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Abstract

Proving properties about a program can significantly help creating high qual-
ity reliable software. Many general purpose proof assistants exist, but these
are hard to use when applied to more practical domains such as actual pro-
gramming languages. Because of this, special purpose proof assistants have
been developed. In this thesis, the focus is on Sparkle; a proof assistant for
the functional programming language Clean.

A feature that is commonly found in functional programming languages
is overloading structured by type classes. Type classes essentially are groups
of types, the class instances, for which certain operations are implemented.
These implementations are created from the available instance definitions and
may be different for each instance. An important observation regarding type
classes is that, in general, the defined instances should be semantically re-
lated. For example, all instances of the equality operator usually implement
an equivalence relation.

In this project, proof support for type classes is developed and added to
Sparkle. Properties about type classes are specified as class constrained
properties. A new proof rule and an effective tactic are presented for proving
class constrained properties by proving them for the available instance defi-
nitions. This is not straightforward, because instance definitions may depend
on each other. The proof assistant Isabelle handles this problem for single
parameter type classes by structural induction on types. However, this does
not suffice for an effective tactic for multi-parameter classes. This is solved
using an induction scheme derived from the instance definitions.

The tactic is implemented in the proof assistant Sparkle, but the result is
general and can be used for other programming languages and proof assistants
as well.

This work was presented at the Fifth Symposium on Trends in Functional
Programming 2004 (TFP 2004) at the Ludwig-Maximilians University in Mu-
nich, Germany. Based on the comments an improved version was published as
a technical report (NIII-R05001) and submitted for review for the TFP 2004
selected papers, to be published by Intellect.
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Preface

“What’s in a name? That which we call a rose by any other word would smell
as sweet; So Romeo would, were he not Romeo call’d, retain that dear perfec-
tion which he owes without that title.”

This excerpt from Romeo and Juliet by William Shakespeare appears to be
perfectly true in its dramatic context, but one should be careful not to inter-
pret it too literally. Although something does not lose its properties when it
is given another name and a name may not define all properties, two things
having the same name does suggest that both have some properties in com-
mon: both red and yellow roses smell sweet, any chair can be used to sit on,
and every language is used for communication. One could say that a name
represents a class of which all instances share some properties. In some cases,
these properties are even sufficient to define the class. Hence, without doubt,
the name has a connection to certain properties.

This observation lies at the heart of this thesis. Here, the classes consid-
ered are classes in a functional programming language. In most functional
languages, several functions that have the same name can be defined, each
operating on different types (overloading). Often, these functions share some
important properties, otherwise there would be very little reason to give them
the same name. This thesis deals with proving these properties for the entire
class at once, instead of separately for all class members.

The application of formal reasoning and theory for a new result is what
interested me the most in this project. A computing science student gets a
lot of exercise in understanding and working with existing definitions. How-
ever, creating new definitions yourself introduces a form of uncertainty. For
example, there was a large number of possible choices for the level at which
to formalize the solution. In some way, publishing this work as an article con-
firmed the choices made and furthermore increased my understanding of what
I have actually done.

I would like to express my gratitude to everyone who contributed to this
thesis. First of all, my supervisor Marko van Eekelen for help on formal-
ization and generalization and his remarks on scientific research in general.
Secondly, Maarten de Mol, the author of Sparkle, for sharing his experience
on Sparkle and his insight in the problem domain, and Sjaak Smetsers for
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clarifying how Clean implements type classes. Of course, I would also like to
thank the Nijmegen Institute for Computing and Information Sciences (NIII)
for making it possible to present this work at the Fifth Symposium on Trends
in Functional Programming (TFP 2004) at the Ludwig-Maximilians Univer-
sity in Munich, Germany. I should not forget to mention Chris Heunen for
various hints on mathematical notation and for playing music and many games
of table football before he went to Canada. And finally, I would like to thank
my family and friends for their support and encouragement during the time I
was working on this thesis.

Thanks!
Ron van Kesteren, Februari 2005
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Introduction 1
In this chapter, the subject of this project and the problem that is solved
are explained. The problem is formulated as a research goal and a research
question. The research goal states the practical result that is accomplished by
the project. The research question is the scientific question that is answered
in this thesis.

Section 1.1 introduces the programming language Clean and Sparkle; a
proof assistant for Clean programs. Sparkle’s main advantage is explained
in section 1.2. This thesis solves one of the shortcomings of Sparkle, proving
properties about overloaded expressions, which is presented in section 1.3.
The kind of properties we would like to prove, class constrained properties, is
presented in section 1.4. Section 1.5 summarizes the goal of the project and
the research question. Finally, section 1.6 gives the outline of this thesis.

1.1 Clean and Sparkle

This thesis is about proof support for Clean programs that use type classes.
Clean [17] is a pure and lazy functional programming language developed at
the Software Technology department of the Radboud University Nijmegen. It
is available free of charge at: http://www.cs.ru.nl/~clean. An important
property of a pure functional language is referential transparency, which means
that the result of a function only depends on the function parameters. This
makes it relatively easy to reason about the behavior of a Clean program.

To bring together programming and reasoning, the proof assistant Sparkle

was developed [5]. Sparkle is specialized for Clean and can be used to prove
properties about (parts of) arbitrary Clean programs. Before a property
about a program can be proven, the program must be translated to the speci-
fication language of the proof assistant. Then, the proof can be conducted on
the translated program. Sparkle uses a subset of Clean, called Core, as its
specification language, which makes the translation relatively straightforward.

Properties can be specified in the well known first order predicate logic
extended with equality of expressions. By selecting one of the more than forty
(parameterized) tactics, the property is transformed into (a number of) the
properties, the proof goals or proof obligation, that are hopefully easier to
prove. The property is proven when all remaining proof goals are trivial. The
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Chapter 1 — Introduction

tactics are specifically tailored to functional languages; Reduction is a very
useful tactic that can be used to reduce all expressions in the current goal
to root normal form, Induction performs structural induction on expression
variables.

Example 1.1.1 (example property)
A property that can be proven using Sparkle is:

∀n:Int[n 6= ⊥ ⇒ ∀a∀xs:[a][take n xs ++ drop n xs = xs]]
This property can be proven using the Induction tactic on n and xs.

The key in proving a property is selecting the right tactics. This requires
knowledge of the tactics and proofs in general. Fortunately, Sparkle features
a hint mechanism that aids in selecting tactics. Based on the current goal,
tactics are assigned a probability rating of 1 to 100 indicating how likely the
application of the tactic will help proving the goal. By setting a threshold for
automatical application, Sparkle can also try to automatically build a proof.

Example 1.1.2 (user interface)
The Sparkle user interface showing a completed proof:

1.2 Sparkle’s strength

The use of the intermedial language Core, instead of a more mathematically
oriented specification language, is a major advantage of Sparkle over most
other proof assistants. Programmers usually understand their programs very
well, but for reasoning a good understanding of the translated program is
required. This might be a problem if the specification language differs too
much from the programming language. Three types of differences can be
distinguished [5]:
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Differences in semantics Understanding the translated program may be
difficult because of unfamiliar concepts in the specification language.
Furthermore, the understanding of the original program may not trans-
fer to the translation. Fortunately, both Core and Clean use a lazy
term-graph rewriting system. The only difference is that overflow and
rounding errors that occur in Clean are disregarded in Core.

Differences in notational expressivity The notational expressivity of the
specification language may be less than that of the programming lan-
guage. Some Clean concepts have to be translated to simpler ones
in Core. Core has all the basic concepts, but pattern matches are
translated to case distinctions, overloading translates to dictionaries and
concrete functions, and dot-dot expressions and list comprehensions are
translated to functions. In Sparkle, some, but not all, of these trans-
lations are reversed or hidden from the user.

Differences in syntax Differences in syntax are often not so serious. Never-
theless, they are unnecessary and should be avoided as much as possible.
Therefore, where possible, Sparkle uses Clean syntax for specifying
the programs as well as the properties.

It is important that proving properties about functional programs is as
easy as possible. Verifying properties can greatly increase the correctness and
thus the security and robustness of a program, the importance of which is
generally accepted. However, proving properties is very time consuming work
and will often be considered not worth the effort. Even with the progress
made by Sparkle, it is only suitable for the most critical parts of a program.
However, the easier it is to prove properties, the more it will be done and the
more secure and robust programs will be. A worthy goal to pursue.

1.3 Sparkle’s weakness

One of the differences in expressivity between Core and Clean is that the
latter supports overloading, also known as ad hoc polymorphism, and Core

does not. The term overloading is used for the specification of a group of
equally named functions (instances), each operating on a different, possibly
overlapping, range of types. These functions can depend on each other, allow-
ing the overloaded use of the function name in its own definition.

It is important to note that these functions, at least in most cases, im-
plement the same kind of operation. Therefore, all instances will have some
properties in common. In fact, overloading is probably used because of these
common properties. For example, all instances of the equality operator in
example 1.3.1 are symmetric and transitive. It would be useful to be able to
prove that these properties hold for an overloaded function, regardless of the
concrete type of the parameters. Currently, this is not possible in Sparkle.

Proof Support for Type Classes 11
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Example 1.3.1 (type class)
This is an example type class Eq, of which the equality operator (==) is
the only member. Type classes are explained in more detail in section 2.3.

class Eq a where

(==) :: a a -> Bool

instance Eq Int where

(==) :: Int Int -> Bool

(==) x y = eqInt x y

instance Eq Char where

(==) :: Char Char -> Bool

(==) x y = eqChar x y

instance Eq [a] | Eq a where

(==) :: [a] [a] -> Bool | Eq a

(==) [] [] = True

(==) [] [y:ys] = False

(==) [x:xs] [] = False

(==) [x:xs] [y:ys] = (x == y) && (xs == ys)

As briefly mentioned before, overloading is resolved in the translation from
Clean to Core. When an overloaded function is used, based on the inferred
type, a specific implementation is created from the available definitions and
passed around as a dictionary. This way, the property has to be proven sep-
arately for each closed type for which the function is used, because only in
these cases the overloading can be completely removed. This is very incon-
venient and does not align with a basic idea of overloading, which is to treat
groups of functions that perform equivalent operations as one. Furthermore,
the programmer knows the program at the level that uses overloading, not at
the level of dictionaries.

Example 1.3.2 (current situation)
Currently, it is possible to prove symmetry of equality for a specific type, for
instance lists of integers, in Sparkle:

∀x∈[Int]∀y∈[Int][x == y ⇒ y == x]
However, it is not possible to prove, or even specify, symmetry of equality in
general:

∀a|Eq a∀x∈a∀y:a[x == y ⇒ y == x]

1.4 Class constrained properties

The problem noted in the previous section is that we would like to be able
to prove properties in which an overloaded function is used, for all instances
of that overloaded function at once. These properties are only welltyped if it
is assured that there is an instance of these functions for the type required.
In Clean, this is enforced by adding class constraints to the types. Example
1.4.1 shows how such properties might be defined.

12 Ron van Kesteren, Februari 2005



Chapter 1 — Introduction

Example 1.4.1 (example properties)
Several properties about overloaded expressions:

∀a | Eq a ∀x∈a x == x

∀a | Eq a ∀x,y,z∈a x == y ∧ y == z ⇒ x == z

∀a | Eq a, + a ∀x∈a x + x == x + x

∀a | < a, − a, ∗ a ∀x,y∈a (x - 1) * y <= x * y

∀a,b | Eq b, Coerce a b ∀x∈a (coerce x) == (coerce x)

Adding class constrains can influence if a property is true or not. Con-
sider for example the property x <= y ∧ y <= z ⇒ x == y ∨ y == z from
example 1.4.2.

Example 1.4.2 (a false property)
Consider the following property:

∀a | Eq a, < a∀x,y∈a[ x <= y ∧ y <= z ⇒ x == y ∨ y == z ]
We assume there are instances of <= and == for integers. If x, y, and z have
values 1, 2, and 3 respectively, we have a counterexample for the property.
Thus, the property is false.

This property is not true for all instances of <= and ==. However, it is true for
types that have only two values. Say Flip is a class with instances for exactly
those types. By adding this class constraint to the property from example
1.4.3, it becomes true.

Example 1.4.3 (class constraints influence properties)
Say there is a Flip class with instances for binary types. The member func-
tion flip flips the value:

:: Coin = Heads | Tails

class Flip a where

flip :: a -> a

instance Flip Coin where

flip :: Coin -> Coin

flip Heads = Tails

flip Tails = Heads

instance Flip Bool where

flip :: Bool -> Bool

flip True = False

flip False = True

If the property from example 1.4.2 is constrained to this class, it is true.
∀a | Eq a, < a, Flip a∀x,y∈a x <= y ∧ y <= z ⇒ x == y ∨ y == z

Hence, class constraints can influence the truth of a property.
When the Flip class is extended with an instance for integers, the property
is no longer true.

instance Flip Int where

flip :: Int -> Int

flip x = -x

This illustrates that properties need to be proven again when instances are
added.
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The essential addition to the properties caused by overloading are the class
constraints. Overloaded functions cannot be applied without class constraints,
because then it is unknown if there is an instance available. Class constraints
allow overloaded function applications, but can also be specified when no over-
loaded functions are applied. Therefore, this class of properties will be called
class constrained properties.

The problem in proving class constrained properties is that instance defi-
nitions may depend on each other. For example, the instance of equality for
lists in example 1.3.1 depends on the instance for the list members. Hence,
the instance for lists is only an equivalence relation if the instance for the list
members is so as well. This requires some induction method that allows this
hypothesis to be assumed. In general, we would like to be able to assume
hypotheses for all sensible dependencies; the dependencies that preserve type
correctness.

1.5 Research goal

The main problem noted in the previous sections, is that Sparkle cannot be
used to prove class constrained properties. In this project, this problem will
be solved by creating an extension of the proof assistant Sparkle that allows
the user to conduct these proofs. It would be nice if this extension, besides
solving the problem, stays close to Clean’s syntax and semantics, at least
to the user, since that is one of the major advantages of Sparkle over other
proof assistants.

Research goal: Extend Sparkle with the ability to conduct proofs of class
constrained properties.

Reaching this goal requires a number of interesting theoretical and practi-
cal issues to be solved. These issues can be formulated as three objectives.

Objective 1 (Specification): First of all, it should be investigated how class
constrained properties can be specified in Sparkle and how they can
be specified using Clean syntax. This will require an extension of the
Core mathematical framework on which Sparkle is based.

Objective 2 (Reasoning): The second objective is to investigate how one
can reason about overloaded expressions in order to prove the kind of
properties arrived at by objective 1. The result will be the formalization
of valid proof rules and tactics.

Objective 3 (Implementation): Lastly, we should allow the properties from
objective 1 to be specified and the tactics from objective 2 to be applied
in Sparkle. This involves changing and adding code to Sparkle; one
of the larger Clean programs written (approximately 130.000 lines of
code, including libraries).

These three objectives naturally lead to the research question that is an-
swered in this thesis.
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Research question: How can properties about overloaded expressions be
specified and proven?

1.6 Outline

This thesis is structured as follows:

• Chapter 2 reviews several ways to implement overloading, most concern-
ing type classes, and presents the approach taken in Clean and, very
interesting, in the proof assistant Isabelle.

• Chapter 3 contains the most important contributions. It extends the
Core framework to be able to handle class constrained properties. Def-
initions for type classes are added to the specification language, it is
specified how class constrained properties can be defined in the logic
language, and, to be able to prove class constrained properties, special
proof rules and tactics are presented.

• Chapter 4 discusses the interesting parts of the implementation of the
specification of class constrained properties and the proof rules in Sparkle.

• Chapter 5 presents the conclusion and provides suggestions for further
research.

• Appendix A introduces the mathematical notation and concepts used in
this thesis.

• Appendix B introduces Sparkle’s foundations, the Core mathematical
framework, on which the formalization in this thesis is built.

• Appendix C provides proofs and proof sketches for the proof rules and
tactics given in section 3.3.

• Appendix D contains a summary for laymen that explains in Dutch, and
in popular style, what this thesis is about and why this work is useful.

• Appendix E contains the paper written about this work submitted to,
and presented at, the Fifth Symposium on Trends in Functional Pro-
gramming 2004.
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Overloading 2
In the past, there have been several approaches to structure overloading.
Whereas the first attempts were not very flexible or elegant, let alone con-
sidered standard, the situation improved with the introduction of type classes
[19]. Nowadays, type classes have become a common means of abstraction
for overloading in functional programming languages, such as Haskell and
Clean. In this chapter, several approaches to overloading, most concerning
type classes, are presented. Naturally, much of the literature on this topic dis-
cusses theoretical issues such as decidability of type inference and coherence of
semantics. Since we are working with a system for which these problems have
already been solved, we will mostly skip these subjects and look at overloading
from the perspective of the programmer.

Section 2.1 explains the difference between parametric polymorphism and
overloading. Then, some (early) approaches to overloading are reviewed in
section 2.2. Section 2.3 introduces the system of type classes. After that,
several extensions of type classes are presented in sections 2.4, 2.5, 2.6, and
2.7. In section 2.8, the translation of type classes to a language without type
classes is discussed. In conclusion, sections 2.9 and 2.10 present the use of
overloading and type classes in Clean and Isabelle respectively.

2.1 Polymorphism

Overloading is a form of polymorphism. Polymorphism means that a single
symbol is used to denote operations on values of various types. For example,
in mathematics the equality symbol = can be used to denote equality between,
for instance, natural, real, and rational numbers. This is done for reasons of
convenience. Less symbols are required, which means that the symbols can
be kept simple. Moreover, in general the same symbol is used for semanti-
cally equivalent operations. Here, polymorphism is considered in the context
of programming languages, where two main forms of polymorphism can be
distinguished: parametric and ad hoc polymorphism (overloading) [16].

Parametric polymorphism is a very regular form of polymorphism: a single
function definition is used to describe a function that operates on various types.
To achieve this, the function type contains parameters. The function is defined
for all types that are a substitution of the function type. Unfortunately, this
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Chapter 2 — Overloading

implies that in the function body no type specific operations can be used on
the values that have an unknown type. Parametric polymorphism is illustrated
by the length function in example 2.1.1.

Example 2.1.1 (parametric polymorphism)
The length function is defined by:

length :: [a] -> Int

length [] = 0

length [x:xs] = 1 + length xs

The length function computes the length of a list by counting the elements.
This operation is independent of the type of the list elements because no
special operations are performed on these elements; they are just counted.
Therefore, the length function can be specified for all possible element types
by a single definition using a parameter for the type of the list elements. For
example:

length [1, 2, 3] = 3

length [(’a’, ’b’), (’c’, ’d’)] = 2

Overloading, or ad hoc polymorphism, as implied by its name, is much less
systematic than parametric polymorphism. Instead of using a single function
definition, several definitions are provided for the same symbol, each operating
on a different set of types. This way, type specific operations can be used,
as shown in example 2.1.2. Note that, although ad hoc, the definitions are
semantically related in general. For example, all definitions of the equality
operator == should denote an equivalence relation.

Example 2.1.2 (ad hoc polymorphism)
Equality on integers and characters can be defined by (eqInt and eqChar

are predefined):
(==) :: Int Int -> Bool

(==) x y = eqInt x y

(==) :: Char Char -> Bool

(==) x y = eqChar x y

This way, the symbol == can be used for comparing both integers and
characters. In more complex systems, equality on lists can be defined by:

(==) :: [a] [a] -> Bool

(==) [] [] = True

(==) [x:xs] [] = False

(==) [] [y:ys] = False

(==) [x:xs] [y:ys] = x == y && xs == ys

This definition assumes that == is defined for the list elements as well.
Hence, this defines == for integers, characters, lists of integers, lists of
characters, lists of lists of integers, and so on.

Because this research concerns type classes, which are a way to structure
overloading, the following discussion only contains approaches to overloading.
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2.2 Approaches to overloading

Several ways to support overloading have been investigated. Possibly the
simplest approach is to only overload the basic (predefined) operations, such
as addition, multiplication, and equality. Then, expressions like 2 == 2 (true)
and ’a’ == ’c’ (false) are defined, but functions defined in terms of basic
operations cannot be overloaded.

Example 2.2.1 (limitations of basic overloading)
If only the basic operations are overloaded, it is not possible to define:

isMember [] x = False

isMember [y:ys] x = x == y || isMember x ys

such that one can write:
isMember [1,2,3,5,7] 2

isMember [’a’, ’b’, ’c’] ’d’

This is not a very general approach, since it does not use the fact that the
definition of isMember can be seen as the definition of two overloaded func-
tions, one for the type Int and one for the type Char, by using the definitions
of == for Int and Char respectively. However, when functions as isMember are
considered overloaded as well, the number of overloaded functions increases
exponentially with the number of parameters (example 2.2.2).

Example 2.2.2 (exponential increase)
Consider the following function definition:

doubles x y z = (x + x, y + y, z + z)

If + is overloaded for types Int and Real, doubles can be considered over-
loaded as well. In that case, there would be eight overloaded versions of
doubles, because each of the three parameters can have either type Int or
Real. In general, the increase is exponential in the number of parameters.

A more general approach is to allow a limited form of polymorphism in
which type variables can be restricted to a subset of types, for example types
for which a basic operation, say (==), is defined.

Example 2.2.3 (limited polymorphism)
Let a(==) be a type variable that ranges only over types for which equality
is implemented. Then == has type:

(==) :: a(==) a(==) -> Bool

and the isMember function from example 2.2.1 is of type:
isMember :: [a(==)] a(==) -> Bool

Hence, the isMember function can be applied to all the basic types for which
equality is defined.

