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Chapter 1

Introduction

These days, software is everywhere: it drives not only personal computers, but
all kinds of processes ranging from your mobile phone or media center to pace-
makers to huge critical processes in industry.

Software development is an expensive and complicated process, in which
speed (to cut costs and improve time-to-market) and reliability are key fac-
tors. In order to improve on those points, it is important that techniques are
developed that can identify (potential) bugs early and reliably.

We can distinguish two kinds of software errors: errors which are found by
statically analysing the source code (i.e., without actually having to start the
application), and errors which are found at run-time. The latter variation can
be particularly vicious because they might be found at a later stage, possibly
even after the product has been distributed to customers and put to use in
production environments. Because of this, it is worthwhile to try and �nd as
many bugs as possible by static analysis.

Many bugs stem from inconsistencies: two parts of a system can both be
locally correct, but if one part makes an incorrect assumption about the other,
an error is born. Software generally consists of many parts, often written by
many developers over a long period of time, so explicitly and precisely stating
the speci�cations (both assumptions and guarantees) is vital.

Expressing those assumptions and guarantees in the documentation and
comments of the code is good, but even better is to write them down in a
formal language. This prevents ambiguity and makes tool support for writing
and checking speci�cations possible. Such formal languages exist: for example
for Java there is the Java Modeling Language described in section 2.2.

Once the speci�cation of the code is formalized, it becomes possible to au-
tomatically check that the code indeed adheres to this speci�cation. For Java,
the ESC/Java2 tool (described in section 3.1.3) statically veri�es a large subset
of the JML speci�cations.

Many languages like C++ or Java have a concept of a pointer or reference
that can either point at some object or at nothing (the latter case is often called
a null pointer) � this is not known statically. When such a reference is speci�ed
to be non-null, this means this reference should always point to some object,
in other words, it should never be null. This thesis will focus on these speci�c
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8 CHAPTER 1. INTRODUCTION

`nullness speci�cations'.
Nullness speci�cations are relatively simple, but very important. Most op-

erations on an object, such as reading its �elds or calling its methods, are only
valid when the object reference is not null. When such an operation is performed
on a null reference, this almost always has an undesirable e�ect: in the more
primitive languages such as C++, the program might crash entirely. Languages
that handle this more robustly, for example by throwing an exception like Java
does, obviously allow the developer to recover from these errors more gracefully.
However, it might also potentially lead to even more dangerous problems: when
the exception is inadequately handled by the developer, the program might keep
running in an unexpected unstable state, possibly corrupting data or compro-
mising security. Because unexpected NullPointerExceptions are such a common
source of bugs [15], this is a real danger.

Another advantage of nullness analysis is the ability to omit some run-time
nullness checks if they can be statically eliminated, improving performance.
This is not really feasible for systems currently in general use, but certainly a
long-term goal.

When seeking to apply nullness speci�cation checking to existing Java source
code (or when converting code to a language that supports nullness attributes
natively), many annotations of the nullability of references will have to be added.
This can be a very cumbersome and time-consuming task, as often (for example
due to function calls across objects) many di�erent �les need to be annotated.
As such, it seems desirable to have tool support for this process, at least partly
automating it. We refer to such tools as annotation assistants.

The research question for this project is thus as follows:
What is the current state of the art in annotation assistance, and
what are the most relevant requirements and design considerations
when implementing an annotations assistant?

To be able to answer this question, we �rst selected and reviewed several tools
with their accompanying research papers. One tool in particular, Houdini,
looked like it had been quite successful in the past judging by the positive
evaluation in the papers published on it, but had been abandoned for a long
time. We took up the challenge to revive this tool, bringing it up to speed with
the current version of ESC/Java2, the checking tool with which it is tightly
integrated.

Based on these experiences, we formulated requirements and design consid-
erations, and �nally constructed an annotation assistance algorithm based on
these.

Finally, we made a partial proof-of-concept implementation and used it to
test some of our ideas in practice, and evaluated our choices based on the data
gathered from running it on two case studies.

Summary

We now give a description of the contents of each chapter in this thesis.
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Chapter 2: Background

This chapter introduces the background required to understand the rest of the
thesis.

First, some useful terminology is introduced, explained and related to the
terminology used in other research.

The Java Modeling Language, JML, is brie�y introduced.
Type systems are an important aspect of computer languages. It is common

for languages to have pointers or reference types to allow for e�cient program-
ming. There are several approaches to typing possibly-null values (for example
nullable pointers as found in Java and C++, option types as found in the Nice
programming language or a polymorphic Maybe type as found in functional
languages such as Haskell).

The Java type system lacks types for non-null references. However, using
JML annotations we can specify nullness attributes of references and much more.

A static checker such as ESC/Java for JML makes the picture complete.
Static code analysis is an analysis that is performed by a tool without actually
executing the program built from that code. Rather, it works on the source
code (or possibly some form of object code such as Java class �les). The type
checking phase which is performed when compiling statically typed languages
such as C, Java or ML is a well-known example of simple static checking.
Chapter 3: Existing nullness analysis tools

This chapter gives an overview of the currently available software tools. We
distinguish between checkers which verify the nullness properties of an already
annotated program, and inferrers which attempt to automatically extract such
annotations. We will explain this distinction is not always easy to make.
Chapter 4: Requirements and design considerations

In this chapter we describe the requirements for an annotations assistant, and
identify key design choices found in the existing annotation tools we have re-
viewed. These design choices are evaluated in the context of the requirements
for an annotations assistant.

Based on the insights gained from this analysis, we make several recommen-
dations about the way an annotation assistant for nullness properties should be
built.
Chapter 5: Annotation Assistance Algorithm

Based on the insights from the previous chapter, we have developed an Anno-
tation Assistance Algorithm.

We put some of our recommendations to the test by implementing a proof-
of-concept nullness annotation assistant called INAPA. This proof of concept
implementation is described in some detail.
Chapter 6: Case Studies and Benchmarks

This chapter discusses two case studies which have been used throughout the
project to identify areas that require improvements, and to evaluate whether
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changes to the assistance techniques indeed have the desired e�ect.
The �rst case study is the DigiD Gateway, a J2EE servlet that is part of

the DigiD system used by the Dutch government to authenticate citizens when
communicating with government institutions online.

The other case study is the Promedico ASP HIS, which implements an online
information system including web interface for health care centres. This is a
large body of commercial production code.
Chapter 7: Conclusions

Adding annotations to an existing project is quite di�erent from using extended
static checking from the beginning while writing the code. This makes the re-
quirements for tool support for this process di�erent from checkers. In this
chapter we summarize the most important aspects we have identi�ed and evalu-
ate the impact of the design choices in the proof-of-concept annotation assistance
tool we developed in the process.

We also describe our experiences with nullness annotation and annotation
assistance in general.



Chapter 2

Background

2.1 Terminology

Research on nullness analysis has come in many shapes and forms over the
years, and has been referred to with various names. The ESC/Java1 research
generally talks about nullness and non-nullness. The same goes for the Spec#2

documents, which is not surprising as there are several ESC/Java researchers
now in the Spec# team. Most JML documentation, such as [17], refers to
nullness as nullity. Recent research by Bertrand Meyer [20] on nullness in Ei�el3
introduced the terminology of attached and detachable for non-null and nullable
references, since non-null references are guaranteed to be `attached' to some
object. The Eclipse project refers to its implementation as the `Null reference
analysis'. In the database world (for example in the documentation on the
Hibernate Object-Relational mapper4), the term nullability is often seen.

For this thesis, we will use the term nullness analysis for the general analysis
and nullable and non-null for the two possible kinds of reference types. The
nullness of a type or variable determines whether it is nullable or non-null.

