respect to the registration of interceptors. Because the invocation order is Orb implementation dependent, 
the order in which the interceptor interfaces are called, cannot either be inspected or modified. Although 
there most Orb implementations that actual allow to change the order of request interceptors in a 
customisable fashion, assumptions on the order of invocation of multiple interceptors result in non-portable 
interceptor code. 

• Limited internal communication. Corba objects are not limited in the number of Orbs. Although, request 
interceptors located on a same Orb can make use of the PICurrent mechanism (see also appendix I) to 
exchange context information among them selves, Corba does not supply any communication mechanism, 
which can share information between Orbs that have no established connection. This means Corba objects 
using multiple Orbs must use proprietary techniques to share context information. 

• Limited external communication. Although Request Interceptors can communicate with the outside world by 
doing invocations themselves, there is no standardised facility for external processes to exchange 
information with an active Request Interceptor.   

• Limited parameter modification. Although Portable Interceptor can add new service context and access 
service context data inserted by other Request Interceptors, it cannot alter this service context. In addition, 
request interceptors can read input parameters, but they cannot affect a request by changing a parameter or 
affect the outcome of an invocation by supplying the response itself.  
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• Limited blocking. Although Request Interceptors can block message from reaching its destination, it is 
limited to using the standard exception technique. However sometimes alternative blocking techniques are 
desired. For example, when a service wants to temporary block a message because the host is currently 
busy with a high priority task.  

• Limited exemption handling. When an Orb, fitted with multiple request interceptors receives a message, and 
one of the interceptors throws an exception, all remaining interceptors, which are not called already will not 
be able to intercept a message or notified of the exception. Therefore, caution must be taken for any Orb, 
which is fitted with a Request Interceptor that can throw exceptions.    

• Limited forwarding addressing. A forward exception can only redirect message to a single alternative 
address. In addition, although Request Interceptor can forward a message to another servant object, which 
can answer to the same interface call, it cannot forward a message back to the client. The reason is that a 
client is not addressable and can therefore not receive rerouted messages.  

• Java contents access problems. The main problem of request Interceptors on a Java Orb is the impossibility 
of accessing contents information in the message like input, output, and return value. Java request 
interceptors can only access the operation name, concerning the signature of an operation. Another 
potential problem is the fact that JAVA interceptors can only be installed with parameters. 

• Limited identification. Although most Corba objects will use a single unique Orb, the Corba specification 
does not forbid a Corba object from using multiple Orbs. Worse, multiple Corba objects can share the same 
Orb. Because a client request interceptor cannot be associated with a single component instance, they 
cannot be used reliably for the identification of component instance. 

 
In the last paragraph of this chapter, we will evaluate the Request Intecept with other trace-data interception 
techniques. 

5.2.2 Smart Proxy 
A common problem in Middleware technology is that an application needs to add extra client specific tracing 
functionality, which should be logically part of the middleware architecture, but the client implementation code is 
not available. Although this functionality could be achieved by extending the stub source code with tracing 
functionality, we explained that there are several disadvantages to this instrumentation technique (see 
paragraph 5.1.4). What developers really need is a transparent meta-programming solution, which allows an 
application developer to change the functionality of the stub selectively without actually modifying the generated 
stub, middleware, or client source code [Nabour]. The solution to this problem is provided by ACE TAO, is the 
Smart Proxy meta-object [Koster]. 
 
The Smart Proxy is similar to the Adapter instrumentation technique (see paragraph 5.1.3) in the sense that it 
allows developers to modify the behaviour of interfaces. Similar to the Adapter instrumentation, a smart proxy 
object has a one-to-one connection with a Corba object, which allows a tracing mechanism to identify a client 
object by it Smart Proxy identity. In figure 5.7, we can see how this meta-programming mechanism, which allows 
the developer to transparently override the default stub implementation, is located between the client and the 
default client proxy (the stub). A Smart Proxy will not replace the functionality of the default stub (marshalling 
parameters and de-marshalling the return value), but will delegate standard stub tasks to the default-generated 
stub. Although a smart proxy use a similar proxy technique use by the Adapter instrumentation, in contrast to 
adapter instrumentation, smart proxies can achieve this functionality without modifying the client or target 
objects. 
 
The Smart Proxy is also comparable with the Request Interceptor (see paragraph 5.2.1) in the sense that both 
can participate in the communication between a particular client and a particular servant. However, in contrast to 
the Request Interceptor, a Smart Proxy is solely a client mechanism. That is because the only invocation point 
occurs whenever an operation is invoked through a stub and is therefore called only once during each invocation 
and once during a reply. Note however, that in contrast to the Request Interceptor, which can intercept Orb 
message communication, a smart proxy can only intercept method invocations 
 
Although the Smart Proxy offers relatively little freedom in modifying any details of the call, they could perform 
action like collecting tracing data, throwing user exceptions or use other Corba services like access the Current. 
The Current allows the Smart Proxy to communication with installed Portable Interceptor Current  (PICurrent). 
In comparison to request interceptor, which causes a relative large overhead, Smart Proxy imposes a minimal 
overhead on a distributed application. However in contrast to request interceptors, a client can only have a 
single smart proxy for each interface whereas multiple interceptors can be registered with an Orb. 
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Figure 5.7: Smart Proxy Architecture 
 

In figure 5.7 we can also see that the Smart Proxy consists of two parts, a Smart Proxy factory class, and a 
Smart Proxy meta-object. Similar to the request interceptor, which is registered to the Orb by a special factory 
class, a Smart Proxy is registered to the object reference by a smart factory class. The Smart Proxy factory does 
not have to be written manually but can be automatically generated by the TAO IDL compiler for every interface 
in the IDL file.  
 
The activation of smart proxies can be achieved the following methods: 
 
• Automatically, by the Orb. During initialisation, the Orb will activate the Smart Proxy factory that creates the 

Smart Proxy meta-object whenever a client application connects to a target interface with the _narrow 
operation. This can be achieved using TAO Component Configuration pattern [Schmidt] and adding an entry 
to svc.conf configuration script. Although this method is fully transparent for the client, it only allows a per-
interface policy. In the per interface policy, the Smart Proxy is used for all targets objects associated with a 
particular IDL interface. 

• Manually, by first adding a smart proxy factory initialisation-call after the Orb is initialised, and then add a 
separate initialisation call for each object reference that needs to be traced. Thus, if smart proxies are 
installed before a client accesses these interfaces, the client can transparently use the new behaviour of the 
proxy returned by the factory. Although manual instrumentation is less transparent, it allows a per-object 
policy. In the per-object policy, each object can have a separate smart proxy, which is less transparent but 
more flexible. This fined grained control will be especially useful for trace configuration because it allow a 
trace framework to exclude any object, which are not of interest to the test case. 

 
Although the Smart Proxy is currently not an OMG standard, the ACE consortium (the developers of the TOA) 
has made a request for proposal at OMG, called Smart Proxies. TAO, is the currently not the only Orb vendor 
which implements a Smart Proxies model. Many other Orb vendors support this feature as a proprietary solution 
or are planning to implement in future releases of their middleware. We expect to see a similar process that took 
place after the introduction of Portable Interceptors; initially many proprietary smart proxy solutions will emerge 
but eventually most Orb vendors will conform to the new standard once the official OMG specification becomes 
accepted 
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5.2.3 Servant Manager 
The Servant Manager is just as the name suggests, a mechanism that manages the servant object located at 
the server. This meta-programming mechanism allows server application developers to strategize the selection, 
loading, unloading, and activation of object implementations. The Orb will invoke methods on servant managers 
to activate or deactivate servants on demand.  
 
A servant manager is similar to a server-side Request Interceptor in several respects. They both can intercept 
requests and affect the outcome of request invocations before they are dispatched to servants. Like the Request 
Interceptor, an invoked servant manager method could raise forward exception to forward a request message to 
another servant. Invoked methods can also create a new servant instance on the fly (see figure 5.5). Thus, the 
servant manager may choose or even create a servant for processing the request at real time. This mechanism 
is especially useful for load balancing or fault tolerance schemes, since it enables the simultaneous existence of 
many parallel servants from which the servant manager may choose.  
 

POA 

Object ID

Servant Object 

Server-side Orb 

Create / Calls 

Manage 

Invokes 

Locates 

Servant Manager

Figure 5.8: Managing Resources with a Servant Locator 
 

However Unlike Request Interceptors, Servant Managers only affect the Portable Object Adapters (POA) that 
install them and can therefore only provide access to a limited subset of request information [Wang]. As a result, 
they are more tightly coupled with POA’s and servant implementations than Portable Interceptors. Rather than 
modifying the internal Orb behavior, Servant Managers are used primarily to coordinate the resources necessary 
to activate and deactivate servants.  Because of its integrated relation with the POA, the Servant Manager is 
part of Corba official POA specification standard [Corba 2.4].  
 
A servant manager is registered with a POA as a callback object, to be invoked by the POA when necessary. An 
application server that activates all its needed objects at the beginning of execution does not need to use a 
servant manager; it is used only in case an object must be activated during request processing. Servant 
Managers are therefore responsible for managing the association of Object Id value (a unique number in the 
POA's Active Object Map) with a particular servant and for determining whether an object exists or not (see 
figure 5.8).  
 
Depending on the active server policies, the POA uses two kinds of servant managers, the Servant Activator or 
the Servant Locator: 
 
• The Servant Activator is activated the first time a servant is activated. This Servant Activator provides two 

methods, a constructor and destructor method called incarnate and etherealizes. The Orb calls the 
incarnate method when a client wants to access the servant for first time usage. The etherealise 
method is the opposite of the incarnate method, in that it is called when a servant object is deactivated 
or no longer needed by the POA.  

• The Servant Locator is invoked every time a request is made to the servant. The Servant Locator provides 
two hook methods; a pre-condition method and post-condition method called preinvoke and 
postinvoke.  The preinvoke method is called by the POA to locate a servant before every request on an 
object. The postinvoke method is as expected called after every request when a servant is no longer in 
use. 

  

5.2.4 Pluggable Protocol  
The Pluggable protocol framework is another meta-programming mechanism recently introduced by ACE TAO 
Orb [Dougles]. Just like smart proxy framework, Pluggable protocol framework is in the process of becoming a 
standard by the OMG in the Extensible Transport Framework specification [ExtTrans]. The pluggable protocol 
framework makes it possible to separate the component architecture from the communication protocol of the 
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Orb [Kuhns]. This allows developers to add new protocols without requiring changes to Corba components. In 
order to achieve this, the component architecture and high level Corba services access the communication 
protocol using the facade design pattern, which should make the replacement Corba existing communication 
protocol relatively easy [Gamma]. 
 
Pluggable Protocols are intended to overcome the shortcomings of the standard IIOP and GIOP middleware 
communication protocol (see also appendix B). However, the standard CORBA GIOP/IIOP interoperability 
protocols are not well suited for applications that cannot tolerate the message footprint size, latency, and jitter 
associated with general-purpose messaging and transport protocols. Fortunately, the CORBA specification 
defines the notion of "Environmentally-Specific Inter-ORB Protocols" (ESIOPs) that can be used to integrate 
non-GIOP/IIOP protocols beneath an ORB. To allow end-users and developers to take advantage of ESIOP 
capabilities, it is useful for an ORB to support a Pluggable Protocols framework that allows custom messaging 
and transport protocols to be configured flexibly and used transparently by applications. Figure 5,9 illustrates 
how the high-level communication protocols rely on the low-level communication protocols in the Pluggable 
Protocol architecture. 
 
Pluggable Protocols could potentially be used in the construction of tracing framework. Similar to request 
interceptors (see paragraph 5.2.1), Pluggable Protocols offers a set of interfaces, which are triggered by the 
Orb. Similar to smart proxies, higher-level application components and Corba services use the Component 
Configurator pattern [Schmidt] to dynamically configure custom protocols into TAO’s Pluggable Protocols 
framework without requiring obstructive changes to themselves or the Orb. In order for a pluggable protocol to 
be usable by TAO without making any modifications to TAO itself, its interfaces must be fully implemented to 
provide the functionality dictated by TAO's pluggable protocols framework interface. This functionality is 
implemented within several components, namely the Acceptor, Connector, Connection Handler, Protocol 
Factory, Profile, and Transport.  
 
Especially the Transport Components is useful for tracing purposes because it is activated during Orb-to-Orb or 
Orb-to-Object communication. During these events, the Pluggable protocol is able to log a communication 
message source, destination, and parameters. Unfortunately though, creating a new protocol is quite tedious 
and error prone [Mann]. In contrast to portable interceptors and smart proxies that offer high level interfaces, 
Pluggable protocols are much harder to implement because they deal directly with the Corba communication 
infrastructure. Because of the low level the communication protocol operates on, it is not easy to recognise part 
of the original high-level message. Therefore implementing a pluggable protocol involves exactly the kind of low-
level error-prone programming aspects that middleware is supposed to shield the developer from. However, in 
contrast to portable interceptors and smart proxies, which alter the semantics of objects, pluggable protocols 
framework can only alter the underlying Orb transport mechanism. Thus, they do not permit fine-grained control 
over objects since they affect all objects in an Orb and it is very hard to vary the transport mechanism at the 
level of object references [Nanbour]. 

 

Figure 5.9: Pluggable Protocol Framework Architecture   
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5.3 Comparison of Trace Data Interception Techniques 
We will now make a comparison of all trace data interception techniques we discussed in the previous 
paragraphs. 
 
We will compare the based on the following characteristics with scales: 
 
• Transparency. Determines the level of transparency and effect on the distributed system: 

o --  Client/Server source code is instrumented with many modifications 
o -  Client/Server/Middleware source code is instrumented with minimal modifications 
o +/- Orb/stub/skeleton source code is instrumented but the client/server source code isn’t  
o + Not any source code is instrumented but the Orb must be proprietary initialised 
o ++ The distributed system does not require any alteration 

• Middleware independence. Determines the level of independence on the Orb vendor: 
o -- The techniques is proprietary and there are no attempts for standardisation 
o - The techniques is current proprietary but is being standardised. 
o +/- The techniques can be implemented in any open source middleware 
o + The techniques is standardised but not implemented by all Orb vendors 
o ++ The techniques can be applied on any distributed system 

• Language independence. Determines the level of programming language independence of a technique.  
o -- The technique is only possible in one specific language 
o - The technique is bind to one specific language, but future binding are expected   
o +/- The technique is bind to on specific language but can be adaptable to other languages 
o + The technique is available in multiple commonly supported languages 
o ++ The technique is possible for any language 

• Tracing Overhead. Determines how much will the tracing technique affect the system under test. 
o --  The technique will halt or alter the distributed system resulting in different system behaviour  
o - The technique will slow down the distributed system altering some system behaviour  
o +/- The technique will slow down a distributed system but not significantly 
o + The technique will lower the distributed system performance but almost non detectable. 
o ++ The technique will not alter distributed system at all  

• Context Piggybacking. Determines the technique ability to transmit service context along messages: 
o -- The technique cannot be used for transmitting service context 
o - The technique can transmit context with parameters by wrapping the interface externally 
o +/-  The technique can transmit context with parameters by wrapping the interface internally 
o + The technique can transmit context by populating the service context field 
o ++ The technique can transmit context by modifying the service context field 

• Message community. Determines the level of observability of communication events in a system: 
o --  The techniques is only able to detect communication event between computers 
o - The techniques can only detect message entering or leaving at only side 
o +/- The technique can only detect message entering or leaving at both client and server side 
o + The technique can detect All communication events between Orbs  
o ++ The technique can detect All communication events in the Orb 

• Identity Tracing. Determines the ability to detect the source and destination of a message. 
o -- The technique can only detect the interface of the destination.  
o - The technique can detect the server IOR and client IP / port address. 
o +/- The technique can detect the server IOR and client Orb ID 
o + The technique can detect the client or server object 
o ++ The technique can detect both client and server object 

• Technique Complexity. Determines the difficulty of implementing the trace technique in practice. 
o -- The technique is difficult to implement implementation and different for every case 
o - The technique is difficult to implement but is repeatable for different cases 
o +/- The technique requires some technical expertise to implement but not too difficult 
o + The technique is relatively easy to implement but still requires some time to create 
o ++ The technique does not requires technical expertise except from its deployment and usage 

• Cost Effectiveness. Determines the long-term cost effectiveness of trace technique. 
o -- The technique is labour intensive, very complicated and awkward to implement  
o - The technique is labour intensive, error prone but manageable. 
o +/- The technique is relatively easy to implement but still requires manual work 
o + The technique is semi automated and only requires some initialisation  
o ++ The technique is fully automated and does not require any deployment activities 
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In the table below, we compare all discussed tracing techniques. Note that for comparison reasons, we also 
included the language level debugger. 
 

Interoperability Observability Deployment Trace Technique 
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Language Level Debugger ++ + + -- -- +/- ++ ++ + -- 
Debug Instrumentation -- ++ ++ + - +/- ++ + + + 
Pre processing - ++ +/- + - +/- ++ + -- + 
Adapter Instrumentation - + +/- + - +/- + + - + 
Stub/Skeleton Instrumentation +/- + +/- + +/- +/- + + - + 
Middleware Instrumentation +/- +/- + + ++ ++ + + -- ++ 
Interface Wrapping + + + -- - +/- -- + +/- +/- 
Network Sniffing ++ ++ ++ ++ -- -- - + ++ - 
Request Interceptor + + +/- - + + +/- +/- +/- + 
Smart Proxy + - - + -- - + + +/- + 
Pluggable Protocols + - - +/- ++ ++ + + - + 
Servant Manager - ++ + + -- - - - +/- + 
Message Filters + -- +/- + -- + - + + + 
 
Concluding we can say there is not a silver bullet which allows use to develop the ideal tracing mechanism. 
Although we can combine some techniques to increase the system observability, it will also inherit the lowest 
level interoperability and deployment of the combined techniques. For example, a combination of the Request 
Interceptor with the current Smart Proxy would create a tracing mechanism with excellent observability but with 
mediocre interoperability. One particular combination that is interesting to notice is the combination of 
Stub/Skeleton instrumentation with Request Interceptor. They complement each other on observability and both 
offer reasonable good interoperability and therefore are in our view the best combination to create tracing 
mechanism. Note that if smart proxies or Pluggable Protocols become an official OMG standard, their value as a 
trace-data interception technique would be increased dramatically. They would allow the construction of a 
transparent, interoperable tracing mechanism. Unfortunately, history has shown that the standardisation of a 
meta-programming mechanism does not make instantly interoperable between Orbs. After the standardisation of 
the Request interceptors, it tool several years before Orb vendors implemented it properly in the middleware 
solution. Because we cannot wait until that to happen, we need to look for other solutions. 
 
Because there already exists a tracing mechanism, which uses a combination of stub/skeletons instrumentation 
and Request interceptor, we have looked how to create a tracing mechanism based exclusively on the Request 
Interceptor. In spite of all its problems, we still think Request Interceptor is still one of the best trace-data 
interception techniques currently available for Corba. In chapter 7, we show how far we can push the request 
interceptor to create a transparent tracing mechanism with maximum deployment and interoperability 
performance. However, before we do, we first investigate which tools can be used for testing Corba systems and 
analyse how useful they are as a testing solution for Thales in the next chapter. 
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6 AN EVALUATION OF CORBA TESTING TOOLS  
In this chapter, we make an evaluation of Corba testing tools and compare them with each other. 
 
The structure of this chapter will be as following: 
 
• Paragraph 6.1: Criteria for comparison of Test Tools. In the first paragraph, we define the criteria we will 

compare the tools under evaluation. 
• Paragraph 6.2: Corba Test Tools Under Evaluation. In this paragraph, we review five Corba tools, which can 

be used to test Corba applications. 
• Paragraph 6.3: A Comparison Of Corba Test Tools. In the last paragraph we make a final comparison of the 

Corba test tools under evaluation based on the criteria set by paragraph 6.1. 

6.1 Criteria For Comparison of Test Frameworks  
In paragraph 2.3, we explained that traditional testing techniques would not work in a distributed system. Then 
what kind of tooling would we need in order to test Corba Applications sufficiently? In this chapter, we specify 
what functionality is desired in a good Corba testing tool. 
 