Without specific support from the programming language, overloading can
be simulated using dictionaries; records in which the implementations of over-
loaded functions can be looked up. Unfortunately, this is not very efficient and
syntactically not very nice, because the dictionaries have to be passed around
as parameters.
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Example 2.2.4 (simulated overloading)
Given the add and subtract functions for types Int (addint and subint

respectively) and Real (addreal and subreal respectively) the following
dictionaries are created:

:: Arith a = { add :: a a -> a, sub :: a a -> a }

ArithInt = { add = addint , sub = subint }
ArithReal = { add = addreal, sub = subreal }

The exponential increase shown in example 2.2.2 is prevented by defining
the doubles function as:

doubles :: (Arith a) (Arith b) (Arith c) a b c -> a b c

doubles ax ay az x y z = (ax.add x x, ay.add y y, az.add z z)

Of the presented attempts to structure overloading, none is really satis-
fying. Ironically, dictionaries, which do not require special support from the
programming language, provide the most flexibility. Unfortunately, they are
also syntactically the least appealing. In the next section, a solution is de-
scribed that is flexible and has a nice syntax as well.

2.3 Type classes

To add more structure to ad hoc polymorphism, Wadler and Blott [19] pro-
posed a new technique, called type classes. Type classes are used to group and
name a set of overloaded symbols, which are called class members. For each
member the overloaded name and overloaded type are specified in the type
class definition. An instance of a class is a concrete implementation of the
members for a certain type. This type does not have to be a basic type, but
may be an abstract type and contain variables as well. The range of these type
variables can be limited to types for which there is an instance of a certain
class.

Type classes require an extension of the type system. Wadler and Blott
do this by adding predicates over the type variables that require that there is
an instance of a certain class for the type the variable stands for. Example
2.3.1 shows an example of a type class (predicates are written at the end of
the type).

Example 2.3.1 (type classes)
The class Eq, of which the equality operator == is the only member, is defined
by:

class Eq a where

(==) :: a a -> Bool

Instances for integers, characters, and lists are defined by (eqInt and eqChar

are predefined):
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instance Eq Int where

(==) :: Int Int -> Bool

(==) x y = eqInt x y

instance Eq Char where

(==) :: Char Char -> Bool

(==) x y = eqChar x y

instance Eq [a] | Eq a where

(==) :: [a] [a] -> Bool | Eq a

(==) [] [] = True

(==) [] [y:ys] = False

(==) [x:xs] [] = False

(==) [x:xs] [y:ys] = (x == y) && (xs == ys)

The instance for lists is special, because it is defined in terms of a class
member. It is only defined for lists if an instance of equality exists for the
type of the list elements. Because of this requirement, the equality operator
can be safely used to compare the elements in the function body. This way,
the equality operator is defined for types Int, Char, [Int], [Char], [[Int]],
[[Char]], . . . .

Overloaded functions can be defined in terms of class members or other
overloaded functions. Consider for example the isMember function (example
2.3.2), which is defined for all types a as long as == is defined for a.

Example 2.3.2 (overloaded function)
The isMember function is defined by:

isMember :: [a] a -> Bool | Eq a

isMember [] a = False

isMember [x:xs] y = x == y || isMember xs y

It is defined for all types a for which an instance of Eq is defined.

Classes can also be defined in terms of other classes, which are called
subclasses. New members can be defined, but this is not required. This way,
for example, a collection of classes can be grouped under a single name. Such
a class, that only groups other classes, is called a compound class. Of course,
cyclic class dependencies are not allowed; a class cannot be a subclass of itself.

Example 2.3.3 (classes defined in terms of classes)
The Arith class groups the + and - class:

class Arith a | +, - a

An essential property of this system is that it is a generalization of the
Hindley-Milner polymorphic type system and that all type declarations can
be inferred. However, to determine which instance of an overloaded function
to use, the most specific instance definition has to be determined. Unfortu-
nately, sometimes this is not possible. Such an overloaded expression is called
ambiguously overloaded. Often, this can be solved by splitting the expression
up and explicitly typing the parts (example 2.3.4).
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Example 2.3.4 (ambiguous overloading)
Assume there are instances of Read and Write for types Int and Bool:

class Read a where read :: a -> String

class Write a where write :: String -> a

instance Read Int where read = readInt

instance Read Bool where read = readBool

instance Write Int where write = writeInt

instance Write Bool where write = writeBool

Then, the expression:
f :: String -> String

f x = read (write x)

can either mean:
f x :: String -> String

f x = read (write2 x)

where

write2 :: String -> Int

write2 x = write x
or:

f x :: String -> String

f x = read (write2 x)

where

write2 :: String -> Bool

write2 x = write x

When Wadler and Blott introduced type classes, they already mentioned
that it would be natural to specify properties that each instance must satisfy.
Their idea was to add the properties to the class definition as assertions.
These assertions could then be verified for each instance, and used in proofs.
They used informal comments to illustrate their idea. More formally, the
assertion that == is a symmetric and transitive relation might be specified as
in example 2.3.5. It is clear that these class assertions can be expressed as
class constrained properties as well.

Example 2.3.5 (class assertions)
In the Eq class, the equality function == is defined. This should be a reflexive,
symmetric and transitive relation, which can be enforced by adding assertions
to the class definition:

class Eq a where

(==) :: a a -> Bool

∀x∈a x == x

∀x,y∈a x == y ⇒ y == x

∀x,y,z∈a x == y ∧ y == z ⇒ x == z

2.4 Constructor classes

In 1995, Jones proposed a natural generalization of type classes, called con-
structor classes [9]. It was developed because the system of type classes could
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not always sufficiently capture the structure of a function’s type. Consider for
example the map function, that applies a function to all elements of a list.

Example 2.4.1 (map function)
The map function is defined by:

map :: (a -> b) [a] -> [b]

map f [] = []

map f [x:xs] = [f x: map f xs]

The map function can also be implemented for trees, in which case its type
would be map :: (a -> b) (Tree a) -> (Tree b). Hence, the general type
for the map function is map :: (a -> b) (c a) -> (c b) where c is a con-
structor. This structure cannot be expressed using type classes, because class
variables stand for types whereas c is a constructor. The straightforward so-
lution is to allow class variables to stand for both variables and constructors.

Example 2.4.2 (constructor classes)
The functor class and instances are defined by:

:: Tree a = Leaf a | Node (Tree a) (Tree a)

class Functor c where

map :: (a -> b) (c a) -> (c b)

instance Functor [] where

map :: (a -> b) [a] -> [b]

map f [] = []

map f [x:xs] = [f x: map f xs]

instance Functor Tree where

map :: (a -> b) (Tree a) -> (Tree b)

map f (Leaf x) = Leaf (f x)

map f (Node l r) = Node (map f l) (map f r)

To ensure that all class members have a well-formed type, the notion of
kind is introduced. The set of kinds is inductively defined where the kind of
all types is denoted by ∗ and the kind of a constructor that expects something
of kind k1 and returns something of kind k2 is written as k1 → k2. Hence, type
classes are a special case of constructor classes, where the class variable has
kind ∗. In the case of the Functor class, c can only stand for a constructor
that expects a type as an argument. Since c also returns a type, it has kind
∗ → ∗.

Example 2.4.3 (examples of kinds)
Constructor/type Kind

Int, Char, [Float] ∗
Tree, [] ∗ → ∗
-> ∗ → (∗ → ∗)
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2.5 Multi-parameter type classes

One of the most natural extensions of type classes is to allow a class to have
more than one parameter [11]. This extension has various useful applications,
for example coercion, isomorphisms, and collections (example 2.5.1).

Example 2.5.1 (collections)
The Collection class that has two type class variables is defined by:

class Collection c a where

empty :: (c a)

insert :: a (c a) -> (c a)

member :: a (c a) -> Bool

instance Collection [] a where

empty = []

insert = insertList

member = memberList

instance Collection TreeSet a where

empty = emptyTreeSet

insert = insertTreeSet

member = memberTreeSet

Unfortunately, this example of collections is a bit restrictive. For example,
it does not allow a collection to be represented by a characteristic function.
Allowing this, however, makes the definition too general, as shown in the next
section. Fortunately, the next section also contains a solution.

2.6 Functional dependencies

One of the most recently proposed extensions of type classes are functional
dependencies [10]. Functional dependencies are a way to restrict the number
of possible instance definitions of a class. They can be used to indicate that an
instantiation of a class parameter uniquely determines another. For example,
consider an alternative definition of the Collection class (example 2.6.1).

Example 2.6.1 (more general collections)
The Collection class can be defined by:

class Collection ca a | ca  a where

empty :: ca

insert :: a ca -> ca

member :: a ca -> Bool

instance Collection (a -> Bool) Bool where

empty = emptyFunc

insert = insertFunc

member = memberFunc
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Without the ca  a, the class definition in example 2.6.1 would be too gen-
eral: the type of empty would be ca | Collection ca a where the a oc-
curs only in the class constraint. This is ambiguous, because there could be
more than one instance definition applicable (different instantiations of a).
Fortunately, ca  a, which means that a is uniquely determined by ca, ex-
cludes exactly that possibility. This allows a more general definition of the
Collections class.

2.7 Parametric type classes

Another way to restrict types, parametric type classes, was presented by Chen,
Hudak, and Odersky [3]. To make the intended relation between the two
class parameters explicit, the class parameters are split into two groups: the
placeholder variables and the parameter variables. No two instance definitions
of a class may have the same instantiation of the placeholder variables, hence,
the types of the placeholder variables uniquely identify which instance to use.
By implementing collections using one placeholder variable and one parameter
variable, essentially the same restriction can be enforced as in example 2.6.1.

2.8 Translation of type classes

Wadler and Blott provided rules that translate a program that uses type classes
into an equivalent one that does not [19]. This translation can be straightfor-
wardly extended for the presented extensions. Essentially, the translation uses
dictionaries in the same way as the simulated overloading presented in section
2.2. For every class instance, a dictionary can be created using the instance
definitions. Dictionaries are explicitly passed around to both overloaded func-
tions and instance functions.

Example 2.8.1 (translation of type classes)
The Eq class from example 2.3.1 and instances are translated to:

:: eqDict a = { == :: a a -> Bool }

eqDictInt :: eqDict Int

eqDictInt = { == = eqInt }

eqDictReal :: eqDict Real

eqDictReal = { == = eqReal }

eqDictList :: (eqDict a) -> eqDict [a]

eqDictList d = { == = eqList d }

eqList :: (eqDict a) [a] [a] -> Bool

eqList d [] [] = True

eqList d [x:xs] [] = False

eqList d [] [y:ys] = False

eqList d [x:xs] [y:ys] = d.== x y && eqList d xs ys
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The isMember function (example 2.3.2) is translated to:
isMember’ :: (eqDict a) [a] a -> Bool

isMember’ d [] y = False

isMember’ d [x:xs] y = d.== x y || isMember d xs y

In the translation of the Eq class, a dictionary is created that contains only
one entry, the == function. eqDictInt and eqDictChar are the dictionaries
for types Int and Char respectively. They use the predefined functions eqInt
and eqChar. The function eqList uses the dictionary for type a to create a
dictionary for lists of that type ([a]).

Example 2.8.2 (translation of expressions)
Given the definitions and translations of == and isMember in examples 2.3.1,
2.3.2, and 2.8.1, the expressions:

3.4 == 12.45

[[1,2],[3,4],[5]] == [[1],[2]]

isMember [1.2,3.4,4.5] 1.2

isMember [[1,2],[3]] [1]

are respectively translated to:
eqDictReal.== 3.4 12.45

eqList (eqDictList eqDictInt) [[1,2],[3,4],[5]] [[1],[2]]

isMember’ eqDictReal [1.2,3.4,4.5] 1.2

isMember’ (eqDictList eqDictInt) [[1,2],[3]] [1]

The application of == is translated to an application of eqInt, eqChar, or
eqList. In the case of eqList, the appropriate dictionary is created and
passed as a parameter.

From these examples, it seems that programs that use type classes can
always be translated to an equivalent program that is typeable in the Hindley-
Milner system. This is not the case however: when the dictionary contains
a polymorphic function, in some cases, polymorphic types of rank ≥ 2 are
required, which are not part of the Hindley-Milner type system1.

Example 2.8.3 (untypeable translation)
Consider the Copy class that contains the polymorphic member f:

class Copy a where

f :: a b -> b

instance Copy Bool where

f :: Bool b -> b

f False y = abort

f True y = y

The translation is perfectly typeable:
:: dictCopy a = { f :: a b -> b }

fbool :: Int b -> b

fbool False y = abort

fbool True y = y

1Clean, but not Sparkle, supports rank 2 and will support rank n polymorphism.
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However, problems arise when f is used in a function:
g :: (Int, Char)

g = (f True 2, f True ’a’)

The function g is translated to:
g d = (d.f True 2, d.f True ’a’)

Now g has type g :: { f :: ∀b Bool b -> b} -> (Int, Char). The uni-
versal quantifier is required, because otherwise b has to be of the same type
for both applications of d.f. This type requires rank 2 polymorphism, which
is not part of the Hindley-Milner type system.

In practice this is not a problem, because the original program can be typed
and type checked. The translation preserves type correctness and hence does
not have to be typed again.

2.9 Overloading in Clean

The examples of type classes were presented in Clean syntax. However, not
all of the extensions are available in Clean. The implementation of overload-
ing in Clean is fully called multi parameter type constructor classes. This is
essentially a combination of the constructor and multi-parameter extensions.
This section discusses a number of specific details, some of which are illus-
trated by examples: overlapping instances, non-flat instance types, derived
members, and a syntactic shorthand.

In Clean, overlapping instance definitions are allowed. In case two or more
definitions are applicable, the compiler will always choose the most specific
one. Especially, generic instances that operate on all types can be defined. Of
course, identical instances are not allowed. In fact, instance definitions where
all outermost constructors are equal (head-equal) are not allowed.

Example 2.9.1 (overlapping instances)
Two overlapping instances of the Coerce class can be defined:

class Coerce a b where coerce :: a -> b

instance Coerce Int Bool where ...

instance Coerce Int Real where ...

Even generic instances are possible:
instance Coerce a b where ...

instance Eq a where ...

However, two head-equal instances cannot be defined:
instance Eq [Int] where ...

instance Eq [Real] where ...

In Clean, the type pattern in an instance definition is not restricted.
However, a common limitation is to only allow flat types. A flat type is a
constructor followed by type variables.

Currently, Clean allows type variables to occur more than once within
the same class constraint. Unfortunately, this can cause cyclic dependencies
where an instance depends on itself. In the current implementation of the
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compiler, this is not noted and results in a stack overflow. It might be best to
add a restriction to the language to exclude these situations.

Example 2.9.2 (cyclic dependencies)
In Clean, the following classes and instances can be defined:

class cl a b where f :: a b -> Bool

instance cl Int Int where ...

instance cl [a] b | cl b b where ...

instance cl (Tree a) (Tree b) | cl a b where ...

Unfortunately, the second instance definition causes cyclic dependencies: the
instance for [Int] [Int] depends on itself.

A class definition can contain members that are expressed in terms of
other members. For example, <> is always equal to not ==. In Clean, this
is expressed by macros (example 2.9.3).

Example 2.9.3 (derived members)
In the Eq class, <> can be defined in terms of ==:

class Eq a where

(==) :: a a -> Bool

(<>) :: a a -> Bool | Eq a

(<>) x y :== not ((==) x y)

Finally, a shorthand is provided for defining classes that contain only one
member. Then, the class name is used for the member as well.

Example 2.9.4 (shorthand)
The class containing only the == function can be defined by:

class (==) a :: a a -> Bool

Although there are some differences, the Clean compiler essentially trans-
lates type constructor classes as presented in section 2.8. However, when pos-
sible, Clean generates specialized functions that are more efficient. In the
next few chapters, derived members and specialized functions are left out of
the discussion. They show up again in chapter 4, where the implementation
is considered.

2.10 Overloading in Isabelle

Another environment that supports overloading is Isabelle [15]. Isabelle is
a generic proof assistant developed by Lawrence C. Paulson and Tobias Nipkow
that can, among other calculi, work with Higher-Order Logic (a version of
Gordon’s HOL [6]). Isabelle’s version of HOL includes a Haskell like type
system with ordered-sorted type classes [14] and an extension called axiomatic
type classes [20]. Using this, it can be used to prove properties containing
overloaded function applications. This is very interesting, because we might
be able to use a method similar to Isabelle’s for our project.
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Since 1991, Isabelle’s type system allows overloaded definitions. Over-
loaded definitions can be specified by giving a function a polymorphic type
and providing instances.

Example 2.10.1 (overloaded definitions in Isabelle)
Consider the following overloaded definition of ≤:

const ≤ :: α→ α→ prop

defs xnat ≤ ynat ≡ nat le
defs xα×β ≤ yα×β ≡ fst xα×β ≤ fst yα×β ∧ snd xα×β ≤ snd yα×β

This defines the type of the ≤ operator and two instances of it; one for natural
numbers and one for tuples.

Overloaded definitions are allowed as long as no two definitions have overlap-
ping instances. In the right hand side of the definition, the operator itself can
be used as long as it is for a structurally smaller type (primitive recursion over
types). Note that only one parameter type can be used and only flat instance
types are supported.

On top of this, a system called axiomatic type classes is defined. Here,
type classes are classes of types that meet certain properties instead of types
for which certain operations are defined (this would be impossible; in HOL it
cannot be expressed if objects are declared or meaningful).

Example 2.10.2 (axiomatic type classes in Isabelle)
The class ord contains only types that have an ordering relation defined:

class ord
reflexive xα ≤ xα
transitive xα ≤ yα ∧ yα ≤ zα ⇒ xα ≤ zα
antisymmetric xα ≤ yα ∧ yα ≤ xα ⇒ xα = yα

The class ord can be used as a type predicate that states that ≤ is an ordering
relation. Concrete instances of the class ord are required to have the operator
specified such that the properties are derivable.

Example 2.10.3 (instance definitions in Isabelle)
Consider the following instance definitions of ord for natural numbers and
tuples:

instance nat :: ord
instance × :: (ord , ord ) ord

At the definition, the class axioms have to be proven for the instances. The
property may be assumed for structurally smaller types that are in the same
class. Again, definitions may have only a single parameter type which has a
flat type pattern and may not overlap.

Subclasses are supported for both classes and instances.
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Example 2.10.4 (subclasses in Isabelle)
A class can be defined as a subclass of other classes, meaning it inherits the
axioms from the parent classes:

class c1 � c2, c3
An instance is a subclass of another instance if all instances of the class can
be proven to be an instance of the parent class:

instance c1 � c2

Of course, classes can be used as type constraints by requiring that a type
is an instance of that class.

In summary, ignoring the differences in use of type classes and other minor
details, Isabelle supports the notions of overloading and type classes for
single parameter classes where instance definitions are not allowed to overlap
and use flat type patterns. Constructor classes are not supported. Proofs
can use assumptions for structurally smaller types, hence a form of structural
induction on types is used as a proof rule. All of this is achieved by adding
a partially ordered layer of ”sorts” on top of the types. In section 3.3.7, the
approach taken in Isabelle is compared with our approach.
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In this chapter, class constrained properties are formalized by extending the
Core framework (appendix B). Programs and properties are considered at
the Core level where type classes have been translated to dictionaries. This
is the most straightforward approach because it requires only few extensions
of the existing Core framework. Of course, special proof rules and tactics for
class constrained properties have to be defined.

The definitions presented here are Core specific and take all of Clean’s
details and extensions into account. For a less detailed and more general
version, see the paper included in appendix E.

In section 3.1, the Core programming language is extended with class
and instance definitions and the relevant parts of the translation from Clean

to Core programs are explained. Section 3.2 explains how class constrained
properties can be specified in Core’s logic language. The proof language is
not altered. Special proof rules and tactics for class constrained properties are
defined in section 3.3.

3.1 Programming language definitions

In Core, overloading is considered explicitly in translated form. In this sec-
tion this translation is explained and class and instance definitions are added
to the Core framework to allow reasoning with class constraints. First, the
translation of overloaded function and member applications is explained in
section 3.1.1. Then, sections 3.1.2, 3.1.3, and 3.1.4 respectively add class con-
strained types, class and instance definitions, and programs with type classes
to the Core programming language. The definition of the set of instances of
a class and the creation of dictionaries are defined in sections 3.1.5 to 3.1.8.

3.1.1 Overloaded functions and expressions

As introduced in section 2.8, overloading is made explicit using dictionaries.
Dictionaries are records that contain concrete implementations of the class
members for a certain instance. For every class, there is a specific record type
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for its dictionaries. Before the translation is explained further, these dictionary
types are formally defined.

Example 3.1.1 (a dictionary type and value)
Consider the PlusMin class defined by:

class PlusMin a where

plus :: a a -> a

min :: a a -> a

The translation creates a specific dictionary type:
:: plusmindict a = { plus :: a a -> a, min :: a a -> a }

A possible value (for an instance for integers) is:
{ plus = +int, min = -int }

Class symbols are used as a reference to a class. In most examples, the
name of the class will be used as its class symbol. The arity of a class symbol
is the number of parameters of the class that it refers to.

Definition 3.1.2 (class symbols)
SCl is the set of class symbols.
The function Arity :: SCl → N returns the arity of the class symbol.

In Core, record types are just algebraic types and record values are rep-
resented by a constructor followed by the record field values. The functions
DictTypeψ and DictConstrψ respectively return the type and constructor of
the dictionary for a given class. The construction of dictionary values is treated
in section 3.1.8.

Assumption 3.1.3 (dictionary type)
The function DictTypeψ :: SCl → Sa is defined such that DictTypeψ(c) returns
the algebraic type symbol of the dictionary type of class c. Arity(DictTypeψ(c))
gives the number of class parameters.

Assumption 3.1.4 (dictionary constructor)
The function DictConstrψ :: SCl → Sc is defined such that DictConstrψ(c) re-
turns the constructor of the dictionary of class c and Arity(DictConstrψ(c))
is the number of subclasses plus the number of class members.

Overloaded functions, which would have a qualified type in Clean, are
translated to functions that have a normal type in Core. For every class con-
straint in the type of the original function, the translated function expects a
dictionary for the correct instance as a parameter. Hence, an overloaded func-
tion of class constrained type 〈~α1 :: c1, . . . , ~αn :: cn〉 ⇒ τ → σ is represented in
Core by a function of type (DictType(c1) ~α1) → . . . → (DictType(cn) ~αn) →
τ → σ.