2.1.1 Elements

It has proved useful to introduce one term to refer to all things that might be
nullable or non-null. We chose to call these elements. Elements are references
used as:

• object member �elds
• method parameters
• method return values
• local variables

1http://kindsoftware.com/products/opensource/ESCJava2
2http://research.microsoft.com/specsharp
3http://www.ei�el.com
4http://www.hibernate.org
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12 CHAPTER 2. BACKGROUND

2.1.2 Bias and propagation

When classifying nullness inference tools, we introduce a couple of terms to
make some useful distinctions:

A tool can be nullable-biased or non-null-biased. When there is no indication
that an element is nullable, but on the other hand there is also no indication
that it is non-null, a nullable-biased inferrer will consider it to be nullable, while
a non-null-biased inferrer will assume it should be non-null.

Some tools clearly deploy a nullable propagation or a non-null propagation
approach. Such tools will, after possibly adding a set of initial annotations,
mainly work by propagating the fact that certain elements are nullable or non-
null, respectively. Not every tool clearly falls into one of these two categories,
some do a bit of both.

2.1.3 Assumptions about external code

When dealing with calls to external code, inference tools will have to make some
assumptions about their nullness properties.

These assumptions can be roughly divided into optimistic and pessimistic
assumptions. Inferrers which make optimistic assumptions will assume a min-
imum of requirements and a maximum of guarantees from external methods.
In other words, they will assume that external methods can always be passed
nullable values as parameters, and always guarantee that they return a non-null
object. Pessimistic inferrers will assume the opposite: that external methods
must always be passed non-null values, but always return nullable values. These
are two extremes with many other possibilities between them: ESC/Java, for
instance, assumes nullable by default for both method parameters and return
values. That is pessimistic for return values, but optimistic for parameters.

Aside from this division, we also distinguish between minimal and maximal
assumptions: a tool that makes minimal assumptions only makes an assumption
when it appears to be required, whereas a tool that makes maximal assump-
tions will start out by making assumptions about everything beforehand, even
assumptions that might not be necessary.

2.2 Java Modeling Language

As we have seen in the introduction, it is highly desirable to be able to specify
properties of a part of a program. To reduce ambiguity and to make tool support
possible, it is useful to express these speci�cations in a formal language.

For Java, the Java Modeling Language (JML for short)5 [17] is such a lan-
guage. JML was designed to be expressive and unambiguous, but at the same
time accessible to any Java developer.

JML speci�cations can be added to a Java source �le, or stored in separate
so-called spec �les. The are represented as a special kind of comment beginning
with an @ symbol, much like how JavaDoc6 documentation is marked with an
extra * or / character.

5http://www.cs.iastate.edu/~leavens/JML//index.shtml
6http://java.sun.com/j2se/javadoc
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class SummedPair {

//@invariant sum == left + right;
int left;
int right;
int sum;

void addLeft (int i) {
left += i;
sum += i;

}
}

Figure 2.1: Temporarily breaking an invariant is allowed

Both line comments and block comments can contain JML speci�cations,
for example

/*@non_null*/private Object theObject;

or
//@assume obj != null
someMethod(obj);

For this research, the annotation we will be mainly working with is the sim-
ple /*@non_null*/ modi�er. A /*@nullable*/ modi�er also does exist, but
non_null and nullable cannot be mixed: nullable tags are only allowed in
classes that have non-null by default enabled. This is outside the scope of this
thesis, but discussed brie�y in section 7.1.4.

2.2.1 Nullity modi�ers and invariants

The /*@non_null*/ annotation in the example above is called a nullity modi�er.
Another way to represent the fact that a class �eld is non-null is to de�ne a class
invariant:

//@invariant theObject != null

The di�erence between a nullity modi�er and a class invariant is subtle: both
are required to be established by all constructors. An invariant is only checked
on method boundaries, and as such can be temporarily broken. This is mainly
relevant [18] for more complex invariants, as illustrated in Figure 2.1. Some
more complex examples are available for example in [22].

For non-null speci�cations, it is harder to think of a scenario where it would
be useful to temporarily break an invariant. It is useful to be aware of this
di�erence however, since it for example explains the unintuitive handling of the
helper pragma described in section 2.3.1.2.
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2.2.2 More complicated speci�cations

Aside from these simple nullness annotations, JML supports a very rich scala
of complex invariants. For example, it allows the developer to express that
an array has only non-null elements (with \nonnullelements(f)) and allows
logical connectives (enabling conditions like someboolean ==> f != null). For
more information on the more advanced features of JML, see [17].

2.2.3 Non-null by default

Recent work such as [3] has led to a change in the JML language, changing
the default from nullable to non-null reference. This development is still under
heavy discussion, and we decided not to take this aspect into account for this
thesis.

2.3 Type systems

In early untyped programming languages (such as simple Assembly languages),
a value simply consisted of some bits with no additional formally speci�ed mean-
ing. In the context of the application, these bits are generally a representation
of some value: this could be anything, a (bounded) natural number, a �oating
point number, a memory address, a character, or something entirely di�erent.
The developer had to manually make sure that the value was interpreted the
way it was intended: interpreting the binary representation of a �oating point
number 1.00000 as a natural number will not, in general, produce 1.

More high-level languages introduced the much-anticipated ability to assign
a data type to a value. This can be done in two ways: it is possible to add
type information to the run-time representation of the value. This is called
dynamic typing, and is popular in interpreted programming languages. The
main downside of this approach is that type con�icts occur only at run time.
Another approach is to add type information to the source code of the program,
and have the compiler check that it is consistent. This has the big advantage of
being statically checkable, but is less �exible and can be more complicated. Java
takes a middle road by mainly using static typing, but still allowing dynamic
run-time type tests.

In its simplest form, the types in a static type system are simply a set of
markers, and each value is of exactly one type. The types of the variables and
functions in the program must be identi�ed in the source code, and the type
checker checks that this the program is indeed consistent.

More advanced systems, most prominently those in object-oriented lan-
guages, introduce subtyping: the types are no longer simply a set of markers,
but a partial ordering <: is de�ned on them. Suppose we have the types box
and shape, the ordering box <: shape speci�es that every box is also a shape,
and as such all functions de�ned on shapes can also be used on boxes. Because
box is the more speci�c type, it is possible to assign a box to a variable of type
shape, but not the other way around.
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2.3.1 Di�erent approaches to possibly-null values

Most programming languages allow for a natural way for representing the type
of a variable that might or might not contain something at run-time.
2.3.1.1 Traditional (nullable) pointers
A struct in traditional languages like C is represented at run-time by the
memory address of the represented data. It quickly became common to use the
special memory address '0' to represent the fact that the pointer isn't currently
pointing to any structure. This seemed like a reasonable thing to do and maps
well to the way assembly language was traditionally written.

Objects in C++ were also represented as (nullable) pointers, and even
though Java has a more abstract representation for them, still included a spe-
cial �null� case. The main di�erence between null pointers in C++ and Java
is that in C++, a null dereference will lead to unde�ned behaviour and (most
likely) a segmentation fault crash. In Java, the Virtual Machine will spot the
null dereference and a NullPointerException will thrown. While this is clearly
a considerable improvement, it is not without problems: in practice such excep-
tions might be inadequately handled because they are not expected. In that case
the program might keep running in an unexpected unstable state and do much
more harm that it would have if the program would have simply terminated.

One of the reasons NullPointerExceptions tend to be inadequately handled
is because they are so-called unchecked exceptions, whose main characteristic is
that a method that may throw such an exception is not obliged to state that in
the throws clause of their de�nition. Because of this a developer might not be
aware that a given call might throw a NullPointerException, and not handle it.
2.3.1.2 References with nullness information
It is currently becoming more common to add nullness information to the typing
of mainstream programming languages: not only by adding an extra speci�ca-
tion layer to the compile-time checks (like ESC/Java and Spec# do), but also
by incorporating it in the language itself.