We can divide the criteria’s of the required testing tool into four criteria categories: 
 
• Message Controllability; specifies the message control the testing framework should aim for offer to create 

an effective controllable testing environment.  
• Message Traceability; specifies the tracing functionality the tool should aim for to allow tester to observe 

Corba message communication more effectively. 
• Tracing Framework Performance; allows testers to use tracing mechanism more efficiently. An efficient 

tracing tool allows a tester to trace a system in shorter time with fewer problems. 
• Tracing Framework Interoperability; specifies how the testing framework should be able to support testing 

functionality in different distributed environments.  
 
The following four sub paragraphs will give a list of each requirement category 

6.1.1 Controllability Functionality 
A testing control framework with high Controllability contains the following control requirements: 
 
• Dynamic deployment. In order to perform simple test case without changing the distributed system, the utility 

should be able dynamically connect and invoke a component interface without recompiling any source files 
or restarting any applications. To assist the tester in the invocation process, the testing utility interface 
should allow the tester to browse through exiting components collection and review available interfaces. 

• Manual invocation. Testers require a quick user-friendly Actor/Reactor utility, which allows them to manually 
create a request or reply message. Once an interface is selected, the tool could further assist the tester by 
restricting the parameter input. 

• Automation invocation. In order perform regression tests or perform complex test cases, the control 
framework should be able to execute a test script by actor and reactors utilities. The test script could be 
created by the tester by manually, generated from some static test definition language, or recorded from 
manual invocation.  

• Workload invocation. Simple test scenarios often do not represent the real world. Real world distributed 
application must cope with multiple invocation at the same time. The testing framework should therefore be 
able to create a similar environment by generating an invocation workload. This would allow testers to verify 
both functional behaviour as well as the performance of the system under stress. 

6.1.2 Message Observability  
The tracing framework should aim for the following message observability: 
 
• Message tracing: The tracing framework should allow testers to trace a component-based application on the 

lowest granularity in a distributed system, which is to trace all communication between the components. In 
order to give testers a better insight in distributed system, communication should not be restricted to request 
and reply messages but also all other communication event used by the middleware to connect and 
maintain a connection. 
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• Message visualisation. To allow tester analyse a distributed system effectively, the intercepted tracing data 
should be visualised in some understandable format. To visualise the communication between components, 
the tracing framework interface could for example use sequence diagram.  

• Message context tracing: Tracing the communication between unique processes is not enough. A tester 
needs to be able to link the source and destination of a message with existing components. The tracing 
mechanism should therefore collect context information about the component that send or received a 
message.   

• Message contents tracing: All DOC Middleware standards use some sort of communication protocol that 
enables components to send messages too each other. The parameter and result contents of these 
messages are of special interest to the tester because they enable him to verify the input with expected 
output of individual component instance. Components that are found to return unexpected results can then 
be traced further traced with traditional debuggers to pinpoint the malfunction behaviour inside the 
component.    

• Message causality tracing. In complex distributed systems, multiple invocations can happen at the same 
time. Diagnosing a distributed system demands that the tester is able to understand the casual relationship 
between invocations. This requires that testers need to be able to trace the propagation of a single request 
through a component application. A tester should therefore be able to select a logical subset from the total 
collection of tracing data in which each event is the result of a previous event.  

• Message timing analysis. Although tracing a single propagation through a network is a good way to test the 
basic functionality of a component based application, it is not a very realistic test. In a real distributed 
environment, a component-based application must be able to handle multiple requests at random intervals 
without choking. To diagnose and find time critical dependencies, testers require means to effectively 
analyse the send and arrival times of messages, the latency of messages travel and response times of 
components.  

• Message Filtering: Distributed applications that run for a long time can produce a lot of tracing events. Not 
all trace events are interesting to the tester. What a tester is interested in is to find traces with special 
properties. For example, an exception with specific message contents. Such a framework would allow 
testers to observe and record method invocation and exceptions selectively, helping the tester avoid 
potential failures that would otherwise plague the performance of a distributed application. 

6.1.3 Tracing Framework Performance  
The tracing framework should aim for the following tracing framework performance: 
 
• Distributed Tracing: Because a component-based application can reside distributed of multiple systems, a 

message sequence trough a distributed application can therefore visit multiple systems. Although a tester 
could follow a trace sequence by tracing every system a sequence flows trough, it would be awkward and 
very time-consuming. A far more effective method of tracing a distributed system would be to allow testers 
to trace distributed system from a central location. This requires that framework takes care of gathering 
tracing data from a distributed system and present it to the tester trough a single user interface. 

• Runtime tracing: In order to diagnose distributed application real behaviour, the monitor framework must be 
able to trace a component-based application at run time. This requires that the tracing process does not halt 
during execution  (e.g. tracing must be in real execution time). The interception technique should therefore 
allow the tracing framework to collect tracing data without interfering with the normal flow of execution. 

• Offline tracing. Testers need to be able to analyse large amounts complex tracing information long after the 
tracing data is recorded. Large systems that are traced over a long period can produce huge amount of 
tracing events. Every tracing event in traced data sequence can consist of multitude of complex typed fields 
that must be individually analysed by the tester. This requires that the data is stored in a persistent data-
storage device that is powerful enough to store large amounts complex typed data. 

• Online tracing. In contrast to offline tracing, where data is analysed after tracing data is collect, online tracing 
means that the tracing data can be analysed as soon as it becomes available at runtime. In a distributed 
environment, this requires the tracing framework collects tracing data, transmitting it to a central location, 
process the data, and presenting it to the tester without too much delay. 

• Minimal Overhead. One of the main problems of online tools is their interference with the observed 
environment, as the observation itself influences the system under test and potentially affects its functional 
behaviour. Thus, keeping the overhead of the tracing mechanism as small as possible by is an important 
testing requirement. A tracing framework can prevent overhead by controlling the influence of the tracing 
mechanism on the observed systems 

• Trace Configuration: Tracing every component in a system in not always desired. Testers that are only 
interested in tracing a specific list of components should be able to do so with minimal effort. Testers 
generally do not like to get into technical details. The tracing framework should therefore strive to enable 
testers to activate and deactivate the tracing mechanism with a simple interface. 
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6.1.4 Interoperability Functionality 
The tracing framework should aim for the following requirements to the interoperability: 
 
• Open Framework: A tracing framework is never finished. New advances in testing techniques will become 

available which if applied could further improve the testing process. By using an open framework 
constructed from replaceable, extendable standardised modules with well-defined generic interfaces, the 
framework would have a longer life expectancy. 

• Implementation Independence. The implementation source code of Corba component might be unavailable 
and only exist in binary format. Components that hide their implement details must still be tested. the toolkit 
must therefore be able to test components without modifying any components implementation code. 

• Language Independence. Distributed Applications made in a Language Independent Middleware solution 
can consist of components written in multiple languages. The framework tracing mechanism should 
therefore not be tied to a single programming language but instead provide an architecture that supports 
language independent tracing. This will enable testers to trace communication between components written 
in different programming languages.  

• Platform Independence. Some middleware solutions like Corba are Platform independent, which means the 
middleware, is not tied to one specific platform. In a Platform independent middleware solution, components 
based application can be scattered over hosts running different operating systems. Therefore, a tracing 
framework must be able to collect tracing data from component located on heterogeneous operating 
systems.  

• Middleware Independence. Distributed applications are not always limited to the usage of a single 
middleware solution. Distributed applications can consist of component communicating with components 
made in a different middleware. Thales architecture for example uses multiple middleware solutions for their 
distributed applications. Components made in different middleware products communicate through special 
constructed bridges that translate middleware communication from one middleware specific protocol to 
another specific protocol. In order for a tester to observe a complete trace through heterogeneous 
middleware application, the framework must be able to collect tracing information from different middleware 
products simultaneous and present it to the tester in a generic way. 

• Monitor Environment Independence. Even if the framework is able to collect all tracing data independent of 
the operating system, middleware and programming language a component is developed in, the tester does 
still need some tool to analyse the collected tracing data in. However, testers might not always have access 
to all platforms. The framework should therefore allow the tester to analyse the tracing data on any platform.   

• Standard Based. Open middleware standards like Corba are not restricted by the implementation of a single 
vendor. Although an open standard allows customers more choice, they do not make testing any easier. 
Vendors often try to distinguish them self from competing vendors by providing extra but also proprietary 
solutions. Although these additions can be very useful for developing new applications, these applications 
quickly become incompatible with the Middleware implementations from other vendors. Because Companies 
wish to switch vendors without difficulties, the tracing framework must be vendor independent. Thales for 
example, had to migrate from Orbacus to JacOrb because Orbacus support stopped. In order to be vendor 
independent, the tracing framework must avoid using propriety middleware interfaces and exclusively use 
standardised middleware interfaces.   

• Vendor Adaptability. The toolkit should strive to be compatible with most used Orb distributions. However, 
every Orb is slightly different from each other due to slightly different naming conventions and different 
implementation features. If you consider that there are over a hundred different Orb implementations, each 
consisting of multiple versions, it is not suppressing that full compatibility is close to impossible to achieve. 
The test framework should therefore support facilities that allow the administrator to make unsupported Orbs 
compatible with the testing toolkit. 
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6.2 Corba Test Tools under Evaluation  
Which tools are available on the market for tracing Corba? This chapter will answers this question by giving the 
reader an overview of tools that were designed to test Corba application. 
 
We have examined and evaluated the following Corba tools: 
 
• Lucent DSC Framework Testing Toolkit 
• Segue Silk Testing Toolkit 
• Corba Management Component Interface Testing Toolkit (MCITT) 
• Ethereal Network Sniffer 
• Corba Tracer developed by the University of Nantes 
 
Note that we were unable to give every tool an equal amount of attention due to lack of time and information. 
One tool specific, the Lucent DSC toolkit will proportionally have more attention because there was the a lot 
more information available for it and we were actually able to test it firsthand.  

6.2.1 DSC toolkit 
Until recently, the DSC Toolkit was an IDE toolkit developed by Lucent Technologies used exclusively by Lucent 
Research Groups in the development of distributed systems. Although their initial plan was to make the source 
and binaries available for non-commercial purposes, the tool is currently available under license conditions. 
Lucent Technology in Hilversum was so helpful to send us an old version of the DSC Toolkit for evaluation 
purposes.  
 
The DSC Testing Toolkit also called Monitor framework, is part of the DSC Framework. The DSC framework 
originated in the MESH project. It was created to support the design and development of a large distributed 
component-based architecture for a multimedia, multiparty services platform, named the MESH platform. The 
architecture of the MESH platform was based on the TINA architecture, which in turn is based on the ODP 
model. The DSC framework was further enhanced in the FRIENDS project. During the FRIENDS project, they 
included many elements of the Corba Component Model (CCM) in the DSC framework.  
 
Lucent original intention was to replace the DSC framework with a commercial CCM implementation when 
available. At the time, only a few freeware and commercial implementations had been announced, and no 
existing product was found which matched their needs. Therefore, they decided to make the DSC framework 
CCM compliant. However, the progress of the CCM standard was very slow and did not seem to acquire the 
necessary industry support and momentum. During the time they tried to adopt elements of the CCM 
specification in the DSC framework, they discovered many inconsistencies and open questions in the 
specification. The CCM standard also felt like to large and too complex for Lucent needs (an opinion that is also 
shared by Thales). Although they admit too have adopted some good elements from the CCM, they have no 
intentions to work any longer towards a CCM compliant implementation of DSC [DSCDoc]. 
 
Although the Testing toolkit was originally designed as a verification technique for the Distributed Software 
Component (DSC) Framework, it had many similarities with the CCM standard. The presumption was that if the 
DSC framework would be made compatible with the OMG CCM standard, it could theoretically be applied to any 
Corba based architecture. DSC uses a thin, abstract Orb layer that unifies differences between different Orb 
vendors. Although DSC can make use several different Orbs, the tool only pre configured to work with Orbacus 
and JacOrb. (The evaluation version only contained support for constructing Java Components under JacOrb or 
Orbacus), Lucent has demonstrated that they also have a prototype C++ version support the freely available 
TAO Orb. 
 
 



Unclassified  
 

 
Date: 30-06-04  Page: 63

 

  
The DSC Toolkit offers a user-friendly testing utility 
that can be configured as an actor, reactor, or both. 
DSC Test utility allows testers to create a controlled 
environment (see figure 6.1) were components can 
be prototyped by a test components. Test 
components (Actor/Reactor) can connect to multiple 
test subjects at runtime, by using Corba DII or DSI 
facilities (see paragraph 4.1.5.2). The test component 
allows the user to select a test subject, an interface, 
operation, and parameters through a selection menu. 
 
The test utility helps the tester to construct a valid 
message request or response by constraining the 
input values in the parameter tree (see picture 6.2). 
The test utility can derive this restriction data directly 
from Corba Interface Repository. The object 
reference of a target component can be obtained 
through the naming service, or can be provided 
directly as a Corba IOR string, which can be resolved 
automatically into a valid object reference. Note that 
each reactor can be controlled from a centralised test 
console, regardless of the location of the reactors in a 
distributed environment. 
 
 
 
The DSC toolkit allows the Actor to run Actor script 
which can be used automatically invoke target interfaces. The actor script is written in a Java enabled version of 
the popular Tcl script and is powerful enough to simulate complex test cases. Besides using the Tcl script for the 
automation of the Actor, the scripting language can also be used for the automation of the Reactor. A Reactor 
script can be programmed to respond to any invocation on a Reactor component. A Reactor can therefore be 
used as a substitute for components that have not yet been developed but which external interfaces are known. 
Reactor components are automatically generated from component specification files by the DSC Generation 
tool. They provide an empty implementation component, which can be used in a testing situation where the 
components being tested need to interact with other components, which are not yet available. 
 
The DSC tracing mechanism is customisable which allows better control over the overhead it invests in the 
observed distributed application. The graphical user interface (called Viewers) only requires the tester to select 
the component interaction points for examination. The framework management mechanism  
The tracing mechanism generates all necessary information needed to identify the component, its interface, the 
operation, the parameter values and its source and destination.  
 
Before any component interaction can be traced, the components in the System Under Test (SUT) have to be 
prepared for usage by the tracing framework. The DSC framework must both add tracing code to the stub and 
skeleton source code generated by the IDL compiler, as well install interceptors on the Container Orb. By 
default, DSC will automatically augment all component stubs and skeletons) created by the IDL compiler. 
Although the extra overhead caused by the tracing mechanism is low, changing some variables in a property file 
can manually turn off the augmentation. Once the modified stub and skeleton code is recompiled, the 
interception mechanisms that is now located between components, can send intercepted communication events 
to a predefined location (see figure 6.4). Whether or not this tracing code is executed depends if the ‘monitor 
code’ was activated before the component was instantiated.  
 
To activate the component tracing mechanism, the container that instantiated the component, can manually 
activate tracing behaviour in a component property file. This file also includes property settings for the 
initialisation of the Orb. Because the Java version of the DSC Framework can use the Orb property setting for 
the activation of the interceptors with parameters, it requires no additional changes to the Component 
implementation. However, the C++ version is a more complicated because not all C++ Orb support initialisation 
of the Request Interceptor by parameters. In these cases, the component source code must be slightly modified 
to register the interceptors.  
 
 

Actor
Test

Subject

Environment
(Reactor)

Environment
(Reactor)

Figure 6.1: Actor Reactor Framework 

 
Figure 6.2:  Actor Parameter tree interface
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Figure 6.3: Message Sequence Diagram 

The monitoring framework in DSC is part of the 
component runtime that observes invocations at the 
component interface level. The tracing framework 
generates all the necessary information needed to 
identify the component, the involved interface, the 
operation, the parameter values, etc. The collected 
tracing data can be used for generating graphical 
representations in the form of a message sequence 
diagram. Because the events produced by the tracing 
framework are self-contained and ordered, a specially 
designed visual tool can dynamically generate a 
message sequence diagram showing the interactions 
between the DSC components in a distributed 
application.  
 
After an invocation, the tool will immediately generate 
and display a complete message sequence diagram of 
the last invocation (see figure 6.3). The complete 
diagram can also be saved to a database and analysed 
off-line. The DSC tracing framework can accomplish 
this by intercepting the interactions and sends the 
intercepted contents data along with tracing context 
data to a central Trace Server Component. Figure 6.4 
shows how the Trace Server component forwards 
stores recorded interaction in a Local Database, (see 
figure). 
 
The DSC tracing framework is extendable because it 
offers an offers an API for development of custom 
event consumers and an API for the extension of the 
event model by adding support for new type of events. 
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Figure 6.4:  DSC Framework Architecture 
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Lucent Technologies developed their test tool even before Corba Request Interceptors were available. Their 
tracing mechanism was initially based exclusively on instrumented the stub and skeleton with tracing 
functionality. Besides reading the contents information of an invocation, they added context information into the 
message by wrapping the interface with additional parameters. The context information, contains a logical clock 
value, has to be transmitted along with every message in the SUT. The logical clock value is a technique used to 
construct message sequence diagram by the viewer utility. The drawback of this interface wrapper technique is 
that it requires both stub and skeleton to be instrumented with tracing functionality. This is because an 
instrumented skeleton can only read the extra parameter data send by instrumented stub. Communication which 
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used Corba object services that cannot be instrument like Corba transaction service and event service would 
become impossible.  
 
Fortunately, the OMG Portable Interceptor solution arrived just time to solve their tracing mechanism problems. 
Instead of using their proprietary wrapper technique, they could replace it with the Service Context mechanism 
of Corba Portable Interceptors (see appendix I). Portable Interceptors were in contrast to their original wrapper 
technique, message transparent, which means that it will be compatible with all Corba communication, including 
transaction and event services.  
 
However, they could not abandon their instrumentation technique completely because of two reasons.  
• The first reason is that JAVA interceptors cannot read contents information exchanged between components. 

This contents information is necessary in order to verify the functional behaviour of the Components Based 
System.  

• The second reason is that beside contents information, the instrumented stub/skeleton can also supply 
component context information like component ID. Interceptors cannot generate this information because 
interceptors can only be installed on an Orb that is shared by multiple components in the container. A request 
interceptor installed on a Container Orb therefore has no way of knowing which component did an invocation.  

 
The DSC framework therefore uses a combination of Request Interceptors to transmit context data and stub and 
skeletons instrumentation for accessing the message contents data and client/server identity. The context 
information (logical clock and identification data), which has to be exchanged between stub/skeleton and 
interceptors, is achieved by using a slot in the PICurrent (for details see appendix J). Figure 6.5 illustrates how 
multiple components use the PICurrent to transfer context information to the interceptor  
 
 CCM CONTAINER 

Component A 

PICurrent slot 

Component A 

Component A 

PICurrent slot 

PICurrent slot 

CORBA ORB 

Inter ORB 
communication 

PICurrent slot 

Figure 6.5: DSC Client Context Data Flow 
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The initial implementation of the DSC test tool used a post IDL processor to instrument the stub and skeleton 
generated by the IDL compiler. The post IDL processor used standard syntactical analysis techniques to 
instrument the stubs and skeletons with additional tracing code. Because this instrumentation technique proved 
to be more complex than anticipated, they are now using an instrumented IDL compiler for the generation of 
Java stub and skeletons. Although their Java IDL compiler depends heavily on the JacOrb IDL compiler, it is 
only marginally modified. The stubs and skeletons generated by this JAVA IDL compiler are exchangeable by all 
possible Java Orb implementations. This is because the stub and skeleton classes in Java have to conform to a 
specification. However, this will not work for C++ stub and skeletons, for which no standard stub or skeleton 
class specification exists. The prototype C++ IDL compiler must therefore be manually instrumented for usage 
other that the currently supported Corba implementations. Fortunately, the instrumentation is relatively simple to 
perform by the developers at Lucent Technology. Summarising we can conclude that the DSC Toolkit offers 
both a good tracing framework for the verification of most  Corba middleware applications.  
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6.2.2 Corba Trace 
Corba Trace [Corba Trace] is an open source Corba Java tracing tool, which can be downloaded and used 
under the free license of the Free Software Foundation. The tool is developed over a period of two years (2000-
2002) by a team of students at the University of Nantes in France. Although Corba trace is written in SunJava 
1.4, the blue prints are available to rewrite it in any other Corba compatible language. However, the 
downloadable Corba trace version only supports Sun JDK 1.3.1 / 1.4 with Orbacus Orb 1.4.0 / 1.3.4 on the 
Windows 2000 or Linux operating system. Although they provide the full design documentation of Corba Trace, 
it is only available in French.  
 