In expressions the member functions are applied by selecting them from
the dictionary. This dictionary can be a function argument or, when the
required instance is known at compile time, created on the spot. The member
definitions are treated as ordinary (overloaded) functions and given a unique
name. A formalization of these translations is provided elsewhere [19].
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Example 3.1.5 (translation of an overloaded function)
The isMember function is an overloaded function:

isMember :: [a] a -> Bool | Eq a

isMember [] a = False

isMember [x:xs] y = x == y || isMember xs y

The translation uses a dictionary for the equality operator (==):
:: eqDict a = { (==) :: a a -> Bool }

isMember’ :: (eqDict a) [a] a -> Bool

isMember’ d [] y = False

isMember’ d [x:xs] y = d.== x y || isMember d xs y

3.1.2 Class constrained types

Representing type classes requires an extension of the set of types with class
constraints (see example 3.1.11). Qualified types, introduced by Jones mainly
for this purpose [8], will be used for this. A qualified type ~π ⇒ ~σ only denotes
the instances of type pattern ~σ that satisfy predicates ~π. Here, the predicates
are class constraints that state that the type is an instance of a certain class.

The set of types T is defined in the Core framework (definition B.1.7). As
a convention, type variables are denoted by α and β, b denotes a basic type,
and τ , σ and µ are used to denote any type.

A class constraint ~τ :: c states that there is an instance of class c for
type pattern ~τ . Class constraints of which the type pattern consists of type
variables only, are called simple class constraints.

Definition 3.1.6 (class constraints)
The set of class constraints P is defined by:

P = {~τ :: c | ~τ ∈ 〈T 〉, c ∈ SCl,Arity(c) = |~τ |}

Definition 3.1.7 (simple class constraints)
The set of simple class constraints Ps ⊂ P is defined by:

Ps = {~α :: c | ~α ∈ 〈T 〉, (~α :: c) ∈ P}

Class constrained types are constructed by adding the class constraints,
also called context, to the types. The type variables in the class constraints
must all occur in the type they are added to.

Definition 3.1.8 (class constrained types)
The set of class constrained types Tq is defined by:

Tq = {~π ⇒ τ | ~π ∈ 〈P〉, τ ∈ T , TV (~π) ⊆ TV (τ)}
Instead of 〈〉 ⇒ τ we will simply write τ .

The function TV can be straightforwardly extended to return the free vari-
ables in (sequences of) predicates and class constrained types. The functions
Type and Context are used to respectively retrieve the type and the context
of a class constrained type.

Definition 3.1.9 (type of a qualified type)
The function Type :: Tq → T is defined by:

Type(~π ⇒ τ) = τ

Proof Support for Type Classes 33



Chapter 3 — Specifying and proving class constrained properties

Definition 3.1.10 (context of a qualified type)
The function Context :: Tq → 〈P〉 is defined by:

Context(~π ⇒ τ) = ~π

Class constrained types can occur in function and class definitions. The
untranslated isMember function, for example, has a class constrained type.

Example 3.1.11 (isMember function type)
The isMember function is defined by:

isMember :: [a] a -> Bool | Eq a

isMember [] a = False

isMember [x:xs] y = x == y || isMember xs y

The formal class constrained type of the isMember function is:
(a :: Eq) ⇒ ([a] a -> Bool)

3.1.3 Class and instance definitions

In this section, class and instance definitions are added to Core. Although
Core uses dictionaries instead of classes, these definitions are required to
create the dictionaries. Special syntactical features, such as derived members,
do not require explicit formalization.

Member symbols are the symbols for the class members. They cannot be
used directly in expressions, but occur in the class and instance definition.

Definition 3.1.12 (member symbols)
Sm is the set of member symbols.

In Clean, a class definition consists of a class name, one or more class
type variables, an optional class context, and a number of member defini-
tions. These member functions consist of a function name and a type. This is
formalized by the set of class definitions.

Definition 3.1.13 (class definitions)
The set of class definitions Cd is defined by:

Cd = {class ~π ⇒ π′ where 〈(m1 :: τ1), . . . , (mn :: τn)〉 |
~π ∈ 〈Ps〉, π

′ ∈ Ps, τi ∈ T ,mi ∈ Sm, TV (~π) ⊆ TV (π′)}

Definition 3.1.14 (class context)
The function Context :: Cd → 〈P〉 is defined by:

Context(class ~π ⇒ π′ where 〈(m1 :: τ1), . . . , (mn :: τn)〉) = ~π

Definition 3.1.15 (class members)
The function Members :: Cd → 〈Sm〉 is defined by:

Members(class ~π ⇒ π′ where 〈(m1 :: τ1), . . . , (mn :: τn)〉) = 〈m1, . . . ,mn〉

Example 3.1.16 (example class definition)
Consider this definition of the Eq class:

class Eq a where

(==) :: a a -> Bool

The corresponding Core class definition is:
class (a :: Eq) where (==) :: a a → Bool
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An instance definition consists of a class name, an instance head, an op-
tional class context, and all member definitions. The member definitions con-
sist of the type declaration and the function body. This is formalized by the set
of instance definitions. Because the concrete instance functions are treated as
normal (overloaded) functions in Core, with uniquely created symbols, only
these symbols are required in the instance definition; the implementations are
already included in the program.

Definition 3.1.17 (instance definitions)
The set of instance definitions Id is defined by:

Id = {instance ~π ⇒ π′ where 〈(m1 = f1 :: τ1), . . . , (mn = fn :: τn)〉 |
π ∈ Ps, π

′ ∈ P,mi ∈ Sm, fi ∈ Sf , τi ∈ Tq, TV (~π) ⊆ TV (π′)}
if π ∈ Ps then it is required that ~π = 〈〉. Sf is the set of function symbols
(definition B.1.12).

Definition 3.1.18 (instance context)
The function Context :: Id → 〈P〉 is defined by:

Context(instance ~π ⇒ π′ where ~m) = ~π

Definition 3.1.19 (instance head)
The function Head :: Id → 〈T 〉 is defined by:

Head(instance ~π ⇒ (~τ :: c) where ~f) = ~τ

Definition 3.1.20 (instance members)
The function Members :: Id → 〈T 〉 is defined by:

Members(instance ~π ⇒ τ where ~m) = ~m

Two instances are head-equal if all outermost constructors in their instance
heads are equal. No two instance definitions of a class may be head-equal.

Definition 3.1.21 (head-equality)
The function HeadEqual :: 〈T 〉 〈T 〉 →֒ Bool is defined as:

HeadEqual(〈τ1, . . . , τn〉, 〈σ1, . . . , σn〉) = true iff ∀1≤i≤n[HeadEqual(τi, σi)]
HeadEqual(α, σ) = true iff σ = α′

HeadEqual(b, σ) = true iff σ = b′

HeadEqual(c ~τ , σ) = true iff σ = c ~ϕ

HeadEqual(τ → τ ′, σ) = true iff σ = ϕ→ ϕ′

HeadEqual(α ~τ , σ) = true iff σ = α′ ~ϕ

Example 3.1.22 (example instance definitions)
Consider these instances of the Eq class:

instance Eq Int where

(==) :: Int Int -> Bool

(==) x y = eqInt x y

instance Eq Char where

(==) :: Char Char -> Bool

(==) x y = eqChar x y
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instance Eq [a] | Eq a where

(==) :: [a] [a] -> Bool | Eq a

(==) [] [] = True

(==) [] [y:ys] = False

(==) [x:xs] [] = False

(==) [x:xs] [y:ys] = (x == y) && (xs == ys)

Assuming the translation presented in example 2.8.1, the corresponding
Core instance definitions are:

instance (Int :: Eq) where (==) = eqInt :: Int Int → Bool

instance (Char :: Eq) where (==) = eqChar :: Char Char → Bool

instance 〈a :: Eq〉 ⇒ ([a] :: Eq) where

(==) = eqList :: 〈a :: Eq〉 ⇒ ([a]) ([a]) → Bool

3.1.4 Programs

In this section, Core programs are extended with class and instance defini-
tions. Access functions for function, class and instance definitions are defined.
Furthermore, the constraints on class and instance definitions that a valid
program must satisfy are specified.

The set of programs Ψ is a partial function that maps class and function
symbols to their corresponding definitions.

Definition 3.1.23 (programs)
The set of programs Ψ is defined by:

Ψ = {prog p c | p ∈ (Sa ∪ Sf →֒ A ∪ Fd), c ∈ (SCl →֒ Cd × 〈Id〉)}
where Sa (definition B.1.4), A (definition B.1.18), and Fd (definition B.1.16)
are the sets of algebraic type constructors, algebraic type definitions, and
function definitions respectively.

Definition 3.1.24 (access function definition)
The function FuncDef ψ :: Sf →֒ 〈Fd〉 is defined by:

FuncDef ψ(f) = p(f) if ψ = prog p c

Definition 3.1.25 (access class definition)
The function ClassDef ψ :: SCl →֒ Cd is defined by:

ClassDef ψ(c) = d if ψ = prog p c′ and c′(c) = (d,~ı)

Definition 3.1.26 (access instance definitions)
The function InstDefsψ :: SCl →֒ 〈Id〉 is defined by:

InstDefsψ(c) =~ı if ψ = prog p c′ and c′(c) = (d,~ı)

A class without members is called a compound class because it only groups
its subclasses. The notion of subclasses is formalized by the subclass relation.

Definition 3.1.27 (compound classes)
The predicate Compoundψ ⊆ Cd is defined by:

Compoundψ(c) ⇔ Members(ClassDef ψ(c)) = 〈〉
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Definition 3.1.28 (subclass relation)
The subclass relation on classes ⊂ψ ⊆ SCl × SCl is defined as the transitive
closure of the relation:

{(ci, c) | ClassDef ψ(c) = (class 〈~α1 :: c1, . . . , ~αn :: cn〉 ⇒ π where ~m)}

There are several constraints regarding the class and instance definitions
that a valid program has to satisfy.

• Some obvious welltypedness requirements have to be satisfied. Of course,
every instance definition has to define the same member functions as the
corresponding class definition. The instance types have to be a valid
substitution of the types defined in the class definition. Furthermore,
the instance functions have to have the type corresponding to the one in
the instance definition.

• No cyclic class dependencies are allowed: ∀c∈SCl [c 6⊂ψ c]

• No two instance definitions for the same class may be head-equal:
InstDefsψ(c) = 〈i1, . . . , in〉 ⇒

∀j,k∈{1,...,n}[j 6= k ⇒ ¬HeadEqual(Head(ij),Head(ik))]

3.1.5 Selection of instance definitions

Dictionary construction requires selecting an instance definition. Which in-
stance definition is chosen depends on which one is applicable given the types
at the application. However, Clean supports overlapping instance defini-
tions, which means that more than one instance definition may be applicable.
A mechanism is required that decides which instance definition to use in that
case.

The Clean reference manual [17] states that the compiler will always
choose the most specific instance definition that matches the required instance
type. In cases in which it is not clear what the most specific matching instance
definition is, lexicographic order is used. This mechanism is formalized by the
ApplyInstanceψ function.

First, an order on types is defined. A single type τ is more specific than
type σ if σ is a type variable and τ is not, or if τ is a symbol type and σ an
application type.

Definition 3.1.29 (order on types)
The relation < ⊆ T × T is defined by:

< = { (α, b), (α, a ~τ), (α, σ → τ), (α, β τ), (α ~τ, a ~σ)}

An instance definition i is more specific than i′ if its instance head con-
tains more types that are more specific than the corresponding types in the
instance head of i′ than vice versa. If both instances are equal in this respect,
lexicographical order is used.
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Definition 3.1.30 (specificity order on type patterns)
The function Spec :: 〈T 〉 〈T 〉 →֒ N is defined by:

Spec(〈τ1, . . . , τn〉, 〈σ1, . . . , σn〉) =
∑

1≤i≤n[Spec(τi, σi)]

Spec(τ, σ) =







1 if τ < σ

−1 if σ < τ

0 otherwise

Definition 3.1.31 (lexicographical order on type patterns)
The function < :: 〈T 〉 〈T 〉 →֒ Bool is defined by:

〈τ1, . . . , τn〉 < 〈σ1, . . . , σn〉 ⇔ mini(τi < σi) < min i(σi < τi)

Definition 3.1.32 (order on instance definition)
The relation < ⊆ Id × Id is defined by:

i < i′ ⇔ Spec(Head(i),Head (i′)) < 0 ∨
Spec(Head(i),Head (i′)) = 0 ∧ Head(i) < Head(i′)

The < on instance definitions can now be used to specify what instance
definition is selected. First, the set of matching instance definitions is defined.

Definition 3.1.33 (matching instance definitions)
For all programs ψ ∈ Ψ, the set of instance definitions of class c that match
types ~τ is defined by:

Matchingψ(~τ :: c) = {i | i ∈ InstDefsψ(c),∃∗∈⊛[∗(Head(i)) = ~τ ]}

The most specific matching instance definition is the most specific instance
definition from the set of matching instance definitions.

Definition 3.1.34 (most specific matching instance definition)
For all programs ψ ∈ Ψ, the function MostSpecificψ :: P → Id is defined by:

MostSpecificψ(~τ :: c) = i⇔ i ∈ Matchingψ(~τ :: c) ∧
∀i′∈Matchingψ(~τ ::c)[i = i′ ∨ i′ < i]

Example 3.1.35 (instance definition selection)
Some examples will illustrate the selection mechanism. Consider the next
instance definitions:

instance Class Int [a] where ...

instance Class Int a where ...

instance Class a Int where ...

When an instance definition has to be selected for type (Int [Char]), the
first two instance definitions are applicable. The first one will be selected
because it is more specific ([a] is more specific than a).
When an instance definition has to be selected for type (Int Int), the last
two instance definitions are applicable. They are both equally specific, hence
lexicographical order is used and the instance definition (Int a) is selected.

The ApplyInstanceψ function yields the most specific instance definition.
In case the class has no members, and therefore no instance definitions, it
returns a generic instance definition. This way, we do not have to make ex-
ceptions for compound classes later on.
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Definition 3.1.36 (instance definition selection)
For all programs ψ ∈ Ψ, the function ApplyInstanceψ :: P → Id is defined by:

ApplyInstanceψ(~τ :: c) =

{

instance 〈〉 ⇒ ~α where 〈〉 if Compoundψ(c)
MostSpecificψ(~τ :: c) otherwise

3.1.6 Dependencies

A useful and intuitive notion for defining the set of instances and dictionaries
is the dependencies of an instance; all instances the instance depends on. This
includes both the subclasses and the instance definition context. Note that
∗(~τ↔~σ) (definition A.2.4) denotes the most general unifier of types ~τ and ~σ.

Definition 3.1.37 (dependencies)
For all programs ψ ∈ Ψ and classes c, the function Depsψ :: P Id → 〈P〉 is
defined by:

Depsψ(~τ :: c, i) = SubClassesψ(~τ :: c) ◦ ∗(Head(i)↔~τ )(Context(i))
When i is omitted, ApplyInstanceψ(~τ :: c) is assumed for it.

Definition 3.1.38 (subclasses)
For all programs ψ ∈ Ψ and classes c, the function SubClassesψ :: P → 〈P〉 is
defined by:

SubClassesψ(~τ :: c, i) = 〈∗(~α↔~τ)(π1), . . . , ∗(~α↔~τ)(πn)〉
⇔ ClassDef ψ(c) = class 〈π1, . . . , πn〉 ⇒ ~α where ~m

Example 3.1.39 (dependencies)
Some simple examples of this can be shown using the Eq class (example 2.3.1):

Depsψ(Int :: Eq) = 〈〉
Depsψ(Char :: Eq) = 〈〉
Depsψ([Int] :: Eq) = 〈Int :: Eq〉
Depsψ([[Char]] :: Eq) = 〈[Char] :: Eq〉

3.1.7 Instances

A dictionary exist for types for which an instance of the class exists and for
every instance there is exactly one dictionary. An instance can be identified
by an instantiation of the class parameters with closed types. In this section,
this is used to define the set of instances.

An instance is defined by an instance definition if all of the definition’s
dependencies can be satisfied and it is the one that will be applied given the
type at the application. This can be easily formalized. However, to prevent
cyclic dependencies (see 2.9), an instance ~τ may only depend on instances
that can be created without depending on itself. This is solved by an iterative
definition.

Definition 3.1.40 (subsets of instances)
For all programs ψ ∈ Ψ, classes c ∈ Cd, the set Instancesψ(c, n) ∈ ℘(〈T closed〉)
is defined by:
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Instancesψ(c, 0) = ∅
Instancesψ(c, n + 1) = {~τ | i ∈ InstDefsψ(c), ∗ ∈ ⊛, ~τ ∈ 〈T closed〉

~τ = ∗(Head(ApplyInstanceψ(~τ :: c)))

∀(~τ ′::c′)∈Depsψ(~τ ::c)[~τ
′ ∈ Instancesψ(c′, n)]

Definition 3.1.41 (instances)
For all programs ψ ∈ Ψ and classes c ∈ Cd, the set Instancesψ(c) ∈ ℘(〈T closed〉)
is defined by:

Instancesψ(c) =
⋃

n∈N
[Instancesψ(c, n)]

Example 3.1.42 (instances of the Eq class)
The set of instances of the Eq class defined in example 2.3.1 is:

Instancesψ(Eq) = {Int, Char, [Int], [Char], (Int, Int), (Char, Int),

(Int, Char), (Char, Char), [[Int]], [[Char]],

[(Int, Int)], . . .}

3.1.8 Dictionary creation

Dictionary types and constructors were introduced in section 3.1.1. In this
section, the creation of dictionary values is defined.

A dictionary for a predicate ~τ :: c is a record that contains the dictionaries
for the subclasses of c and implementations of its member functions at instance
~τ . The function Dictψ creates these dictionaries.

Definition 3.1.43 (dictionary creation)
For all programs ψ ∈ Ψ, the function Dictψ :: P →֒ E that creates the dictio-
nary for a class constraint is defined by:

Dictψ(〈π1, . . . , πn〉) = 〈Dictψ(π1), . . . ,Dictψ(πn)〉
Dictψ(~τ :: c) = DictConstrψ(c) Dictψ(SubClassesψ(~τ :: c)) ◦ 〈e1, . . . , en〉

iff:
ApplyInstanceψ(~τ :: c) = instance ~π ⇒ (~σ :: c) where 〈m1, . . . ,mn〉
∀1≤i≤n[ei = Memberψ(∗(~σ↔~τ),mi)]

Definition 3.1.44 (creation of a sequence of dictionaries)
For all programs ψ ∈ Ψ, the function Dictψ :: 〈P〉 →֒ 〈E〉 that creates the dic-
tionaries for a sequence of class constraints is defined by:

The concrete implementation of a member function is created by selecting an
instance function from the instance definition and applying it to the dictio-
naries required by it.

Definition 3.1.45 (member creation)
For all programs ψ ∈ Ψ, the function Memberψ that creates the concrete im-
plementations of a member function for a dictionary of a class constraint is
defined by:

Memberψ(∗, o = f :: ~π ⇒ τ) = func f Dictψ(∗(~π))
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Example 3.1.46 (dictionary creation)
Again, consider the Eq class (example 2.3.1 and 2.8.1):

Dictψ(Int :: Eq) = { == = eqInt }
Dictψ(Char :: Eq) = { == = eqChar }
Dictψ([Int] :: Eq) = { == = eqList { == = eqInt } }
Dictψ([[Char]] :: Eq) = { == = eqList {

== = eqList { == = eqChar } } }

3.2 Specifying class constrained properties

In this section, it is shown how class constrained properties can be defined in
Core. Using a natural assumption, properties can be straightforwardly de-
fined by quantification over dictionaries. It is also shown that this assumption
is not required when an additional predicate is introduced.

It has been repeatedly stated that in the translation from Clean to Core,
class constraints are translated to dictionaries. It will be no surprise that the
same mechanism can be used for properties. Every class constraint can be
replaced by the introduction of a dictionary for the corresponding class and
type parameters. Example 3.2.1 shows this for symmetry of equality.

Example 3.2.1 (translation of properties)
Consider the class constrained property that states symmetry of equality,
defined in section 1.4:

∀a|Eq a∀x∈a∀y∈a[x == y ⇒ y == x]
By replacing the class constraint with a universal quantor over the corre-
sponding dictionary and translating the expressions, we get:

∀a∀d∈dicteq a∀x∈a∀y∈a[x d.== y ⇒ y d.== x]

However, this is not a correct translation of the property as such. In section
3.1.1, dictionary types where added to the Core language. Unfortunately,
this type does not really capture the notion of a valid dictionary. The type
is just a record type that can be filled with any values of the correct type.
Valid dictionaries are much more restricted; they only contain expressions (the
member instances) that are generated from the class and instance definitions.

Example 3.2.2 (dictionary type too general)
Consider the dictionary type for the Eq class (example 2.8.1):

:: eqdict a = { (==) :: a a -> Bool }
Some values of the type eqdict are:

{ (==) = ==int }
{ (==) = eqlist ==int }

but also:
{ (==) = or }

that is not a valid dictionary for the Eq class.

There are two ways to solve this inconvenience. The first is to just assume
that the dictionary type only contains valid dictionaries: DictTypeψ(c) ~τ con-
tains only the value Dictψ(~τ :: c). Thus, the expression { (==) = or } in
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example 3.2.2 is not considered a value of type eqdict Bool. This is a rea-
sonable assumption, because dictionary values are created by the compiler
and therefore will always be valid dictionaries. In this case, example 3.2.1
does show how class constrained properties can be defined using dictionaries.

The second option is to add a predicate to the logic language that is only
true when the dictionary value is a valid dictionary.

Example 3.2.3 (restricting dictionary values)
The predicate Valid(d, π) is true iff d = Dictψ(π):

∀a∀d∈dicteq a[Valid(d, Eq a) ⇒ ∀x∈a∀y∈a[x d.== y ⇒ y d.== x]]

In this project, for reasons of convenience, the first option will be used. In
chapter 4, which discusses the implementation, we come back to this issue.