One elegant example of a Java-like language that includes nullability infor-
mation in the type system is Nice7. This language, developed as a spin-o� of
academic research on object-orientation [2, 1], compiles to Java byte code and
supports generics and explicit nullness typing.

All references are non-null references by default in Nice, for nullable refer-
ences (referred to as option types in the Nice documentation) the type name
must be pre�xed with a question mark. This is a clear and short way to express
nullability, which has also been adopted by Spec#. Ei�el is using [20] this no-
tation as well, though not without criticism from the community, so it might
move to keywords in the future.
Object construction In Object-Oriented languages, classes have �elds which
may have non-null types. It is common for classes to have a constructor method
which is called when an object of that class is created. The semantics of a
non-null �eld is not entirely obvious: it could mean the �eld should be non-null

7http://nice.sourceforge.net
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class Foo {
//@invariant this.s != null;
String s;
public Foo () {

derefS();
s = �foo�;

}
private /*@helper*/ void derefS () {

s.toString(); // ESC/Java will warn about this
}

}

Figure 2.2: s.toString() will yield an ESC/Java error
class Foo {

//@invariant this.s != null;
String s;
public Foo () {

s = �foo�;
derefS();

}
private /*@helper*/ void derefS () {

s.toString(); // ESC/Java will not warn about this
}

Figure 2.3: s.toString() will not yield an ESC/Java error

even before the constructor method is called, or it could require that the �eld
is non-null after the constructor has completed.

From a theoretical standpoint, the former might seem like an obvious choice.
However, in practice �elds which are designed to be non-null often cannot be
statically initialized, and are initialized in the constructor. For this reason, both
ESC/Java and Spec# use the latter semantics for non-nullness of �elds.

This interpretation does cause some problems when normal methods are
called from the constructor, or (worse still) the object being constructed is
leaked to external code. The latter may happen when this is assigned to a
global variable or globally reachable �eld, or passed on to an external method.
The modular analysis of the external code would assume the �eld to be non-null,
while it might not yet have been initialized when called from the constructor.
This problem gets even worse in case of inheritance [19].

JML-based tools like ESC/Java might resolve some of those issues by requir-
ing that the class methods called by the constructor are speci�ed to be helper
methods � though the current version of ESC/Java does not warn about this.
Helper methods are private methods for which the object invariants are not
checked before or after calling them [17]. Helper methods are not checked mod-
ularly, but quasi-inlined wherever the are called. This means the code in Figure
2.2 will yield an ESC/Java error, but the code in Figure 2.3 will not.

A limitation of this approach is that nullity modi�ers such as /*@non_null*/
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class Foo {

/*@non_null*/ String s;
public Foo () {

s.toString();
s = �foo�;

}
}

Figure 2.4: An explicitly inlined null dereference is correctly caught
class Foo {
/*@non_null*/ String s;
public Foo () {

derefS();
s = �foo�;

}
public /*@helper*/ void derefS () {

s.toString();
}

}

Figure 2.5: A null dereference quasi-inlined by using /*@helper*/ goes unno-
ticed

are not strictly considered to be part of the class invariants. Even for helper
methods, ESC/Java will assume nullity modi�ers of class �elds have been sat-
is�ed. This leads to the situation that Figure 2.4 is correctly reported as erro-
neous, but the error in Figure 2.5 is missed.

When external code is called from the constructor, some leak analysis may
be performed to verify that this has not been exposed yet. Unfortunately,
the current version of ESC/Java2 (version 2.0a9) does not appear to implement
such an analysis yet: the erroneous Foo class in Figure 2.6 is accepted without
warnings.

Spec# �xes this issue by extending the model with raw and partially raw
types as described in [10]. This seems like an elegant way of extending the type
system with various degrees of partial initialization.

The Nice programming language approaches this problem in a rather di�er-
ent way: classes in Nice have an automatically generated `default' constructor
which requires instantiations for all non-null �elds, and allows values for any
�elds which are nullable or have a static default value. This is su�cient in
many cases, removing the need to write the constructor in the �rst place. For
initialisation code that is not needed to �ll any required �elds, every class may
contain an `initializer' method which is automatically called after construction.
If even more control over the construction is needed, a custom constructor can
be de�ned. Such a constructor, however, does not yet have direct access to
this or the non-static member functions of the class, and requires that the last
statement of the custom constructor is a call of another constructor for the same
type (typically the default constructor). For example, the Java class shown in
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class Foo {
/*@non_null*/ String s;
Foo () {

Bar b = new Bar();
b.derefS(this);
s = �foo�;

}
}
class Bar {

public void derefS (/*@non_null*/Foo f) {
f.s.toString();

}
}

Figure 2.6: The current version of ESC/Java2 does no leak analysis
class Foo {

/*@non_null*/String name;
/*@non_null*/String filename;
Foo (/*@non_null*/String name) {

this (name, name + �.txt�);
}
Foo (/*@non_null*/String name, /*@non_null*/String filename) {

this.name = name;
this.filename = filename;
System.out.println (�A Foo has been constructed�);

}
}

Figure 2.7: Example class in Java

Figure 2.7 corresponds to the Nice class in Figure 2.8.

2.3.1.3 Functional `Maybe' types
Many functional language take another approach to possibly absent structures:
these languages often have a very natural BNF-like way of de�ning (possibly
polymorphic) data types. A polymorphic linked list might be de�ned as follows
(where 'a' is a polymorphic type variable):

:: List a = Node a (List a) | EmptyList

In this case an expression of type List Int will either look like a Node with an
Int and another expression of type List Int, or hold the constant EmptyList.

In order to be able to represent a possibly absent expression, the Maybe type
can be easily introduced:

:: Maybe a = Just a | Nothing
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new Foo (String userdefined) {

this (userdefined: userdefined, derived: userdefined + �.txt�);
}
class Foo {
{ println(�A Foo has been constructed�); }
String userdefined;
String derived;

}

Figure 2.8: Example class in Nice

An expression of the type Maybe Int will now either contain a Just node with
an Int, or the constant Nothing. Functional languages tend to include such
a construct in their standard library, along with some convenience methods to
manipulate the construct8.
2.3.2 Type Inference

Once you have formally described a language's type system, there are algorithms
to �nd out whether a program or expression is well-typed without needing to
explicitly specify the types of all variables.

Type inference is commonly implemented with a variation of the Hindley-
Milner type inference algorithm [7]. This algorithm works in two phases: �rst,
it introduces type variables for all locations of variables, parameter positions,
etcetera. Then, it scans though the source code and records constraints on the
types in the form of type equality or subtyping constraints. For example, if a
location with type variable a is assigned to a location with type variable b, the
inferrer would typically record the constraint a <:= b. This means a must be
either equal to b, or a more speci�c type. After all these constraints have been
generated, an algorithm is applied that tries to solve all these equations. If this
succeeds, which means we can �nd types so that none of the constraints are
violated, the program is obviously well-typed.

Most type inference algorithms work reasonably well for well-typed expres-
sions. The main di�erences between algorithms are in the kind of type systems
they support (for example whether they allow polymorphism), and in the qual-
ity of the error messages generated when trying to infer types in a program
which contains a typing con�ict.

2.4 Program Veri�cation

Program Veri�cation describes the �eld of tools that reason about software to
verify that it is correct with respect to a given speci�cation or property, often by
proven it correct using formal methods of mathematics. Traditionally, program
veri�cation has usually been used to manually prove that a (usually small) piece
of code correctly implements its full functional speci�cation.

Program veri�cation is a static code analysis: an analysis that is performed
by a tool without actually executing the program built from that code. It works

8for example http://www.haskell.org/onlinereport/maybe.html
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on the source code or possibly some form of object code (for instance Java class
�les). The type checking process described in section 2.3 is a simpler example of
a static analysis. By using static analysis not only the common case is veri�ed,
but also many potential problems in hypothetical cases (which are unlikely to
be completely covered by traditional testing) are covered.