Corba Trace tracing mechanism is based on combination of Request Interceptors (see paragraph 5.2.1) and 
Adapter Instrumentation (see paragraph 5.1.3). In the figure 6.6, we can see the Adapter in active state after 
deployment. The Adapter, which is located between the Corba object and Stub/Skeleton, collects contents data 
(in and out parameters) and context information (component name). The Request Interceptor is used for 
transmitting tracing context data between the Orbs.  
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Figure 6.6: Adapter wraps Orb interface and logs contents information 
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During the execution of the Corba Application, the tracing 
mechanism intercepts Corba communication and stores it 
locally in logs. After the tracing process is finished, the 
produced logs (which have been created in XML format) are 
processed with the Log2SequenceDiagram utility into 
message sequence diagram. In figure 6.7, we can see how 
Log2XMG processes the XML produced by an interceptor 
into XMI, which can be viewed by UML sequence diagram 
viewer.   
 
Before any tracing data can be visualised, the log files 
created by tracing mechanism must first be collected, filtered, 
and processed. However, Corba Trace does not contain any 
integrated data distribution framework like the DSC Toolkit 
(see paragraph 6.2.1). The user therefore must transmit the 
intercepted tracing data manually. Fortunately, Corba Trace 
makes life a little easier by offering an integrated FTP client 
tool, which allows the user to download Log files from traced 
systems.  
 
 
 
 
 
 
 
 
Before the intercepted tracing data can be analysed by a viewer, the collected Log files must first be processed 
into a readable format with the Log2SequenceDiagram utility. 

 
Figure 6.7: Processing of intercepted tracing data into 
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The Log2SequenceDiagram utility performs the following processing tasks: 
 
• Parses log files, and merge all partial-messages to get full message. 
• Synchronises all local objects clocks to a common clock.   
• Applies some used defined filters to get to filter out undesired information. 
• Generates a sequence diagram in some common file format, which can be directly display by a viewer. 
 

 
Figure 6.8: Corba Trace Filter GUI 
 
Because intercepted tracing data can contain irrelevant 
tracing data, the Corba Trace Log2SequenceDiagram 
utility can apply filters on the collected log files before the 
final sequence diagram is generated (see figure 6.8).  
 
The following types of filters (see figures 6.9, 6,10, 6,11) 
can be applied on the log files: 
• Message type filter allows the filtering of intercepted 

messages based of the type of communication event. 
• Date Time filter allows the filtering on the interception 

timestamps generated by the tracing mechanism. 
There are three types of date filters: after a date, 
before a date, or between two dates.  

• Method Contents filter. For each operation, the 
interface name and operation arguments' values can 
be specified. Defined argument types can be one 
specific type and value, or an exact argument position 
and specific value. 

 
Although the filter mechanism does not allow the 
automatic clustering of objects with a casual relation ship, 
the user narrow a sequence diagram to a set of 
interaction objects by applying filters on either object level 
global level. 
 
Although intercepted Corba communication cannot be 
monitored online, the message contents data and message interaction data can be analysed offline by 
inspecting the generated files with a compatible viewer.  
 
The Log2sequencediagram utility can generate the following common formats:  

 
Figure 6.9: Message Event selection 

 
Figure 6.10: Message Data selection 

 
Figure 6.11: Message Method selection 
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• SVG is the format recommended by Corba Trace because it provides the best graphical quality and is 

provided with the tool 
• XMI is the most common formats and can be viewed by any tool that supports the XMI format like common 

UML tools such as MagicDraw (see figures 6.12 and figure 6.13) and Rational Rose. 
• Latex is also a common format, which can be viewed by any compatible Latex viewer. 
 

 
Figure 6.12: MagicDraw Message Data Tree Viewer 
 

 
Figure 6.13: MagicDraw Message Sequence Diagram Viewer 
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Although the ‘Corba Trace’ tracing mechanism cannot be configured at real time, it can be set manually by 
setting the active logging policy level. Before any Corba messages can be traced, both client and server source 
code must be instrumented with additional tracing code. In the two source code examples below we can see 
how existing component are instrumented with a proxy object, which only need to initialise the Adapter with an 
existing object reference. While this is an insignificant modification in cases where the source code of 
components is available, it precludes the use of this tracing mechanism in incases where commercial off-the-
shelf (COTS) components are used. 
 
Once initialised, the proxy object behaves exactly the same original object reference object. The instrumentation 
will trick the Corba object thinking that it is communicating with the stub or skeleton while in fact it communicates 
with an intermediate proxy object. Although this programming technique minimises the instrumentation required 
in a source code, an adapter is very Orb implementation dependant. This is because every Orb implementation 
behaves slightly different and offers different functionality. Fortunately, the design documentation can be used to 
make the Adapter compatible with other Orb distributions.  
 
A bigger problem however, is that this instrumentation technique will not work in CCM. That is because Corba 
Trace initialisation procedure requires an object reference and Orb object. Both are not available in a CCM 
Component. Although underneath, CCM still uses Orb object and object reference, you will not find them in the 
client or server source code. Instead, they located in the component home, which maintains all object reference 
and the container, which initialises the Orb. Nevertheless, Corba trace is still a useful tool for testing Simple 
Corba applications. Further study should therefore be done to determine whether Corba Trace mechanism could 
be adapted for CCM applications. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Instrumented server source example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Instrumented client source example 

import corbaTrace.InterceptorServer; 
... 
class MyClass { 
 ... 
 interceptorServer= new InterceptorServer(); 
 ... 
 Orb orb = org.omg.Corba.Orb.init(args,props); 
 obj = orb.resolve_initial_references("RootPOA"); 
 POA rootPOA = org.omg.PortableServer.POAHelper.narrow(obj); 
 poa_interceptor = interceptorServer.create_poa(orb, rootPOA, "myHelloPOA"); 
 ... 
 obj = interceptorServer.activate_object(poa, helloImpl,"My Component"); 
 Hello hello = HelloHelper.narrow(obj); 
        ... 
 orb.run(); 
 orb.destroy(); 
} 

import corbatrace.InterceptorClient; 
... 
class MyClass { 
 ... 
 interceptorClient = new InterceptorClient(); 
 ... 
 Orb orb = Orb.init(args, props); 
 ... 
 obj = orb.string_to_object(ref); 
 obj = interceptorClient.active_interception(obj, orb); 
 interceptorClient.activate_log(orb, "My Component"); 
 ... 
 Hello hello = HelloHelper.narrow(obj); 
 ... 
} 
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6.2.3 The Silk Testing Toolkit  
Segue Software has one the largest e-Business testing customer bases and describes their Silk product family 
as 'e-business reliability solutions'. They have developed a large range of commercial available tools for testing 
distributed systems, which can operate standalone or in combination with each other. They divided their testing 
framework into separate tools, each aiming to cover different aspects of testing. 
 
Because one of these tools, called Silk Observer was specifically made to trace Corba applications, we were 
very anxious to take a closer look at this tool. Unfortunately, the tool is no longer commercially available. Due to 
lack of interest from the industry, and the introduction of other component technologies like .NET and Java 
Beans which have a much larger market, Segue quit all support for their tracing tool. They claimed to have 
integrated some of tracing technology of Silk Observer into a special edition of Silk Performer, called Silk 
Performer Component Test Edition (see figure 6.15). Although, the Silk Performer Component Test Edition 
currently does not support Corba at all, Segue Software has revealed that there are plans to integrate Corba in 
their Component-testing product in future version. Their tool would then be able to trace Component based 
application consisting of multiple component models including Corba/CCM. 
 
Because Segue Software offers many testing tools, we will restrict ourselves to the most interesting tools for 
creating a testing framework. In the next sub paragraphs we describe following segue testing tools:  
• Silk Observer: a message tracing and monitor tool  
• Silk Test: a actor/reactor test tool with script automation  
• Silk Performer: a message record and workload generation tool 

6.2.3.1 Silk Observer 
Silk Observer facilitates monitoring and diagnostics in a distributed application environment by capturing and 
presenting communication details between Corba objects. Silk Observer was on of the first testing tools 
designed specifically for tracing Corba applications. Black and White Studios developed the Silk Observer, 
which was originally called Object Observer. In 2000, Black and White Studios was taken over by Segue 
Software, which made the tracing tool part of their testing tool family and re-branded the tracing tool to Silk 
Observer.  
 
Silk Observer provides the following testing tool support:  
 
• A Profile Editor allows the user to specify where to monitor traffic ‘on-the-fly’. By selecting which parameter, 

return values, methods, object types should be monitored, the user can define filter sharp profiles to scope 
the traffic to only the interfaces of interest. The Profile Editor is able support these features thanks to the 
Corba interface repository. Moreover, the user can specify the monitoring points i.e. client sending, server 
receiving, server sending or client receiving. The configuration is saved in files and can be assigned to an 
instrumented Corba object at runtime. 

• A Monitor for graphical display of the data. Using the viewer, a tester can selectively monitor and record 
method invocations and exceptions to avoid or eliminate bottlenecks, race conditions and other potential 
failures that can impact the performance of an application. Information presented includes which application 
components are running, which objects are being accessed, and the methods being invoked (including 
parameter values and thrown exceptions). 

• An Analysis Tool in which data recorder combined with a parser for off-line request-reply timing analysis of 
tracing data stored in log files. The parser provides some communication timing analysis functionality by 
computing request latency measures from the timestamps of the request reports. Object/Observer has to 
parse the message buffers completely in order to retrieve and reconstruct the parameter and return values 
of the requests. 

 
Although Silk Observer supports monitoring of both Java and C++ applications, it can do so only with the Orbix 
and Visibroker Orbs on the Windows or Unix operating systems. Silk Observer tracing functionality is based on a 
combination of instrumentation of the component source code and a proprietary message logging facility. The 
instrumentation, which is similar to Corba Trace (6.2.2), is achieved by linking an additional class library to the 
source and by initializing the tracing mechanism with the interface object reference of the servant.  
 
Each CORBA object that is to be monitored must instantiate a so-called Probe object. The Probe object collects 
data about method invocations and stores that data in local log files. The Probe object also takes care of 
retrieval of context data, process identification data, and retrieves profile data from Profile editor. The Probe can 
achieve message tracing by using a proprietary filtering message logging functionality offered by the Orbix or 
Visibroker Orb. This logging facility which similar to request interceptors, allows the interception of 
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communication passing from or to a Corba object. The advantage of this technique is that in contrast to request 
interceptors, the filters do not have to be registered. This means Silk Observer can modify the tracing overhead 
without restarting the Corba object Orb. However Silk Observer tracing mechanism reliability on proprietary 
filtering, it make in impossible to use the tool with Orbs, which do not support this proprietary functionality.  
 
Figure 6.14 illustrates the architecture of Silk Observer in which data flows from tracing mechanism to monitor 
tools and from monitor tools back to tracing mechanism. On the one hand, it gathers request traces from the 
Probe objects and forwards them either to the viewer GUI or to a data recorder that stores the tracing data in log 
files. On the other hand, it forwards configuration requests from the viewer GUI to the corresponding 
instrumented Corba objects. Silk Observer data distribution uses standard Corba objects, which open to user 
specific changes because the OMG IDL interfaces from all Corba objects are available and its usage is well 
documented. 
 
For the communication between tracing mechanism and graphical user interfaces, Silk Observer tracing 
mechanism uses a separate Collector object on each monitored host. In order for the Collector component to be 
aware of deployed Probe objects, the Probe objects must register itself to the Collector when they are created. 
The Collector object, forward the recorded information to a central component called the Observer. The 
Observer keeps all information about the system in a central database. This database may be queried for new 
data continuously, resulting in actual time processing. The data may also be analyzed at some later point in 
time. 
 
The amount of information recorded by the Probe objects is controlled by so-called profiles. A profile defines 
which interfaces, messages and parameters should be recorded. When Probe objects are created, they request 
a profile from their Collector. The Collector in turn contacts the Observer to obtain the requested profile. In order 
to influence the amount of information collected at runtime, new profiles can be uploaded from a Monitor 
component to deployed Probe objects in the system. The Probe objects combined with the ability to change the 
filtering conditions, allows user to reduce of the amount of information that needs to be processed to a minimum.  
 

 

 

 

Figure 6.14: Silk Observer Architecture 
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6.2.3.2 SilkTest 
Silk Test, originally known as Silk Pilot, is an object-level solution for validating the behaviour of Corba-based 
servers. The GUI offers an easy point-and-click mechanism that allows testers to connect to Corba servers and 
to issue requests based on the interface descriptions that are automatically retrieved from a Corba Interface 
Repository (see also paragraph 4.1.5.1). The sequence of method calls issued during a session can be 
converted into script code for later replay.  
 
Silk Test is available in a Standard and Professional Editions. The Standard Edition is an entry-level product 
featuring interactive testing of objects. The Professional Edition ads test automation and code generation 
capabilities. Silk Test is aimed to allow the tester to test the behaviour of distributed objects within application’s 
server components. The Silk Test supports regression testing by an integrated testing scripting language called 
4Test. The 4Test scripting language is an object-oriented language specially designed for regression testing. 
Because the Silk Test tool interprets the 4Test scripting language, it is also platform independent. Silk Test can 
be used to test Corba servers implemented in any programming language, as well as pure Java servers through 
local public interfaces and RMI. Silk Test also explicitly supports the Enterprise JavaBeans (EJB) component 
model.  

6.2.3.3 Silk Performer 
Silk Performer provides a load testing facility for CORBA servers. Load testing is based on observation of IIOP 
packages with the Internet Recorder. IIOP is Corba message format, which uses standard TCP/IP network 
protocol for transmission (see also appendix B). The Internet Recorder is integrated into the socket library, and 
records IIOP traffic before transmitting it to the actual clients. The IIOP packages can be replayed exactly as 
recorded or configured to generate different traffic profiles. Reconfiguring and changing invocations parameters 
types cannot be determined by observing IIOP only. Silk Performer therefore is able to extract parameter 
information from interface definitions, which enables parameters types to be associated with IIOP messages. 
With a workload wizard it is then possible to generate traffic seemingly coming from different machines with a 
variable number of concurrent users with variable transaction frequency. During the load tests, results can be 
presented with a GUI tool showing virtual users, transaction status, response times, data throughput, and 
occurring errors. 
 
Segue Software now also offers a special version of Silk Performer called Silk Performer Component Test 
Edition which can verify the performance and interoperability of remote components. Unlike unit testing tools 
which only evaluate the functionality of a remote component being accessed by one user, Silk Performer 
Component Test Edition can tests components under concurrent access by up to five virtual users to emulating 
realistic server conditions (see picture below). However, the new tool supports almost all popular middleware 
products (including Microsoft new middleware product .NET) except for Corba.  

 
Figure 6.15: Silk Performer Component Edition Performance Test 
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6.2.4 Ethereal  
Ethereal is an open source, freeware network sniffer that is able to capture network traffic. Data can be captured 
“off the wire” from a live network connection, or read from a captured file. Live data can be read from many types 
of network including Ethernet used by the Internet. The main advantage of this approach is that it is completely 
transparent because neither the middleware nor the component needs any change. However, tracing Network 
communication involves very low level and tedious work. Besides logging network traffic, the sniffing tool also 
allows observer to analyse communication statistics. These statistics are useful for detecting network traffic 
problems. The main feature which makes Ethereal a possible candidate for Corba tracing tool is its ability to filter 
it captured traffic. A filter creation GUI allows users to create filters on any protocol or field that Ethereal knows 
about. Ethereal Version 0.9.14 currently supports over 407 protocols, including GIOP, Corba communication 
protocol (see appendix B). By applying a special GIOP filters, Corba messages could be separated from the 
network traffic noise (see figure 6.15). Note however that communication between components hosted on the 
same machine cannot be inspected because these messages do not travel over the network. Although it 
theoretically possible to use Ethereal sniffing tool to trace Corba Application on a Host to Host level, it will be 
very impractical to pull it off. Each captured raw Corba message must manually dissected into useful tracing 
information and large distributed can only be performed offline from captured files. On the other hand, it is fully 
transparent and can be used with virtually no latency overhead to the distributed application.  
 

 
 
Figure 6.16: Ethereal Message viewer 
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6.2.5 MCITT  
The Manufacturer's CORBA Interface Testing Toolkit (MCITT, pronounced "M-kit") reduces the amount of labour 
required to verify the behaviour of components in a complex distributed system. It was developed in support of a 
project co-funded by the NIST Advanced Technology Program. Although the project has ended and no future 
releases are expected, It is now a freeware stand-alone tool which can be freely download directly from the 
OMG website.  
 
The MCITT toolkit minimises the amount of effort needed to produce simple emulations (dummy components) 
that can be used to replace servers in a testing scenario. The MCITT accomplishes this by allowing the user to 
generate source code files in a higher programming language like C++ or Java. The generated test emulation 
application consist of CORBA boilerplate code, memory management, and stubs for unused operations. The 
generated emulation code also provides conformance test assertions, automatic inclusion of conformance test 
boilerplate, and timed loops for performance evaluation. Test assertions can even be derived automatically from 
Component Interaction Specifications. Although MCITT can create automated controlled environment with 
minimal afford, the definition language only supports static testing scenarios and does not supports any 
interactive manual invocation modes.  
 
There are two complementary ways of defining behaviours for dummy components: 
• The Procedural way, by using Interface Testing Language (ITL). ITL is a super-simplified procedural 

language for specifying and testing the behaviour of Corba clients and servers. Besides the obvious 
advantage of script languages, ITL also offers specialised support for conformance testing, performance 
testing and server emulation. The ITL compiler uses a set of files called a binding to translate ITL into the 
implementation language. Different bindings can be created to absorb the differences between one platform 
and the language, thus achieving a higher degree of platform independence.  

• The Declarative way, by using Component Interaction Specifications (CISs). Unlike an ITL file, which 
specifies the behaviour for one component only, a CIS can describe all of the interactions between all of the 
components in the system. A CIS can be used to generate multiple servers that will execute the scenario 
that it describes. An interaction scenario consists of a tree of Corba request having specified input, outputs, 
and/or returns values. The tree is rooted at the test client that initiates the entire chain of events. In order to 
capture the tree structure of the interceptions in a flat ASCII script, an outline numbering convention similar 
to that UML Collaboration Diagrams is used. 

 
The figure right illustrates the process by which a server is built using MCITT. The process is similar to that used 
to build a CORBA server from IDL (see also paragraph 4.1.4) and a C++ implementation, but in this case the 
C++ implementation is generated by MCITT from the ITL and/or CIS files that the user provides. The advantage 
is that it is less labor-intensive and less error-prone to specify the behaviours needed for a testing scenario in 
ITL or CIS, letting MCITT generate all of the boilerplate code and stubbed-out operations, than it is to implement 
the entire scenario directly in C++. A "smaller win" is that equivalent servers can then be generated for different 
platforms with relative ease by selecting different bindings when MCITT is invoked. Another advantage of static 
generated test servers is that it can be used in combination with any tracing instrumentation technique. 
 

 
Figure 6.17: MCITT Test Server generation 
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Currently, the MCITT distribution comes with bindings for Orbix 2 with the Sun C++ compiler (Solaris) and the 
Visual C++ compiler (Windows NT 4.0), and a partial binding for OrbixWeb 3. By copying and modifying the 
existing bindings with a text editor, developers can easily create bindings for other platforms. The platform 
changes can then be applied to all ITL compilations that select the new bindings. 
 
Beside ITL and CIS functionality, the MCITT offers also following supporting tools: 
• Idlmkmf is a specialised IDL make makefile utility. It generates makefile rules for all the IDL files in the 

working directory, plus a few useful variable definitions. Then it is only necessary to add rules specific to the 
clients and server being build to produce a complete makefile for the Corba application. 