Assumption 3.2.4 (dictionaries of a class)
For all programs ψ ∈ Ψ, classes c ∈ Cd, and types ~τ ∈ 〈T closed〉, we assume:

Typeψ(DictConstrψ(c) ~e, φ) = (DictTypeψ(c) ~τ)

⇔ (DictConstrψ(c) ~e) = Dictψ(~τ :: c)

3.3 Proof rules and tactics

To prove class constrained properties, additional proof rules are required; a
member application cannot be rewritten when the value of the dictionary
it is selected from is unknown. The value of a valid dictionary depends on
the instance required at the application. Since the set of types (instances)
is inductively defined, the most natural approach is induction on the set of
types (instances). This allows us to assume the property for smaller types.
In general, we would like to be able to assume hypotheses for all sensible
dependencies.

In section 3.3.1, a definition that executes one step of the dictionary gen-
eration is given. This will be used to specify the tactics later on, but can by
itself be used for a less advanced tactic as well. Because the succeeding proof
rules and tactics are based on induction, well-founded induction is explained
in section 3.3.2. In section 3.3.3 structural induction on types is explained
and it is argued why this does not really suffice. An induction scheme based
on the instance definitions of a class is defined in section 3.3.4 and extended
to multiple class constraints in 3.3.5. Section 3.3.6 briefly describes how non-
simple class constraints can be handled. In conclusion, section 3.3.7 compares
the proof rules and tactics to related work on Isabelle.

3.3.1 Dictionary expansion

Because we have defined that a dictionary type contains only one value, the
valid dictionary, it is possible to generate part of the dictionary value when part
of the dictionary type is known, by executing one step of the Dictψ function
(definition 3.1.43). Instead of a recursive creation of dictionaries, expression
variables are introduced for the dependencies. To allow more hypotheses to
be assumed later on, compound subclasses are always expanded.
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It turns out to be useful to have a shorthand for quantifying over dic-
tionary variables. This is denoted by quantification over a predicate. Note
that expression variables are introduced that are not explicitly written at the
quantor.

Definition 3.3.1 (shorthand for dictionary introduction)
A shorthand for quantifying over dictionaries is defined by:

∀〈~τ1::c1,...,~τn::cn〉 ≡ ∀(d(~τ1::c1)∈DictTypeψ(c1) ~τ1) . . . ∀(d(~τn::cn)∈DictTypeψ(cn) ~τn)

The introduced expression variables are of the form d(π). These are normal
expression variables, but their name suggests that a dictionary for predicate
π is assigned to it. By d(〈π1,...,πn〉) the vector 〈d(π1), . . . , d(πn)〉 is denoted.

Definition 3.3.2 (dictionary creation step)
For all programs ψ ∈ Ψ, the function Dict1

ψ :: P ∪ 〈P〉 Id →֒ E that creates
dictionaries is defined by:

Dict1
ψ(〈π1, . . . , πn〉, i) = 〈Dict1

ψ(π1, i), . . . ,Dict1
ψ(πn, i)〉

Dict1
ψ(~τ :: c, i) = DictConstrψ(c) 〈s′1, . . . , s

′
n′〉 ◦ 〈m′

1, . . . ,m
′
n〉

iff:
i = instance ~π ⇒ (~σ :: c) where 〈m1, . . . ,mn〉
SubClassesψ(~τ :: c) = 〈s1, . . . , sn′〉
∀1≤i≤n[m

′
i = Member1

ψ(∗(~σ↔~τ),mi)]

∀1≤i≤n′ [s′i = SubClass1
ψ(si)]

When i is omitted, ApplyInstanceψ(~τ :: c) is assumed for it.

Definition 3.3.3 (member creation step)
For all programs ψ ∈ Ψ, the function Member1

ψ, which creates the concrete
implementation of a member function for a dictionary, is defined by:

Member1
ψ(∗, o = f :: ~π ⇒ τ) = func f d(∗(~π))

Definition 3.3.4 (subclass creation step)
For all programs ψ ∈ Ψ, the function SubClass1

ψ :: P →֒ E is defined by:

SubClass1
ψ(~τ :: c) =

{

DictConstrψ(c) 〈s′1, . . . , s
′
n〉 if Compoundψ(c)

d(~τ ::c) otherwise
iff:

SubClassesψ(~τ :: c) = 〈s1, . . . , sn〉
∀1≤i≤n[s

′
i = SubClass1

ψ(si)]

We now introduce a new form of dependencies; the instances that a value
created by Dict1

ψ depends on. From now on, with dependencies, this definition
is meant.

Definition 3.3.5 (single step dependencies)
For all programs ψ ∈ Ψ and classes c, the function Deps1

ψ :: P × Id → 〈P〉 is
defined by:

Deps1
ψ(π, i) = ExpCompψ(Depsψ(π, i))
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Definition 3.3.6 (expand compounds)
For all programs ψ ∈ Ψ and classes c, the function ExpCompψ :: P ∪ 〈P〉 → 〈P〉
is defined by:

ExpCompψ(〈π1, . . . , πn〉) = ExpCompψ(π1) ◦ . . . ◦ ExpCompψ(πn)

ExpCompψ(π) =

{

ExpCompψ(SubClassesψ(π)) if Compoundψ(c)

〈π〉 otherwise

The relation between dictionary creation and single step dictionary cre-
ation is very straightforward.

Assumption 3.3.7 (relation between dictionary creation functions)
For all programs ψ ∈ Ψ and all predicates π ∈ P for which FV (π) = 〈〉:

∀Deps1
ψ(π)[Dict1

ψ(π) = Dictψ(π)]

Using this one step dictionary expansion function, a tactic can be created.
The single step dictionary creation uses one of the instance definitions. Hence,
if the step is done for all instance definitions, the conjunction of the resulting
goals implies the original property. In fortunate cases where not all instance
definitions are applicable, less goals are generated.

Tactic 3.3.8 (dictionary expansion)
For all programs ψ ∈ Ψ, types ~τ ∈ 〈T 〉, and classes c ∈ SCl, the (expand)
rule is defined by:

i ∈ InstDefsψ(c)

[ ApplyInstanceψ(π) = i ∧
∀TV (π)[∀Deps1

ψ(π)[P (Dict1
ψ(π))]]

]

∀TV (π)[∀π[P (dπ)]]

Example 3.3.9 (dictionary expansion)
Given the Eq class from examples 2.3.1 and 2.8.1 and the (expand) tactic,
symmetry of equality:

∀a∀a::Eq∀x∈a∀y∈a[d(a::Eq).== x y ⇒ d(a::Eq).== y x]
is implied by three goals, one for each instance definition:

• ∀x∈Int∀y∈Int [ { == = eqInt }.== x y

⇒ { == = eqInt }.== y x ]

• ∀x∈Real∀y∈Real [ { == = eqReal }.== x y

⇒ { == = eqReal }.== y x ]

• ∀a∀a::Eq∀x∈[a]∀y∈[a] [ { == = eqList d(a::Eq) }.== x y

⇒ { == = eqList d(a::Eq) }.== y x ]

Note that the third goal is not provable without the assumption that equality
on the list members is symmetric.

3.3.2 Well-founded induction

In this section, the proof method of well-founded induction is explained. To
introduce the basic idea, we begin with an intuitive example of well-founded
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induction. Consider a long row of dominoes. It can be concluded that all will
fall from two statements: 1. The first domino falls. 2. When a domino falls,
its neighbor will also fall.

Well-founded induction is a generalization of this idea for well-founded sets
for which a partial order relation is defined.

Definition 3.3.10 (partial order)
A binary relation ≤ on a set P is a partial order if:

∀x∈P x ≤ x (reflexivity)
∀x,y,z∈P x ≤ y ∧ y ≤ z ⇒ x ≤ y (transitivity)
∀x,y∈P x ≤ y ⇒ y ≤ x⇒ x = y (antisymmetry)

Definition 3.3.11 (well-founded relation)
A well-founded relation is an order relation R on a set P where every descend-
ing chain starting at x ∈ P is finite.

The well-founded induction theorem states that a property can be proven for
all elements by proving it for all elements while assuming it holds for all smaller
elements.

Theorem 3.3.12 (well-founded induction)
If S is a set, P (x) a property, ≤ is a well-founded partial order on S, and <

is defined such that x < y ⇔ x ≤ y ∧ x¬ = y:
∀x∈S [∀s<x [P (s)] ⇒ P (x)]

∀x∈S[P (x)]

A special case of well-founded induction is natural induction, A property is
proven by proving it for 0 and for n+ 1 assuming it holds for n.

Theorem 3.3.13 (natural induction)
If N is the set of natural numbers and P (x) a property then:

[P (0) ∧ ∀n∈N [P (n) ⇒ P (n + 1)]]

∀n∈N[P (n)]

This is what happens in case of the dominoes; label the dominoes in the row,
starting with zero and imagine the property “domino n will fall” for P (n). In
the next three sections, the well-founded induction theorem will be used to
specify useful proof rules for class constrained properties.

3.3.3 Structural induction on types

First, the most straightforward induction scheme, structural induction on
types, is investigated. The partial order on types required for structural in-
duction follows directly from the definition of types.

Definition 3.3.14 (subexpression relation on closed types)
For all programs ψ ∈ Ψ, the relation <1 ⊆ T closed × T closed is defined by:

µ <1 σ → τ ⇔ µ = σ ∨ µ = τ

σ <1 a τ1 . . . τn ⇔ σ = τ1 ∨ . . . ∨ σ = τn

The partial order ≤ is the reflexive transitive closure of <1.
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Definition 3.3.15 (structural partial order on closed types)
For all programs ψ ∈ Ψ, the relation ≤⊆ T closed × T closed is defined by:

∀τ∈T closed τ ≤ τ

∀τ,σ∈T closed τ <1 σ ⇒ τ ≤ σ

∀τ,σ,µ∈T closed τ ≤ σ ∧ σ ≤ µ⇒ τ ≤ µ

Using the well-founded induction theorem, the structural induction theorem
for types is straightforwardly defined.

Definition 3.3.16 (structural induction on closed types)
For all programs ψ ∈ Ψ and properties P , structural induction on closed types
(struct-rule) is defined by:

∀τ∈T closed [∀σ<1τ [P (σ)] ⇒ P (τ)]

∀τ∈T closed [P (τ)]

By applying this proof rule, hypotheses may be assumed in the generated
goals for structurally smaller types. Hence, this seems to be a useful proof
rule. Unfortunately, structural induction on types does not allow all desired
hypotheses to be assumed. The hypotheses will be used to assume the property
for dependencies. This requires that the dependencies are of a structurally
smaller type than the dictionary itself. This is not necessarily the case for
multi-parameter classes, as is shown in example 3.3.17. This problem can be
solved by deriving the induction scheme from the instance definitions.

Example 3.3.17 (dependencies are not always structurally smaller)
Consider the next class and instance definitions:

class Eq2 a b where

eq2 :: a b -> Bool where

instance Eq2 Int Int where

eq2 x y = x == y

instance Eq2 Char Char where

eq2 x y = x == y

instance Eq2 (a, b) [c] | Eq2 a c & Eq2 b c where

eq2 (x, y) [u, v] = eq2 x u && eq2 y v

eq2 x y = False

instance Eq2 [c] (a, b) | Eq2 a c & Eq2 b c where

eq2 x y = eq2 y x

The instance of Eq2 for [Int] (Char, Char) depends on the instance for
Char Int, which is not structurally smaller because Char is not structurally
smaller than [Int], and Int is not structurally smaller than (Char, Char).
Hence, the hypothesis cannot be assumed for this dependency.

3.3.4 Induction on instances

The problem with structural induction can be avoided when an order is used
that is based on the structure in the set of instances (dictionaries) of a class.
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First, a partial order is defined on the set of instances of a class. Then, well-
founded induction on instances is defined. It is used to derive a tactic that
follows the structure of the instances (dictionaries).

Because the idea is to base the order on the instance definitions, an instance
~σ is considered one step smaller than ~τ if creating the dictionary for ~τ requires
the dictionary for ~σ, that is, if ~σ :: c is a dependency of the most specific
instance definition for ~τ :: c.

Definition 3.3.18 (order on instances)
For all programs ψ ∈ Ψ and classes c ∈ SCl, the one step order on instances
<1

(ψ,c)⊆ Instancesψ(c) × Instancesψ(c) is defined by:

~σ <1
(ψ,c) ~τ ⇔ (~σ :: c) ∈ Deps1

ψ(~τ :: c)

Example 3.3.19 (order on instances)
For the Eq class (example 2.3.1) we have for example:

Int <1
(ψ,Eq) [Int]

[Char] <1
(ψ,Eq) [[Char]]

The partial order ≤(ψ,c) is the reflexive transitive closure of <1
(ψ,c) (see C.1).

Definition 3.3.20 (partial order on instances)
For all programs ψ ∈ Ψ and classes c ∈ SCl, the partial order on instances of
c, ≤(ψ,c)⊆ Instancesψ(c) × Instancesψ(c), is defined by:

∀~τ∈Instancesψ(c) ~τ ≤(ψ,c) ~τ

∀~τ,~σ∈Instancesψ(c) ~τ <1
c ~σ ⇒ ~τ ≤(ψ,c) ~σ

∀~τ,~σ,~µ∈Instancesψ(c) ~τ ≤(ψ,c) ~σ ∧ ~σ ≤(ψ,c) ~µ⇒ ~τ ≤(ψ,c) ~µ

Using the <1
(ψ,c) and ≤(ψ,c) relations, well-founded induction can be performed

on the set of instances.

Proof rule 3.3.21 (well-founded induction on instances)
For all programs ψ ∈ Ψ, classes c ∈ SCl, and properties P , well-founded
induction on Instancesψ(c) (inst-rule) is defined by:

∀~τ∈Instancesψ(c)[∀~σ<1
(ψ,c)

~τ [P (~σ)] → P (~τ)]

∀~α∈Instancesψ(c)[P (~α)]

The final tactic is a combination of induction on instances and dictionary
expansion (see C.3). Given a property with a simple class constraint, a goal
is generated for every instance definition of that class and the property is
assumed for all instances that are one step smaller than the assumed instance.

Tactic 3.3.22 (induction on instances)
For all programs ψ ∈ Ψ and classes c ∈ SCl, the following holds (inst-tactic):

∀i∈InstDefsψ(c)∀TV (Head(i)∈〈T closed〉)∀Deps(Head(i)::c,i)

[ ∀(~σ::c′)∈Depsψ(Head(i)::c,i)[c = c′ ⇒ ∃∗[∗(~α) = ~σ] ⇒ P (d(~σ::c), ~σ)]

⇒ P (Dict1
ψ(Head(i) :: c, i),Head (i))]

]

∀~α∈〈T closed〉∀~α::c[P (d(~α::c), ~α)]

where it is assumed that all i ∈ InstDefsψ(c) contain fresh variables only (this
can be assured by alpha conversion).
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Example 3.3.23 (induction on instances)
Given the Eq class from examples 2.3.1 and 2.8.1 and using (inst-tactic),
symmetry of equality:

∀a∀a::Eq∀x∈a∀y∈a[d(a::Eq).== x y ⇒ d(a::Eq).== y x]
is implied by three goals, one for each instance definition:

• ∀x∈Int∀y∈Int [ { == = eqInt }.== x y

⇒ { == = eqInt }.== y x ]

• ∀x∈Real∀y∈Real [ { == = eqReal }.== x y

⇒ { == = eqReal }.== y x ]

• ∀a∀a::Eq [ ∀x∈a∀y∈a[d(a::Eq).== x y ⇒ d(a::Eq).== y x]

⇒ ∀x∈[a]∀y∈[a] [ { == = eqList d(a::Eq) }.== x y

⇒ { == = eqList d(a::Eq) }.== y x ]

]

Note that this is almost the same as dictionary expansion (expand) (proof
rule 3.3.8, example 4.2.4) except for the important induction hypothesis in
the third goal. This induction hypothesis makes it possible to prove the goal
using the tactics already available in Sparkle.

Example 3.3.23 provides a clear example of the tactic, but it does not show
the advantage over structural induction. Therefore, example 3.3.24 shows that
hypotheses can be assumed for types that are not structurally smaller. This
makes this tactic useful for more type classes than a tactic based on structural
induction on types.

Example 3.3.24 (induction on instances)
Given the Eq2 class from example 3.3.17, the following property can be
defined:

∀a,b∀〈a,b〉::Eq2∀〈b,a〉::Eq2∀x∈a∀y∈b[d(〈a,b〉::Eq2).== x y ⇒ d(〈b,a〉::Eq2).== y x]
Using the (inst-tactic) results in four proof obligations, one for each
instance definition. In the proof goal for the fourth instance definition, a
hypothesis is assumed for a type that is not structurally smaller (eq2list is
the translation of the fourth instance definition):

∀a,b,c∀〈b,a〉::Eq2∀〈c,a〉::Eq2
[ ∀x∈b∀y∈a[d(〈b,a〉::Eq2).eq2 x y ⇒ d(〈a,b〉::Eq2).eq2 y x]

⇒ ∀x∈c∀y∈a[d(〈c,a〉::Eq2).eq2 x y ⇒ d(〈a,c〉::Eq2).eq2 y x]

⇒ ∀〈(b,c),[a]〉::Eq2∀x∈[a]∀y∈(b,c)

[ eq2list d(〈b,a〉::Eq2) d(〈c,a〉::Eq2) x y ⇒ d(〈(b,c),[a]〉::Eq2) y x

]
]

3.3.5 Multiple class constraints

In the previous section, only one class constraint was considered at a time.
However, properties can contain multiple class constraints that may share
type variables. Because of this sharing, it is not always possible to prove
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a property with multiple class constraints by performing induction for each
class constraint separately using (inst-tactic), as shown in example 3.3.25. To
solve this problem, a proof rule and tactic that take multiple class constraints
into account are defined.

Example 3.3.25 (inst-tactic does not always suffice)
Consider the next two class definitions:

:: Tree a = Leaf | Node a (Tree a) (Tree a)

class f a where f :: a -> Bool

instance f Int where

f x = x == x

instance f [a] | g a where

f [] = True

f (x:xs) = g x == g x

instance f (Tree a) | f a & g a where

f Leaf = True

f (Node x l r) = f x == g x

class g a where g :: a -> Bool

instance g Int where

g x = x == x

instance g (Tree a) | f a where

g Leaf = True

g (Node x l r) = f x == f x

instance g [a] | g a & f a where

g [] = True

g (x:xs) = g x == f x

Given the property:
∀a∀a::f∀a::g∀x∈a[d(a::f).f x = d(a::g).g x]

(inst-tactic) can be applied, which yields among others the proof goal:
∀a∀[a]::g∀x∈[a][{ f = flist d(a::g) }.f x = d(a::g).g x]

This goal has a non-simple class constraint, which can only be removed by
dictionary expansion (expand), resulting in:

∀a∀a::f∀a::g∀x∈[a] [ { f = flist d(a::g) }.f x

= { g = glist d(a::f) d(a::g) }.g x ]
By some reduction steps this can be transformed into:

∀a∀a::f∀a::g∀x∈[a][d(a::g) x == d(a::g) x = d(a::f) x == d(a::g) x]
This proof obligation is true when d(a::f) x = d(a::g) x. Unfortunately, the
induction scheme did not allow this hypothesis to be assumed. This is caused
by the fact that type variables occur in multiple class constraints.
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In the ideal situation, it would be possible to derive an induction scheme
on the set of types that satisfy all class constraints. Unfortunately, this is
impossible. In such an induction scheme we would, of course, never create a
branch where there are no types that satisfy the class constraints. This, how-
ever, is an instantiation of the constraint set satisfiability problem (CS-SAT),
which is checking if the set of types that satisfy a set of (class) constraints is
empty. The general CS-SAT problem is undecidable. This leaves two options.

One possibility is to work for a restrictive case. Dennis Volpano [18] pre-
sented an algorithm for the CS-SAT problem that models classes as tree au-
tomata and computes the intersection, essentially combining multiple classes
into one. Unfortunately, although the result would be very elegant, this only
works for single-parameter, non-mutually recursive classes. In that case we
are better off using structural induction on types.

The second approach is to just try all possible combinations of instance
definitions for all class constraints. This is more ad-hoc (for example, the
resulting goal may contain non-simple predicates) but works in all cases and
yields good results in the most common cases (flat instance heads). Unfortu-
nately, as we are unable to solve the CS-SAT problem, sometimes one has to
prove properties for a set of class constraints that has no instances (example
3.3.35).

The latter approach is comparable to a more recently proposed algorithm
by Camarão, Figueredo, and Vasconcellos [2] to solve CS-SAT without re-
strictions (most importantly multi-variable classes and mutually recursive in-
stances are allowed). Essentially, it tries to generate a type by trying all
possible combinations of instance definitions for all class constraints. To cope
with the undecidability, a limit on the number of recursive calls is used. Thus,
it sometimes fails to give an answer.

Here, a tactic that uses this method will be defined. First, the set of types
that satisfy multiple class constraints is defined. Then, a partial order on these
types is defined. Finally, the proof rule and tactic are given.

First, the set of type sequences that are instances of all classes that occur
in a list of class constraints ~π is defined. ~τ is a member of this set if all
class constraints ~π are satisfied when all variables TV (~π) are replaced by the
corresponding type from ~τ . It is assumed here that TV (π̄) is a linearly ordered,
for example lexicographically, sequence and that the elements of τ̄ are in the
corresponding order.

Definition 3.3.26 (types that satisfy multiple class constraints)
For all programs ψ ∈ Ψ and simple predicates ~π ∈ 〈Ps〉, the set of types that

satisfy a set of class constraints the function SetInstancesψ :: 〈Ps〉 →֒ 〈T closed〉
is defined by:

SetInstancesψ(~π) = {~τ | ∀(~α′::c)∈~π[∗(TV (~π)↔~τ)(~α
′) ∈ Instancesψ(c)]}

Example 3.3.27 (types that satisfy multiple class constraints)
Consider the set of instances of both classes f and g (example 3.3.25):

SetInstancesψ(a :: f, a :: g) = {Int, [Int], Tree Int, [[Int]], . . .}

The order on this set is an extension of the order for single class con-
straints to sets. A sequence of types ~σ is considered one step smaller than ~τ
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if ∗(TV (~π)↔~σ)(~π) is a subset of the dependencies of ∗(TV (~π)↔~τ)(~π).