Extended static checking is a form of program veri�cation that, in contrast to
traditional program veri�cation, uses an automatic theorem prover and checks
not a complete functional speci�cation, but a given set of interesting properties.
These properties are usually de�ned by augmenting the code with formalisations
of assumptions which traditionally would have been left implicit, or merely noted
as comments. In the case of Java, such formalisations could be expressed in JML.
The Extended Static Checking software can now verify that these assertions
indeed must hold, for instance by deploying various automatic theorem proving
techniques.
2.4.1 Program Veri�cation and Type Systems

Some of the problems that can be solved by program veri�cation techniques
could also be solved by extending the type system, and vice versa. Type sys-
tems have the advantage of being a well-understood technique that can be im-
plemented with proven algorithms which work very e�ciently.

Program veri�cation techniques tend to require more e�ort to specify and
more resources to automatically check, but can be applied locally instead of in
an all-or-nothing manner: it is more easy to perform a detailed analyses of the
critical part of the system while leaving the less critical parts alone.

When using a programming language with a very rich and detailed type
system, the entire program must be written in such a way that the program
conforms to the type system. With program veri�cation, it can be very well
imagined that the critical parts of the system are richly annotated with com-
plicated preconditions, postconditions and invariants, while other parts contain
almost no formal speci�cations at all.
2.4.2 Program Veri�cation and Testing

Testing practices (such as Unit Testing and Test-Driven Development) and pro-
gram veri�cation are highly complementary techniques. Typically, a static anal-
ysis can rule out whole classes of errors at compile time, removing the need to
cover those in software testing. The null pointer dereference problems are a
good example of such a class of errors. On the other hand, there will always be
properties that are hard to specify formally, but can be e�ectively covered by
testing.

Ideally, program veri�cation will able to actually prove the absence of these
errors, instead of merely increasing the con�dence in the absence of certain
errors.



Chapter 3

Existing nullness analysis

tools

In this chapter we will look at a number of existing nullness analysis tools.
We will highlight some important aspects and evaluate and compare those in
more detail in the next chapter. The tools we investigated are the analysis
integrated in Eclipse1 and IDEA2, the JastAdd Nullness Checker and Inferrer3,
ESC/Java24, Spec#5, Houdini, Daikon6 and Julia7.

While the tools are di�erent in approach and task, they share a common
goal:

Reducing the number of NullPointerExceptions thrown at run-time,
by warning the developer at compile-time.

Nullness analysis tools can be roughly divided into two categories: nullness
checkers and nullness annotation assistants (or inferrers). Both checkers and
annotation assistants try to analyze the nullness properties of code and point
out possible problems.

The distinction is actually subtle and not always very clear. The JastAdd
Non-Null Checker, the type checkers in languages like Nice and Ei�el and the
nullness analysis integrated into Eclipse and IntelliJ IDEA are clearly purely
checkers: they perform the checking in a straight-forward way and rely on ex-
plicit annotations if this analysis is insu�cient. The JastAdd Non-Null Inferrer
clearly purely infers nullness attributes, and does not even warn in case of possi-
ble problems. FindBugs and ESC/Java are mainly used as checkers to identify
problems with code, but also perform intelligent analysis. The line between
these more intelligent checkers and annotation assistants is blurry: indeed, the
annotation assistant for ESC/Java, Houdini, can not only be used as a separate
tool, but it can also be used as a front-end. When used in that way, it calls
ESC/Java only in the background, invisibly to the user.

1http://www.eclipse.org
2http://www.jetbrains.com/idea
3http://jastadd.cs.lth.se/
4http://kindsoftware.com/products/opensource/ESCJava2/
5http://research.microsoft.com/specsharp
6http://pag.csail.mit.edu/daikon/
7http://profs.sci.univr.it/~spoto/julia/

21
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The discriminating di�erence between checkers and annotations assistants
seems to be that that with an annotation assistant, the added annotations are
visible to the developer, and are intended to correspond to the design of the
application. While checkers might infer and even temporarily add annotations
in the background, these are merely used to guide the analysis process, and
should be seen as properties of the code rather than speci�cations.

The FindBugs checker and the checkers integrated in the Eclipse and IDEA
IDE's are di�erent from the other checkers because they do not strive for sound-
ness in the rigorous way the other projects pursue this: they happily sacri�ce
it by making some bold assumptions, for example that all parameters passed
into a method are non-null8. This is a trade-o�: in return they are able to cut
down immensely on the number of false positives, even when no annotations are
provided by the developer. This means when these checkers report a problem,
it is very likely that there is indeed in fact a problem with the code. On the
other hand, the absence of warnings means little or nothing.

The other tools strive to be much more (but not entirely) sound in the sense
that the absence of warnings should give a strong con�dence in the absence of
problems. To make the problem feasible often some of the more subtle possible
sources of unsoundness are not taken into consideration9. The distinction be-
tween the these tools is mainly found in the expressiveness of the speci�cation
language: ESC/Java and Spec# are much more expressive than the solutions
that only use type annotations like JastAdd, FindBugs and IDEA or even no
annotations at all like Eclipse.

Daikon and Houdini are both meant to infer annotations for ESC/Java,
but take di�erent approaches: Daikon works by observing the actual program
behaviour when it is executed. It then tries to extract invariants from the
observed behaviour, and represents those as ESC/Java annotations which can
be statically checked.

Julia was unfortunately too sparsely documented and unstably implemented
to perform an in-depth analysis at this time.

3.1 Nullness checkers

3.1.1 Eclipse and IntelliJ IDEA

Null reference analysis is quite a hot topic at the moment, in academia but it is
also making inroads in industry: the commercial IntelliJ IDEA10 Java IDE has
included nullness analysis for some time11, and with Eclipse 3.212 this popular
Open-Source Java IDE also includes some simple null reference analysis13.

8Actually, FindBugs marks parameters as NCP, Null on a Complex Path. However, it pro-
duces no warnings when NCP values are dereferenced. To produce a warning, a dereferenced
value must be marked with a stronger indication of nullability such as NSP, Null on a Simple
Path.

9See, for example, appendix C of the ESC/Java User's Manual for
a list of such issues in ESC/Java. This manual can be found at
http://kindsoftware.com/products/opensource/ESCJava2/docs.html

10http://www.jetbrains.com/idea/
11http://www.jetbrains.com/idea/documentation/howto.html
12http://www.eclipse.org

This is very recent work: eclipse 3.2 was released on the 30th of June, 2006.
13http://blogs.infosupport.com/peterhe/archive/2006/03/06/4163.aspx
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Eclipse currently does not allow annotation of the source code, and only

warns the user in case of obvious mistakes: for example, if a local variable is
dereferenced after being set or checked to be null.

IDEA is a bit more advanced, allowing interprocedural checks with @Nullable
and @NotNull Java 1.5 tags, but also performs a rather primitive �ow analysis.
The company behind IDEA, JetBrains, has suggested to include these annota-
tions in the standard Java SDK to allow interoperability with other checkers.
This issue is still pending, and some of the issues cropping up are discussed in
section 7.1.1. Eclipse is eager to add support for some annotations mechanism,
but this is intentionally moving forward slowly due to the lack of standardisation
in this �eld so far.

Even though the analysis performed by IDEA and Eclipse is limited, we
expect this will be a great boost for the more advanced tools such as those on
which this thesis focuses. These new features, as simple as they are, are being
very enthusiastically received, and are gaining widespread use. Hopefully this
will show how useful formalizing speci�cations is, and convince developers of
the virtues of adopting tools supporting more powerful speci�cation languages
like JML.

3.1.2 JastAdd Non-Null Checker

JastAdd14 [13] is a Java-based compiler compiler system. It is well-suited to
create extensible compilers for Java-like languages and tools. A Java 1.4 front-
and backend are available.