• TEd is the NITS Test Editor. It is a tool for non-interactive editing of test scripts and programs. Ted is used 
for example to automate the migration of ITL files from a C++ binding to JAVA. Written for the NITS SQL 
conformance-testing program, it provides much of the functionality of the standard Unix tool sed, but is 
more portable and has some operational differences that make it better suited for editing test cases. 
Because of its usefulness in this regard, it has been included in MCITT.  

 
Although MCITT cannot be used to trace the interaction between components directly, it can be used for the 
construction of a controlled testing environment, which logs all Corba communication between interfaces. 

6.3 An Evaluation Of Corba Test Frameworks 
In this paragraph, we will try to compare the different Corba testing tool based on the criteria specified by 
paragraph 6.1. For every criteria group, we made a separate subparagraph containing a table, in which we rated 
every individual criterion for every evaluated tool. Note that criteria that could not be compared validly are rated 
as not applicable (n.a.). In the last subparagraphs, we will make our final comparison based on the information 
of the previous subparagraphs and give our recommendation of the best tracing for Thales. 

6.3.1 Controllability Functionality 
Based on the information available to us we evaluated the performance of the controllability functionality of the 
Corba testing tools with the following conclusions: 
 
Test Tool Functionality Comment Rating 

Dynamic 
Invocation 

By using Corba Interface Repository, DII and DSI, the DSC tool is able to offers a 
user-friendly GUI, which supports the dynamic selection and connection with 
components interface and helps the user create a correct message by constraining 
message input. 

++ 

Manual Invocation The DSC actor/reactor tool can be used in manual mode, interactive mode 
(interruption mode) and fully automated mode.  

++ 

Automatic 
Invocation 

For automation the actor/reactor utility can use the popular Tcl scripting language, 
which allows the simulation complex component behaviour. 

+ 

DSC Testing 
Toolkit 

Workload 
Invocation 

Although DSC does not offer active workload support, testers can use multiple 
scripted actor/reactor utilities to create a realistic workload. 

+/- 

Corba Trace  Corba trace does not support any controllability functionality itself and relies on 
the usage of external test tools.  

n.a. 
 

Dynamic 
Invocation 

The Silk Test GUI can connect and issue request based on the interface 
descriptions that are automatically retrieve from the Corba Interface Repository. 

+ 

Manual Invocation Although Silk Observer self cannot invocate any component, Silk Test offers 
good manual invocation functionality. 

+ 

Automatic 
Invocation 

The Silk Test supports regression testing by a proprietary integrated testing 
scripting language called 4Test. However, the 4Test scripting language is an 
object-oriented language specially designed for regression testing.  

+ 

Silk 
Observer/Test/ 
Performer 

Workload 
Invocation 

Silk Performer is able to record IIOP traffic, modify its parameters and use it to 
generate a large workload  

++ 

Ethereal Sniffer  Ethereal network sniffer does not support any controllability functionality and 
relies on the usage of external test tools. 

n.a. 

Dynamic 
Invocation 

The MCITT will use Corba DSI and DII services for the connection to other 
components. 

+ 

Manual Invocation Although the MCITT tool cannot send a simple invocation directly, it is able to 
generate and launch a small scripted component performing the same action. 

+/- 

Automatic 
Invocation 

MCITT can generate multiple automated test components from a single definition 
file, which will save the tester time and prevents. 

++ 
 

MCITT 

Workload 
Invocation 

Although MCITT was not originally indented for this purpose, the ability to 
generate multiple test component from a single file can be exploited to create a 
large group of test component producing a large invocation workload 

+ 
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6.3.2 Trace Observability Functionality 
Test Tool Functionality Comment Rating

Message tracing The DSC toolkit is able to trace all message communication flowing through distributed 
system including those generated by DSC control utilities 

++ 

Message 
visualisation 

The DSC toolkit generates a sequence diagram from all traced communication events. The 
sequence diagram contains invocation information and can be zoomed. 

+ 

Message context  An invocation message contains both a client and server name, which is automatically 
derived from the IDL file. In order to make instance uniquely identifiable, the component 
name is concatenated with a generated postfix  

++ 

Message contents The DSC toolkit is able to read all message contents information with it instrumented stubs 
and skeletons, which is exchangeable with all Corba implementations. 

++ 

Message casualty Message casually plays a central role in the DSC trace framework. The DSC tracing 
mechanism collects causality information at all interception points, which can be separately 
visualised in the sequence diagram. 

++ 

Message timing Although DSC tracing mechanism collect tracing information, it must be manually analysed 
by the tester. 

+ 

DSC 
Testing 
Toolkit 

Message filtering The DSC of some basic message filtering behaviour, which can be set by modifying the 
property files. 

+ 

Message tracing Although Corba Trace is able trace most Corba message communication, it will not be able 
to trace message produced by external component testing tools. This is because the tracing 
mechanism requires the modification of it control tool source code which not always 
available. Corba trace therefore requires the tester to create his own instrument 

+ 

Message 
visualisation 

Corba trace can generate a UML sequence diagram based on log files, message types, 
message contents and time stamps a view in multiple formats  

++ 

Message context Although an intercepted invocation can contain both client and server name, it name must 
be manually instrumented in the Corba objects source code. 

+ 

Message contents Although The Corba trace is able to read all information inside a message with adapter 
mechanism, it must manually instrumented in every Corba object source code. 

+ 

Message casualty Although the sequence diagrams produced by Corba Trace can be used to derive some 
casual relation between message, it will does not actively support causality tracing. 

+/- 

Message timing Although Corba tracing mechanism can collect timing information, it must be manually 
analysed by the tester. 

+ 

Corba 
Trace 

Message filtering Although Corba trace mechanism offers some filtering capability, it must be manually set in 
the Corba object source code. 

+ 

Message tracing Silk Observer is able to trace all message communication generated by component using the 
instrumented libraries.  

+ 

Message 
visualisation 

Although we know Silk Observer can visualised intercepted message with a viewer, we 
know little of the characteristics of the viewer. 

+ 

Message context With the classes instrumented in the source code, Silk Observer is able to collect context 
data 

+ 

Message contents Because the tracing code is instrumented in Orb itself, it is able to access all message 
contents information. 

++ 

Message casualty Although Silk Observer does not actively supports causality tracing, Silk observer can be 
used to determine the relation between messages by comparing timestamps. 

+/- 

Message timing 
analyses 

Silk Observer support the ability to perform automatic timing analysis of intercepted 
message 

++ 

Silk 
Observer 

Message filtering Silk Observer allows tester to define filter profiles to scope the traffic to only the interfaces, 
methods, or parameters of interest. 

++ 

Message tracing Although The Ethereal network sniffer is able to intercept all message communication 
between computers, message communication between components located on the same 
computer cannot be detected. 

+/- 

Message 
visualisation 

Ethereal sniffer does not support any visualisation of messages. -- 

Message context Messages only contain the name of the interface being invoked, not the component name of 
either client or server. 

- 

Message contents Although Ethereal sniffer is able to capture, filter, and transform the message contents into 
some readable format, it will be very hard to determine which component produced it. 

+ 

Message 
causality 

By comparing timestamps, a tester could reconstruct the causality between messages 
created by simple test cases. However, it will quickly become very hard for complex test 
cases. 

- 

Message timing 
analyse 

Although Etherial offers some good statistical time analysis function, the fact that it can 
only analyse intercepted network message limit its use 

+/- 

Ethereal 
network 
sniffer 

Message filtering Etherial filter mechanism allow the exclusion of undesired messages + 
MCITT  Except for the invocation results returned by its non-interactive test components are not able 

to observe any internal Corba communication. 
n.a. 
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6.3.3 Tool Performance  
Test Tool Functionality Comment Rating

Distributed tracing Locally intercepted messages data is automatically distributed to global trace server, 
which can distribute the tracing data further to multiple viewers.  

++ 

Runtime tracing Because DSC tracing framework uses asynchronous communication for the distribution 
of intercepted trace data, Corba applications under test will not be interrupted. However, 
there exist a small chance the extra communication overhead will overload the Orb 
causing brief interruption to the Corba application. 

+/- 

Online tracing The DSC tracing distribution framework allows tester to analyse intercepted tracing 
messages online during the interception process. 

+ 

Offline tracing Every viewer will locally store received tracing data, which can be viewed offline 
anytime. However, the locally stored tracing data cannot be modified.  

+ 

Tracing overhead  In order to minimise overhead, intercepted trace data is locally buffered before it 
distributed to the viewers. However, due to the extra overhead caused by the trace data 
streams, context data and interceptors, both the application under test as the overall 
system will slightly be reduced. 

+ 

DSC 
Testing 
Toolkit 

Trace configuration Although DSC does support an integrated online configuration interface which  allows a 
user to select the desired interface directly in the monitor. In order to activate the DSC 
tracing mechanism, the user must set some local configuration files, call the 
corresponding makefile and redistribute the components files to the distributed location.

+ 

Distributed tracing Although the user must manually collect tracing data located in local stored log files, 
the GUI has a build-in FTP client that can help the user download all log files to one 
central location.  

- 

Runtime tracing By storing intercepted tracing data in local log files, the tracing framework will not 
interrupt Corba applications 

+ 

Online tracing Tracing information can only be analysed effectively after the test completed, the log 
files has been collected, filtered, and processing into a viewable format.  

-- 

Offline tracing Collected tracing data can be analysed offline any time afterward by standard viewers, 
even by users who do not have installed the Corba trace tools. Normal text editors can 
modify both raw log files and trace export files.  

++ 

Tracing overhead  By storing tracing locally in log files, the trace mechanism does not generate additional 
communication overhead. However, the usage op Corba Portable Interceptor will 
always introduce a small delay. 

+ 

Corba 
Trace 

Trace configuration Each Corba application must be manually instrumented with some specific library calls. - 
Distributed tracing The Silk Observer tracing mechanism is able to collect tracing data from multiple hosts 

and send it to a central viewer 
+ 

Runtime tracing All instrumented object can be traced at runtime + 
Online tracing The viewer is able to display intercepted tracing while the tracing mechanism is still in 

progress. 
++ 

Offline tracing Tracing data is stored in log files, which can be analysed offline. + 
Tracing overhead  The trace data distribution steams generate most trace overhead. + 

Silk 
Observer 

Trace configuration Although all components under test must be manually instrumented with a single library 
call, once instrumented the tracing mechanism can be configured from a central 
graphical user interface.  

+ 

Distributed tracing Although Ethereal sniffer can capture broadcasted network message communication 
from multiple systems, it does not support distributed tracing from multiple sniffing 
locations. 

+/- 

Runtime tracing Because Etherial sniffer only listens to existing network traffic, it will not change the 
runtime behaviour at all. 

++ 

Online tracing Captured network messages can be inspected on arrival. ++ 
Offline tracing Captured network messages can be manually stored and can be analysed afterwards. + 
Tracing overhead  When Etherial sniffer tool is deployed on a computer system, which does not contain 

any components, the Corba application will not be interfered in any way. 
++ 

Ethereal 
network 
sniffer 

Trace configuration Etherial network sniffer does not need to be configured. ++ 

MCITT  MCITT does not support any tracing functionality n.a. 
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6.3.4 Tool Interoperability 
Test Tool Functionality Comment Rating

Component Transparency Although the component source code does not have to be instrumented, the stub 
and skeleton do. Fortunately, a modified IDL compiler automatically performs all 
instrumentation. 

+ 

Language Independence Originally, the DSC trace framework could only be applied on component written 
in Java. Fortunately, Lucent has also worked on a C++ extension, which allows 
DSC Toolkit to trace Corba applications consisting of components written in 
JAVA or C++.  

+ 

Platform Independence The Java version of DSC Toolkit is applicable in any JAVA enabled operating 
system. The C++ version of DSC Toolkit is available for Windows and Unix. 

+ 

Middleware Independence Because of the proxy instrumentation tracing technique applied by DSC Testing 
toolkit is shared by all static Corba applications, the tool is applicable in most 
stand alone Corba implementation as well as CCM solutions.  

+ 

Monitor Independence The DSC viewer, which is written in JAVA, is able to monitor both C++ 
components as well as JAVA components. 

++ 

Open Framework Although DSC testing toolkit an open framework, it does not supply the source 
code. Fortunately, Lucent is willing to extend their tool with additional 
functionality. 

+ 

Standard Based DSC tracing framework uses Portable Interceptors, which is well known Corba 
standard supported by most modern Orb implementations. 

+ 

DSC  
Testing 
Toolkit 

Vendor Adaptability Using other Java Orb implementation than those already supported can easily be 
accomplished by modifying specific initialisation files. However using other C++ 
Orb is more difficult but can be done by calling help from Lucent. 

+ 

Component Transparency Corba Trace requires the manual instrumentation of all components 
implementation source code before any Corba application can be traced. 

-- 

Language Independence Although Corba Trace only supports JAVA, because of the lack of support it is 
not unlikely new version of Java will not be compatible. 

-- 

Platform Independence Corba Trace support the Microsoft Windows and Unix operating system + 
Middleware Independence Corba Trace is designed for standard Corba objects, which initiate their own 

pivate Orb. Corba Trace contents tracing functionality is based on replacing the 
private Orb object with an adapter object. However, Corba components do not 
have a private Orb. Corba trace therefore cannot work in conjunction with CCM.  

- 

Monitor Independence Corba trace can generate a sequence diagram in multiple common formats, which 
can be analysed by any compatible viewer.  

++ 

Open Framework Corba Trace includes the tool source code and design documentation. Note 
however that the design documentation is only available in French. 

+ 

Standard Based The interception of message is based op Corba portable interceptor. + 

Corba 
Trace 

Vendor Adaptability Although Corba Trace only contains library support for Sun JDK and Orbacus 
Orb, Corba Trace supplies the design documentation which can be used to make 
the framework compatible with Orbs from other vendors that support Corba 
portable interceptors 

+ 

Component Transparency Although the tracing mechanism requires the instrumentation of the component 
source code with a single library call, once instrumented and the tracing 
mechanism can be activated/deactivated after a single mouse click. 

- 

Language Independence Silk Observer supports both Java and C++ programming language. + 
Platform Independence Silk Observer supports both Windows and Unix operating system + 
Middleware Independence Silk Observer is only able to trace the Visbroker and Orbix Middleware solutions. - 
Monitor Independence The tool can be used in Microsoft windows or UNIX operating system. + 
Open Framework Silk Observer is in the first place a commercial tool, which is not intended as an 

open framework. However, the server component contains an open DLL interface 
definition, which could potentially be used to extend Silk Observer tracing 
framework with additional functionality. 

+/- 

Standard Based Except from the supported programming languages, operating system and 
middleware, the Silk Observer tool does not support any other standards.  

-- 

Silk 
Observer 

Vendor Adaptability Because of it dependence on proprietary message filter functionality, the tracing 
framework is only compatible with the Visibroker and Orbix Orb. 

-- 

Component Transparency Ethereal network sniffer is fully transparent ++ 
Language Independence Ethereal network sniffer is fully language dependant ++ 
Platform Independence Ethereal network sniffer is supports Mircrosoft Windows and Unix OS + 
Middleware Independence Ethereal network sniffer can trace any non encrypted network message + 
Monitor Independence Ethereal network sniffer is supports Mircrosoft Windows and Unix OS + 
Open Framework Ethereal network sniffer is open source and contains development documentation ++ 
Standard Based Ethereal network sniffer support almost all known network message protocols. ++ 

Ethereal 
network 
sniffer 

Vendor Adaptability Although Ethereal network sniffer already contains over 400 build-in filters, the 
user can manually construct new filters. 

++ 
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MCITT  MCITT Interoperability cannot be validly compared with the other tracing tools n.a. 

6.3.5 Final Comparison 
We will now make our final comparison. For overview, we collected all ratings from the previous tables into a 
single comparison table. Note that we added an extra criterion to the table, which we did not rate in any of the 
previous tables. Although ‘cost’ was not a criterion, we added in into the final comparison table because it can 
play a relevant role in our final caparison. 
 
Group Functionality Lucent DSC 

Testing toolkit 
Corba 
Trace 

Silk 
Observer 

Ethereal sniffer MCITT 
 

Dynamic Invocation ++ n.a. + n.a. + 
Manual Invocation ++ n.a. + n.a. +/- 
Automatic Invocation + n.a. + n.a. ++ 

Message 
Controllability 

Workload Invocation +/- n.a. ++ n.a. + 
Message tracing ++ + + +/- n.a. 
Message visualisation + ++ + -- n.a. 
Message context ++ +/- + - n.a. 
Message contents ++ + ++ + n.a. 
Message casualty ++ +/- +/- - n.a. 
Message timing + + ++ +/- n.a. 

Message 
Observability 

Message filtering + + ++ + n.a. 
Distributed tracing ++ - + +/- n.a. 
Runtime tracing +/- + + ++ n.a. 
Online tracing + -- + ++ n.a. 
Offline tracing + ++ + + n.a. 
Tracing overhead  + + + ++ n.a. 

Tracing 
Framework 
Performance 

Trace configuration + - + ++ n.a. 
Component Transparency + -- + ++ n.a. 
Language Independence + -- + ++ n.a. 
Platform Independence + + + + n.a. 
Middleware Independence + - + + n.a. 
Monitor Independence ++ ++ + + n.a. 
Open Framework + + +/- ++ n.a. 
Standard Based + + + ++ n.a. 

Tracing 
Framework 
Interoperability 

Vendor Adaptability + + +/- ++ n.a. 
extra Cost -- ++ ? ++ + 

 
For each criteria group we first discuss the best tool: 
 
• Message Controllability. For controllability, we can identify a clear winner. While the DSC Control tools are 

very useful for quick testing, the MCITT tool is very good creating an automated test environment and Segue 
tool family shines in generating large workloads.  

• Message Observability. The DSC offers clearly offers the best message observability. Especially the 
causality tracing functionality will be very useful when tracing multiple Corba application at the same. Second 
best is Silk observer because of it of it excellent timing analysis functionality. Third comes Corba Trace, 
which offer some Observability but limited. Ethereal network sniffer has the worst communication 
observability. The IIOP network messages captured by the Ethereal sniffer is lacking context information, is 
limited to communication between hosts and cannot be visualise in a sequence diagram. 

• Tracing Framework Performance. Although Ethereal sniffers has the best framework performance, its 
comparison to other trace tools is rather unfair. While the other tracing tools must deploy complex tracing 
mechanisms, Ethereal sniffer cheats performance by not deploying any tracing mechanism. Instead, it 
intercepts tracing data by simply listening to all broadcasted network message traffic. The honour of best 
tracing framework performance is shared between Silk Observer and DSC Toolkit. Both tools are able to 
configure the tracing framework from a distributed graphic user interface and allow users to view a sequence 
diagram being build up at real time. Corba Trace ends on the last place because of its inability to trace 
applications online and its lack of configuration support.  

• Tracing Framework Interoperability. Not surprisingly, the Ethereal network sniffer also shows the best 
interoperability because except from encrypted messages, it can read any network message and thanks to it 
availability of the source code it is portable to almost any operating system. Second best is without a doubt, 
Lucent DSC tracing tool. Thanks to its stub/skeleton instrumentation and usage of Corba Portable 
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Interceptors standard, Lucent DSC Toolkit, is able to trace any statically linked Corba/CCM application. 
Combined with their support for multiple programming languages, operation systems, Orbs, and adaptability 
to other orb implementations, makes DSC the second best interoperable tool in our test. Third comes Corba 
Trace. Their tracing framework should be applicable to pure Corba application build on any Orb that supports 
Corba Portable Interceptor specification. Its interoperability is mainly limited to by instrumentation technique 
applied. It requires the instrumentation of both client and server source code and requires the usage of the 
object reference, which is not directly accessible in CCM client/server source. The tool with the worst 
interoperability in our comparison is the Silk Observer. It requires both the instrumentation of the source code 
similar to Corba Trace but beside that only function with Orb implementations supporting a specific 
proprietary filtered logging facility.  

 
Our overall tool recommendation is a mixed bag. All tools offer some advantages and disadvantage compared to 
each other. We therefore cannot point is single best tracing tool. We therefore must decide on criteria, which are 
most important for Thales.  
 