Definition 3.3.28 (partial order for multiple class constraints)
For all programs ψ ∈ Ψ and simple predicates ~π ∈ 〈Ps〉, the partial order
<1

(ψ,~π) ⊆ SetInstancesψ(~π) × SetInstancesψ(~π) is defined by:

~σ <1
(ψ,~π) ~τ ⇔ ∗(TV (~π)↔~σ)(~π) ⊆

⋃

π∈~π[Deps1
ψ(∗(TV (~π)↔~τ)(π))])

Example 3.3.29 (partial order for multiple class constraints)
For the classes in example 3.3.25 we have for example:

[Int] <1
(ψ,〈a::f,a::g〉) [[Int]]

because:
{[Int] :: f, [Int] :: g} ⊆ Deps1

ψ([[Int]] :: g) ∪ Deps1
ψ([[Int]] :: f)

Again, the reflexive transitive closure of this order, ≤(ψ,~π), is a well-founded
partial order (see C.2).

Definition 3.3.30 (well-founded induction on multiple instances)
For all programs ψ ∈ Ψ and simple predicates ~π ∈ 〈Ps〉, well-founded induction
on SetInstancesψ(~π) is defined by:

∀~τ∈SetInstancesψ(~π)[∀~σ<1
(ψ,~π)

~τ [P (~σ)] → P (~τ)]

∀~τ∈SetInstancesψ(~π)[P (~τ)]

Because multiple class constraints are involved, defining the final tactic is a
bit more complicated. Instead of all instance definitions, every combination of
instance definitions, one for each class constraint, has to be tried. All of these
instance definitions make assumptions about the types of the type variables,
and these assumptions should be unifiable. Therefore, we define the most
general unifier that takes the sharing of type variables across class constraints
into account:

Definition 3.3.31 (most general unifier for sets of class constraints)
For all programs ψ ∈ Ψ, the function SetMgu :: 〈Ps〉〈T

closed〉 →֒ ⊛ is defined
by:

SetMgu(〈~α1 :: c1, . . . , ~αn :: cn〉, 〈~τ1, . . . , ~τn〉) = ∗ ⇔
∀1≤i≤n[∗(~αi) = ~τi] ∧ ∀∗′ [∀1≤i≤n[∗

′(~αi) = ~τi] ⇒ ∃∗′′[∗′ = ∗′′ ◦ ∗]]

Furthermore, for readability of the final tactic, some straightforward exten-
sions of existing definitions to sequences are used.

Definition 3.3.32 (extensions for sequences)
Sequence versions of instance definitions, instance head, and dependencies are
defined by:

InstDefsψ(〈π1, . . . , πn〉) = {i1, . . . , in | ij ∈ InstDefsψ(πj)}
Head(〈i1, . . . , in〉) = 〈Head(i1), . . . ,Head(in)〉
Depsψ(〈π1, . . . , πn〉, 〈i1, . . . , in〉) = 〈Depsψ(π1, i1), . . . ,Depsψ(πn, in)〉

Finally, using the presented definitions, evidence creation, class constrained
properties, and the proof rule, the tactic can be defined (see C.4).
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Tactic 3.3.33 (multi-tactic)
For all programs ψ ∈ Ψ, simple predicates π ∈ 〈Ps〉, (multi-tactic) is defined
by:

∀~ı∈InstDefsψ(~π)∃∗|∗=SetMgu(~π,Head(~ı))∀∗(Head(~ı))∈〈T closed〉∀Deps1
ψ(∗(~π),~ı)

[ ∀∗′|∗′(~π)⊆Depsψ(∗(~π),~ı)[P (d(∗′(~π)), ∗
′(TV (~π)))]

⇒ P (Dict1
ψ(∗(~π),~ı), ∗(Head(~ı)))

]

∀TV (~π)∀~π[P (d(~π), TV (~π))]

Example 3.3.34 (problem solved)
Using the newly defined tactic the property from example 3.3.25 can be
proven.

∀a∀a::f∀a::g∀x∈a[d(a::f).f x = d(a::g).g x]
Applying (multi-tactic) yield three proof goals, one for every unifiable com-
bination of instance definitions:

• ∀x∈Int[fint x = gint x]

• ∀a∀a::f∀a::g [ ∀x∈a[d(a::f).f x = d(a::g).g x]

⇒ ∀x∈[a] [ { f = flist d(a::g) }.f x

= { g = glist d(a::f) d(a::g) }.g x ]

]

• ∀a∀a::f∀a::g [ ∀x∈a[d(a::f).f x = d(a::g).g x]

⇒ ∀x∈Tree a [ { f = ftree d(a::f) d(a::g) }.f x

= { g = gtree d(a::f) }.g x ]

]

The third goal now contains an hypothesis that can be used to prove the
property.

Note that using this proof rule might result in a goal that contains non-
simple class constraints. However, if all instance definitions have flat instance
types (which is very likely) and there are no subclasses, all created class con-
straints are simple. Another problem might be that it is not noted if there are
no types that satisfy all class constraints (example 3.3.35).

Example 3.3.35 (empty intersection)
Consider the next class definitions:

class A a :: a -> a

instance A Int where A = AInt

instance A [a] | A a where A = AList

class B a :: a -> a

instance B Real where B = BReal

instance B [a] | B a where B = BList

Although both classes have an instance definition for lists, the classes A and
B have no common instances. The (multi-tactic) will not note this and
generate a proof goal for lists when applied to:

∀a∀a::A∀a::B[P (a)]
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3.3.6 Handling non-simple class constraints

The proof rules in the previous two subsections only work for properties with
simple class constraints. For non-simple class constraints another solution has
to be found. The most straightforward solution is introducing fresh variables
in the class constraints. Predicates are added to enforce that the new type
variables can be unified with the types they are substituted for.

Example 3.3.36 (handling non-simple class constraints)
A property with a non-simple class constraint:

∀a∀[a]::c[P (d([a]::c))]
can be written as:

∀a,b∀b::c[b = [a] ⇒ P (d([a]::c))]
where b = [a] is true if and only if b and [a] can be unified.

This way, the non-simple class constraints can be transformed into simple
class constraints and the proof rules from the previous subsection can be ap-
plied. This will not be formalized, because it adds a new concept and it is
only required in the rare cases where induction on multiple class constraints
generates goals with non-simple class constraints.

3.3.7 Comparison with Isabelle

The solution for proving overloaded properties in the proof assistant Isabelle

was presented in section 2.10. Here, that solution is compared to the proposal
in this chapter on three aspects: the type system, the induction scheme, and
the tactic.

To support overloading and type classes, Isabelle’s type system was ex-
plicitly extended with a partially ordered layer of sorts. Core’s type sys-
tem was not explicitly altered; predicated types were only used to represent
class and instance definitions. Nevertheless, in section 4.2 it is explained how
Core’s type inference function had to be extended when implementing the
tactic.

The induction scheme used in Isabelle is structural induction on types.
Here, it was shown that this does not really suffice for multi-parameter classes.
Instead, an induction scheme on (a subset of) types is used that is derived from
the instance definitions.

Isabelle only supports single parameter classes with non-overlapping in-
stances and flat instance heads. The tactics defined in this chapter support
multi-parameter classes, overlapping instances, and non-flat instance heads.
This complicated the tactic a bit; the tactic should explicitly generate mean-
ingful proof goals and hence expand all dictionaries at least one step.

In summary, the (multi-tactic) presented here is more general and sup-
ports more extensions of type classes than the one used in Isabelle.
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Implementation in Sparkle 4
In this chapter, the implementation of the specification and tactics in Sparkle

is discussed. There were three distinct parts of Sparkle that had to be ex-
tended. First, the specification mechanism was generalized to handle class
constrained properties. Then, the type system was extended to handle prop-
erties with universally quantified dictionaries well. Finally, the tactic for class
constrained properties was implemented and added to the hints mechanism.

In section 4.1, 4.2, and 4.3, the three parts of the implementation are
explained. For each part it is described what has been implemented, why
this is necessary, and how it has been implemented. Section 4.4 evaluates the
implementation and the implementation process.

4.1 Specifying properties

The first implementation task was to enable the specification of class con-
strained properties in Sparkle. This turned out to be relatively easy.

Sparkle already used the original class and instance definitions to create
a dictionary when a member or overloaded function was applied. However,
this was only allowed when the entire dictionary value could be generated at
the time of specification. Hence, no variables occurred in the dictionary values
and quantification over dictionaries never occurred.

For cases in which the dictionary cannot be fully generated an extension
was implemented. When a dictionary or dependency is required that can-
not be generated, a variable is introduced for it and universally quantified
over. Afterwards, if two or more of the introduced variables are of the same
type, and hence represent the same dictionary, one of them is replaced by the
other. Furthermore, care is taken that in all non class constrained properties
Sparkle behaves exactly as before.

Considering this was the first extension, and thus included the overhead of
getting to know Sparkle’s code, the implementation was very straightforward
and took only a few days. The only real problem was finding out where the
dictionaries were generated.

Until here, we have assumed that a dictionary type only contains valid
dictionaries. In section 3.2 this assumption was motivated. However, it is also
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described that an additional predicate can remove the need for this assump-
tion. This predicate has not been implemented, because it would have taken
too much time for a proof of concept and clutters the properties. Nevertheless,
either it should be verified that the assumption does not yield any unantici-
pated problems or the predicate should be implemented, and maybe hidden
from the user.

Example 4.1.1 (specifying properties)
The example from section 1.3 can now be viewed from another perspective.
Before implementing the extension in Sparkle, the following property could
be defined:

∀x∈[Int]∀y∈[Int][eqlist eqint x y ⇒ eqlist eqint y x]
However, it was not possible to specify, symmetry of equality in general:

∀a|Eq a∀x∈a∀y∈a[x == y ⇒ y == x]
because the dictionary of Eq for type a cannot be generated yet. The exten-
sion generates universal quantification over the possible dictionaries in this
case. Hence, when specifying x == y => y == x, the following property is
generated:

∀a∀d∈dicteq a∀x∈a∀y∈a[d.== x y ⇒ d.== y x]

4.2 Typing dictionaries

Most of the implementation time was spent on altering the type inference
algorithm in Sparkle. The types of expressions in class constrained proper-
ties, more specifically the types of the dictionary variables, are required for
applying the tactic. Beforehand, it seemed a major problem that Sparkle

throws away all typing information. Adding types to the internal represen-
tation would have been a huge undertaking. Other tactics, for example the
Induction tactic, infer typing information when required. Our tactic could
also do this but, as discussed in section 2.8, typing dictionaries sometimes
requires rank-2 polymorphism, which is currently not available in Sparkle.
Fortunately, it turned out to be possible to hide the higher-level polymorphism
in an available abstract datatype (example 4.2.1).

Example 4.2.1 (hiding rank-2 polymorphism for dictionaries)
In example 2.8.3, a dictionary expressions is shown where function g should
have type ({ f :: ∀b Bool b -> b} -> (Int, Char)). This type requires
rank-2 polymorphism, but can also be expressed using an abstract datatype
for the dictionary (dictCopy Bool). If all cases in which the rank-2 polymor-
phism may be required can be adjusted to work with the abstract datatype,
rank-2 polymorphism is not required. The type of g, for example, would be
((dictCopy Bool) -> (Int, Char)).

Three operations on dictionaries were identified for which the type infer-
ence system was altered to derive a type using the abstract datatype and the
class definition: dictionary creation, dictionary selection, and reduced dictio-
nary selection.
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4.2.1 Dictionary creation

The first situation for which the type system was altered is the creation of
dictionaries. Dictionaries are created by a dictionary constructor followed
by the values of the members and subclasses. Whenever the typing system
encounters a dictionary constructor, we know the result of the expression is
the abstract dictionary datatype. The types of the values for members and
subclasses can be derived from the class definition.

Example 4.2.2 (typing dictionary creation)
Consider the creation of a dictionary of the Eq class:

create dictionary ==; eqint

From the class definition of Eq it can be derived that the type of this expres-
sion is of the form (dicteq a) and that the type of eqint is of the form
(a a -> Bool). From this, it will be inferred that a should be an Int.

4.2.2 Dictionary selection

The second case for which an addition was required is the selection of a field
from a dictionary. A field is selected from the dictionary by applying a dic-
tionary selector function to the dictionary value (which can be a variable).
Whenever a dictionary selector is encountered, we know that the following
value is a dictionary. The type of the selected function or subclass can then
be derived from the class definition.

Example 4.2.3 (typing dictionary selection)
Consider the selection of the == field from a dictionary of the Eq class:

dictionary Eq; select == d x y

From the name of the selector function it can be derived that d is a dictionary
of the Eq class and thus has a type of the form (eqdict a). Furthermore,
since the == field is selected, the type of ( dictionary Eq; select == d)

will be of the form (a a -> Bool). Because d is a variable, the type that a
stands for cannot be derived from this expression.

4.2.3 Reduced dictionary selection

The selection functions are reduced to a pattern match. In that case, essen-
tially the member and subclass values are assigned to new symbols and used
in an expression. The types of these symbols can be derived from the class
definition just like for the dictionary selection function.

Example 4.2.4 (typing reduced dictionary selection)
The selection of the == field from a dictionary of the instance for Int of Eq

can be reduced to:
case (create dictionary ==; eqint) of

{ ==s } -> ==s x y

Again, from the name of the selector function it can be derived that eqint

is a dictionary of the Eq class and thus has a type of the form (eqdict a).
Furthermore, since this value is assigned to the ==s symbol, the type of ==s
is of the form (eqdict a) as well. From this, it will be inferred that a should
be an Int.
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4.3 Tactic

The tactic implemented in Sparkle is a version of the multi-tactic that is
called TypeClassInduction. By default, it uses all universally quantified dic-
tionaries. The tactic is added to the hints mechanism and preferred over the
Induction tactic, because the Induction tactic would not work for dictio-
naries anyway. One might argue that the tactic should be combined with the
Induction tactic, because it can also be considered induction in dictionaries.
However, eventually we would like to hide the dictionaries and present them
as class constraints.

Implementing the tactic was very straightforward, because its structure
was equal to the structure of the available Induction tactic. Also, Leonard
Lensink had previously implemented a tactic for Sparkle [13] and left marks
at the places were modifications were required.

4.4 Evaluation

The implementation took less time than anticipated. The total amount of time
spent on it is about three weeks. Most of the time was lost in fixing mistakes
in the additions to the type inference function. Despite its 130.000 lines of
code (including libraries) the code remains clear and easy to understand.

One of the aspects of this work was to stay close to Clean syntax, hence
type classes. For the specification, this has been achieved. Properties can be
specified using Clean syntax. When proving such a property however, the
user works directly with dictionaries. Special options in Sparkle to disable
the hiding of dictionaries, creator and selector functions, and instance suffixes
have to be used. Ideally, the use of dictionaries should be completely hidden
from the user. However, since the proof rule is directly linked to the dictio-
naries, an alternative representation of dictionaries that looks more like type
classes has to be created. Furthermore, when dictionaries are hidden, the dic-
tionary selection should be reduced automatically whenever possible. There
was no time to investigate this further.

In section 2.9 it was mentioned that Clean supports derived members
and specialized functions. The derived members are just macros that are
always expanded, also when specifying a property. Hence, no special care
had to be taken of them. Specialized functions are functions that implement
a class member for a specific instance, built for reasons of efficiency. Once a
property has been proven for all class instances, it also holds for the specialized
instances. Currently, this cannot be derived, hence the property has to be
proven for each specialized function again.

The tactic has been used to prove, amongst others, the examples in this
paper. Hence, this tactic is a useful addition to Sparkle. Nevertheless,
further experience with proofs of class constrained properties, made possible
by this tactic, may very well indicate that it needs to be altered to better suit
some unanticipated proofs. The implementation, including the stored proofs,
is available at: http://www.student.kun.nl/ronvankesteren/SparkleGTC.zip
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Proving properties about a program can significantly help creating high quality
reliable software. In this project we set out to solve one of problems that
are encountered when proving a property of a function program; how can
properties about overloaded functions, called class constrained properties, be
specified and proven.

In the presented solution, class constrained properties are specified at the
Core level; Sparkle’s existing formal framework in which overloading has
been translated to dictionaries. To be able to formalize these dictionaries, the
Core framework was extended with class and instance definitions.

A new proof rule for class constrained properties and an effective tactic
based on it were presented. Although structural induction on types is theo-
retically powerful enough, it was shown that for an effective tactic, one that
allows all sensible hypotheses to be assumed, an induction scheme should be
used that is based on the instance definitions. The proof rule and tactic were
first defined for single class constraints and then generalized to properties with
multiple class constraints. The resulting tactic is general; although special-
ized for Clean, it can also be used for proving properties about overloaded
expressions in other languages, such as Haskell and Isabelle.

As a proof of concept, the resulting tactic has been implemented in the
proof assistant Sparkle. The implementation took less time than anticipated
and has been used to prove a number of properties. These proofs are available
together with the implementation. However, there still remains some work to
be done to make the tactic more user friendly.

We have compared our solution to the proof rule in Isabelle, which uses
structural induction on types. If Isabelle supported multi-parameter type
classes, it would be useful to implement the tactic in Isabelle as well. Cur-
rently however, this work does not have an advantage for Isabelle because
Isabelle only supports single parameter type classes, for which structural
induction suffices.

5.1 Future work

As a direct continuation of this work, the implementation of the tactic could
be improved to, to the user, operate more at the level of type classes. Fur-
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thermore, it should be investigated how the tactic behaves in practice. Maybe
another tactic is required to prove all sensible properties.

As mentioned in section 2.10, the general proof assistant Isabelle [15]
supports overloading and single parameter type classes. Isabelle’s notion of
type classes is somewhat different from Clean’s in that it represents types that
satisfy certain properties instead of types for which certain values are defined.
Nevertheless, the problems to be solved are equivalent. Isabelle uses a proof
rule based on structural induction on types [14, 20], which suffices for the
supported type classes. However, if Isabelle would support more extensions,
most importantly multi parameter classes, it would be useful to define our
proof rule and a corresponding tactic in Isabelle.

Essentially, the implementation of the tactic we proposed extends the in-
duction techniques available in Sparkle. Leonard Lensink proposed and im-
plemented extensions of Sparkle for induction and co-induction for mutually
recursive functions and data types [13]. The main goal was to ease proofs by
making the induction scheme match the structure of the program. Together
with this work this significantly increases the applicability of Sparkle.

Because generics is often presented as an extension of type classes [7], it
would be nice to extend this work to generics as well. Currently, in Clean

generics are translated to normal type classes where instances are created for
every available data type [1]. There is a library for Haskell that generates
classes with boilerplate code for every available data type [12]. The tactic
presented here can already be used to prove properties about generic functions
by working on these generated type classes. However, the property is only
proven for the data types that are used in the program and a separate proof
is required for each data type. That is, after all, the main difference between
normal type classes and generics. Hence, it remains useful to define a proof
rule specifically for generics.
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Mathematical conventions A
Most of the notation and conventions used in this thesis are equivalent or
based on the ones used in the description of the mathematical framework of
Sparkle [4]. The most important ones are listed in section A.1. Section A.2
defines substitutors and most general unifiers.

A.1 Notation

Set theoretical notation Functions, predicates and relations are often de-
fined using a set theoretical notation:

• Functions f from X to Y are defined by:
{(x, y) | x ∈ X, y ∈ Y, f(x) = y}

• A predicate P on X is defined by:
{x | x ∈ X,P (x)}

• A relation R on X1 × . . .×Xn is defined by:
{(x1, . . . , xn) | x1 ∈ X1, . . . , xn ∈ Xn, R(x1, . . . , xn)}

• The powerset of X is denoted by: ℘(X)

Overloading This thesis is about overloading, but for reasons of convenience
overloading will also be used in the thesis itself. Functions f1, . . . , fn
with domainsX1, . . . ,Xn and ranges Y1, . . . , Yn are considered a function
f = f1 ∪ . . . ∪ fn with domain X1 ∪ . . . ∪Xn and range Y1 ∪ . . . ∪ Yn.

Ordered sequences Ordered sequences are denoted by 〈x1, . . . , xn〉. An or-
dered sequence of zero length is denoted by 〈〉. The type of ordered
sequences is denoted as 〈X 〉 where X is the type of the sequence ele-
ments.

• For all sets S, sequence concatenation ◦ :: 〈S〉 〈S〉 → 〈S〉 is defined
by:

〈x1, . . . , xn〉 ◦ 〈y1, . . . , ym〉 = 〈x1, . . . , xn, y1, . . . , ym〉

• For all sets S, the relation ∈ ⊆ S × 〈S〉 is defined by:
x ∈ 〈x1, . . . , xn〉 ⇔ ∃1≤i≤n[xi = x]
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• For all sets S, the relation ⊆ ⊆ 〈S〉 × 〈S〉 is defined by:
X ⊆ Y ⇔ ∀x∈S[x ∈ X ⇒ x ∈ Y ]

Minimal value For all predicates P (i), the function min i is defined by:
min i(P (i)) = j ⇔ P (j) ∧ ∀k∈N[P (k) ⇒ j < k]

A.2 Substitutors

A substitutor is an operation that substitutes types for type variables.

Definition A.2.1 (substitutor on types)
A substitutor ∗ :: T → T is an operation such that:

∗(σ → τ) = ∗(σ) → ∗(τ)
∗(basic b) = basic b

∗(c 〈τ1, . . . , τn〉) = c 〈∗(τ1), . . . , ∗(τn)〉
∗(α 〈τ1, . . . , τn〉) = ∗(α) 〈∗(τ1), . . . , ∗(τn)〉

The support of ∗ is defined by sup(∗) = {α| ∗ (α) 6= α}. Usually the support
is finite, in which case we write ∗ = [α1 := ∗(α1), . . . , αn := ∗(αn)], where
{α1, . . . , αn} is the support of ∗.