As an example of the �exibility of extending JastAdd-based compilers, an
extension of the Java 1.4 front-end has been created that extends the language
with non-null types15 [9]. JastAdd is the only Java-based checker we have seen
that takes into account class invariants not only after construction, but also for
partially constructed objects, as we have discussed in section 2.3.1.2. They have
adopted a solution based on the research in [10].

It currently uses the modi�ers [NotNull], [Raw], [MayBeNull] and even
�ne-grained raw types such as [Raw(Upto=S.class)], but like most nullness
tools this project also plans to use Java 5 annotations (like @NotNull) in the
future.
Type of reasoning
The JastAdd Checker uses a classical type system to check nullness properties.
The standard Java type system is extended, adding a non-null class T- for every
class T. Then we add the obvious subtyping relation rules: T- <: T and T- <:
S- iff T <: S. In the standard Java type system, null was considered to be
a more speci�c instance of any reference type. This should now only hold for
nullable references, not for non-null ones: null <!: T-.

3.1.3 ESC/Java

ESC/Java is a static checker for JML annotations (as described in section 2.2),
including but not limited to nullness properties. It does not strictly require

14http://jastadd.cs.lth.se/
15http://jastadd.cs.lth.se/examples/NonNullTypesExtension
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annotations, but checks them when present and expects them for any inter-
procedural analysis: one of the design choices that make ESC/Java so scalable
is that it works in a modular fashion. This means that while checking one
method ESC/Java does not analyse any code in other methods, it only assumes
that the JML speci�cations of that code is correct.

Where FindBugs tries to report bugs with a minimum of annotation e�ort
and false positives, ESC/Java is more reliable (it makes less questionable as-
sumptions) but requires more annotation e�ort.
Type of reasoning
ESC/Java works by converting the annotations and code into Veri�cation Con-
ditions that can be passed to an automatic theorem prover, called Simplify, and
which hold if the program is indeed correct.
Handling of libraries
ESC/Java makes pessimistic assumptions about the return values in external
libraries: it assumes every library method returns a nullable value unless oth-
erwise speci�ed. On the other hand, it is optimistic about parameters: pass-
ing a nullable value to a method in an unannotated external class is allowed.
ESC/Java requires at least class �les of the libraries to be available in the
CLASSPATH. Even though because of its modular nature ESC/Java will not
look at the code, it uses the class and jar �les to �nd out the exact types of
external classes and methods.

3.1.4 Spec#

Spec#, developed at Microsoft, extends the C# languages in a manner much
similar to ESC/Java. A notable di�erence is that it includes some shorthands for
annotations that are not encapsulated in comments, and thus break backwards
compatibility with C#. However there is always an encapsulated alternative,
and the shorthands allow for a very elegant way to express nullness attributes,
pre�xing the type with an exclamation or question mark much like in Nice.

The similarity between ESC/Java and Spec# is no coincidence: many of
the members of the research team that originally developed ESC/Modula and
ESC/Java have now been hired by Microsoft to work on Spec#.

Spec# is quite tightly integrated with Visual Studio, which is inconvenient
if you don't have valid licenses for that software available.

One of the main di�erences between the way nullness is handled in Spec#
compared to ESC/Java is that Spec# introduces the �ne-grained partially ini-
tialized `raw' types [10] which are also implemented in the JastAdd extensions.

3.1.5 FindBugs

FindBugs16 [8] is a checker that was developed at the University of Maryland.
FindBugs takes a pragmatic approach to �nding various common suspicious
patterns in code, including null pointer dereferences. The FindBugs philosophy
is that annotations, which are supported in the form of Java 5 annotations like

16http://�ndbugs.sourceforge.net
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void Method (String s) {

s.toString();
s = null;

}

Figure 3.1: Small example to compare JastAdd and FindBugs

@NonNull and @PossiblyNull, are mostly meant to suppress a few remaining
false warnings. FindBugs aims to �nd most problems without any user interac-
tion, and does not prominently mention the annotations in the documentation.
Like ESC/Java, it analyses only one method at a time, which makes it scale
well.

The analysis consists of a data �ow analysis on the control �ow of each
method separately. Like Eclipse, ESC/Java and Spec#, FindBugs works on
an intra-procedural basis and allows for annotations to specify interprocedural
nullness properties. For this thesis, we will use the term `type-based' loosely,
and classify the FindBugs analysis as a type-based approach.

The main di�erence between a more pure type-based approach like used in
JastAdd and the data �ow of FindBugs can be explained with the small example
of Figure 3.1. JastAdd assigns a type to every element, so in this case s would
have to be given a type. Because of the assignment s = null, the type of s
should be equal or below the null type of the type lattice in Figure 4.5 � in
other words, it should be either null or nullable.

In a data �ow analysis, a type marking is added to every occurrence of
an element: in this case, the s on method entry and both occurrences of s
within the method. The data �ow determines the constraints on the types of
the occurrences: the parameter s should have the same or a more speci�c type
compared to the �rst occurrence of s within the method. For example, if the
lattice in Figure 4.5 would be used, and the �rst occurrence of s within the
method was marked non-null, then the parameter s should also be non-null.
The data in the second occurrence of s within the method, however, depends
only on the right hand side of the assignment. In the data �ow analysis, the
nullness of this occurrence is completely independent of the nullness of the
previous occurrences, since that data is overwritten. Because of that, unlike
JastAdd, a data�ow analysis will have no problems with the assignment of null
to a local element which was assumed to be non-null before.

The type lattice used for the data�ow analysis in FindBugs is not as simple as
the one in Figure 4.5. To determine which possible violations warrant a warning
and which can be ignored to prevent false positives, FindBugs has re�ned it.
Figure 3.2 shows the data�ow lattice as used in FindBugs. To compare it to the
type lattice more easily, Figure 3.3 shows it as a type lattice (for some reason
in data�ow lattices the more general types are put at the bottom, while in type
lattices they are at the top) with the nodes which re�ne the null, non-null and
nullable types clustered.

In practice, the parameter s would be marked with the most uncertain vari-
ant of nullable: NCP, for Null on a Complex Path. While s.toString() is
obviously a possible null dereference, FindBugs has chosen not to generate any
warnings for dereferences of NCP values, only for the various variants of null,
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Figure 3.2: The FindBugs data�ow lattice

Figure 3.3: The FindBugs lattice as a clustered type lattice
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class Example {

void run (String nullable) {
String external1 = Thread.currentThread().getName();
String external2 = Thread.currentThread().toString();
// force assumption that external1 is non-null
external1.toString();
String nonnullstring = new String (�Example�);
String t1 = returnParam1(nonnullstring);
String t2 = returnParam2(nonnullstring);
// force assumption that t1 is non-null
t1.toString();

}
String returnParam1 (String param) {

return param;
}
String returnParam2 (String param) {

return param;
}
public static void main (String[] args) {

Example e = new Example();
// force parameter of e.run() to be nullable
e.run(null);

}
}

Figure 3.4: Annotation Assistance example, without annotations

NSP (Null on a Simple Path) and a low-priority warning in case of NSP-E (Null
on a Simple Path due to an Exception).

3.2 Annotation Assistants

To better illustrate the di�erences between the main annotation assistants we
have looked at (JastAdd, Houdini and CANAPA), we have constructed the
small example of Figure 3.4. The example shows calls to external code, one
that is assumed to return non-null and one that is not. It also includes two
methods where the nullness of their return values depend on the nullness of
their parameter. They are passed a non-null object, and for one of them the
non-nullness of the return value is in fact also assumed by the calling code.