Ranging from most important criteria to less important criteria, we can make the following notes: 
 
• Most importantly, the tool must be available to now, which excludes the Silk Observer tool because the 

official distributor no longer sells its tracing tool. Note however, that Silk Observer successor, Silk Performer 
Component Tester, will support Corba tracing in the future.  

• Secondly, the tool must be able to trace the systems real behaviour, which excludes the MCITT tool because 
its proxy technique alters the architecture of a component-based software system and therefore its runtime 
behaviour. 

• Thirdly, it must be able to trace all Corba communication, not just the network messages or invocation 
results. This requirement excludes the Ethereal network sniffer because it can only intercept message 
travelling between hosts. 

• Thales requires the tool must be able to trace communication online and at runtime, which excludes Corba 
trace because can only trace offline after the test is completed. 

 
The only tool that remains, is the DSC Testing toolkit created by Lucent Technologies. Their tool can be applied 
to statically linked Corba environment. Because PERCO CCM implementation links all component statically, all 
CCM Corba application developed with PERCO should therefore be traceable with Lucent tracing framework.  
 
Although DSC will currently only supports component written in Java, they have a prototype for tracing C++ 
components and are willing to help Thales integrate their tracing technology into Thales Middleware technology. 
An alternative to the Lucent DSC Toolkit would be to use Corba Trace. Although it does not support online 
tracing and configuration, it can produce good sequence diagrams and it extendable. The source code and 
French design documentation would allows Thales to ingrate Corba Trace into their CCM implementation and 
extent the tool with missing tracing framework functionality  like configuration and online tracing. 
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7 AN ANALYSIS FOR A TRANSPARENT CORBA TRACING MECHANISM 
In chapter  3 we introduced a high level design for the construction of a tracing framework that could habour 
multiple tracing mechanims. In chapters 5, we descused several trace data inteception techniques that might be 
used for the construction of a Corba tracing framework. In this chapter, we analyse the possibilities for the 
construction of transparent tracing mechanism, based only on the request interceptor (see paragraph 5.2.1). 
Although there are other tools that have done something similar, our solution does not require alteration the 
component source or middleware and can trace Java Corba objects.  
 
The reason we use Request Inteceptors is because it currently the only trace data inteception technique that  it 
allows the transparent inteception of all message communication events at both client and server side, can 
transparently transer context data between inteceptors and can be transparently deployed. The only two 
requirement on the testing requirement is are that that every Corba object initiates its own unique Orb object and 
that the Orb supports the registration itercepors by parameters. 
 
Based on the tasks required by tracing mechanism, we will analyse the following tasks: 
• Paragraph 7.1 Tracing Data Interception: the interception of message data in from the middleware 
• Paragraph 7.2 Tracing Data Processing: the retrieval and processing of trace data 
• Paragraph 7.3 Tracing mechanism Management: the management of the mechanism tracing behaviour  
• Paragraph 7.4 Tracing mechanism Deployment: the deployment of the trace data interception mechanism  

7.1 Tracing Data Interception 
In this paragraph, we explain how we want to retrieve tracing data from Corba applications. As already 
explained, we want to use request interceptor to retrieve tracing data from the system under test. In order to 
trace Corba applications, Request Interceptors must collect the following tracing data types: 
 
• Communication Message ID. Because a Corba message can be intercepted multiple times during a 

message reply sequence, and our tracing framework is only interested in atomic information flows, the 
tracing mechanism needs some way to discard duplicate message information. A possible way to achieve 
this is uniquely identify messages within our system. When processing intercepted messages, the tracing 
layer can combine the intercepted information with the same communication message ID into an atomic 
information flow entrance. 

• Timing Data. The goal of Timing Data is two folds. It allows testers to measure the performance of a system 
and to analyse the casual relationship between tracing events. The performance of a system can be 
measured by calculating the time difference between tracing events. Casual relationship between tracing 
events can be derived from sorting communication events in chronological order. 

• Context Data. Although a unique component instance ID allows a tester to identify a Component instance, it 
will be of little meaning if he does not know what component he is dealing with. The collected tracing data 
should therefore also include meaning component name. The Component name does necessary have to be 
unique, it should however allow the tester a indication what to look for 

• Instance ID. Our high level tracing mechanism requires that that the smallest unit of operation, a component 
instance, is uniquely identifiable within our framework. The ability to uniquely identify a component instance 
is very important in tracing because a tester needs to be able to verify the in and output of a unique 
identifiable process.  

• Contents Data. Message Content Data is all information exchanged between client and server. This 
information includes input parameters, output parameters, return value and function name called by the 
client. By comparing the input parameters with out parameters and return value, a tester is able to verify the 
correct functional behaviour of a component 

 
In the following sub paragraphs, we explain how each tracing data types can be retrieved using request 
interceptors.  
 

7.1.1 Message Communication ID 
A unique communication ID allows the tracing mechanism to group communication events belonging to the 
same remote message invocation. In this paragraph, we will look at how intercepted messages can be made 
uniquely identifiable within our tracing framework. Similar to the generation of a component instance ID, a 
Central ID Broker component could be use retrieve a unique communication message ID. However, because the 
tracing interceptor would have to wait on the Broker to return a Message ID, a huge non-negligible overhead to 
all traced communication would be created. Therefore, we should look for techniques, which can create a 
communication message ID locally. 
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A natural course of action would be use the attributes contained in the intercepted message (see Interceptor 
Request Info). We cannot use the request_id as an identifier because it only identifies an active request reply 
sequence between two Orbs. Once a request reply message is concluded, the same request_id might be 
used again. It is therefore theoretically possible that two non-related messages are send with exactly the same 
attribute values. Although we cannot uniquely identify a message by any combination of the attributes retrieved 
from the message, there are several techniques to uniquely identify a message: 
 
• Physical Timestamp. We can make the message uniquely identifiable by combining the request_id, 

target_id with a physical stamp. We can create a physical timestamp by simply taking the current system 
time. Timestamp. Because our tracing frameworks required a physical timestamp anyway, this technique is 
the easiest way to achieve message uniqueness. Note however, that special care must be taking in the 
granularity of the physical time stamp. The time stamp must be precise enough to prevent duplicate 
message from occurring ever occurring, which might not always be the case. 

• Logical Timestamp. We can make a message also uniquely identifiable by combining interceptor ID with a 
logical timestamp. A logical timestamp is a locally maintained counter that is incremented after every usage. 
Care should be taken to prevent overflow by using a sufficient large counter. The interceptor ID must be 
able to uniquely identify the counter instance. The advantage of a logical timestamp is that the uniqueness is 
always guaranteed.  

 
The Message ID should be created for every unique message, the first time it is intercepted by any of the 
deployed tracing interceptors. The message ID should be transmitted along with other tracing data to the next 
interception point. The picture below illustrates the message ID flows between interception points during a 
request reply sequence. Between the outbound client to server and inbound server to client interceptions points, 
the information transmitted by context data, and between server outbound and inbound interception point, the 
information travels with the Orbs shared memory mechanism, PICurent (see appendix J).   
 

Servant 

IIOP Message 

Request Service Context  
Message ID 

Send Request (interceptor interface) 

Outbound Message

Receive Context  

Message ID Message ID 
Current 
Message ID 

Add Read

Send Reply  

Client 

PICurrent 
Message ID 

PICurrent 
Message ID 

Store 

IIOP Message 

Reply Service Context  
Message ID 

Inbound Message 

Message ID 

Create 

Logical 
Copy 

Logical 
Copy 

Add

Retrieve 

Receive Reply (interceptor interface) 

Message ID 
Read 

Timestamp 

Figure 7.1: Message ID travelling by service context mechanism and PICurrent 
 

7.1.2 Timing Data 
Timing data is any information that tells us something about the ordering of events through time. A single timed 
event therefore has no meaning itself. A timed event only has meaning if it can be validly compared with another 
timed events. 
 
We can identify two main purposes of timing data:  
• Time Measuring. By measuring the time between two related events, we can measure the commutative time 

it took for processes happening between the first and last event to complete. The events that happen during 
a process can vary widely. A process could only be a simple component instance returning a reply but it 
could also be complex process that negotiated with hundred other processes before returning a result. A 
measured time can tell interesting context sensitive information. For example, the time difference between a 
request message arriving at a component instance and a reply message leaving the same component 
instance can tell us something about the response time of the component instance. 

• Time Sorting. Eventually, a tester would like to display communication events in chronological order. When 
all intercepted communication events are accompanied by a timestamp, the tracing framework is able to 
reconstruct a sequence diagram visualising the communication between component instances. Tracing 
Interceptors can create a timestamp by acquiring the internal clock value directly after the Orb triggers an 
interception point. By chronologically sorting the communication events, the tracing framework can also 
discover the casual relationship between messages. For example, when a message is send by a component 
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instance after receiving a message from another component instance, our tracing framework could conclude 
that there is a casual relationship between the incoming and outgoing message. When sufficient messages 
can be found with a casual relationship, the tracing framework would allow the tester to trace a message 
flow through a system from beginning to end.  

 
It may seem simple to sort communication events based on the timestamp taken from the interception point 
internal clock. However, acquiring reliable timing data in a distributed system is not a trivial matter. That is 
because distributed system systems lack a globally maintained and directly accessible clock value. Instead, 
every computer in the distributed system maintains its own physical internal clock. When trying to compare 
timed events taken from different systems with non synchronised physical clock values, the derived information 
can be unreliable or result in tachyons. Tachyons are contradicting measurement, which logically cannot be true. 
In figure 7.2, we see an example of a tachyon. When the clock value of the client is higher than the clock value 
of the server, an intercepted request at the server might appear to be received earlier than the same intercepted 
request send from the client. Unless either component travelled trough time, this could of course not be possible. 
The next paragraph will investigate the possible solutions the this problem 
 
 

time event 
0.03 Send message 1 

 

time message 
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Client Component Server Component 

Figure 7.2: Tachyon Example 
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Fortunately, distributed clock problem is a well-known problem for which several solutions are available. We will 
sketch some of them an discuss how they could be applied by our tracing mechanism: 
 
• External Synchronised Clocks. If the all clocks in the distributed system are synchronised with some 

external synchronisation mechanism, our tracing mechanism could simply use the system internal clock 
value for timestamping all intercepted communication events. This could for example be achieved using the 
Network Time Protocol (NTP) or by embedded atomic clock radio receiver synchronising the clock after 
receiving a pulse. Since every host in our tracing framework is fitted with a Collector, the Collector would 
also be the logical place to synchronise the host local clocks value. 

• Time Service. Since the problem of inconsistent local physical clocks arises in many distributed applications, 
the OMG defined a Corba Time Service specification [26]. This service can be used to obtain consistent 
timestamps along with error estimates. Unfortunately, the Corba Time Service is only implemented in only 
fraction of all Orb implementations. 

• Logical Clock. When the precision of the available clock is lacking, or even if there is no physical clock 
available at all, the tracing mechanism should use an alternative time mechanism. Instead of using a real 
clock value, the tracing mechanism could also employ a logical clock for chronologically sorting events on 
time. That is because a logical clock reflects the ‘happened-before’ relation or causality relationship. By 
guaranteeing to be consistent with the partial order defined by the relation of logical precedence, a logical 
clock can prevent tachyons from ever occurring. In order to prevent tackyons between components, the 
local counter value is sent along with every message. This can be easily implemented by sending service 
context between request interceptors. The basic idea is that the Tracer installed on a Corba object maintains 
a counter, which represent the current logical clock state of a Corba instance. After every communication 
event, the Tracer sends its logical clock value along with other intercepted information to the locally hosted 
Collector for further processing. Depending on the logical clock value received, the Tracer takes different 
actions. When the tracer receives a logical clock value lower or equal to its own logical value, it will simple 
increment it logical value. When a component receives a logical clock higher than its current logical clock, it 
will simply set it local logical clock one value higher than received value. If the component received no 
logical clock from the other component, it will only increment it current logical clock value. By synchronising 
the logical clock value after every communication event, it is ensured that the logical clock value of a server 
receiving a message is always larger than the logic clock of the sender. However, there are some problems 
associated with the logical clock, which will be further explained appendix C. 
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• Physical Clock with Logical Clock Correction. Another possibility to creating a more reliable autonomous 
clock is to use physical clocks with logical clock correction. This approach tries to combine the benefits of a 
physical with a logical clock. While the physical clock is mainly used timestamping, the physical clock value 
is just as a logical clock sent along with every message. Just as with logical clocks, the receiver can check if 
a tachyon would be generated, and it can be avoided by setting the receiver’s physical clock accordingly. If 
however the receiver does not have the permissions to change the system clock, the tracing mechanism 
could simply maintain a displacement, which starts at 0, and updates the displacements in such cases. 
Although the time-stamps do not reflect the physical time precisely, today’s computer are usually equipped 
with clocks of high precision so that in practice, the time stamps generated this way provide a good 
approximation of the physical time. 

 

7.1.3 Context Data 
Gaining access to a meaningful object/component name is one of the most difficult problems when tracing 
Corba Applications. Although at the server side, we can easily identify a server by the target_id, on the client 
side this simply not possible because Corba message do not contain any source_id identifying the client 
object/component. The tracing mechanism can use the request interceptor to gain access to a meaningful name, 
by one of the following techniques: 
 
• Dynamically by using Interface Repository. Corba Interface Repository (also see paragraph 4.1.5.1) can be 

used to derive a meaningful name dynamically. Although IOR itself does not uniquely identify a Corba 
object, by retrieving component contents information linked to an IOR, the Interface repository can be used 
to reconstruct a meaningful Component name. The request interceptor can gain access to his own IOR after 
the first time a request interceptor receives a message from another component, it can read his own IOR 
contained target_id attribute (for more details see appendix H). In figure 7.3, we can see that the IOR is 
captured by the request interceptors, transmitted through the collector to the processor, and used to retrieve 
a meaningful name from the interface repository before it if finally stored in the Trace information model. 

• Statically by constant declaration. A meaningful name could be statically implemented as a constant string 
declaration located in the Interceptor source code. This technique however requires extra deployment 
preparation because every Orb must be initialised with a unique interceptor implementation containing a 
unique string. To solve this complexity, simple source code generation tools could be used which use a 
template of a standard interceptor and only add a unique component name.   

 
The Dynamic strategy is preferable above the static one because we can use a single request 
interceptor implementation for all Tracers. 
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7.1.4 Component Instance ID 
As explained before, Corba uses IOR to connect Corba objects with each other (see also appendix A). Although 
IOR uniquely identifies a Corba Object, they cannot be used as an instance ID because IOR identify Corba 
object implementations, not an instance. Client objects that do not implement any Corba interface simply do not 
even have an IOR. Moreover, a Corba Object may contain several Orb instances, and may consequently be 
associated with multiple IORs. Therefore, component instance IDs have to be generated somehow. 
 
Many methods could be used to create a unique component instance ID. Because we cannot list all possibilities, 
we restrict our selves to three methods: 
 
• Centralized ID Generation. In the centralized method a special ID broker component is used for the 

distribution of Component Instance ID. This ID Broker component would maintain a global counter, which 
would be incremented after every time a new ID was requested. At startup, or the first time that a 
communication event occurs, every component registers itself with the ID Broker, whereupon it gets a 
unique ID, together with some policy information. In order guarantee uniqueness of every ID, The counter 
would have to large enough to prevent overflow and semaphores could be used to force every ID 
distribution to become single atomic step. A disadvantage of Centralized ID generation is that create extra 
overhead, but this is negligible because it only occurs at the start. 

• Decentralized ID Generation. In the decentralized method, components themselves generate a their own 
unique id. By combining a unique object ID with a globally maintained counter, a unique component instance 
ID can be constructed. An Instance ID can be constructed by generating a pseudo random number. 
Although absolute guarantee for uniqueness can never be achieved, we can however make it extremely 
unlikely duplicate ID occurring by seeding the random generator with context sensitive data like IP number, 
time stamp and process ID.  

• Prepared ID Generation. Prepared ID Generation is a combination of the two former techniques. Just like 
Decentralized ID Generation method, a new Component Instance identifier is constructed by combining the 
Component ID with an instance counter. The difference lies in the way the Component ID a created. Instead 
of generating a Component ID at run time, a Component ID generated centralized fashion before 
compilation. For every new component a unique ID is generated a registered at a central location for future 
usage. The serial number is simply implemented as a constant declaration in the source code. By deploying 
every component with a unique tracing interceptor containing a unique ID, interceptors can use the 
Component serial key to create a unique component instance ID. An advantage of this technique is that 
Components will always bear the same component ID, even after recompilation. A disadvantage is that 
every trace interceptor must contain a different component serial number.  

 
 

7.1.5 Message Contents Data 
By Message content data, we mean the information exchanged by method invocation calls, which contains in 
and output parameters and function name. The reply message contains beside all outbound information, output 
variables, and result value. The Tracer can collect the Message contents data together with other information 
contained in the Corba message by accessing the attributes in the request info object, which the request 
interceptor received from the Orb (see appendix H for more details). 
 
Not every interface of the request interceptor can access this contents information. Request and reply message 
Contents data can only be read at four interception points (send_request, receive_request, 
send_reply, receive_reply). In figure 7.4, we can see how the four tracing points can be used to retrieve 
context data from request and reply message from client and server and send it to the Collector. 
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Although the reply contains all available message content data, we could theoretically intercept all contents data 
by implementing only a single interception interface. However, we risk missing important tracing data because 
something might go wrong during communication. For example, a client method invocation might never reach its 
destination or a server throws an exception causing our interception point never to be invoked. Therefore, the 
safest strategy would be to use all 4 interception interfaces for collecting contents data. To increase 
performance, the interceptor behaviour could use a trace profile to determine which interception points will send 
trace events to the Collector. However, even if we use four interception points, we still have some circumstances 
that could jeopardise tracing process.  
 
As already mentioned, request interceptors on a Java Orb are not able to access the message contents (see 
paragraph 5.2.1). As long as either client or server is not made in Java, we will be able to access the message 
contents information on the non Java Orb. However, when both client and servant component are implemented 
in Java, our tracing interceptors will not be able to access all required fields in the intercepted message. To 
overcome this Java shortcoming, the literature proposes using a proxy pattern with client side redirection 
[Marchetti]. Figure 7.5 illustrates how a client request interceptor is used to redirect an operation from the 
original server object to a locally hosted proxy object. The Proxy pattern mechanism is similar to a Wrapper (see 
also paragraph 5.1.6), in the fact that it wraps the server interface, and calls the original server interface through 
another connection. However, in contrast to Wrapping, the redirection is not achieved by renaming the server 
but by redirecting the message with a forward exception thrown by request interceptors. The proxy object would 
then be able to log all missing data by simply storing the input parameters received from client and by storing the 
parameters and by reading the result of the server invocation.  
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Figure 7.5: Proxy Pattern 

Although this might seem the solution to a Java problem, there are however several problems with this Proxy 
Pattern technique: 
 
• Information Loss. Once the re-invoked message receives at the Java server, it has lost all security, fault 

tolerance, or any context information. That is because this information gets lost once the original request 
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message enters the proxy object. Therefore, it would become incompatible with any Orb, which sends 
additional data trough the GIOP message.  

• Overhead. A defensive strategy would require using a proxy pattern for all communication between 
components, which would slows down communication. In order to minimise communication overhead, the 
client Request Interceptor should only forward the message to a proxy object when both client and server 
Interceptors are unable to read parameters (e.g. both Java). However, this requires that the client Request 
Interceptor have knowledge whether or not any Request Interceptor installed on the server-side is able to 
read and store all Request Information. 

• Complexity Because a proxy object is hosted locally, the Proxy Pattern requires a separate proxy object 
between every client and server. To prevent the usage separate proxy objects between every connection, 
the tracing mechanism needs to know which client and server object communicate with each other, which 
will make tracing deployment more difficult. 

 
In the next sub paragraph, we will introduce a message contents tracing technique, which solves the problems 
of the Proxy Pattern. 
 