A substitutor can also be straightforwardly applied to sequences or sets of
types, predicates, class constraints, and class constrained properties.

Definition A.2.2 (substitutor on lists of types)
The set of all substitutors is denoted by ⊛. Hence, ∗ ∈ ⊛ denotes that ∗ is a
substitutor.

A special kind of substitutor is the most general unifier.

Definition A.2.3 (unifier)
A unifier for types ~σ and ~τ is a substitutor ∗ ∈ ⊛ such that ∗(~σ) = ∗(~τ ).

Definition A.2.4 (most general unifier)
The most general unifier for types ~σ and ~τ is a substitutor ∗ ∈ ⊛ such that:

(i) ∗(~σ) = ∗(~τ ), and
(ii) ∀∗′∈ ⊛[∗′(~σ) = ∗′(~τ) ⇒ ∃∗′′∈ ⊛[∗′ = ∗′′ ◦ ∗]].

Definition A.2.5 (most general unifier shorthand)
The most general unifier for types ~σ and ~τ is denoted by ∗(~σ↔~τ).
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The Core framework B
This appendix presents the formal mathematical framework called Core that
formalizes the reasoning in Sparkle. Core consists of a programming lan-
guage, a logic language, and a proof language.

The programming language, presented in section B.1, formally describes
Clean programs. Program properties are stated in a logic language, which is
described in section B.2. The proof language, used to describe the reasoning
steps performed in proving a property, is defined in section B.3.

B.1 Programming language

This section formally introduces the programming language of the Core

framework. Only the essential Clean concepts are included in Core, hence
a translation from Clean to Core is required. Fortunately, the Clean com-
piler uses an internal language similar to Core, so the compiler can be used
for this translation, adding to the validity of Sparkle proofs.

Here we use a simplified version of the specification by Maarten de Mol
[4]; some parts are left out, because they are not necessary for our purpose.
First, the types and values available in Core are defined. Then, expressions
that operate on these values are specified. After that, the set of programs is
defined. Finally, the semantics and welltypedness are defined.

B.1.1 Types and values

Clean includes the predefined basic types Int, Real, Char, Bool, and String.
These basic types are also available in Core.

Definition B.1.1 (basic types)
The set of basic types Bt is defined by:

Bt = {tbool, tint, tchar, treal, tstring}

Definition B.1.2 (basic values)
Bv is the set of values of a basic type.

In both Clean and Core it is possible to define algebraic datatypes.
However, Clean’s (predefined) tuple, list, array and dictionary types are all
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considered algebraic datatypes in Core. In the next example, an algebraic
data type is defined.

Example B.1.3 (algebraic datatype)
In Clean, the Tree algebraic datatype is defined by:

:: Tree a = Node (Tree a) (Tree a)

| Leaf a

In example B.1.3, the symbol Tree is an algebraic type symbol, which can
be used to construct types from smaller types. Each algebraic type symbol
expects a fixed number of argument types, called its arity. Tree expects one
argument (a) and therefore has arity one.

Definition B.1.4 (algebraic type symbols)
Sa is the set of algebraic type symbols.
The function Arity :: Sa → N returns the arity of an algebraic type symbol.

What algebraic type symbols are for types, constructor symbols are for
values. New values can be created by combining a constructor and a number
of simpler values. Constructors also have a fixed arity. In example B.1.3, Node
and Leaf are constructors of arity two and one respectively.

Definition B.1.5 (constructor symbols)
Sc is the set of constructor symbols.
The function Arity :: Sc → N returns the arity of a constructor symbol.

The a appearing in example B.1.3 is a type variable. Type variables are place-
holders for which a meaningful type is to be substituted later. In formal
definitions, they are generally denoted by Greek letters. Instead of having an
arity, a type variable is of a certain kind, which is the number of arguments
that it must be applied to.

Definition B.1.6 (type variables)
Vt is the set of type variables.
The function Kind :: Vt → N returns the kind of a type variable.

Now, the set of types supported by Core can be defined. The variable
types are type variables of kind 0. The symbol types are constructed by ap-
plying an algebraic type symbol to a list of types. Function types consist of
the type of the argument and the result type of a function. Type variables of
kind > 0 applied to a list of arguments are called application types. These five
kinds of types define the complete set of types available in Core.

Definition B.1.7 (types)
The set of types T is defined by:

T = {α | α ∈ Vt,Kind(α) = 0} (variable types)
∪ {b | b ∈ Bt} (basic types)
∪ {a ~τ | a ∈ Sa, ~τ ∈ 〈T 〉, 0 < |~τ | ≤ Arity(a)} (symbol types)
∪ {σ → τ | σ ∈ T , τ ∈ T } (function types)
∪ {α ~τ | α ∈ Vt, ~τ ∈ 〈T 〉, 0 < |~τ | ≤ Kind(α)} (application types)
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Definition B.1.8 (free variables in types)
The function TV :: T → ℘(Vt) is defined by:

TV (α) = {α}
TV (b) = ∅
TV (a 〈τ1, . . . , τn〉) = TV (τ1) ∪ . . . ∪ TV (τn)
TV (σ → τ) = TV (σ) ∪ TV (τ)
TV (α 〈τ1, . . . , τn〉) = {α} ∪ TV (τ1) ∪ . . . ∪ TV (τn)

Definition B.1.9 (free variables in lists of types)
The function TV :: 〈T 〉 → ℘(Vt) is defined by:

TV (〈τ1, . . . , τn〉) = TV (τ1) ∪ . . . ∪ TV (τn)

Definition B.1.10 (closed types)
The set of closed types T closed ⊆ T is defined by:

T closed = {τ | τ ∈ T , TV (τ) = ∅}

Using these definitions all types and values in Clean can be constructed.
Consider lists and trees (example B.1.3) for example.

Example B.1.11 (lists and trees)
List and tree types can be constructed by an algebraic type symbols with
arity one:

Sa = {tlist, tree} ,
Arity(tlist) = 1,Arity(tree) = 1

List values require constructor symbols for the empty list and for list
construction. The tree equivalents are nodes and leaves:

Sc = {nil, cons, node, leaf} ,
Arity(nil) = 0,Arity(cons) = 2,Arity(node) = 2,Arity(leaf) = 1

B.1.2 Expressions

Function symbols are used as references to functions. Normally, the name
of the function will be used as the function symbol. The arity of a function
symbol is the number of arguments the referenced function can be applied to.

Definition B.1.12 (function symbols)
Sf is the set of function symbols.
The function Arity :: Sf → N returns the arity of a function symbol.

The set of expressions consists of variables, basic values, constructed data,
function applications, applications of expressions, and case distinctions. Shar-
ing is expressed using lazy and strict let definitions. In the strict let definition,
the shared computation may not be recursive and can only be used by reduc-
tion when the computation is known to be defined. The erroneous expression
is represented by bottom. Note that these expressions are only the basic ex-
pressions required to express Clean programs. Hence, type classes are not
available but translated as explained in section 2.8.
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Definition B.1.13 (expressions)
The set of expressions E is defined by:

E = {var x | x ∈ Ve} (variable)
∪ {basic b | b ∈ Bv} (basic value)
∪ {constr c ~e | c ∈ Sc, ~e ∈ 〈E〉,Arity(c) ≥ |~e|} (data construction)
∪ {func f ~e | f ∈ Sf , ~e ∈ 〈E〉,Arity(f) ≥ |~e|} (function application)
∪ {apply e e′ | e ∈ E , e′ ∈ E} (application)
∪ {case e′ of ~a = ~e | e′ ∈ E , ~e ∈ 〈E〉,~a ∈ casealts} (case distinction)
∪ {let! x = e in e′ | x ∈ Ve, e ∈ E , e′ ∈ E} (strict sharing)
∪ {let ~x = ~e in e′ | ~x ∈ 〈Ve〉, ~e ∈ 〈E〉, e′ ∈ E} (lazy sharing)
∪ {bottom} (bottom)

where the set of case alternatives casealts is assumed.

Assumption B.1.14 (free variables in expressions)
The function FV :: E → ℘(Ve) returns the set of free expression variables in
an expression.

Definition B.1.15 (closed expressions)
The set of closed expressions Eclosed ⊆ E is defined by:

Eclosed = {e | e ∈ E , FV (e) = ∅}

In Core, basic functions for basic types (like the arithmetic operations
on integers and reals) are called delta functions. Their implementations and
properties are predefined. This formal detail is not important here; we will
just assume they are normal functions.

B.1.3 Programs

A Core program is executed by rewriting the Start function. The rewriting
process often makes use of the other function definitions. A program is the
collection of functions and definitions of algebraic data types that is available.

A function definition defines the types of the input parameters, the vari-
ables to which the output expressions are assigned, the result type, and the
function expression.

Definition B.1.16 (function definitions)
The set of function definitions Fd is defined by:

Fd = {function f ~x e τ | f ∈ Sf , ~x ∈ 〈Ve〉, e ∈ E , τ ∈ T }

An algebraic data type definition (like Tree in example B.1.3) is a collection
of alternatives, where each alternative is a constructor followed by the types
of the values.

Definition B.1.17 (alternatives)
The set of alternatives Alts is defined by:

Alts = {(c, ~σ) | c ∈ Sc, ~σ ∈ 〈T 〉,Arity(c) = |~σ|}

Definition B.1.18 (algebraic data type definitions)
The set of algebraic data type definitions A is defined by:

A = {algdef t ~a | t ∈ Sa,~a ∈ 〈Alts〉}
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A program assigns function definitions to function symbols and algebraic type
definitions to algebraic type symbols.

Definition B.1.19 (programs)
The set of programs Ψ is defined by:

Ψ = {prog ψ | ψ ∈ (Sa ∪ Sf ) →֒ (A ∪Fd)}

The set of programs includes also programs that are not welltyped. Well-
typedness is defined in the next section, after which only welltyped programs
will be considered.

B.1.4 Semantics

The programming language Core and its semantics are based on term rewrit-
ing, whereas Clean is based on graph rewriting. Nevertheless, the expressivity
and semantics are equivalent.

The operational semantics of the programming language is defined by a
reduction mechanism which describes the evaluation of expressions in the con-
text of a program. This mechanism uses 21 conditional rules that define how
an expression may be rewritten. It supports sharing, enforces strict evalua-
tion of strict let definitions, is correct with respect to Clean, and is useful for
reasoning. It is a single-step system in which any redex (hence, any subex-
pression) can be reduced. Thus, the order in which the redexes are reduced
can be chosen freely. Additionally, every step preserves welltypedness. The
rewrite function will not be specified here (see [4] for a detailed specification).

B.1.5 Welltypedness

In Clean, all valid programs must be welltyped. The type inference function,
that can be used to type expressions, will be assumed (as in [4]).

Definition B.1.20 (type contexts)
The set of type contexts Γt is defined by:

Γt = Ve →֒ T

Assumption B.1.21 (type inference function)
The function Typeψ :: E × Γt →֒ T × Γt has the following properties:

• It corresponds to standard Mycroft typing

• All free variables from the expression are in the resulting typing context

• The resulting type is the most specific type possible

• The returned context is the input context with variable type bindings
added and types made more specific

• The domain represents all tuples of welltyped expressions and typing
contexts. Hence, an expression is welltyped in a context iff they are a
member of the domain of Typeψ.
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Using the type inference function, welltypedness can be defined for expres-
sions, function definitions and programs. Only welltyped programs will be
considered valid.

An expression is welltyped if and only if a type can be inferred for it.

Definition B.1.22 (welltypedness of expressions in a type context)
The relation WellTypedψ ⊆ E × Γt is defined by:

WellTypedψ(e, γ) ⇔ (e, γ) ∈ Dom(Typeψ)

Definition B.1.23 (welltypedness of functions)
The relation WellTypedψ ⊆ Fd is defined by:

WellTypedψ(function f 〈x1, . . . , xn〉 e (τ1 → . . .→ τn → σ)) ⇔
Typeψ(e, {(x1, τ1), . . . , (xn, τn)}) = (σ, ~τ ) (modulo α-conversion)

Finally, a program is welltyped if and only if all function definitions it provides
are welltyped.

Definition B.1.24 (welltypedness of programs)
The relation WellTyped ⊆ Ψ is defined by:

WellTyped(ψ) ⇔ ∀f∈Fd [f ∈ Dom(ψ) ⇒ WellTypedψ(ψ(f))]

B.2 Logic language

The purpose of Sparkle is to prove properties about Clean programs. In
the previous section, a mathematical model of Clean programs was presented.
This section defines the set of properties about these programs.

First, the set of propositions is defined. Then welltypedness is extended
from expressions to propositions. Finally, the semantics of propositions is
defined.

B.2.1 Propositions

In Sparkle, properties are defined in a first-order predicate logic extended
with equality of expressions. Some examples are shown in example B.2.1.

Example B.2.1 (example properties)
Two example properties are:

∀n∈Int∀a∀xs∈[a][n 6= bottom ⇒ take n xs ++ drop n xs = xs]

∀a,b∀f∈a→b∀xs∈[a]∀ys∈[a][map f (append xs ys)

= append (map xs) (map ys)]

For quantification of propositions, a set of proposition variables is required.

Definition B.2.2 (proposition variables)
Vp is the set of proposition variables.

The set of quantors is composed of universal quantors and existential quantors.

Definition B.2.3 (universal quantors)
The set of universal quantors Qu is defined by:

Qu = {forall types x | x ∈ Vt}
∪ {forall exprs x σ | x ∈ Ve, σ ∈ T }
∪ {forall props x | x ∈ Vp}
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Definition B.2.4 (existential quantors)
The set of existential quantors Qe is defined by:

Qe ∪ {exists expr x σ | x ∈ Ve, σ ∈ T }
∪ {exists prop x | x ∈ Vp}

Definition B.2.5 (quantors)
The set of quantors Q is defined by:

Q = Qu ∪ Qe

The set of properties is a formalization of a first-order predicate logic ex-
tended with equality of expressions.

Definition B.2.6 (properties)
The set of properties Props is defined by:

Props = {var α | α ∈ Vp} (variable)
∪ {e equals e′ | e ∈ E , e′ ∈ E} (equality)
∪ {true} (true)
∪ {false} (false)
∪ {not p | p ∈ Props} (negation)
∪ {p and q | p ∈ Props , q ∈ Props} (conjunction)
∪ {p or q | p ∈ Props , q ∈ Props} (disjunction)
∪ {p implies q | p ∈ Props , q ∈ Props} (implication)
∪ {p iff q | p ∈ Props , q ∈ Props} (equivalence)
∪ {quantor q p | p ∈ Props , q ∈ Q} (quantification)

Assumption B.2.7 (free variables in propositions)
The function PV :: Props → ℘(Vp) returns the set of free variables in a propo-
sition.

Definition B.2.8 (closed propositions)
The set of closed propositions Propsclosed ⊆ Props is defined by:

Propsclosed = {p | p ∈ Props , PV (p) = ∅}

B.2.2 Semantics

All valid properties are closed, they do not contain any free variables. Hence,
only the semantics of closed properties has to be defined.

The semantics of proposition variables is the semantics of the proposition
it stands for. Except for equality of expressions, standard first-order logic
semantics is used. Two expressions are said to be equal, when replacing one
by the other in any program does not change the observed behavior of the
program (see [4]). This equality is designed to handle infinite (lazy) and
undefined expressions well.

Assumption B.2.9 (equality of expressions)
For all programs ψ ∈ Ψ, the relation Equalψ ⊆ Eclosed × Eclosed is defined such
that Equalψ(e, e′) is true iff e and e′ are considered equal.

First, the sets over which the quantors in a property quantify are defined.
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Definition B.2.10 (variables)
The set of all variables V is defined by:

V = Vt ∪ Ve ∪ Vp

Definition B.2.11 (closed terms)
The set of closed terms X closed is defined by:

X closed = T closed ∪ Eclosed ∪ Propsclosed

Definition B.2.12 (instances of quantors)
For all programs ψ ∈ Ψ, the function Instancesψ :: Q → ℘(V × X closed) is de-
fined by:

Instancesψ(forall types α) = {(α, σ) | σ ∈ T closed}
Instancesψ(forall exprs x σ) = {(x, e) | e ∈ Eclosed,Typeψ(e, ∅) = σ}
Instancesψ(exists exprs x σ) = {(x, e) | e ∈ Eclosed,Typeψ(e, ∅) = σ}

Instancesψ(forall props p) = {(x, p) | p ∈ Propsclosed}
Instancesψ(exists props p) = {(x, p) | p ∈ Propsclosed}

Using the previous definitions, the semantics of properties is straightfor-
wardly defined.

Definition B.2.13 (semantics of closed properties)
For all programs ψ ∈ Ψ, the predicate J·Kψ ⊆ Propsclosed is defined by:

Je equals e′Kψ ⇔ Equalψ(e, e′)
JtrueKψ ⇔ true
JfalseKψ ⇔ false
Jnot pKψ ⇔ ¬JpKψ
Jp and qKψ ⇔ JpKψ ∧ JqKψ
Jp or qKψ ⇔ JpKψ ∨ JqKψ
Jp implies qKψ ⇔ (JpKψ ⇒ JqKψ)
Jp iff qKψ ⇔ (JpKψ ⇔ JqKψ)

Jquantor q pKψ ⇔

{

∀(x,X)∈Instancesψ(q)[Jpx 7→XKψ] if q ∈ Qu

∃(x,X)∈Instancesψ(q)[Jpx 7→XKψ] if q ∈ Qe

B.2.3 Welltypedness

A property is welltyped if every two expressions to be compared have the same
type given the type context. The type context is built by the surrounding
quantors.

Definition B.2.14 (equally typed expressions in a type context)
For all programs ψ ∈ Ψ, the relation EquallyTypedψ ⊆ Γt × E × E is defined
by:

EquallyTypedψ(γ, e, e′) ⇔ ∃σ∈T [Typeψ(γ, e) = σ ∧ Typeψ(γ, e′) = σ]

Definition B.2.15 (add quantor to type context)
For all programs ψ ∈ Ψ, the function Addψ :: Q× Γt → Γt is defined by:

Add(forall types x, γ) = γ

Add(forall exprs x σ, γ) = γx 7→σ

Add(exists expr x σ, γ) = γx 7→σ

Add(forall props x, γ) = γ

Add(exists prop x, γ) = γ
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Definition B.2.16 (welltypedness of propositions)
For all programs ψ ∈ Ψ, the relation WellTypedψ ⊆ Props × Γt is defined by:

WellTypedψ(γ, var α) ⇔ α ∈ Vp
WellTypedψ(γ, e equals e′) ⇔ EquallyTypedψ(γ, e, e′)

WellTypedψ(γ, true) ⇔ true

WellTypedψ(γ, false) ⇔ false

WellTypedψ(γ, not p) ⇔ WellTypedψ(γ, p)

WellTypedψ(γ, p and q) ⇔ WellTypedψ(γ, p) ∧ WellTypedψ(γ, q)
WellTypedψ(γ, p or q) ⇔ WellTypedψ(γ, p) ∧ WellTypedψ(γ, q)

WellTypedψ(γ, p implies q) ⇔ WellTypedψ(γ, p) ∧ WellTypedψ(γ, q)

WellTypedψ(γ, p iff q) ⇔ WellTypedψ(γ, p) ∧ WellTypedψ(γ, q)

WellTypedψ(γ, quantor q p) ⇔ WellTypedψ(Add(γ, q), p)

B.3 Proof language

In this section, the language that describes proofs is defined. In general,
a proof is a syntactical derivation of a logical statement. Every derivation
step transforms a logical statement in a conjunction of logical statement that
imply the original statement. The result, a complete proof, is a tree of logical
statements where the leaves are trivially true.

In Sparkle, the logical statements are the properties and the steps allowed
are described by tactics. Instead of using trees, Sparkle uses a representa-
tion that adds more structure to the proofs. Respectively, the language, the
semantics, and the welltypedness are defined.

B.3.1 Proofs

A proof goal corresponds to a logical statement, the property that is to be
proven. To keep track of the introductions performed by the user, a proof goal
is further split into introduced annotated quantors, introduced hypotheses,
and a target proposition (∀q1,...,qn[H1 ⇒ H2 ⇒ · · · ⇒ Hm ⇒ P ] ).

Definition B.3.1 (closed proof goals)
The set of closed proof goals Goal closedis defined by:

Goal closed = {prove p with ~q ~h | p ∈ Props , ~q ∈ 〈Qu〉,~h ∈ 〈Props closed〉}

A proof state is a list of proof goals corresponding to a conjunction of
properties, which are essentially all the leaves in a (partial) proof tree.

Definition B.3.2 (closed proof states)
The set of closed proof states Stateclosedis defined by:

Stateclosed = {goals ~g | ~g ∈ 〈Goal closed〉}

A tactic is a function from a goal to a list of goals. All tactics have to
be sound with respect to the semantics. That is, the created goals have to
logically imply the original goal. Applying a tactic changes the proof state in
one that is hopefully easier to prove.
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Definition B.3.3 (tactic)
A tactic is a function f :: Goal →֒ 〈Goal 〉 such that:

∀g∈Goal [g ∈ Dom(f) ⇒ [f(g) ⇒ g]].

B.3.2 Semantics

Since proof states and proof goals correspond to (a conjunction of) properties,
their semantics is defined by the semantics of properties. This differs from the
more advanced definition by Maarten de Mol [4], which explicitly takes alpha
conversion into account.

First, a translation from proof goals and states to propositions is defined.

Definition B.3.4 (translate goal to proposition)
The function ToProp :: Goal closed → Propsclosed that translates a proof goal to
a property is defined by:

ToProp(prove p with 〈q1, . . . , qn〉 〈h1, . . . , hm〉) =
quantor q1 . . . quantor qn [h1 implies . . . implies hm implies p]

Definition B.3.5 (translate proof state to proposition)
The function ToProp :: Stateclosed → Propsclosed that translates a proof state
to a property is defined by:

ToProp(goals 〈g1, . . . , gn〉) = q1 and . . . and qn

The semantics of proof goals and states is defined as the semantics of the
properties to which they can be translated.