3.2.1 JastAdd Nullness Inferrer

The JastAdd Nullness Inferrer17 [9] is a tool that performs an analysis akin to
type inference on the Java source code, inferring nullness attributes. Like the
JastAdd nullness checker discussed in section 3.1.2, it has been implemented as
a compiler based on the JastAdd compiler compiler system: in this case, the

17http://jastadd.cs.lth.se/examples/NonNullTypesExtension/
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class Test {
String st = new String("");
void one() {

two(false, null);
}
void two(boolean sisnonnull, String s) {

if(sisnonnull) {
st = s;

}
three(st);

}
void three(String stp) {

stp.toString();
}

}

Figure 3.5: Error creep in JastAdd

source language is Java, where the target language is Java with JastAdd nullness
tags inserted.

Although it does not explicitly use type variables, it de�nes the nullness
of a variable in the Abstract Syntax Tree by looking at the nullness of the
assignments to it, much in the same way the type inference equations would
have been generated. For �elds, it also checks that all constructors provide a
value to the �eld. This means the system will infer non-nullness of variables
and �elds when possible, but if there is only one place where a nullable value
is assigned to it, it will immediately be assumed to be nullable also. Because
of this, a single variable that has erroneously been assumed to be nullable can
have far-reaching impact on the analysis of the rest of the system. This can be
illustrated with the small example in Figure 3.5.

JastAdd does not annotate a single element for this example. JastAdd ob-
viously does not know about the implicit precondition that s is non-null if
sisnonnull is true. This is normal: most inferrers would not have caught this.
However, it has great impact on the rest of the analysis: it will not recognise
that the assignment in two() assigns a non-null value to st. As a result, this as-
signment causes st to remain nullable. Because JastAdd e�ectively propagates
nullness rather than non-nullness, this means the stp parameter of three()
also remains nullable � regardless of its body.

For practical use, the recently developed JastAdd inferrer still not very
usable: for example, apparently the abstract syntax tree includes a call to
<init>() at the start of the constructor. This might be useful for any pro-
cessing of the AST, but obviously it should not be included in the output as
it is now. Also, a string assignment like s = �foo�; will leave s as a nullable
�eld, while s = new String (�foo�) correctly allows s to be a non-null ele-
ment. Another practical issue is that it will remove any comments from the
code.

In spite of those practical issues, the inferrer serves well to demonstrate
how many di�erent kinds of tools can be elegantly developed using the novel
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class Example {

void run(String nullable) {
[NN]String external1 = Thread.currentThread().getName();
[NN]String external2 = Thread.currentThread().toString();
external1.toString();
[NN]String nonnullstring = new String("Example");
[NN]String t1 = returnParam1(nonnullstring);
[NN]String t2 = returnParam2(nonnullstring);
t1.toString();

}
[NN] String returnParam1([NN]String param) {

return param;
}

[NN] String returnParam2([NN]String param) {
return param;

}
public static void main([NN]java.lang.String[] args) {

[NN]Example e = new Example();
e.run(null);

}
Example(){

<init>();
}

}

Figure 3.6: Annotation Assistance example, JastAdd output

aspect-oriented approach implemented in the JastAdd system. It also gives a
reasonable idea of the kind of results a type-based inferrer might produce.
3.2.1.1 Example
When inferring the nullness properties of the example of Figure 3.4, JastAdd
produces the output in Figure 3.6.

The points based on which the rest of the code is analysed are the two
external calls, which are optimistically assumed to return non-null, and the fact
that the Example and String constructors assigns a non-null value to e in the
main function and nonnullstring in the run method, respectively.

All other non-null annotations are derived from these four points: for ex-
ample, when deciding how to annotate t2, the JastAdd inferrer would look
at all assignments to this variable. In this case, this is only the return value
of returnParam2(), the nullability of which is determined completely by the
parameter in returnParam2(). This in turn is determined by all call sites
of returnParam2(). In this case, the only place where returnParam2() is
called is in run(), and there it is called with a non-null parameter because
nonnullstring is assigned a freshly constructed String. Therefore, all these
locations are marked non-null.

Notice that annotating t2, the return value of returnParam2() and the
parameter of returnParam2() as nullable would also have been perfectly valid.
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However, since returnParam2 is here always called with non-null parameter,
the non-null annotation is chosen. This clearly shows the JastAdd inferrer is
non-null-biased: as long as there is no indication a location might be null, it
will always be annotated as non-null.

3.2.2 Houdini

The research group that developed ESC/Java also created an annotation in-
ference tool to go with it: Houdini [11, 6], named after the great `ESCape'
artist. This seemed to be the most relevant past research in annotation assis-
tance. While the papers on Houdini claimed great success, the code had not
been touched since the original ESC/Java group was disbanded in 2000.

Houdini's revival
Because in the mean time ESC/Java itself had evolved due to the work of Joe
Kiniry and David Cok [5], and the Houdini code is very tightly coupled with
ESC/Java, Houdini could not be built with the current ESC/Java2. To be able
to get hands-on experience with Houdini and to possibly be able to extend it
later in this project, we decided to revive Houdini and bring it back in line with
ESC/Java2.

This was not a trivial job: even though Houdini was released by HP, it was
not in a usable state, not even with the old version of ESC/Java as released
by HP at the same time. Not only does the documentation seem out of date,
incomplete and generally not written to be understood by anyone outside of the
team, the tool was even missing an entire required Perl script. We were able to
reconstruct this script by looking at the input that was given to it and the code
that tried to read its output.

Another tricky bug that we solved occurred at some points where the Sim-
plify theorem prover was invoked. Before passing the theorems we were inter-
ested in to the prover, it would be fed a set of `background predicates' from a
�le. After some long debugging sessions, it turned out that apparently a copy-
right message was mass-added to several �les, including the �le with background
predicates. Unfortunately, this copyright message was commented out with a #
character, instead of with a ; which is how Simplify comments are required to
be marked. Because of that, Simplify would try to prove the copyright message
correct and obviously failed.

Our e�orts now have allowed to run Houdini on small- and medium-sized
examples again, though there are still cases that cannot be handled yet. Most
notably, we have not been able to succeed to have the CopyLoaded module
support external jar �les. Because of this, we are not yet able to demonstrate
Houdini on real production code. We have been able to experiment with the
way Houdini handles external code, however, because it does support handling
external code that is in the Java standard library. We could also run Houdini
on itself, with frankly rather unsatisfying results, especially in terms of per-
formance: even though the Houdini code was already annotated with various
ESC/Java annotations, the analysis took many hours.

A start has been made to contribute our changes back to the ESC/Java
community.
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Type of reasoning
Houdini works by �rst adding many possible annotations to the program. Then,
ESC/Java is invoked repeatedly to refute invalid guessed annotations. This
process ends when no more annotations can be revoked. In other words, the
analysis implemented by Houdini implements is non-null-biased and employs
nullness-propagation.
Use
The user is mainly expected to use Houdini as a front-end of ESC/Java. Houdini
will output pretty-printed hyperlinked code, including (in grey) any revoked
guessed annotations. When dealing with an ESC/Java error, the user �nds out
why an annotation was revoked by clicking on it, hopefully leading to the real
error in only a few steps.
Handling of libraries
Houdini supports and promotes the use of speci�cation �les for libraries. When
such speci�cations are not available, however, Houdini makes optimistic assump-
tions about the library: it assumes for each library method that it guarantees
to return a non-null value, and that it is okay to pass null as a parameter of
any library method. This contrasts to ESC/Java, which makes pessimistic as-
sumptions about return values in absence of library annotations. In order to
implement optimistic assumptions Houdini generates a .spec �le for any unan-
notated external class, specifying the optimistic assumptions for every method
in this class whether it is needed or not. In other words, Houdini makes maximal
assumptions.
Evaluation
Despite our high expectations due to the positive evaluation of Houdini in its
corresponding research papers, this might not be the most convenient technique
to use in practice. The analysis is rigorous and able to catch subtle bugs, but
the process is monolithic and the output can be cryptic.