7.1.5.1 A New Transparent Proxy Mechanism for tracing message contents  
To overcome this loss of message transparency, we need solution that allows our tracing mechanism to access 
the message contents but also ensure that the message does not lose information. Although request 
Interceptors can forward a request only to a one alternative address, there no limitation on the number of times a 
message can be forwarded. We can exploit this functionality to transparently position a proxy object between 
client and server without losing message information. In figure 7.6 we can see how forwarding mechanism can 
be exploited to forward the same message to multiple servants by link them like a daisy chain each forwarding 
the message to the next servant in the chain. Instead of using a proxy that wraps the interface of the server, we 
use C++ dummy object with a server request interceptor installed. In contrast to the proxy object that re-invokes 
the server object, the Dummy object is an empty object that will not do anything. Because the Dummy Server is 
a C++ Orb, the C++ request interceptor is able to access all message contents. After logging the missing 
attributes, the request interceptor throws a second forward exception, which diverts the message back to its 
original destination, the Java server. Because the message received from the client is not altered (except the 
forward address fields), the server will receive the same message send by the client. The request interceptor 
knows the address of the intended servant by reading the target attribute located in the GIOP message. 
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Figure 7.6: Transparent Proxy Mechanism 
 

 
The request interceptor can use two redirection methods techniques to divert a message to an alternative 
destination, by calling a permanent forward exception, or a non-permanent forward exception. A permanent 
forward exception is in comparison with a non-permanent forward exception a lot faster because it only has to 
be thrown once to divert all messages automatically to an alternative location. The non-permanent forward 
technique is on the other hand a lot more flexible because it can redirect message on a per-message basis. 
Non-permanent forwarding allows the construction of a tracing interceptor, which could be used to trace all 
clients to server connections. However, for performance reasons, it is advised to use a separate trace object 
with interceptors for every hosted servant object. Figure 7.7 shows how by deploying the Trace object on the 
same host as the target object, the tracing mechanism only requires a single Trace object for every Java 
Servant and multiple Java clients can use the same Trace object  
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Because of performance reasons and the problems associated with forwarding (see paragraph 5.2.1), a tracing 
mechanism should only use the forwarding technique when both client and server are unable to access the 
message contents information. Although this can be achieved by instructing the request interceptor statically in 
the source code, it can also be achieved at run time with minimum overhead. In order to allow the client request 
interceptor make this decision, it can use Corba callback mechanism to determine whether a server request 
interceptor is able to access the contents data in a message. By sending the success of a server request 
interceptor along with the reply service context, a client request interceptor will know if forwarding to the proxy 
object is required. Note that when the client receives a message that does not contain any service context, it 
know indicate that none of our server request interceptors touched the reply message. 
 
Figure 7.8 illustrates the interceptor stack model. The interceptor stack is a last-in-first-out (LIFO) buffer 
mechanism that guarantees that all interceptors in the stack will always have their ending interception point 
called in reverse order. Whenever the Orb (without the occurrence of a user exception) successfully calls a 
Request Interceptor, the interceptor is placed on a Flow Stack. However, if an interceptor raised a 
ForwardRequest exception in response to a call of an interceptor, no other interception is called for that 
interception point. This means that forward exception can only be called once per interception point. The 
remaining interceptors in the Flow Stack (which are already successfully called once by the Orb) have their 
appropriate ending interception point called. On the client, this will be receive_other interface and on the 
server send_other interface. 
 
This interceptor behaviour has the following consequences for any interceptor using forwarding:  
• Proceeding Forwarding Problem. Any proceeding interceptors (that would normally called after our 

interceptor) are consequently never called by the Orb; thereby disrupting their proper functionality. 
Although, all preceding interceptors (that are already called are called before our interceptor) are notified of 
the forward exception, the Corba Portable Interceptor specification does not specify any mechanism to 
warn interceptors that they missed a Orb interception call.  

• Preceding Forwarding Problem. The other-way could also be true. When another request interceptor, closer 
to the client object has already thrown interrupt exception. In that case, our client request interceptor that 
wants to divert the message to the proxy will never be called, causing our client side tracing mechanism to 
fall. Our client request interceptor will therefore be unable intercept the message and to re-route the 
message to our proxy Orb. 
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Figure 7.8: Request Interceptor Stack Model 
 
Although we can prevent the proceeding forward problem from occurring by installing our request interceptor 
after other request, when another Client Request Interceptor with a higher priority in the stack, throws a forward 
exception (for example a fault tolerance service), the Orb will never call our client request interceptor.  
 
To solve client side forward problem we have to forward a message at the server side to Proxy Orb. On the 
server side, the server request interceptor can detect whether or not the parameters have been read, by 
inspecting the service context. The server can detect this because every request interceptor, insert context data 
concerning the success on reading the parameters. After request interceptor has detected that the parameters 
have not been read it can employ server forward proxy technique. 
 
The server proxy forward technique consist the following steps: 
• The first time a server request interceptor receives an unread message it pushes the request_id on a 

stack buffer and throws a forward exception that diverts the message to the Proxy Orb.   
• After the diverted messages arrive at the Proxy Orb, it triggers the receive_request interface of the 

server request interceptor. The Proxy Orb request interceptor reads the parameter data and throws a 
second forward the message 

• The second time the same message is intercepted by the message, the request interceptor is able to 
recognise the same message by it request_id stored in it stack buffer. The request interceptor pops the 
request_id from its stack buffer and permits access to the target object like normal.  

• After the target object returns the reply message on the request, the message travels back in reverse order 
triggering send reply interface, allow server request interceptor on the Proxy Orb to access the output 
parameters.  
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The disadvantage of this redirection technique is that is a slower than the client proxy forward technique. This is 
because the target request interceptors cannot use the permanent forwarding technique applied with the 
transparent proxy technique. Instead, the request interceptor on the target Orb must use per request forwarding, 
which is a lot slower than permanent forwarding.  

7.2  Tracing Mechanism Deployment 
In this paragraph, we explain how we could to deploy the tracing mechanism. Although we will not give a full 
design for deployment of the tracing framework, we will discuss several techniques for deployment of request 
interceptors.    
 
We differentiate tree technique for deploying portable interceptors: 
 
• Parameters: By calling the Orb executable with a portable interceptor as a parameter. The advantage of this 

method of deployment is that it requires no modifications to the component source code and is therefore 
fully transparent. All Java Orbs are able to use parameters; in fact, it is the only way Java Orbs can install 
interceptors (for details see appendix L). Although this installation technique is proprietary, most vendors 
have realised the significance of this problems and support some the installation of interceptors by 
parameters in their Orb. To solve the portability problems when switching vendors, the tracing framework 
could maintain a single configuration for each Orb vendor containing the proprietary usage of the Orb 
parameters.  

• Statically: By registering the interceptor in the Orb before initialisation. The current Corba specification only 
allows the installation of interceptors by statically registering an interceptor in the Orb before it becomes 
initialised. The Problem of statically registering interceptors is that it is requires the manually modification the 
part that initialises the Orbs. Normally this means, programmers must either change all components/object 
source code to allow the Tracer to intercept its communication, or modify the Orbs source code itself by 
registering the interceptors just before the Orb calls it final initialisation method.  

• Dynamically: By default, compiling a Corba object with a request interceptor requires the availability of the 
implementation of request interceptor. As an alternative, we could use a dynamic registration technique that 
allows programmers/testers to install interceptors on a Orb without recompiling the Corba object source 
code. By packaging the registration code and interceptor implementation code into a DLL file, the 
registration code can be executed at run time. With the C++ function DLLOpen and DLLSim, a generic 
initialisation function can load and execute the interceptor registration code just before Orb initialisation. 
Figure 7.10, illustrates (in pseudo code) how an interceptor logging service, packaged as a plug-in, is 
registered dynamically into the Orb. The advantage of this mechanism is that it allows the transparent 
registrations of request interceptors without using propriety Orb parameters initialisation. Although this 
technique is perfect for components that are build in house, fact remains that it still requires the 
instrumentation of the component source code with a single initialisation method call and will therefore never 
be fully transparent until Corba specifies a standardised mechanism for registering interceptors 
transparently. 

 
Although interceptor installation by parameters is proprietary solution, it is still the best method for installing our 
Tracers. The main reason is that installation by parameters it currently is the only technique, which offers 
complete transparency. The second reason is that installation by parameters also allows control over the order 
of the interceptors which is important to prevent forwarding exception problems. 
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Figure 7.10: Dynamic Interceptor Installation Mechanism 
  

7.3 Tracing Mechanism Management 
Because our tracing Interceptors contains profiles, our tracing framework must be to modify the active profile 
settings. However as already explained, Corba does not support any interface which could be used for 
managing installed request interceptor.  
 
There are several techniques to consider for managing the tracing interceptors: 
• Call-back mechanism. Instead of attempting to manage the Tracer from the outside, The Trace could be 

made responsible for keeping its profile settings up to date. The tracer could use Corba call-back 
mechanism to transfer management data between tracing interceptors and Collector component. The 
management data would update its profile data after it received the reply received from the Collector. 
Although the Collector component is located on the same host, this would still introduce an extra latency. 
This is because the interceptor must wait until the reply message from Collector component returns. Also 
because the reply message will not contain any new management most of the time, will therefore be a waste 
latency and resources. 

• Event Filter mechanism. The Corba notification service standard defines event filters. These filters 
encapsulate the request of a consumer application for particular events. Because event filters are 
propagated from consumers through the notification service, to the source of the events. Tracers can use 
the event filters for retrieving management data from the Collector without introducing a large overhead. 
However, the information in the filter is limited to a single format. 

• Actor Piggyback mechanism. By using the Actor and Corba piggyback mechanism, management data can 
be send to all used component transparently (see figure 7.11). This information flow would have to be 
initiated by the first interceptor activated during invocation chain through a Corba application. For every time 
new management data becomes available at the Collector, it would update the profile setting of the Actor 
component. The interceptor installed on the Actor orb would then receive the management data and send a 
copy of the new management data along the first request message send to another target. The main 
advantage of this technique is that there is no additional latency overhead during the execution of the trace 
interceptor. A disadvantage of piggybacking is that extra management context data send along message 
temporarily increase the size of the message, degrading performance. However, because management data 
will rarely change, the extra overhead will only effect during the change of management data. 

 
In all techniques, the Collector Component is used to locally buffer management data at the host. In order for the 
Collector to keep its management data up to date, the Collector could use Corba publish-subscribe mechanism, 
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to received update management data. The Processor component, which is also used for the processing and 
storage of retrieved, tracing data, could be fitted with an event source, publishing management data events.  
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7.4 Tracing Mechanism Processing 
The tracing data intercepted by the Tracers must somehow be communicated and processed through the tracing 
layer to their eventual destination in the information system. The Processing of intercepted Corba tracing data is 
achieved by the collaboration of the Collector and the Processor. In this paragraph, we describe how the Collect 
and Processor Component can be implemented using Corba technology.  
 
In paragraph 4.2.4 we compared several Corba communication techniques. The best communication technique, 
which is most suited for transmitting communication between Collector and Processor is event based 
communication. The reason is that event communication is easier for distribution of tracing data and because it 
is faster. Although there are several ways to realise Collectors and Processes with event based communication, 
we will limit ourselves to describing the most interesting technologies, which is Telecom Logging Service. 
Telecom Logging services service has many build in facilities, which makes the implementation of a lot easier. In 
figure 7.12 illustrates how the Telecom logging service can be using to implement in the construction of the 
tracing mechanism. 
 
There are several reasons why the telecom services are useful for implementation: 
• Storage: The Telecom Log service provides all mechanism used for storing and retrieving tracing events. 

The Collector can use this service for the temporally storage raw intercepted tracing data and the Processor 
can use it to pertinently store intercepted tracing data in generic trace information system 

• Forwarding. The Collector component can use the forwarding capability of the Telecom Log Service to 
directly forward tracing event received by Tracer component to the Processor Component. This increases 
the performance of the framework simplifies the tracing layer implementation. 

• Filtering. Both Collector and Processor can make use of the filtering capabilities of the notification services 
derived by the Log Service. The filter can be set to only allow event trough in which the Collector or the 
Processor are interested in.  

• Communication. The Notification service, which derived by the Log services, simplifies the event 
communication as there is no need for packing intercepted tracing information into an Any at the sending 
begin or unpacking at receiving end. 

 
For more details about Telecom Logging Service, see appendix C 
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Figure 7.12: Using Telecom logging service for Tracing Framework. 
 

7.5 Evaluation  
Although we were unable to implement our transparent tracing mechanism, we will evaluate problems and value 
of our transparent tracing mechanism. We will evaluate at the advantages of our tracing framework, and then the 
disadvantages. 
 
The tracing mechanism has the following advantages: 
• High compatibility. The techniques used by our tracing mechanism are compatible with most Orb 

implementations. 
• Language transparency. The tracing framework will be able to retrieve all tracing data written in all 

programming languages, including Java. 
• Maximum Component source transparency. Neither the client nor server needs to be instrumented. 
• Maximum Middleware source transparency. The middleware does not require any modifications. 
• High Invocation transparency. Thanks to the forwarding techniques, a server will receive the exact same 

messages as the client has send. 
• Dynamic Invocation Traceability. The tracing mechanism is able to trace dynamic invocations.  
• Simple deployment. By using exclusively dynamic techniques, the same request interceptor implementation 

can be used to trace all Corba objects in a distributed system. 
• Centralised real-time tracing with minimal overhead. Thanks to the event based communication, local 

buffering and minimum service context data usage, the tracing mechanism will be able to collect tracing at 
real time data with minimal impact on the distributed system. 

• Centralised real-time Management with minimal overhead. The management mechanisms proposed will 
allows real-time management of tracing mechanism with minimal overhead.  

 
The main disadvantage is that our tracing framework will not be able to trace collocated objects. Although we 
have shown that a Corba object with own unique Orb is able to collect a tracing data required by a tracing 
framework, not all Corba Objects have the luxury of a unique Orb for themselves. It is technically possible that 
multiple Corba Object share the same Orb. In figure 7.13, we can see how multiple components in a CCM 
container (see also paragraph 4.2.1) share a single Orb. Although we have seen that the request interceptor can 
derive the identity server is from target_id field located in the GIOP message (see paragraph 7.1.3), the request 
interceptor support no functionality to determine the identity of client (for details appendix H). Because the Orb in 
a container is shared by multiple components, we cannot link the usage of the request interceptor with a single 
client. We can therefore conclude that our tracing mechanism will not be able to uniquely identify Corba clients, 
which share a single Orb.  



Unclassified  
 

 
Date: 30-06-04  Page: 96

 

 
 Container Container 

Component 
1 

Component 
2 

Component 
3 

ORB 

Client Request 
interceptor 

Source unknown 

Source unknown 

Source unknown 

Component 
A 

Component 
B 

Component 
C 

ORB 

Server Request 
interceptor 

Destination A 

Destination C 

Destination B 

Figure 7.13 Component source identification problem 

 
In order to solve the client identification problem we must some proxy object, which is uniquely identifiable in 
relation with the client (see figure 7.14). The proxy object, which must have a one-to-one or many-to-one 
association with the client, collects client context data of the client en transmits it further to the request 
interceptor after every communication event. The transmission of client context data between proxy object and 
the request interceptor can be accomplished by sending the missing data to the to the request interceptor with a 
slot in the PICurrent. 

Orb 

Proxy 
Object 

Client 1 1

Client Proxy 
Object 

1 1 Request interceptor

Figure 7.14: cardinality Proxy Object with Client  
 
For the implementation proxy object of the proxy object, we can either use one of the instrumentation techniques 
described in paragraph 5.1 or the meta programming techniques described in paragraph 5.2. Our preference 
would be to use a transparent technique like stub/skeleton instrumentation or smart proxies. The reason we did 
not use them in our tracing mechanism solution is because stub/skeleton instrumentation does not allow tracing 
of dynamic invocation, and smart proxies is not supported by many Orb vendors, and therefore not portable.  

7.6 Tool Development recommendations 
Whether or not we should implement a generic tracing framework with our transparent tracing mechanism, we 
would advise against it. Although the ability to trace Corba application relying exclusively request intercepts in 
useful in some circumstances (Corba objects from which the source code is unavailable or Corba application 
that use dynamic connections)   
 
Looking at other Corba tracing tools that took several years, it would be ineffective use of resources to create a 
tracing framework from scratch. In chapter 6, we have seen several tools that are already offer adequate tracing 
framework and which have great potential to be fitted with additional tracing functionality. Although they might 
not be fully transparent and interoperable with multiple middleware solutions, they fulfil the most import 
functionality, which is to trace regular Corba applications. 
 
DSC Toolkit and Corba Trace could both adapted with new tracing functionality either by Thales themselves or 
in cooperation with the toolkit developers (Lucent). Both tools for could be made more transparent by using other 
transparent tracing mechanisms. Once TAO Smart Proxies or pluggable protocol become standardised, they 
could be used to optionally replace a tools existing trace data interception technique by the more effective or 
transparent data interception technique.  
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8 Conclusion 
Tracing currently does not receive the attention it deserves. The OMG Corba specification documents do not 
mention the words monitoring/tracing anywhere and neither is there any OMG special interest group 
investigating the problem. Instead, the OMG Corba community is mostly focused on adding additional 
middleware functionality like fault tolerance and security services. Although the OMG attempts to make the 
development of distributed systems al tot easier with their introduction of the new CCM specification, they 
neglect to specify any services that can help testers to trace them properly. 
 
This lack of interest from the Corba community is also reflected by market for Corba testing tools. The market for 
tracing tools is bad to almost non-existent. There are not any established Corba testing tools available, which 
allow the tester to trace a Corba application at the component level. Most commercial Corba testing tools 
available are limited to a interface testing tool and use proprietary solutions, which only support one specific 
Vendor Corba middleware solution.  
 
The only established commercially available Corba testing tool with relevant tracing functionality, Silk Observer, 
died quietly due to lack of sufficient interest from the industry. Although Silk Observer successor, Silk Performer 
Component Edition, currently does not support Corba, Segue Software roadmap includes plans to extend their 
tool with future Corba support. However, it remains to be seen whether it will be a generic Corba testing tool or 
becomes a proprietary tool just like its predecessor. Silk Observer tracing mechanism depended on propriety 
Orbix message filters renders their tool unsuitable for Thales, which uses Orb implementations that are 
unsupported by Silk Observer. 
 
Fortunately, a new tool has become available on the market. Lucent Technologies, the developer of the DSC 
toolkit, has recently decided to offer their product under licence. Lucent DSC Toolkit has shown in our tools 
evaluation to offer the best testing solution for Thales Corba testing problem. Although the DSC Testing Tool 
was originally made for a proprietary CCM middleware solution, it can be made compatible with most Orb 
implementations. The toolkit offers user-friendly scriptable actor/reactor utility, which allows the construction of a 
controllable testing environment, is flexible enough to evaluate any test case. The DSC tracing framework 
contains a powerful monitor tool, which allows both online and offline analysis of intercepted tracing datae. The 
tracing framework automatically retrieves trace data intercepted by the Corba request interceptor and 
instrumented stub/skeletons without causing too much overhead to the system. Because the DSC Toolkit tracing 
mechanism is based on the collaboration of two best interoperable and transparent trace interception techniques 
available, the resulting framework is a transparent and interoperable tracing solution. Although the toolkit current 
version only fully supports Java Orbs, Lucent Technologies has shown us a workable C++ prototype version of 
their tracing tool. 
 
Another tool, which possesses some of qualities of a good tracing framework, is the freely available Corba Trace 
tool. Although the tools does not support advanced framework features like online tracing and an integrated 
framework, it is open source, it can intercept Corba communication and generate a sequence diagram in 
multiple formats. Note however, that the tracing mechanism uses an Adapter instrumentation technique, which 
must be initialised with an object reference and Orb. A consequence is that the Adapter must be instrumented in 
the Corba object source code or integrated in CCM Component home and CCM Container. Because the 
development documentation is available, it could be used for the construction of a tracing framework. Although 
Thales could integrate the tool into PERCO, the tool would still not provide sufficient functionality to satisfy 
Thales testing requirements. 
 