Definition B.3.6 (semantics of proof goals)
For all programs ψ ∈ Ψ, the meaning predicate J·Kψ ⊆ Goal closed is defined by:

JgKψ ⇔ JToProp(g)Kψ

Definition B.3.7 (semantics of proof states)
For all programs ψ ∈ Ψ, the meaning predicate J·Kψ ⊆ Stateclosed is defined
by:

JsKψ ⇔ JToProp(s)Kψ

B.3.3 Welltypedness

Just as the semantics, welltypedness of proof goals and states can be defined
in terms of the properties to which they can be translated.

Definition B.3.8 (welltypedness of proof goals)
For all programs ψ ∈ Ψ, the relation WellTypedψ ⊆ Goal closed × Γt is defined
by:

WellTypedψ(γ, g) ⇔ WellTypedψ(γ,ToProp(g))

Definition B.3.9 (weltypedness of proof states)
For all programs ψ ∈ Ψ, the relation WellTypedψ ⊆ Stateclosed × Γt is defined
by:

WellTypedψ(γ, s) ⇔ WellTypedψ(γ,ToProp(s))
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In this appendix, proof sketches are given for the proof rules and tactics from
section 3.3. Being sketches, some steps in the proofs are rather large. Never-
theless, they are correct and can be verified with relatively little work.

Section C.1 and C.2 show that the set of instances and the set of multi-
ple instances are well-founded and that the defined orders are indeed partial
orders. In sections C.3 and C.4, the proofs of the (inst-tactic) and (multi-
tactic) are sketched.

C.1 Order on instances

In this section it is shown that ≤(ψ,c) is a partial order by showing that a
natural number can be assigned to types such that if one type is smaller than
another the number is as well.

First, a natural number is assigned to a class constraint.

Definition C.1.1 (assign number to class constraints)
The function Num :: P →֒ N is defined by:

Num(~τ :: c) = minn(~τ ∈ Instancesψ(c, n))

The first lemma shows that if a predicate is a dependency of another, it will
have a smaller number assigned.

Lemma C.1.2 (dependencies have a smaller number)
For all predicates π we have:

∀π′∈Depsψ(π)[Num(π′) < Num(π)]
Proof:

Assume Num(π) = n. Then by definition of the sets of instances (3.1.40),
if (~τ :: c) ∈ Depsψ(π) then ~τ ∈

⋃

1≤i≤n−1[Instancesψ(c, i)]. Hence,
Num(π′) < n.

The second lemma shows that expanding compound classes never creates pred-
icates with a larger number.

Lemma C.1.3 (expanding compounds does not increase number)
For all predicates ~τ :: c we have:

∀π∈ExpCompψ(~τ ::c)[Num(π) ≤ Num(~τ :: c)]
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Proof:
The definition of ExpCompψ (3.3.6) distinguishes two cases.
Case ¬Compoundψ(c):

By definition of ExpCompψ we have to prove Num(~τ :: c) ≤ Num(~τ :: c),
which is trivially true.

Case Compoundψ(c):

By definition of ExpCompψ we have to prove:

∀π∈ExpCompψ(SubClassesψ(~τ ::c))[Num(π) ≤ Num(~τ :: c)]
The proof proceeds by induction on SCl using the subclass relation.
Base cases:

c has no subclasses, thus SubClassesψ(~τ :: c) = 〈〉. Hence we should
prove ∀π∈〈〉[Num(π) ≤ Num(~τ :: c)], which is trivially true.

Induction Step:

Assume that SubClassesψ(~τ :: c) = 〈~τ1 :: c1, . . . , ~τn :: cn〉 and
~π′ = ExpCompψ(~τ1 :: c1) ◦ . . . ◦ ExpCompψ(~τn :: cn). Then, we have
to prove: ∀π∈~π′ [Num(π) ≤ Num(~τ :: c)]
By the induction hypothesis we know that for all 1 ≤ i ≤ n:

∀πi∈ExpCompψ(~τi::ci)[Num(πi) ≤ Num(~τi :: ci)]

By lemma C.1.2 we have Num(~τi :: ci) ≤ Num(~τ :: c). Hence,
Num(πi) ≤ Num(~τ :: c).

Using these lemmas, it can be shown that the number decreases as types get
smaller.

Lemma C.1.4 (smaller types (<1
(ψ,c)) have a smaller number)

For all classes c ∈ SCl and types ~τ and ~σ, the following holds:
~σ <1

(ψ,c) ~τ ⇒ Num(~σ :: c) < Num(~τ :: c)
Proof:
~σ <1

(ψ,c) ~τ by definition (3.3.18) means that (~σ :: c) ∈ Deps1
ψ(~τ :: c). By

definition (3.3.5), this implies (~σ :: c) ∈ ExpCompψ(Depsψ(~τ :: c)). Then,
by lemma C.1.2 and C.1.3, we have Num(~σ :: c) < Num(~τ :: c).

This lemma can be used to show that ≤(ψ,c) is a partial order and that the set
Instancesψ(c) is well-founded.

Proposition C.1.5 (≤(ψ,c) is a partial order)

For all classes c ∈ SCl, ≤(ψ,c) is a partial order.
Proof:

≤(ψ,c) is reflexive and transitive by definition. Anti-symmetry and well-
foundedness are guaranteed by lemma C.1.4.

That ≤(ψ,c) is a partial order also proves (inst-rule) (3.3.21), since that was
required by the well-founded induction theorem.

C.2 Order on multiple instances

In this section, it is shown that ≤(ψ,~π) is a partial order by showing that a
natural number can be assigned to types such that if one type is smaller than
another the number is as well.

First, a natural number is assigned to a sequence of class constraints.
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Definition C.2.1 (assign number to multiple class constraints)
The function Num :: 〈P〉 →֒ N is defined by:

Num(〈π1, . . . , πn〉) = max(Num(π1), . . . ,Num(πn))

Using the lemmas from the previous section, it can be shown that this number
decreases as types get smaller.

Lemma C.2.2 (smaller types (<1
(ψ,~π)) have a smaller number)

For all predicates ~π ∈ 〈P〉 and types ~τ and ~σ, the following holds:
~σ <1

(ψ,~π) ~τ ⇒ SetNum(∗(TV (~π)↔~σ)(~π)) < SetNum(∗(TV (~π)↔~τ)(~π))
Proof:
~σ <1

(ψ,π) ~τ by definition (3.3.28) implies:

∗(TV (~π)↔~σ)(~π) ⊆
⋃

π∈~π[Deps1
ψ(∗(TV (~π)↔~τ)(π))]

Expanding Deps1
ψ (3.3.5) gives:

∗(TV (~π)↔~σ)(~π) ⊆
⋃

π∈~π[ExpCompψ(Depsψ(∗(TV (~π)↔~τ)(π)))]
By lemma C.1.2 and C.1.3 we know that for all π′ ∈ ~π:

Num(∗(TV (π)↔~σ)(π
′)) < Num(∗(TV (π)↔~τ)(π

′))
Hence, SetNum(∗(TV (~π)↔~σ)(~π)) < SetNum(∗(TV (~π)↔~τ)(~π))

This lemma can be used to show that ≤(ψ,~π) is a partial order and that the
set SetInstancesψ(~π) is well-founded.

Proposition C.2.3
For all predicates ~π ∈ 〈P〉, ≤(ψ,~π) is a partial order.
Proof:

≤(ψ,~π) is reflexive and transitive by definition. Anti-symmetry and well-
foundedness are guaranteed by lemma C.2.2.

That ≤(ψ,~π) is a partial order also proves (multi-rule) (3.3.30), since that
was required by the well-founded induction theorem.

C.3 Proof of (inst-tactic)

In this section the (inst-tactic) is proven correct. That is, it is proven to be
sound; the top property logically implies the bottom one. This is shown in
three steps, starting with the sound (inst-rule).

Proposition C.3.1 ((inst-tactic) is sound)
The (inst-tactic) is sound.
Proof:

We start with the (inst-rule):
∀~τ∈Instancesψ(c)[∀~σ<1

(ψ,c)
~τ [P (~σ)] ⇒ P (~τ)]

∀~α∈Instancesψ(c)[P (~α)]

By definition of Instancesψ (3.1.41) this implies:

∀i∈InstDefsψ(c)∀Head(i)∈Instancesψ(c)

[ i = ApplyInstanceψ(Head(i) :: c)
⇒ ∀~σ<1

(ψ,c)
~τ [P (~σ)] ⇒ P (~τ )

]

∀~α∈Instancesψ(c)[P (~α)]
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By the definition of <1
(ψ,c) (3.3.18) this implies:

∀i∈InstDefsψ(c)∀Head(i)∈Instancesψ(c)

[ i = ApplyInstanceψ(Head(i) :: c)

⇒ ∀(σ::c′)∈Deps1
ψ(Head(i)::c,i)[c = c′ ⇒ ∃∗[∗(~α) = ~σ] ⇒ P (~σ)] ⇒ P (~τ )

]

∀~α∈Instancesψ(c)[P (~α)]

By making dictionaries explicit this implies the (inst-tactic):
∀i∈InstDefsψ(c)∀TV (Head(i)∈〈T closed〉)∀Deps(Head(i)::c,i)

[ ∀(~σ::c′)∈Depsψ(Head(i)::c,i)[c = c′ ⇒ ∃∗[∗(~α) = ~σ] ⇒ P (d(~σ::c), ~σ)]

⇒ P (Dict1
ψ(Head(i) :: c, i),Head (i))]

]

∀~α∈〈T closed〉∀~α::c[P (d(~α::c), ~α)]

C.4 Proof of (multi-tactic)

In this section the (multi-tactic) is proven correct. That is, it is proven to
be sound; the top property logically implies the bottom one. This is shown in
three steps, starting with the (sound) (multi-rule).

Proposition C.4.1 ((multi-tactic) is sound)
The (multi-tactic) is sound.
Proof:

We start with the (multi-rule):
∀~τ∈SetInstancesψ(~π)[∀~σ<1

(ψ,~π)
~τ [P (~σ)] ⇒ P (~τ)]

∀~τ∈SetInstancesψ(~π)[P (~τ )]

By definition of SetInstancesψ (3.3.26) this implies:

∀~ı∈InstDefsψ(~π)∃∗|∗=SetMgu(~π,Head(~ı))∀∗(Head(~ı))∈〈T closed〉

[~ı ∈ ApplyInstanceψ(∗(~π))

⇒ ∀~σ<1
(ψ,~π)

~τ [P (~σ)] ⇒ P (~τ )

]

∀~τ∈SetInstancesψ(~π)[P (~τ )]

By the definition of <1
(ψ,~π) (3.3.28) this implies:

∀~ı∈InstDefsψ(~π)∃∗|∗=SetMgu(~π,Head(~ı))∀∗(Head(~ı))∈〈T closed〉

[~ı ∈ ApplyInstanceψ(∗(~π))

⇒ ∀∗′|∗′(~π)⊆Depsψ(∗(~π),~ı)[P (~σ)] ⇒ P (~τ)

]

∀~τ∈SetInstancesψ(~π)[P (~τ )]

By making dictionaries explicit this implies the (multi-tactic):
∀~ı∈InstDefsψ(~π)∃∗|∗=SetMgu(~π,Head(~ı))∀∗(Head(~ı))∈〈T closed〉∀Deps1

ψ(∗(~π),~ı)

[ ∀∗′|∗′(~π)⊆Depsψ(∗(~π),~ı)[P (d(∗′(~π)), ∗
′(TV (~π)))]

⇒ P (Dict1
ψ(∗(~π),~ı), ∗(Head (~ı)))

]

∀TV (~π)∀~π[P (d(~π), TV (~π))]
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Bewijsassistent verbeterd D
Het lijkt wel of tegenwoordig overal een chip en een computerprogramma in
zit. Pinautomaten, magnetrons, wasmachines, horloges, scheerapparaten. Al
die apparaten moet goed werken. Altijd. Je wilt bijvoorbeeld niet dat een
pinautomaat teveel geld van je rekening afschrijft. Er mogen dus ook geen
fouten in de computerprogramma’s zitten.

Helaas. We weten maar al te goed dat er in computerprogramma’s juist
vrijwel altijd fouten zitten. Vastlopers van de PC zijn aan de orde van de dag,
mobiele telefoons zijn inmiddels gemeengoed maar crashen voortdurend en
ook auto’s hebben steeds vaker last van ’softwareproblemen’. Technologische
vooruitgang gaat gepaard met ongemakken.

Hoe komt dit nou? Worden de programmeurs niet goed genoeg betaald?
Wordt de software niet goed uitgetest? Misschien, maar dit zijn zeker niet
de enige oorzaken. Software is namelijk al snel te complex voor een mens
om helemaal te begrijpen en te overzien, en het is vaak onmogelijk om alle
denkbare situaties uit te testen, laat staan alle ondenkbare. Hoe kunnen we
er dan ooit zeker van zijn dat het programma doet wat het moet doen?

De enige mogelijkheid om dit echt zeker te weten is door het te bewijzen.
Met bewijzen wordt bedoeld dat je laat zien, volgens de regels van de logica,
dat het niet anders kan zijn dan dat het programma goed werkt. Er bestaan
al vrij lang computerprogramma’s die hierbij kunnen helpen: de bewijsassis-
tenten. Helaas zijn deze bewijsassistenten gericht op wiskundigen en logici, en
niet op programmeurs. Men kan dingen bewijzen over een programma, maar
dan wel in een andere taal dan de programmeertaal. Programmeren in het
Nederlands, bewijzen in het Chinees. Geen praktische combinatie dus. Er
wordt dan ook niet zo gek veel bewezen.

Om dit te verhelpen is er in Nijmegen een bewijsassistent ontwikkeld die
wel een voor programmeurs bekende taal spreekt. Bijna dan. Programmeren
in het Nederlands, bewijzen in het Surinaams zogezegd. Zo ontbraken er
nog een aantal niet essentiele maar wel ontzettend handige eigenschappen
van de programmeertaal. Één daarvan is “overloading”, wat staat voor de
mogelijkheid om een stuk code dat voor verschillende situaties steeds herhaald
moet worden, terug te brengen tot een veel kleiner stuk voor een beperkt aantal
gevallen waaruit de code voor andere gevallen automatisch gegenereerd kan
worden. Het gevolg was dat de programmeur de code wel kort kon opschrijven,
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maar het bewijzen toch voor alle mogelijke situaties afzonderlijk moest doen.
Dat kon niet de bedoeling zijn.

Goed nieuws! In dit project is dit gemis verholpen. Het bewijzen kan nu
ook via de korte weg: in één keer voor alle mogelijke situaties. Dit kan zelfs zo
uitgebreid worden dat de bewijzer niet eens ziet dat we hiervoor iets speciaals
doen. Het bewijzen kan dan in het Vlaams in plaats van het Surinaams. Nog
niet perfect, maar wel een stuk beter. De kans dat de programmeur de moeite
neemt iets over zijn programma te bewijzen neemt hiermee toe. En zo komt
de wereld waarin de mobiele telefoon het altijd doet, de PC nooit crasht en
de wasmachine weer gewoon wast, een heel klein stukje dichterbij.
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Abstract

We present a proof rule and an effective tactic for proving prop-
erties about Haskell type classes by proving them for the avail-
able instance definitions. This is not straightforward, because in-
stance definitions may depend on each other. The proof assistant
Isabelle handles this problem for single parameter type classes
by structural induction on types. However, this does not suffice
for an effective tactic for more complex forms of overloading. We
solve this using an induction scheme derived from the instance
definitions. The tactic based on this rule is implemented in the
proof assistant Sparkle.

Keywords: Functional Programming, Theorem Proving, Type Classes

E.1 Introduction

It is often stated that formulating properties about programs increases ro-
bustness and safety, especially when formal reasoning is used to prove these
properties. Robustness and safety are becoming increasingly important con-
sidering the current dependence of society on technology. Research on formal
reasoning has spawned many general purpose proof assistants, such as Coq

[5], Isabelle [14], and Pvs [16]. Unfortunately, these general purpose tools
are geared towards mathematicians and are hard to use when applied to more
practical domains such as actual programming languages.

Because of this, proof assistants have been developed that are geared to-
wards specific programming languages. This allows proofs to be conducted
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class Eq a where

(==) :: a -> a -> Bool

instance Eq Int where

x == y = predefinedeqint x y

instance Eq Char where

x == y = predefinedeqchar x y

instance (Eq a) => Eq [a] where

[] == [] = True

(x:xs) == [] = False

[] == (y:ys) = False

(x:xs) == (y:ys) = x == y && xs == ys

Figure E.1: A type class for equality in Haskell

on the source program using specifically designed proof rules. Functional lan-
guages are especially suited for formal reasoning because they are referentially
transparent. Examples of proof assistants for functional languages are Evt

[15] for Erlang [2], Sparkle [4] for Clean [17], and Era [20] for Haskell

[8].

E.1.1 Type classes

A feature that is commonly found in functional programming languages is over-
loading structured by type classes [18]. Type classes essentially are groups of
types, the class instances, for which certain operations, the class members, are
implemented. These implementations are created from the available instance
definitions and may be different for each instance. The type of an instance
definition is called the instance head. The equality operator will be used as a
running example throughout this paper (figure E.1).

In the most basic case, type classes have only one parameter and instance
heads are flat, that is, a single constructor applied to a list of type variables.
Furthermore, no two instance definitions may overlap.

Several significant extensions have been proposed, such as multiple param-
eters [9], overlapping instances, and instantiation with constructors [7], that
have useful applications such as collections, coercion, isomorphisms and map-
ping. In this paper, the term general type classes is used for systems of type
classes that support these extensions and non-flat instance heads. Figure E.2
shows a multi parameter class for the symmetric operation eq2.

An important observation regarding type classes is that, in general, the
defined instances should be semantically related. For example, all instances of
the equality operator usually implement an equivalence relation. These prop-
erties can be proven for all instances at once by proving them for the available
instance definitions. Unfortunately, this is not straightforward because the in-
stance definitions may depend on each other and hence so will the proofs. For
example, equality on lists is only symmetric if equality on the list members is
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class Eq2 a b where

eq2 :: a -> b -> Bool where

instance Eq2 Int Int where

eq2 x y = x == y

instance Eq2 Char Char where

eq2 x y = x == y

instance (Eq2 a c, Eq2 b c) => Eq2 (a, b) [c] where

eq2 (x, y) [u, v] = eq2 x u && eq2 y v

eq2 x y = False

instance (Eq2 a c, Eq2 b c) => Eq2 [c] (a, b) where

eq2 x y = eq2 y x

Figure E.2: A multi parameter class in Haskell

so as well.

E.1.2 Contributions

The only proof assistant with special support for overloading that we know of
is Isabelle [13, 19], which essentially supports single parameter type classes
and a proof rule for it based on structural induction on types. However, we
show that for general type classes, an effective tactic is not easily derived when
structural induction is used. We use an induction scheme on types based on
the instance definitions to solve this problem. Using this induction scheme, a
proof rule and tactic are defined that are both strong enough and effective.

As a proof of concept, we have implemented the tactic in the proof assistant
Sparkle for the programming language Clean. The results, however, are
generally applicable and can, for example, also be used for Haskell and
Isabelle, if Isabelle would support the specification of general type classes.
In fact, the examples here are presented using Haskell syntax. Sparkle is
dedicated to Clean, but can also be used to prove properties about Haskell

programs by translating them to Clean using the Hacle translator [12].

E.1.3 Outline

The rest of this paper is structured as follows. First, the proof assistant
Sparkle is presented (section E.2). Then, basic definitions for instance defi-
nitions, evidence values, and class constrained properties are introduced (sec-
tion E.3). After showing why structural induction does not suffice (section
E.4), the proof rule and tactic based on the instance definitions are defined
(section E.5) and extended to multiple class constraints (section E.6). We end
with a discussion of the implementation (section E.7), related and future work
(section E.8), and a summary of the results (section E.9).

Proof Support for Type Classes 83



Chapter E — Paper for TFP 2004

E.2 Sparkle

The need for this work arose whilst improving the proof support for type
classes in Sparkle. Sparkle is a proof assistant specifically geared towards
Clean, which means that it can reason about Clean concepts using rules
based on Clean’s semantics. Properties are specified in a first order predi-
cate logic extended with equality on expressions. An example of this, using a
slightly simplified syntax, is:

example: ∀n:Int|n6=⊥∀a∀xs:[a][take n xs ++ drop n xs = xs]

These properties can be proven using tactics, which are user friendly opera-
tions that transform a property into a number of logically stronger properties,
the proof obligations or goals, that are easier to prove. A tactic is the im-
plementation of (a combination of) theoretically sound proof rules. Whereas
in general a proof rule is theoretically simple but not very prover friendly, a
tactic is prover friendly but often theoretically more complex. The proof is
complete when all remaining proof obligations are trivial. Some useful tactics
are, for example, reduction of expressions, induction on expression variables,
and rewriting using hypotheses.

In Sparkle, properties that contain member functions can only be proven
for specific instances of that function. For example:

sym[Int]: ∀x:[Int]∀y:[Int][x == y → y == x]

can be easily proven by induction on lists using symmetry of equality on inte-
gers. Proving that something holds for all instances, however, is not possible
in general. Consider for example symmetry of equality:

sym: ∀a[Eq :: a ⇒ ∀x:a∀y:x[x == y → y == x]]

where Eq :: a denotes the, previously not available, constraint that equality
must be defined for type a. This property can be split into a property for every
instance definition, which gives among others the property for the instance for
lists:

sym[a]: ∀a[Eq :: a ⇒ ∀x:[a]∀y:[a][x == y → y == x]]

It is clear that this property is true as long as it is true for instance a. Unfortu-
nately, this hypothesis is not available. Using an approach based on induction,
however, we may be able to assume the hypotheses for all instances the in-
stance definition depends on, and hence will be able to prove the property.