Houdini needs to �nish running on the whole codebase before it generates a
report. As can be expected from such a rigorous logic-based analysis, it appears
to be rather resource-intensive, judged from our tests running Houdini on its own
source code. Since the annotation process is inherently iterative and interactive
(the analysis tool can only infer so much, after every run there are bugs to
be �xed and annotations to be corrected manually), this way the annotation
process remains prohibitively time-consuming.

The process is not easily modularized, since when running Houdini on only
part of a codebase it will often see a method but not (all of) its call sites, and
because of that fail to remove many annotations.

When running Houdini on the code in Figure 3.7, we were quite surprised
to be presented the result in Figure 3.8.

The requires false annotation for WordStat::increaseCount() was puz-
zling: certainly s.increaseCount() was called in addWord()? The anno-
tation is, however, in fact correct: because the stub implementation of the
findStats()method always returns null, s is always null in WordCounter::addWord,
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class WordStat {
WordStat (String s) { }
void increaseCount () { }

}
class Dictionary {

WordStat findStats (String word) {
return null;

}
void addStat (WordStat stat) { }

}
class WordCounter {

void addWord (Dictionary dict, String word) {
WordStat s = dict.findStats (word);
if (s == null) {

WordStat new_stat = new WordStat (word);
dict.addStat (new_stat);

} else {
s.increaseCount();

}
}

}
class Test11 {

public static void main (String[] args) {
Dictionary mydict = new Dictionary();
WordCounter C = new WordCounter ();
C.addWord (mydict, "Henk");

}
}

Figure 3.7: Houdini example, not annotated
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class WordStat {

/*@(houdini:constructor) requires false; */
WordStat (/*@(houdini:parameter:constructor) non_null */ String s) {}
/*@(houdini:instance method) */final/* */
/*@(houdini:instance method) requires false; */
void increaseCount () { }

}
class Dictionary {
/*@(houdini:defaultconstructor) */public Dictionary(){}
/* Explicating default constructor here */
/*@(houdini:instance method) */final/* */
/*@(houdini:instance method) ensures \result != null; */
/*@(houdini:instance method) ensures \fresh(\result); */
/*@(houdini:instance method) ensures word == null ==> \result != null; */
/*@(houdini:instance method) ensures word != null ==> \result != null; */
WordStat findStats (

/*@(houdini:parameter:instance method) non_null */ String word) {
return null;

}
/*@(houdini:instance method) */final/* */
/*@(houdini:instance method) requires false; */
void addStat (/*@(houdini:parameter:instance method) non_null */ WordStat stat) {}

}
class WordCounter {
/*@(houdini:defaultconstructor) */public WordCounter(){}
/* Explicating default constructor here */
/*@(houdini:instance method) */final/* */
void addWord (/*@(houdini:parameter:instance method) non_null */ Dictionary dict,

/*@(houdini:parameter:instance method) non_null */ String word) {
WordStat s = dict.findStats (word);
if (s == null) {

WordStat new_stat = new WordStat (word);
dict.addStat (new_stat);

} else {
s.increaseCount();

}
}

}
class Test11 {
/*@(houdini:defaultconstructor) */public Test11(){}
/* Explicating default constructor here */
/*@(houdini:parameter:static method) requires \nonnullelements(args); */
public static void main (String[] args) {

Dictionary mydict = new Dictionary();
WordCounter C = new WordCounter ();
C.addWord (mydict, "Henk");

}
}

Figure 3.8: Houdini example, automatically annotated
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so the else-branch is dead code and ensures false is not revoked. Even though
it is interesting that this was caught by Houdini, we believe it is rather hard to
interpret Houdini's output correctly. Because annotation assistance is usually
performed only once on a codebase (after which the checker is used on a reg-
ular basis to verify changes), we believe tools should preferably have a shorter
learning curve.

Even more importantly, this behaviour makes it cumbersome to run Houdini
in a modular fashion, since WordState.increaseCount()might be callable from
outside. For clarity, we put the WordStat class in the same Java �le as the
Test11 class here, but the result is identical if we make it a public class and
move it to its own �le � regardless of whether we run it on both Test11.java
and WordStat.java at once, or separately for each.

3.2.2.1 Example
First, Houdini adds candidate annotations as shown in Figure 3.9. After adding
these candidate annotations, ESC/Java is ran over this code. This will obviously
lead to many warnings, as the candidate annotations include invalid annotations
which certainly will not be satis�ed. For example, ESC/Java will warn that
the precondition requires false is not met by the statement e.run(null) in
main. In response to this warning, Houdini will remove this precondition, after
which ESC/Java will warn that e.run(null) violates the requirement that the
nullable parameter should be non-null. This requirement is also removed,
which shows that Houdini propagates nullness. This process repeats itself until
ESC/Java reports no more errors18, after which the example looks like the code
in Figure 3.10.

We notice that Houdini infers many annotations, including relatively ad-
vanced ones like /*@(houdini:instance method) ensures param != null ==>
\result != null; */. The requirement that the parameter of returnParam1
is always non-null, however, is too strong. Also, the advanced annotation
/*@(houdini:instance method) ensures param == null ==> \result != null;
*/ is incorrect if the parameter is indeed allowed to be null. Since param is here
required to be non-null this annotation is, strictly speaking, correct � but log-
ically empty because the condition param == null never holds.

It can be clearly seen from the returnParam methods that Houdini is non-
null-biased. The maximal optimistic assumptions Houdini makes about the en-
vironment are not immediately visible in the output, but show when you look at
the spec �les that have been generated in the process: not only Thread.currentThread().getName();
is speci�ed to return non-null, but also Thread.currentThread().toString();

3.2.3 CANAPA

CANAPA, like Houdini, invokes ESC/Java iteratively. However, instead of as-
suming many annotations and working from there, it runs ESC/Java on the
raw Java code, and tries to �x any warnings by doing some fairly conservative

18In fact, Houdini does not really call ESC/Java each time: some optimizations have been
implemented which allow Houdini to directly manipulate the ESC/Java veri�cation conditions
and call the Simplify prover itself. These optimizations are described in [21]. They do not,
however, change the process from a conceptual point of view, so for this thesis we will describe
the (much simpler) original design.
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class Example {
/*@(houdini:defaultconstructor) */public Example(){}

/* Explicating default constructor here */
/*@(houdini:instance method) */final/* */
/*@(houdini:instance method) requires false; */
void run (/*@(houdini:parameter:instance method) non_null*/String nullable) {

String external1 = Thread.currentThread().getName();
String external2 = Thread.currentThread().toString();
// force assumption that external1 is non-null
external1.toString();
String nonnullstring = new String ("Example");
String t1 = returnParam1(nonnullstring);
String t2 = returnParam2(nonnullstring);
// force assumption that t1 is non-null
t1.toString(); }

/*@(houdini:instance method) */final/* */
/*@(houdini:instance method) ensures \result != null; */
/*@(houdini:instance method) requires false; */
/*@(houdini:instance method) ensures \fresh(\result); */
/*@(houdini:instance method) ensures param == null ==> \result != null; */
/*@(houdini:instance method) ensures param != null ==> \result != null; */
String returnParam1 (

/*@(houdini:parameter:instance method) non_null */ String param) {
return param;

}
/*@(houdini:instance method) */final/* */
/*@(houdini:instance method) ensures \result != null; */
/*@(houdini:instance method) requires false; */
/*@(houdini:instance method) ensures \fresh(\result); */
/*@(houdini:instance method) ensures param == null ==> \result != null; */
/*@(houdini:instance method) ensures param != null ==> \result != null; */
String returnParam2 (

/*@(houdini:parameter:instance method) non_null */ String param) {
return param;

}
/*@(houdini:parameter:static method) requires \nonnullelements(args) */
public static void main (String[] args) {

Example e = new Example();
// force parameter of e.run() to be nullable
e.run(null);

}
}

Figure 3.9: Annotation assistance example with Houdini's candidate annota-
tions
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class Example {
/*@(houdini:defaultconstructor) */public Example(){}