Because the market was quite disappointing in the number of mature Corba tracing utilities, we also investigated 
the possibility of developing a tracing framework ourselves. We soon discovered that traditional debugging 
techniques would not work for testing distributed Corba Applications. We therefore analysed several Corba trace 
data interception techniques and compared them based the characteristics important for creating a good tracing 
mechanism. One particular group of these techniques, the usage of meta-programming mechanisms, promised 
to be most preferable solution because they allow the modification the middleware behaviour without sacrificing 
transparency. Although TAO Smart Proxy and Pluggable Protocol framework are very promising tracing 
technologies for the near future, the Portable Request Interceptor is currently the only transparent meta-
programming mechanism that is supported by most Orb implementations. Although Request Interceptors were 
never intended for tracing, they offer many features that are useful for development of a transparent tracing 
mechanism. Two of the most interesting tracing features of the Portable Interceptor is the ability to transparently 
send service context information along with normal messages and its ability transparently intercepts Corba 
message from both client and server side. Message interception allows a tracing mechanism to collect contents 
data while service context data allows a tracing mechanism to sort messages chronologically. Unfortunately, the 
Portable Interceptor also exhibits many limitations that become a problem when using them as a main tracing 
mechanism. One of these problems is inability to access the contents of a message on a Java Orb. We have 
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shown that by forwarding the message to a C++ request interceptor, which can access the message contents 
before forwarding it to its original target, we partially solve the Java problem. Unfortunately, this technique also 
introduces new problems that can make the tracing framework incompatible with other Corba services, which 
use Request Interceptors. 
 
Although we have shown that we can push the Corba technology to create a transparent tracing mechanism 
based solely on the request interceptors, its application remains limited by its main flaw. The request interceptor 
main flaw is inability to detect the source of a message in an environment where multiple clients share a single 
Orb. The reason why interceptors cannot detect a client source is that a Corba message simply does not contain 
any information that can be used to derive a client address. That is because Corba callback mechanism is 
based on the lower network protocol, which contains a reply network (IP/port) address and an opaque message 
ID field, which only has meaning to client Orb.  
 
There is however light on the other side of the tunnel. The Smart Proxy meta-programming mechanism, which 
allows access to the same tracing data as the stub/skeleton instrumentation technique could fill the information 
gap that the request interceptor lacked. Another meta-programming mechanism, the Pluggable Protocol has the 
potential to completely replace a request interceptor because it allows access to the same tracing as middleware 
instrumentation, which is practically all data. Further study should be done one their effective usage as a tracing 
mechanism. Both meta-programming mechanism are expected become a standard specification just like 
Portable Interceptors. Once they become standardised by the OMG and supported by implemented by Orb 
vendors, they allows the construction of a portable, fully transparent tracing mechanism. However, looking back 
at the development of the Portable Interceptors, which took many years before anything useful became 
available, the same history likely to repeat for the Smart Proxy specification.  
 
We also introduced a high level design for a generic tracing framework, which can trace a distributed application 
crossing multiple middleware boundaries. However, Thales needs a good tracing tool soon and simply does not 
have the luxury to wait until a new tracing tool is developed. The costs of developing a new tracing framework 
far outweigh the advantages of building tracing framework scratch when there are already good tracing 
framework available that can fulfil most of Thales testing requirements. If Thales want to take the tracing 
seriously, we recommend licensing Lucent DSC Toolkit and use it for all Corba testing. In our view, Lucent 
Technologies has proven being the leading authority on Corba tracing tooling. Although Thales would be one of 
the first companies to licence the DSC toolkit, we are confidant that with support of Lucent technologies, Thales 
will be able to integrate the DSC toolkit in their testing strategy in no time. 
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Appendixes 
In the appendixes we describe some detailed information about Corba in which has relevance to our Thesis but 
were too technical for out Thesis. Although they do not have to be read, they can help the reader get a better 
insight in Tracing Corba technology. 
 
.        
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Appendix A: IOR 
In this paragraph, we will take a closer look at the Interoperable Object Reference (IOR). Although an IOR is 
used by an application in the exact same way that an object reference is used, they are not exactly the same. 
While the IOR is a specialised object reference that can be universally understood by all Corba applications, an 
object reference only has meaning within the current Corba application. An object reference identifies one 
instance of an object and associates one or more paths by which that object can be accessed. An object 
reference therefore allows an application to establish a connection and make remote method calls on a Corba 
object. 
 
The same object may be located by different object references, e.g., if a server is re-started on a new port or 
migrated to another host. Likewise, multiple server locations can be referenced by one IOR, e.g., if a server has 
multiple network interfaces connecting it to distinct networks, there may be multiple network addresses. 
However, because every Corba applications can convert an IOR string to an object reference and back from 
object reference to IOR string, they can effectively be used interchangeably.  
 
Once an application used the IOR to establish a connection, the client can transparently access the methods of 
a remote Corba object via Corba communication protocol, GIOP (see also paragraph 0). Just as a telephone 
number contains information of the whereabouts of the number, the IOR contains information of the 
whereabouts of a servant object. The IOR is normally created by the POA when it starts a Corba servant. During 
creation of the IOR, IOR Interceptors (see also paragraph 0) can be used to modify the information in the IOR.  
 
Because the IOR plays an important role in the messages we intend to trace, we take a closer look at what 
information is contained in the IOR format. An IOR contains one or more profiles. Profiles are essentially a one-
way communication mechanism that allows a server to tell a client which methods of communications are 
available. A profile is a reference to a server location and provides an opaque, protocol-specific representation 
of an object location. Profiles can be used to annotate the server location with QoS information, such as the 
priority of the thread serving each endpoint or redundant addresses to increase fault tolerance. 
 
Each profile contains all the information required to dispatch request messages and must be stand-alone. That 
is, when sending a request, the client is allowed to use information from only one profile. When a client gets an 
IOR, it tries to bind the request using one of the profiles. If that fails, it goes to the next profile, and so on, until it 
either succeeds or runs out of profiles. 
 

IDL:Account:1.0 2

Type id

profile

profile count

profile

0 1.1 ‘host.com’ 1571 ‘fred’ reserved

protocol version host port object key
 

 
The figure above illustrates the IOR format: 
• An IOR begins with the string type_id which gives the type of the object, equivalent to the name of the IDL 

interface defining the object  
• A profile_count specifies the total number of profiles that the IOR Contains. 
• An IOR profile starts by indicating which underlying protocol is used. In our case 0 indicates that the TCP 

protocol will be used, which effectively means the IIOP communication format will be used. 
• This is followed by field reserved for the Version of the protocol, which consists of a major and a minor 

version number. 
• The next two fields provide the address appropriate for transport protocol needed to establish 

communication with the remote server. In our case, a host IP address and port number. 
• The object_key is a field, which is used by the remote server to locate the object being accessed. 

Although a client needs to have a copy of the object_key, as far as the client is concerned, the key is just 
an opaque code which passes to a server in order to identify an object referred to 
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• There can also be additional fields at the end but these are currently not used and are reserved for future 
expansion to the protocol. 

 
Typically, the server who hosts the corresponding object creates an IOR. The IOR is then published in order to 
make it available to other client processes. To assist publication of an IOR, it must be possible to convert it into a 
alphanumeric string format which is not subject to any conversions when communicated from place to place. For 
this reason, Corba specifies a standard alphanumeric string format (see IOR string example below).  
IOR:010000001300000049444c3a546573742f48656c6c6f3a312e30000001000000000000006c0000000
10102cd0f0000007063323835312e7369676e61616c00cdfa05cdcd1b00000014010f005253549893d43f
600e0e00000000000100000001000000cd02000000000000000800000001cdcdcd004f415401000000140
0000001cdcdcd01000100000000000901010000000000  
As seen in the IOR string above, it consists of the characters “IOR” followed by a series of hexadecimal 
numbers. Every byte of the original IOR is translated into a two-digit hexadecimal number. Although this string 
format is simple and resistant to corruption, interpreting the content of the IOR is difficult. 
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Appendix B: GIOP/IIOP 
Because our tracing mechanism must trace Corba message traffic, we take a closer look at Corba message 
communication protocols, GIOP and IIOP. To allow Orb-to-Orb communication, the Orb uses the General Inter-
Orb Protocol (GIOP), which was designed to work directly over any connection-oriented transport protocol like 
TCP/IP. The GIOP specification provides a general framework for protocols to be built on top of specific 
transport layers. The Internet Inter Orb Protocol (IIOP) protocol is a special case of the General Inter-Orb 
Protocol (GIOP), which is built on top of TCP/IP transport layer. IIOP makes it possible for distributed programs 
written in different programming languages to communicate over the Internet.  
 
GIOP also specifies a Common Data Representation (CDR) for communications between Orbs. The Common 
Data Representation (CDR) maps common data types defined in OMG IDL into a flat message representation. 
This transfer syntax specifies a coding mechanism for all IDL types: including basic types, structured types, 
object references (in the form of IORs), and pseudo-object types such as TypeCodes. Another feature of CDR is 
its ability to deal with the different kinds of byte ordering required by different hardware types: both big-endian 
and little-endian byte ordering is supported. The convention adopted is that the sender of a message sends data 
using its native byte ordering (and sets a flag in the message header to indicate the ordering used). The receiver 
of a message is obliged to detect the byte ordering used and carry out any conversion, if it is required. The 
advantage of this convention is that when both sender and receiver use the same byte ordering, no conversion 
is required resulting in considerable gain in efficiency.  
 
GIOP specifies seven message format types that cover all Orb request/reply semantics. These message types 
allow clients to pass invocations to servers and receive replies which can be either normal or indicate some 
error. Some additional messages are available to help manage the connection. They are: 
 
• Request Message allows a client application to invoke an operation on a remote server. 
• Reply Message is normally sent by a server in response to a client Request message 
• Cancel Request Message is sent by the client to the server to indicate that the client is no longer interested 

in receiving a Reply to a particular message. 
• Locate Request Message can be sent from client to server to probe for the location of a remote object. It is 

advantageous to send this message before sending a large Request on a connection which has just been 
opened 

• Locate Reply Message is sent from server to client in response to a Locate Request message. The sever 
can answer with UNKNOWN_OBJECT, OBJECT_HERE or OBJECT FORWARD:  

• Close Connection Message is sent by the server to tell the client that it intends to close the connection 
• Message Error Message can be sent by the client or by the server Orb. It is used within the IIOP protocol to 

indicate that the last message received was either corrupted or incorrectly formatted in some way. It 
consists only of a GIOP header with the message type set to MessageError.  

 
Depending on the message type, a message can consist out of one, two or three parts. All message types 
consist at least of the GIOP message header (see figure above). The fields in the header can be described as 
follows:  

• The four characters "GIOP" serve to identify the protocol.  
• The GIOP version number (major and minor) is used to create the message.  
• A flag byte is currently only used to indicate the byte ordering.  
• An integer is used to indicate the message type.  
• The message size (excluding the GIOP header itself).  
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Note that although not illustrated above, the GIOP message format also provides fields known as the Service 
Context that is used to transfer context information between request interceptors (see also 5.2.1). Because the 
request and reply messages are of special interest for a tracing mechanism, we will take a closer look at these 
important message types in following sub paragraphs. 
 
The Orb creates a new request message, every time client does a remote operation on the servant. The client 
usually waits for a Reply message from the server (unless the operation has been declared to be one-way), 
which normally contains a return value, or possibly an error condition. Since the request and reply messages are 
of special interest for a tracing mechanism, we will take a closer look at these important message types in the 
next two paragraphs. The Request message contains all the information needed for the invocation including the 
identity of the object, the operation name, and any parameters associated with the operation. Because a 
Request message is designed specifically to invoke operations declared in an IDL interface, the message format 
is designed to support all of the syntax that can appear in an IDL operation definition. The message consists of a 
Request header followed by a Request body. The body of the Request consists essentially of a list of the 
operation parameters followed by any context strings for the operation. It is possible for the body of the Request 
to be empty.  
 
An outline of the Request header is shown in the figure below consists of the following fields:  
• The service_contexts field allows service specific context-information to be passed along with a Request. 

Intended for use in conjunction with the Corba services to carry extra information along with the Request2, 
the service contexts are not needed in the core specification of Corba.  

• The request_id field is used to uniquely identify a Request emanating from a client so that the client can 
later match a received Reply with its corresponding Request (e.g. the corresponding Reply is tagged with 
the same request_id).  

• The response_expected flag is used to indicate whether the Request is oneway or not. A normal Request 
has response_expected set equal to TRUE.  

• The next field is an array of three bytes reserved for future use.  
• The object_key field is used at the server end to identify the object that is being invoked by the client  
• The operation field is simply a string giving the name of the operation being invoked.  
• The requesting_principal field identifies the user making the request. That is, it is simply the user name of 

the person running the client.  
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The Reply message consists of a GIOP header followed by a Reply header and a Reply body. The usual intent 
of a Reply message is to pass back a return value for an operation and to indicate the completion status for the 
operation. The Reply header does not pass as much information as a Request header and typically consists of 
the following three fields:  

 
1. The service_context field that is similar to the service context field used by the Request message.  
2. The request_id field is used to match this Reply message with the client Request that gave rise to this 

reply. That is, all replies messages are paired off with their corresponding Request and the request_id is 
a unique identifier for active messages between Orbs.  

3. The reply_status field is used to indicate whether this is a normal Reply or if some error condition 
occurred in the server. The reply_status is used to toggle between a number of different Reply types so 
that a Reply message is almost like four messages rolled into one. The possible values for reply_status 
are NO_EXCEPTION, USER_EXCEPTION, SYSTEM_EXCEPTION or LOCATION_FORWARD 
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Appendix C: Corba Telecom Logging Services 
The Object Management Group (OMG) proposed a specification for a Corba Telecom Logging Service  
[OMG2000] for logging events in a pure Corba environment. The proposed Application Programming Interface 
(API) services supports on top of the functionality defined in the ITU-T X.735 specification extra Corba event 
logging functionality. The Telecom Log Services can be accessed by six different Log objects, which inherit 
functionality from each other or from other object services (see figure below). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each log interface object can store events as entries in an individual log repository. This Log repository can 
store any type of event as long as the underlying storage, one or more files or databases can support their 
storage. Conceptually an Event/Notification Log object and can be modelled as an Event/Notification Channel 
(see figure below) which support both the push or pull models of event communication (see event 
communication). Event/Notify Log objects can operate as an event consumer, event supplier or as an event 
forwarder. Log objects can also be used to form a complex “log and forward” network. A “log and forward” 
network could potentially be used to create a testing environment for event communication. 
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PC 

Figure Key:
• S: event/notification supplier 
• W: event/notification unaware

writer 
• PC: proxy consumer 
• PS: proxy supplier 
• C: event/notification 
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Appendix D: Corba Scripting Language 
The OMG has specified the IDLScript language [IDLScript] designed specifically for testing Corba applications. 
IDLscript is new general-purpose object-oriented scripting language that allows any user to develop their 
activities by simply and interactively accessing objects available on the Corba core middleware object, the Orb. 
Therefore the user is completely free to operate, administrate, configure, connect, create, and delete distributed 
objects on the Orb.  
 
IDLscript is a true high-level language comprising programming concepts such as structured procedures, 
modularity, and object-oriented programming. The IDLscript language provides various syntactical constructions 
such as basic values and types, expressions, assignments, control flow, statements, procedures, classes, 
modern exception handling and modules. The binding between Corba and IDLscript is achieved through the 
Dynamic Interface (DII) and the Interface Repository. The DII is used to construct requests at runtime and the 
Interface Repository is used to check parameters types of requests. Moreover, using the DSI, IDLscript allows 
one to implement OMG IDL interfaces through scripted objects. IDLscript allows scripts to invoke IDL operations, 
access IDL attributes of remote Corba objects/components. The interpreter automatically does all type checks 
and conversions and parameter coercions are automatically done according to IDL signatures. IDLscript 
provides a simple Java-like exception mechanism that allows one to catch users’ defined IDL exceptions and 
also standard Corba system exceptions. The Dynamic Invocation Interface sends Corba requests. 
 
An IDLscript engine is the mechanism that interprets the IDLscript. It provides three execution modes: the 
interactive one, the batch one, and the embedded one. In the first mode, users provide their scripts interactively. 
In the second one, the interpreter loads and executes file scripts allowing batch processing or server 
implementations. In the last one, the interpreter can be embedded in another program and then interprets strings 
as scripts. The IDLscript engine allows the introspection of any scripting object. The introspection encompasses 
object displaying and dynamic attribute, method, and type discovering. All OMG IDL concepts such as basic 
types, modules, constants, enumeration’s, structures, unions, typedefs, sequences, arrays, interfaces, 
exceptions, TypeCode, and Any types are directly and transparently available to scripts. The integration 
between IDLscript and the Orb is fully dynamic which means there is no stubs/skeletons generation required. 
The IDLscript engine discovers OMG IDL specifications through the Interface Repository. When scripts invoke 
Corba objects, the Dynamic Invocation Interface and the Dynamic Skeleton Interface are internally used to send 
and receive requests and the IFR is used to check parameter types at runtime. But users never use directly 
these Corba dynamic mechanisms, they are totally hidden by the scripting engine.  
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Appendix E: Tcl Scripting Language 
Tcl scripting is a popular open source scripting languages, which enjoys a large availability of development tools. 
The Tcl Scripting Language simplifies the access and the use of computer system resources like files and 
processes in the context of an operating system shell, relational database query requests in the context of SQL, 
and graphic widgets in the context of Tcl/Tk. Combat is an extension to the Tcl scripting language that allows 
accessing and providing Corba objects at the script level. Combat allows Tcl scripts to access Corba services or 
become Corba servers themselves. The interpreted language Tcl can therefore serve as a prototype scripting 
language for implementing functional test on a software component. By constructing a small set of scripts, a 
tester could validate a system component in a relatively short time. Because Tcl interpreted language can be 
executed without recompilation, its code can even be send across a network. This would allow a Tcl script to do 
remote interactive modifications or send an extension to another server. A disadvantage of interpreted 
languages is that they are slower than their equivalent code in a static programming language. The speed 
decrease might be acceptable for temporary prototype, test reactor, or low priority components but a 
programmer is advised to reprogram a component in a statically linked component for deployment.  
 
There are two versions of Combat available. 
• Combat/C++, does not itself include an Orb, but is a glue package that builds upon an existing Orb C++ Orb 

such as Mico or Orbacus. Therefore, Combat/C++ inherits your Orbs properties such as configuration 
options and protocol support.  

• Combat/Tcl also includes an Orb written in pure Tcl. By not depending on any compiled code, this version 
works on all platforms where Tcl is available, and can be used where compiled code is not acceptable, such 
as in the Tcl browser plug-in. Naturally, packaging and deployment is much easier than with compiled code. 
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Appendix F: Logical Clock Limitations  
Although Logical Clock is ideal for chronologically ordering communication events between two distributed 
processes, the mechanism will start lacking in distributed systems where component instances maintain 
communication links with multiple components at the same time. Figure N illustrates a possible communication 
scenario where this problem manifests. Although a logical clock value will allow the tracing framework to order 
events between two communicating components, logical clock values that are not connected by a message 
cannot be logically ordered. For example, there is no telling whether logical clock event 3 on Component A was 
before or after logical clock event 3 on Component B. However, sometimes we can estimate it by using the 
available timing data. Let us assume that physical clock on Component A is the real clock time. Notice that 
Component A send a request message (with Logical clock value 1) at time 0:00 and receives the reply message 
(containing logical clock value 6) at time 0.04. Now compare it the times on component B. Component B 
receives Logical Clock value 1 at time 0.04 and returns Logical Clock 6 at time 0:07. Notice that that both 
component A and Component B require 4 seconds between Logical clock 1 and Logical clock 2. We can clearly 
see now that there is an offset of 3 seconds. Now we can use this knowledge to sort logical clock 3. Because 
0.05 – 0.03 > 0.00 we can conclude that logical clock event 3 at Component B happened approximately 2 
seconds after logical clock event 3 at Component B 
 

Logical Clock: 1 Logical Clock: 2 

Logical Clock: 3 Logical Clock: 6 

Component A 
time event logical 

clock 
0:00 Request - 1 
0:00 Send 1 2 
0:00 Send 2 3 
0.02 Receive 3 4 
0.03 Send 4 5 
0.04 Receive 6 7 
0.04 Receive 5 8 
0.05 Reply 8 9 

Actor 

Component B

Component C 

Component D 

Component E 

Component F 

time event logical 
clock 

0:03 Request 1 2 
0:04 Send 2 3 
0:05 Send 3 4 
0.06 Receive 3 5 
0.06 Receive 4 6 
0.07 Reply 6 7 

time event logical 
clock 

0:05 Request 3 4 
0:06 Reply 4 5 

time event logical 
clock 

0:03 Request 3 4 
0:04 Reply 4 5 

time event logical 
clock 

0:08 Request 2 3 
0:09 Reply 3 5 

time event logical 
clock 

0:05 Request 2 3 
0:06 Reply 3 4 

Figure N: Logical clock usage example 
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Appendix G: Request & Reply Flow 
Although there are seven message types in GIOP, we focus our attention on two of the most interesting 
message types for tracing purposes, which are the request and reply message. The picture below illustrates the 
information flow through a client and server Orb both with active request interceptor. A client application starts 
an invocation by sending a request message and receives a reply message back from the servant. This figure 
shows a basic and successful request-response invocation cycle (that is, no exceptions are raised).  