Internally, Sparkle translates type classes to evidence values or dictio-
naries [18], that make the use of overloading explicit. The evidence value for
a class constraint c :: a is the evidence that there is an (implementation of the)
instance of class c for type a. Hence, an evidence value exists if and only if
the class constraint is satisfied. As usual, we will use the implementation itself
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eqint :: Int -> Int -> Bool

eqint = predefinedeqint

eqchar :: Char -> Char -> Bool

eqchar = predefinedeqchar

eqlist :: (a -> a -> Bool) -> ([a] -> [a] -> Bool)

eqlist ev [] [] = True

eqlist ev (x:xs) [] = False

eqlist ev [] (y:ys) = False

eqlist ev (x:xs) (y:ys) = ev x y && eqlist ev xs ys

Figure E.3: Translation of figure E.1

as the evidence value. A program is translated by converting all instance def-
initions to functions (distinct names are created by suffixes). In expressions,
the evidence value is substituted for member applications. When functions
require certain classes to be defined, the evidence values for these constraints
are passed as a parameter. Figure E.3 shows an example of the result of the
translation of the equality class from figure E.1.

E.3 Preliminaries

Instead of defining a proof rule that operates on the example properties from
section E.2, we define both instances and properties at the level that explicitly
uses evidence values. In this section, basic definitions for instance definitions,
evidence values, and class constrained properties are given.

E.3.1 Instance definitions

Because we intend to support constructor classes, types are formalized by a
language of constructors [7]:

τ ::= α | X | τ τ ′

where α and X range over a given set of type variables and type constructors
respectively. For example, τ can be Int, [Int], and Tree Char, but also the
[], Tree, and -> constructors that take types as an argument and yield a list,
tree, or function type respectively. TV (τ) denotes the set of type variables
occurring in τ . The set of closed types T c is the set of types for which TV (τ)
is empty.

Predicates are used to indicate that an instance of a certain class exists.
An instance can be identified by an instantiation of the class parameters. The
predicate c :: ~τ denotes that there is an instance of the class c for instantiation
~τ of the class parameters. For example, Eq :: (Int, Int) and Eq :: [Int]

denote that there is an instance of the Eq class for types (Int, Int) and [Int]

respectively:
π ::= c :: ~τ
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Because these predicates are used to constrain types to a certain class, they are
called class constraints. Class constraints in which only type variables occur
in the type, for example Eq :: a, are called simple. For reasons of simplicity, it
is assumed that all type variables that occur in a class constraint are distinct.

Without loss of generality, throughout this paper we restrict ourselves to
type classes that have only one member and no subclasses. Multiple members
and subclasses can be supported using records of expressions for the evidence
values. An instance definition:

inst ~π ⇒ c :: ~τ = e

defines an instance ~τ of class c for types that satisfy class constraints ~π. The
instance definition provides the translated expression e for the class member
c. The functions Head(inst c :: ~π ⇒ τ = e) = τ and Context(inst c :: ~π ⇒ τ =
e) = ~π will be used to retrieve the instance head and context respectively.

The program context ψ, that contains the function and class definitions,
also includes the available instance definitions. The function Idefsψ(c) returns
the set of instance definitions of class c defined in program ψ.

E.3.2 Evidence values

From the translation from type classes to evidence values, as briefly summa-
rized in section E.2, the rule for evidence creation is important for our purpose.
Two definitions are required before it can be defined.

Firstly, because instance definitions are allowed to overlap, a mechanism is
needed that chooses between them. Since the exact definition is not important
for our purpose, we assume that the function Aiψ(c :: ~τ) determines the most
specific instance definition applicable for instance ~τ of class c. Aiψ is also
defined for types that contain variables as long as it can be determined which
instance definition should be applied.

Secondly, the dependencies of an instance are the instances it depends on:

Deps(c :: ~τ , i) = ∗Head(i)→~τ (Context(i))

where ∗~τ→~τ ′ denotes the substitutor that maps the type variables in ~τ such
that ∗(~τ) = ~τ ′. When i is not provided, Aiψ(c :: ~τ) is assumed for it.

Evidence values are now straightforwardly created by applying the ex-
pression of the most specific instance definition to the evidence values of its
dependencies:

Deps(π) = 〈π1, . . . , πn〉
Aiψ(π) = inst c :: ~π′ ⇒ ~τ ′ = e

Evψ(π) = e Evψ(π1) . . . Evψ(πn)

In proofs, evidence values will be created assuming the evidence values for
the dependencies are already assigned to expression variables:

Deps(π, i) = 〈π1, . . . , πn〉
i = inst c :: ~π′ ⇒ ~τ ′ = e

Evp
ψ(π, i) = e evπ1 . . . evπn
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assuming that the evidence for π is assigned to the variable evπ. A specific
instance definition i can be provided, because Aiψ(π) might not be known in
proofs.

E.3.3 Class constrained properties

In Sparkle, properties are formalized by a first order predicate logic extended
with equality on expressions. The equality on expressions is designed to handle
infinite and undefined expressions well.

We extend these properties with class constraints, that can be used to
constrain types to a certain class. These properties will be referred to as class
constrained properties. For example, consider symmetry and transitivity of
equality:

sym: ∀a[Eq :: a ⇒ ∀x,y:a[evEq::a x y → evEq::a y x]]

trans: ∀a[Eq :: a ⇒ ∀x,y,z:a[evEq::a x y → evEq::a y z

→ evEq::a x z]]

The property c :: ~τ ⇒ p means that in property p it is assumed that ~τ is an
instance of class c and the evidence value for this class constraint is assigned to
evc::~τ . Thus, the semantics of the property π ⇒ p is defined as p[evπ 7→Evψ(π)].

E.4 Structural induction

The approach for proving properties that contain overloaded identifiers taken
in Isabelle essentially is structural induction on types. In this section it is
argued that the proof rule for general type classes should use another induction
scheme.

Structural induction on types seems an effective approach because it gives
more information about the type of an evidence value. This information can
be used to expand evidence values. For example, evEq::[a] can be expanded to
eqlist evEq::a (see figure E.3).

Aiψ(π) = i

∀TV (π)[Deps(π) ⇒ p(Evp
ψ(π))]

∀TV (π)[π ⇒ p(evπ)]
(expand)

More importantly, structural induction allows the property to be assumed for
structurally smaller types. Ideally the hypothesis should be assumed for all
dependencies on the same class. Unfortunately, structural induction does not
always allow this for multi parameter classes.

Consider for example the multi parameter class in figure E.2. The instance
of Eq2 for [Int] (Char, Char) depends on the instance for Char Int, which is
not structurally smaller because Char is not structurally smaller than [Int],
and Int is not structurally smaller than (Char, Char). Hence, the hypothesis
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cannot be assumed for this dependency. This problem can be solved by basing
the induction scheme on the instance definitions.

E.5 Induction on instances

The induction scheme proposed in the previous section can be used on the set
of defined instances of a class. In this section, a proof rule and tactic that use
this scheme are defined and applied to some examples.

E.5.1 Proof rule and tactic

We first define the set of instances of a class and an order based on the instance
definitions on it. The well-founded induction theorem applied to the defined
set and order yields the proof rule. Then, the tactic is presented that can be
derived from this rule.

Remember that the instances of a class are identified by sequences of closed
types. ~τ is an instance of class c if an evidence value can be generated for the
class constraint c :: ~τ . Hence, the set of instances of class c can be defined as:

Instψ(c) = {~τ | ∀c′::~τ ′∈Deps(c::~τ)[~τ
′ ∈ Instψ(c′)]}

For example, Instψ(Eq) = {Int, Char, [Int], [Char], [[Int]], . . .}.

An order on this set is straightforwardly defined. Because the idea is to
base the order on the instance definitions, an instance ~τ ′ is considered one step
smaller than ~τ if the evidence for ~τ depends on the evidence for ~τ ′, that is, if
c :: ~τ ′ is a dependency of the most specific instance definition for c :: ~τ . For
example, Int <1

(ψ,Eq) [Int] and [Char] <1
(ψ,Eq) [[Char]].

~τ <1
(ψ,c) ~τ

′ ⇔ c :: ~τ ′ ∈ Deps(c :: ~τ)

Note that there is a specific set of instances for each class and therefore also
a specific order for each class.

Well-founded induction requires a well-founded partial order, for which we
use the reflexive transitive closure of <1

(ψ,c). It can be easily derived from the
way evidence values are generated that this is indeed a well-founded partial
order. Applying this order, ≤(ψ,c), to the well-founded induction theorem
yields the following proof rule:

∀~τ∈Instψ(c)[∀~τ ′≤(ψ,c)~τ [p(~τ
′)] → p(~τ)]

∀~α∈Instψ(c)[p(~α)]
(inst-rule)

Rewriting the proof rule using the definitions of Instψ(c), ≤(ψ,c), evidence
creation, and class constrained properties results in a tactic that can be di-
rectly applied to class constrained properties. For all class constraints c :: ~α:
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∀i∈Idefsψ(c)∀Head(i)∈〈T c〉

[ Deps(c :: Head(i), i)
⇒ ∀c′::~τ ′∈Deps(c::Head(i),i)[c = c′ ⇒ p(evc::~τ ′ , ~τ

′)]

→ p(Evp
ψ(c :: Head(i), i),Head (i))

]

∀~α∈〈T c〉[c :: ~α⇒ p(evc::~α, ~α)]
(inst-tactic)

where it is assumed that all variables in Head(i) are fresh. When the tactic
is applied to a class constrained property, it generates a proof obligation for
every available instance definition with hypotheses for all dependencies on the
same class.

E.5.2 Results

The result is both a proof rule and a user friendly tactic. The tactic is nicely
illustrated by symmetry of equality (figure E.1 and E.3). When (inst-tactic)
is applied to:

sym: ∀a[Eq :: a ⇒ ∀x:a∀y:a[evEq::a x y → evEq::a y x]]

it generates the following three proof obligations (one for each instance defi-
nition):

symInt: ∀x:Int∀y:Int[eqint x y → eqint y x]

symChar: ∀x:Char∀y:Char[eqchar x y → eqchar y x]

sym[a]: ∀a [ Eq :: a
⇒ ∀x:a∀y:a[evEq::a x y → evEq::a y x]
→ ∀x:[a]∀y:[a][eqlist evEq::a x y → eqlist evEq::a y x]

]

which are easily proven using the already available tactics.

The previous step could also have been taken using a tactic based on struc-
tural induction on types. However, (inst-tactic) can also assume hypotheses
for dependencies that are possibly not structurally smaller. Consider for ex-
ample the symmetry of eq2 in figure E.2:

sym2: ∀a,b [ Eq2 :: a b ⇒ Eq2 :: b a

⇒ ∀x:a∀y:b[evEq2::a b x y → evEq2::b a y x]
]

Applying (inst-tactic) to this property generates a proof obligation for every
instance definition, including one for the fourth instance of Eq2 in figure E.2,
where eq2list is the translation of that instance definition:
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sym2[a]: ∀a,b,c
[ Eq2 :: b a ⇒ Eq2 :: c a

⇒ [Eq2 :: a b ⇒ ∀x:b∀y:a[evEq2::b a x y → evEq2::a b y x]]
→ [Eq2 :: a c ⇒ ∀x:c∀y:a[evEq2::c a x y → evEq2::a c y x]]
→ Eq2 :: (b, c) [a] ⇒ ∀x:[a]∀y:(b,c)[

eq2list evEq2::b a evEq2::c a x y

→ evEq2::(b,c) [a] y x]
]

In this proof obligation, the hypotheses could not have been assumed when
using structural induction on types (see section E.4), hence our tactic is useful
in more cases.

E.6 Multiple class constraints

The proof rule and tactic presented in the previous section work well when the
property has only one class constraint. In case of multiple class constraints,
however, the rules might not be powerful enough. In this section it is shown
that this problem does indeed occur. Therefore, a more general proof rule and
tactic are defined and applied to some examples.

The problem

Consider the two class definitions in figure E.4. The translated instance def-
initions are respectively called fint, flist, ftree, gint, gtree, and glist at
the level of dictionaries. Given the property:

same: ∀a[f :: a ⇒ g :: a ⇒ ∀x:a[evf::a x = evg::a x]]

Applying (inst-tactic) yields among others the goal:

same[a]f: ∀a[g :: [a] ⇒ ∀x:[a][flist evg::a x = evg::a x]]

This goal has a non-simple class constraint, which can only be removed by
evidence expansion (expand), resulting in:

same[a]f ’: ∀a[f :: a ⇒ g :: a ⇒ ∀x:[a][flist evg::a x

= glist evf::a evg::a x]]

After some reduction steps, this can be transformed into:

same[a]f”: ∀a[f :: a ⇒ g :: a ⇒ ∀x:[a][evg::a x == evg::a x

= evf::a x == evg::a x]]

This proof obligation is true when evf::a x = evg::a x. Unfortunately, the in-
duction scheme did not allow us to assume this hypothesis. Since this problem
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data Tree a = Leaf | Node a (Tree a) (Tree a)

class f a where f :: a -> Bool

instance f Int where

f x = x == x

instance (g a) => f [a] where

f [] = True

f (x:xs) = g x == g x

instance (f a, g a) => f (Tree a) where

f Leaf = True

f (Node x l r) = f x == g x

class g a where g :: a -> Bool

instance g Int where

g x = x == x

instance (f a) => g (Tree a) where

g Leaf = True

g (Node x l r) = f x == f x

instance (g a, f a) => g [a] where

g [] = True

g (x:xs) = g x == f x

Figure E.4: Problematic class definitions
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is caused by the fact that the type variables occur in more than one class con-
straint, the natural solution is to take multiple class constraints into account
in the induction scheme.

E.6.1 Proof rule and tactic

We take the same approach as in the previous section. We first define the set
of instances, the order, the proof rule and the tactic. Then, in section E.6.2,
it is shown that the new tactic solves the problem.

First, the set of type sequences that are instances of all classes that oc-
cur in a list of class constraints is defined. ~τ is a member of the set if all
class constraints ~π are satisfied when all variables TV (~π) are replaced by
the corresponding type from ~τ . We assume here that TV (π̄) is a linearly
ordered, for example lexicographically, sequence and that the elements of
τ̄ are in the corresponding order. For example, SetInstψ(f :: a, g :: a) =
{Int, [Int], Tree Int, [[Int]], . . .}.

SetInstψ(~π) = {~τ | ∀
c::~α′∈~π

[∗TV (~π)→~τ (~α′) ∈ Instψ(c)]}

The order on this set is an extension of the order for single class con-
straints to sets. A sequence of types ~τ is considered one step smaller than ~τ ′

if ∗TV (~π)→~τ (~π) is a subset of the dependencies of ∗TV (~π)→~τ (~π). For example,
[Int] <1

(ψ,〈f::a,g::a〉) ([[Int]]) because {f :: [Int], g :: [Int]} is a subset of

Deps(g :: [[Int]]) ∪ Deps(f :: [[Int]]). Here, sequences of class constraints
are lifted to sets when required:

~τ <1
ψ,~π τ

′ ⇔ ∗TV (~π)→~τ (~π) ⊆
⋃

π∈~π

[Deps(∗TV (~π)→~τ ′(π))])

Again, it can be derived from the evidence creation that the reflexive transitive
closure of this order, ≤(ψ,~π), is a well-founded partial order.

Applying the well-founded induction theorem to this set and order yields
the proof rule for multiple class constraints. For every sequence of simple class
constraints ~π:

∀~τ∈SetInstψ(~π)[∀~τ ′≤(ψ,~π)~τ [p(~τ
′)] → p(~τ )]

∀~τ∈SetInstψ(~π)[p(~τ)]
(multi-rule)

Because multiple class constraints are involved, defining the final tactic is a
bit more complicated. Instead of all instance definitions, every combination of
instance definitions, one for each class constraint, has to be tried. All of these
instance definitions make assumptions about the types of the type variables,
and these assumptions should be unifiable. Therefore, we define the most
general unifier that takes the sharing of type variables across class constraints
into account:

SetMgu(〈c1 :: ~α1, . . . , cn :: ~αn〉, 〈τ1, . . . , τn〉) = ∗ ⇔
∀1≤i≤n[∗(~αi) = τ1] ∧ ∀∗′ [∀1≤i≤n[∗

′(~αi) = τi] ⇒ ∃∗′′[∗′ = ∗′′ ◦ ∗]]
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Furthermore, for readability of the final tactic, some straightforward exten-
sions of existing definitions to vectors are used:

Idefsψ(〈π1, . . . , πn〉) = {i1, . . . , in | ij ∈ Idefsψ(πj)}
Head(〈i1, . . . , in〉) = 〈Head(i1), . . . ,Head(in)〉
Evp

ψ(〈π1, . . . , πn〉, 〈i1, . . . , in〉) = 〈Evp
ψ(π1, i1), . . . ,Evp

ψ(πn, in)〉
ev〈π1,...,πn〉 = 〈evπ1, . . . , evπn〉
Deps(〈π1, . . . , πn〉, 〈i1, . . . , in〉) = 〈Deps(π1, i1), . . . ,Deps(πn, in)〉

Finally, using the presented definitions, evidence creation, class constrained
properties, and the proof rule, the tactic can be defined. For every sequence
of simple class constraints ~π:

∀~ı∈Idefsψ(~π)∃∗|∗=SetMgu(~π,Head(~ı))∀∗(Head(~ı))∈〈T c〉

[ Deps(∗(~π),~ı)
⇒ ∀∗′|∗′(~π)⊆Deps(∗(~π),~ı)[p(ev∗′(~π), ∗

′(TV (~π)))]

→ p(Evp
ψ(∗(~π),~ı), ∗(Head (~ı)))

]

∀TV (~π)[~π ⇒ p(ev~π,TV (~π))]
(multi-tactic)

Note that applying this tactic may result in non-simple class constraints
when non-flat instance types are used. For non-simple class constraints, the
induction tactics cannot be applied, but the (expand) rule might be used.
However, in practice most instance definitions will have flat types.

This solution for multiple class constraints has some parallels to the con-
straint set satisfiability problem (CS-SAT), the problem of determining if there
are types that satisfy a set of class constraints. The general CS-SAT problem is
undecidable. However, recently, an algorithm was proposed [3] that essentially
tries to create a type that satisfies all constraints by trying all combinations
of instance definitions, as we have been doing in our tactic.

E.6.2 Results

In this section, we have generalized the proof rule and tactic from section E.5
to multiple class constraints. In case of a single class constraint, the new rules
behave exactly the same as (inst-rule) and (inst-tactic). However, now we
can apply (multi-tactic) to multiple class constraints at once. Given the
previously problematic property:

same: ∀a[f :: a ⇒ g :: a ⇒ ∀x:a[evf::a x = evg::a x]]

this yields three proof obligations, one for every unifiable combination of in-
stance definitions:
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sameInt: ∀x:Int[fint x = gint x]

same[a]: ∀a[f :: a ⇒ g :: a ⇒ ∀x:a[evf::a x = evg::a x]

→ ∀x:[a][flist evg::a x = glist evf::a evg::a x]]

sameTree a:∀a[f :: a ⇒ g :: a ⇒ ∀x:a[evf::a x = evg::a x]
→ ∀x:Tree a[ftree evf::a evg::a x = gtree evf::a x]

The goal same[a] (and sameTree a) now has a hypothesis that can be used to
prove the goal using the already available tactics. Hence, by taking multiple
class constraints into account the problem is solved.

E.7 Implementation

As a proof of concept, we have implemented the (multi-tactic) tactic ex-
tended for multiple members and subclasses in Sparkle. Because of the sim-
ilarity to the already available induction tactic and the clearness of the code,
the implementation of the tactic took very little time. However, to implement
the tactic, the typing rules had to be extended. The translation of type classes
to dictionaries is only typeable in general using rank-2 polymorphism, which
is currently not supported by Sparkle. This was worked around by handling
the dictionary creation and selection in a way that hides the rank-2 polymor-
phism. Ideally, the use of dictionaries should be completely hidden from the
user as well.

The tactic has been used to prove, amongst others, the examples in this
paper. The implementation is available at:
http://www.student.kun.nl/ronvankesteren/SparkleGTC.zip

E.8 Related and future work

As mentioned in section E.1, the general proof assistant Isabelle [14] sup-
ports overloading and single parameter type classes. Isabelle’s notion of type
classes is somewhat different from Haskell’s in that it represents types that
satisfy certain properties instead of types for which certain values are defined.
Nevertheless, the problems to be solved are equivalent. Isabelle [13, 19] uses
a proof rule based on structural induction on types, which suffices for the
supported type classes. However, if Isabelle would support more extensions,
most importantly multi parameter classes, it would be useful to define our
proof rule and a corresponding tactic in Isabelle.

Essentially, the implementation of the tactic we proposed extends the in-
duction techniques available in Sparkle. Leonard Lensink proposed and im-
plemented extensions of Sparkle for induction and co-induction for mutually
recursive functions and data types [11]. The main goal was to ease proofs by
making the induction scheme match the structure of the program. Together
with this work this significantly increases the applicability of Sparkle.
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Because generics is often presented as an extension of type classes [6], it
would be nice to extend this work to generics as well. Currently, in Clean

generics are translated to normal type classes where classes are created for
every available data type [1]. There is a library for Haskell that generates
classes with boilerplate code for every available data type [10]. The tactic
presented here can already be used to prove properties about generic functions
by working on these generated type classes. However, the property is only
proven for the data types that are used in the program and a separate proof
is required for each data type. That is, after all, the main difference between
normal type classes and generics. Hence, it remains useful to define a proof
rule specifically for generics.

E.9 Conclusion

In this paper, we have presented a proof rule for class constrained properties
and an effective tactic based on it. Although structural induction on types
is theoretically powerful enough, we showed that for an effective tactic an
induction scheme should be used that is based on the instance definitions.
The tactic is effective, because, using the defined proof rule, it allows all
sensible hypotheses to be assumed. The rule and tactic were first defined for
single class constraints and then generalized to properties with multiple class
constraints.

As a proof of concept, the resulting tactic is implemented in Sparkle

for the programming language Clean, but it can also be used for proving
properties about Haskell programs. This is, to our knowledge, the first
implementation of an effective tactic for general type classes. If Isabelle

would support extensions for type classes, the tactic could be implemented in
Isabelle as well.
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