Client Application
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Client Request
Interceptor Class
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receive_reply()
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Server Request Interceptor
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In 
figure above, the following events take place: 
1. The request leaves the client and arrives at the client Orb.  
2. The Orb calls the send_request method in the ClientRequestInterceptor Class implementation 

with a RequestInfo object as in parameter  
3. The client request interceptor processes the request and returns to the Orb.  
4. If no user exception is returned during execution of the send_request method, the request resumes its 

path toward the target object.  
5. The Orb marshals the Client request into a IIOP message and sends it to the server Orb 
6. IIOP message arrives at the server Orb and gets unmarshalled into client request 
7. The Orb calls the receive_request_service_context interface with a RequestInfo object which 

only allows access to the message service context fields (see paragraph 7.4) 
8. The receive_request_service_context allows the request interceptor to read available service 

context (see paragraph 7.5) and transfer it to available Portable Interceptors current slots (see paragraph 
7.6) before returning to the Orb 

9. The Orb calls the receive_request interface with a RequestInfo, which allows the request interceptor 
access to all outbound message fields. 

10. The server request interceptor processes the request and returns to the Orb 
11. If no exception is raised during the execution of the receive_request operation, the request resumes its 

path toward the target object. 
12. The servant object processes the request and issues a response. 
13. The target-side Orb calls the send_reply method in the ClientRequestInterceptor Class 

implementation with a RequestInfo object as in parameter 
14. The request interceptor processes the response and returns to the Orb.  
15. The response is sent to back to the client Orb.  
16. The response arrives back at the client Orb 
17. The Orb calls the receive_reply method in the ClientRequestInterceptor Class implementation 

with a RequestInfo object as in parameter 
18. The interceptor processes the response and returns to the Orb.  
19. The client eventually receives the servant reply message back from the servant 
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Appendix H:  Request Information 
When the Orb activates the request interceptor, it receives a RequestInfo object as parameter. Depending on 
the message types and contents of the intercepted message, the RequestInfo object is populated with a different 
set of message information.  
 
The RequestInfo object allows the Request Interceptor to get access to the following attributes: 
• Request ID, does in contrast to the intuition, not specify the source of the message. Instead, it only uniquely 

identifies an active request reply sequence between two Orb instances. Once a request reply sequence is 
concluded the Orb might reuse the ID. The request ID can therefore not serve as a unique message 
identifier in the Corba System.  

• Client/Server Service Contexts attribute allows the request interceptor to transparently transfer context 
information between client and servant. The service context field is a new reserved field in the IIOP 1.1 
message format (see also appendix B). Service Contexts can be used for out-of-band communication 
between interceptors installed in different Orb instances. Depending on the interceptor interception point, the 
client service context can be access, or modified. In the next paragraph, we will explain how Interceptors 
can use this piggybacking mechanism to transparently sent context information between services. 

• Reference to the target object, is the effective IOR address to the object that is being invoked by the client. 
Although this information is normally not available in the GIOP, the interceptor is able to derive this address 
from the Orb. This information is very useful for tracing services that want to determine the effective Corba 
Object a client interacts with. Note that the reference on the reply message is the same reference in the 
request message. 

• Argument and attributes returns a parameter list containing the input and output arguments on the operation 
being invoked. Note however that the parameters list is not supported by all Orb implementations. Due to 
enforced security rules, Java Orb implementations are not able to read the arguments.  

• Method attribute allows services to determine the name of method that was remotely called on a servant by 
the client object. The method name is the same name defined in the IDL file. The Combination of method 
and argument attributes collected on both server request interceptor and client request interceptor would 
allow a tester to verify the input with output of a object (see figure below).  

• Result or Exception list is the result of a method call on a Cobra object. This information is only available if 
the interceptor captures a reply message from the servant. The return value is of special interest to tester to 
verify a methods output with the expected output. Exceptions can give a service an indication what went 
wrong. Fault tolerant services can use this information to recover from a fault without the client noticing any 
problems.  

• Tagged components attribute is a new read-only field in the IIOP message format, which can be modified by 
IORinterceptors (see also appendix L). They general usage is for establishing secure or fault tolerance 
connections. Although they cannot be used to determine the identity of a client, the information might be 
useful for verifying the system fault tolerance. 

 
Note that there is no field that returns a reference to the source of the message. The GIOP message protocol 
simply does not contain any source ID. This is because Corba communication protocol is mainly focused on 
establishing and maintaining a between two objects connected by an Orb, which already have network 
connection on a lower communication level like TCP/IP. The Orb process IP number and port number therefore 
determine a message return path. Note also that process that can initialise an Orb instance can effectively 
invoke any Corba object. Clients therefore do not even have to be an object to call remote function.  
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Appendix I: Service Context Data  
Service Context Data is data send inside reserved field along normal Corba communication. In order to transfer 
context data from client to server, there must be at least one client request interceptor installed in the client Orb 
and server request interceptor installed in the server Orb at the same time. The client interceptor inserts context 
data into the request message and the server request interceptor retrieves the data from the message. This 
mechanism could for example be used to transparently send authentication data between client and server 
security services. On the client side a security service intercepts a request message and adds authentication 
data to the message, on the server side, after validating the authentication, the security service can either 
confirm access, by doing nothing or refuse access by raising an exception. The flow of piggybacked information 
can also be bi-directional. In bi-directional piggybacking, context data both flows from client to servant and back 
from servant to client. In order to resent the same or modified context data back to the client, the client request 
interceptor can make use of the Interceptor shared memory mechanism, called PICurrent (see appendix J). 
 
Unfortunately everything comes at a price, so does flowing service context data through distributed system. Due 
to the extra overhead caused by populating and retrieving the service context and transmitting the larger than 
normal messages between Orbs, the context data flow will have a negative effect on the overall middleware 
performance. Depending on the performance of the Orb, and the amount of bytes service context being 
piggybacked, both message response time and throughput will suffer. The tables below illustrate the increment 
in latency and decrement in throughput in terms of percentage caused by the interceptor flowing context data in 
comparison to normal data flow without interceptors. Note that latency table also includes a column where we 
can see the minimum latency overhead caused by a non-operating request interceptor. A non-operating 
interceptor does nothing except slowing down an Orb through the default overhead caused by the internal 
parameter conversions. 
 
 Latency Increase 
Orb 0 bytes 

 
10 bytes 
 

100 bytes 1000 bytes 10.000 bytes 

Orbacus v.4 6,36% 13,64% 28,18% 47,23% 145,45% 
Orbix 2000  1,39% 9,03% 19,44% 36,83% 91,67% 
JacOrb v1.3 10% 32% 50% 69% 171% 

 
 Throughput Decrease 
Orb 10 bytes 100 bytes 1000 bytes 10.000 bytes 
Orbacus v.4 15,49% 29,89% 50,32% 149,18% 
Orbix 2000  9,81% 15,28% 33,20% 92,24% 
JacOrb v1.3 37,54% 57,58% 79,62% 185,71% 

 
 
Although the above tested Orbs are currently largely outdated, they still give us a good impression 
what to expect from other Orbs. We can clearly see (in the range 10 to 10000 bytes) that latency 
approximately doubles after the number of bytes is increased by a factor of ten (e.g. the latency grows 
at 10log n, 10 < n < 10000, with n the number of bytes in the service context data). A similar trend can 
also be seen with the Throughput that also drops at approximately the same rate. 
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Appendix J: PICurrent 
The Portable Interceptor Current (PICurrent) is a data sharing mechanism that is specifically used by Request 
Interceptors to transfer context information between interception points. The PICurrent is a slot table from which 
the slots are used by each service to transfer their data between their data context and their request or reply’s 
service context. This mechanism is especially useful for transferring Context data from Client services to Server 
services. Each service that wishes to use PICurrent, reserves a slot or multiple slots during initialisation time and 
uses those slots during the processing of request and replies. 
 
The PICurrent contains two different context scopes: 
 
• Tread scope; a thread scope PICurrent is the PICurrent that exist within a thread’s context. The thread 

scope is active during the execution of all local processes. This includes the local stub or skeleton code, 
which the client uses for communication. 

• Request scope; a request scope PICurrent is the PICurrent associated with the request. The request scope 
is active during the execution of a request interceptor.  

 
In the figure below, we can see how Context data is transferred between the tread scope and the request scope 
and used to transfer service context between client and server. 
 
Depending on the state of the current message, the thread scope and request scope exchange information in a 
different way: 
 
• On the client-side, the thread scope is logically copied to the request scope PICurrent from the threads’s 

context when a request begins and is attached to the ClientRequestInfo object. 
• On the server side, the request scope PICurrent is attached to the ServerRequestInfo and follows the 

request processing. It is logically copied to the threads scope PICurrent after the lists of 
receive_request_sercive_context interception points are processed. 

 
The request scope PICurrent is a logical copy of the thread scope PICurrent at the point the invocation began. 
Even if a client side interceptor happens to be running in the same thread from which the invocation was made, 
the request scope PICurrent and thread scope are still different. PICurrent allows portable service code to be 
written regardless of the Orbs threading model. Interceptors assume that each client interception point logically 
runs its own thread, with no context between it and any other thread. While an Orb implementation may not 
actually behave in this manner, it is up to the Orb implementation to thread PICurrent as if it did. 
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Appendix K: Installing Interceptors 
Before any interceptor can do their work, they must first be registered with a local Orb object before initialisation. 
This is because interceptors must become part of the Orb architecture. In order for a client to establish a 
connection with a servant, the Corba Orb architecture requires both client and servant to initialise a local Orb 
object in their source code. The Orb architecture also requires that all clients use a separate local Orb object for 
each connection with another servant instance.  
 
Request interceptors are executed in a stack flow model. This means their request interceptor request methods 
are invoked one after other, and pushed onto a stack by the Orb. When the reply arrives back at the client, the 
interceptors are popped of the stack, and their ending method is invoked, but this time in the opposite order. The 
model also guarantees the same interceptors intercept the request and reply message invocation, except when 
an exception is thrown during invocation by either a client or server, then this may only be a subset of all 
registered interceptors 
 
Although activated interceptors can communicate with the outside world, once an Orb with one or more 
interceptors registered is initialised, Corba offers no facilities that can alter the interface calling behaviour of an 
interceptor from the inside or outside. By interface calling behaviour, we mean the Orb functionality that calls the 
interfaces of each installed interceptor. In other words, there is no way of disabling or enabling an installed 
interceptor, except during initialisation or killing the Orb completely.  
 
The Official OMG Interceptor specification states that an Interceptor is registered by registering an associated 
OrbInitializer that implements the OrbInitializer interface (see interface definition below).   
 
module PortableInterceptor { 
 local interface OrbInitializer { 
  void pre_init (in OrbInitInfo info); 
  void post_init (in OrbInitInfo info); 
 }; 
}; 
 
Unfortunately, the activation of OrbInitializer is different for each programming language. In the case of C++, the 
OrbInitializer is activated by calling register_orb_initializer defined by the PortableInterceptor name space (see 
C++ specification below) 
 
 
 
 
 
To register the service, an application would first call to the global operation, register_orb_initialiser, passing in 
the service OrbInitialiser as parameter (see C++ source code example below).  
 
 
 
 
After this is complete, the application would make an instantiating Orb_init call that produces an active Orb 
object (see C++ source code example below).  
 
 
 
 
Although the registration of request interceptors into Orb by function callsis well defined, most Orbs 
implementations allow the registration of the request interceptors through external means. In fact, some Orbs do 
not offer any corresponding internal method for Orb initialisation. Java Orb implementation only allows 
registration of an OrbInititiaializer object by means of Orb properties. Java Orb properties can be provided for 
instance by using command line arguments or by setting a special initialisation file. Although Orb properties 
allow us to install interceptors without altering any client source code, it is currently Orb vendor dependant and 
therefore a proprietary solution.  
 
Once every OrbInitializer method is registered in the local Orb, a client can start the initialisation of the Orb 
instance by calling the Orb_init method of the Orb object. During Orb object initialisation, it calls each registered 

PortableInterceptor::register orb initializer (initializer.in ()); 

Namespace PortableInterceptor {
 Static void register_orb_initialiser ( 
  PortableInterceptor::OrbInitializer_ptr init); 
}; 

Corba::Orb var orb = Corba::Orb init (argc, argv, "" ACE ENV ARG PARAMETER);
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OrbInitializer once, passing it an OrbInitInfo object, which is used by its methods to register an interceptor. Note 
however, that the registration code executed during initialisation should avoid using the Orb because invocations 
during this state are undefined in some Corba implementations.   
 
The OrbInitialiser interface only contains two methods; pre_init and post_init. Both interface methods are called 
only once during Orb initialisation and therefore interceptors cannot be registered on an Orb after it has been 
returned by a call to Orb_init . The only difference between them is that pre_init must register initial services 
itself while post_init can assume that all initial reference are available. Both methods obtain an OrbInitInfo object 
as in parameter, which contains methods for registering interceptors (see interface definition below).  
 

Module PortableInterceptor  {  
 
local interface OrbInitInfo { 
 typedef string ObjectID; 
 exception DuplicateName {string name;}; 
 exception InvalidName {}; 

 
 readonly attribute Corba::StringSeq arguments 
 readonly attribute string orb_id; 
 readonly IOP::CodecFactory codec_factory 

 
 void register_initial_reference (in ObjectID id, in Object obj) raises (Invalidname) 
 void resolve_initial_references (in ObjectId id) raises (InvalidName) 
 void add_client_request_inteceptor (in ClientRequestInterceptor interceptor) raises (DuplicateName) 
 void add_server_request_interceptor (in ClientRequestInterceptor interceptor) raises (DuplicateName) 
 void add_ior_interceptor (in IORInterceptor interceptor) raises (DuplicateName) 
 void register_policy_factory (in Corba::PolicyType type, in PolicyFactory policy_factory); 
 
 Slotid alocate_slot_id 
} 

 
In practice, we only have to implement either the pre_init or the post_init method and initialise and register the 
interceptor with methods available in OrbInitInfo  (see example below) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Void Client OrbInitializer::pre init (
    PortableInterceptor::OrbInitInfo_ptr 
    ACE_ENV_ARG_DECL_NOT_USED) 
  ACE_THROW_SPEC ((Corba::SystemException)) 
{ 
} 
 
Void Client_OrbInitializer::post_init ( 
    PortableInterceptor::OrbInitInfo_ptr info ACE_ENV_ARG_DECL) 
  ACE_THROW_SPEC ((Corba::SystemException)) 
{ 
  PortableInterceptor::ClientRequestInterceptor_ptr interceptor = 
    PortableInterceptor::ClientRequestInterceptor::_nil (); 
 
  PortableInterceptor::ClientRequestInterceptor_var 
    client_interceptor = interceptor; 
 
  info->add_client_request_interceptor (client_interceptor.in ()); 
} 
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Appendix L: IOR interceptors 
An IOR interceptor is an object, which is invoked by the Orb when the Programmable Object Adapter (POA) 
creates the IOR. The IOR interceptor allows an IOR to be customised by appending special tagged components. 
These tagged components can be used in conjunction with Request Interceptors to establish Quality of Services 
(QoS) 
 
IOR interceptors can provide the following functionality: 
• Tracing IORs. IOR interceptors can be used to trace IORs as they start their journey trough a system after 

they are generated by the POA. This could be useful for security services that guard the spreading of IORs 
or by logging services that want to track the birth of IOR. 

• Modifying IORs. In some cases, a portable Orb service implementation may need to add information 
describing the server’s or object’s Orb service related capabilities to object references in order to enable the 
Orb service implementation in the client to function properly. For example, by associating information about 
security policies with an object reference, a client and server Orb can establish a secure connection. 
Another example is to augment the object reference with additional profiles that provide an alternative 
Internet address for the object when the object is reachable by multiple different TCP/IP paths. In these 
cases, IOR Interceptors can be used to insert service-specific information into the IOR. The IOR Interceptor 
does this by establishing tagged components within an Interoperable IOR.  

• Re-routing IORs. Some systems may require published object references that escape from the system to be 
references to a firewall or gateway than the real object. IOR Interceptors can be used to replace the IOR of 
an object with an IOR of an entirely different object, like Orb daemons. 

 
Policies are used for specifying component security policies and can be created by implementing a special 
Policy Factory. The picture below illustrates how a set of policies influences the set of tagged components 
contained within the profiles of any IOR created by that POA [Interceptor v2.6.1]. 
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Figure 5.6: Relation ship between IOR and other Corba concepts 
 

In order to add tagged components to the IOR, special field must be modified embedded inside the new Corba 
message format. Version 1.1 of the Corba Internet Inter Orb Protocol (IIOP) introduces an IDL attribute called 
components. The new attribute contains a list of tagged components to be embedded within an IOR. This list of 
tagged components provides a placeholder for an Orb to store extra information pertinent to the objects in a 
component. This information can contain various types of Quality of Service (QoS) related information pertaining 
to security, server thread priorities, network connections, Corba policies, or other domain-specific data. 
Modifying the IOR attributes is supported through the IORInterceptor and IORInfo interfaces. The IOR 
interceptor uses IORInfo object to access the several attributes contained in the IOR. The old Corba message 
format (IIOP version 1.0) provided no standard way for applications or services to add tagged components into 
an Orb. Services and applications that required this field were therefore forced to use proprietary Orb interfaces, 
which limited their portability. The new PI specification resolves this problem by specifying IOR interceptors that 
provide a meta-programming mechanism to customise components IOR. 
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Appendix M: History of the Portable Interceptor 
Before Corba 2.3.1, interceptors were under specified. In contrast to the current specification, which consists out 
of xxx pages, the first definition only contained nine pages. It was therefore not surprising that the first 
interceptor implementations were often lacking, bugged, or simply not implemented at all. This motivated many 
frustrated Orb developers to discard the original OMG specification, and develop their own interpretation of the 
Interceptor. This resulted into in a large number of propriety solutions that was non-portable between the 
different Orb implementations. The problem was recognised by the OMG, which issued a Request for Proposal 
(RFP) in September 1998 [proposal]. After some iteration of proposals and discussions, the leading vendors of 
the field came to an agreement, and handed in their Joint Submission in December 1999 [revised]. Many Orb 
vendors, but not all, now have adopted the latest OMG Interceptor specification [Interceptors 2.6.1] in their list of 
features. 
 
The original PI definition also contained a specification for the message interceptor. In the new Interceptor 
specification, the functionality of the message interceptor is embedded in the request interceptor. Message 
interceptors were used to transfer context information transparently between different execution environments. 
Message interceptors could treat the message as a structureless buffer. This means that message interceptors 
could operate on messages in general without understanding how these messages relate to requests. A hooked 
message interceptor is able to examine and modify a context field located in the IIOP message structure 
travelling between Corba components.  
 
To allow the examination and modification of the context field at both client side and server side, the message 
interceptor differentiates between a client message interceptor and the server message interceptor. The client 
message interceptor was hooked in Orb that acted as the client while the server message interceptor is hooked 
in the Orb, which acted as the server (see picture below). As seen in the image, the message interceptor 
operated on a lower Orb level than the request interceptor. On the client side, the message interceptor is called 
after the Client request interceptor. This level of interface would be useful for performing operations on 
fragmented messages or add encryption for increased security. 
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Figure M: Message and Request level interceptors 
 

 
  

 