/* Explicating default constructor here */
/*@(houdini:instance method) */final/* */
void run (String nullable) {

String external1 = Thread.currentThread().getName();
String external2 = Thread.currentThread().toString();
// force assumption that external1 is non-null
external1.toString();
String nonnullstring = new String ("Example");
String t1 = returnParam1(nonnullstring);
String t2 = returnParam2(nonnullstring);
// force assumption that t1 is non-null
t1.toString(); }

/*@(houdini:instance method) */final/* */
/*@(houdini:instance method) ensures \result != null; */
/*@(houdini:instance method) ensures param == null ==> \result != null; */
/*@(houdini:instance method) ensures param != null ==> \result != null; */
String returnParam1 (

/*@(houdini:parameter:instance method) non_null */ String param) {
return param;

}
/*@(houdini:instance method) */final/* */
/*@(houdini:instance method) ensures \result != null; */
/*@(houdini:instance method) ensures param == null ==> \result != null; */
/*@(houdini:instance method) ensures param != null ==> \result != null; */
String returnParam2 (

/*@(houdini:parameter:instance method) non_null */ String param) {
return param;

}
/*@(houdini:parameter:static method) requires \nonnullelements(args) */
public static void main (String[] args) {

Example e = new Example();
// force parameter of e.run() to be nullable
e.run(null);

}
}

Figure 3.10: Annotation assistance example: Houdini output
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inferences. For example, it only works on method parameters, local variables
and function results. It never infers the non-nullness of a class attribute.
Type of reasoning
CANAPA runs ESC/Java with the `-Suggest' �ag, which makes ESC/Java pro-
vide a suggestion on how to �x each problem. CANAPA works by running
ESC/Java with the '-Suggest' option enabled. In case of nullness con�icts, it
recognises suggestions such as:

tolk/GoToDigiD.java:33: Warning: Possible null dereference (Null)
applChosen = request.getParameter("appl");

^
Suggestion [33,22]: perhaps declare parameter 'request'

at 47,55 in tolk/TolkServlet.java with 'non_null'
Whenever it sees such a suggestion, it adapts that �le as suggested and re-runs
ESC/Java, until no new suggestions become visible.

This is a nullable-biased system using non-null propagation (as ESC/Java
only suggests the addition of invariants, never their removal), even if there might
be strong suggestions that reference is in fact nullable. Like standard ESC/Java,
it makes pessimistic assumptions about external libraries: suggestions to add
annotations to external code are ignored by CANAPA.
Use
CANAPA is meant to be run one single time over the unannotated source code.
After that, the developer will have to run the checker and �x any remaining
issues by hand.
3.2.3.1 Example
When running the original CANAPA over our example class, the pessimistic
assumptions ESC/Java makes about the environment: the �rst line of the run
method causes an error because Thread.currentThread() is assumed to return
a nullable reference. Since ESC/Java generally only shows the �rst warning
per method, CANAPA would return immediately after showing this warning,
without adding any annotations.

We decided to help CANAPA on the way a bit by adding a //@nowarn
pragma to the external calls. This time it could run unobstructed, and resulted
in the annotated code in Figure 3.11.

The e�ect of CANAPA being nullable-biased shows clearly: there are consid-
erably fewer spurious annotations added. Of course the annotations of external1
and t1 are not strictly necessary any more, though they might serve a purpose
when the annotations about returnParam1() or Thread.getName() would be
revoked. The annotation of the return value of returnParam1 is not entirely cor-
rect, of course: the application does assume it to be non-null, but not necessarily
in all occasions. The developer would later have to re�ne this speci�cation.

Even though we had to manually intervene to suppress the warnings about
external code, the CANAPA output is much cleaner, which is a desirable prop-
erty for an annotation assistant. Even though fewer annotations have been
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class Example {
void run (String nullable) {

/*CANAPA*//*@ non_null @*/String external1 =
Thread.currentThread().getName(); //@nowarn

String external2 = Thread.currentThread().toString(); //@nowarn
// force assumption that external1 is non-null
external1.toString();

String nonnullstring = new String ("Example");
/*CANAPA*//*@ non_null @*/String t1 = returnParam1(nonnullstring);
String t2 = returnParam2(nonnullstring);
// force assumption that t1 is non-null
t1.toString();

}
/*CANAPA*//*@ non_null @*/String returnParam1 (String param) {

return param;
}
String returnParam2 (String param) {

return param;
}
public static void main (String[] args) {

Example e = new Example();
// force parameter of e.run() to be nullable
e.run(null);

}
}

Figure 3.11: Annotation assistance example: CANAPA output
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added, the tool does infer su�cient annotations to allow ESC/Java to verify the
absence of NullPointerExceptions.
3.2.4 Julia

Julia19 [25], the `Java UniversaL Interpreter through Abstraction', is a generic
static analysis tool that provides a framework for applying the abstract inter-
pretation technique to Java bytecode. It was developed by Fausto Spoto at the
University of Verona, Italy. Abstract domains can be `plugged into' Julia to
specialize its behaviour. One of the analyses claimed to be implemented with
Julia is a non-nullness analysis.

Unfortunately, the tool is not very easy to use and undocumented. Even
though the research paper describes the general abstract interpretation imple-
mentation in some detail, the implementation of the non-nullness analysis is not
described at all. Due to the lack of documentation we have not been able to
install and test this tool in practice.
3.2.5 Daikon

Daikon20 [23] was developed by the Program Analysis Group at the MIT Com-
puter Science and Arti�cial Intelligence Laboratory. It takes a dynamic ap-
proach to inferring invariants: instead of analysing the code itself, it runs the
program and tries to �nd likely invariants by observing the actual values of
�elds.

While this approach is certainly interesting, it has some drawbacks for our
situation. It requires that the software under consideration can be executed with
reasonable code coverage. This might not be a problem for small codebases,
but for large projects that for example might communicate with a database or
other software this can be hard to do. On the whole, Daikon seems to be most
suitable for analysing small amounts of complex code: Daikon output can be
rather verbose and complicated, and generally does not perform very well on
large programs resource-wise either.

Using Daikon will generally require some e�ort: the critical code will have
to be identi�ed and a test suite constructed that runs this part of the code
achieving a reasonable code coverage.

This thesis focuses on assisting with the tool-supported annotation of an
existing, previously unannotated codebase. As this means we want to reduce
the amount of manual intervention required, and because the codebase might
contain a considerable amount of code, Daikon does not seem to be a suitable
tool for our speci�c problem.

19http://profs.sci.univr.it/~spoto/julia/
20http://pag.csail.mit.edu/daikon
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Chapter 4

Requirements and design

considerations

This chapter will �rst look at high-level requirements of an annotation assistant.
Subsequently we will take a more in-depth look at the design space, and evaluate
what choices were made in the projects we described in the previous chapter.
For each design choice we make a recommendation on what choice would seem
to be the most suitable for an annotation assistant.

4.1 Requirements

The main goal of annotating software is to �nd as many bugs as possible, and
get some guarantees that certain problems will not occur at runtime. The
annotations should re�ect the application's design as closely as possible.

An annotation assistant is a tool which is designed to make the task of
adding annotations to code easier. This is mainly important when processing
an existing codebase which was not checked with a checker like ESC/Java be-
fore. In this scenario the codebase is relatively stable and tested by traditional
means, but lacking annotations. Without an annotation assistant, adding these
annotations is a tedious and time-consuming task: experience shows that espe-
cially missing non-null annotations are a large source of false positives. Once
the codebase is su�ciently annotated to remove most of the false warnings, the
use of an annotation assistant becomes less important: instead, the checker can
be run on a regular basis to identify any new problems that might have been in-
troduced. Those problems can probably be easily resolved by hand: they might
point to bugs in the recently added (and thus not yet thoroughly tested) code,
or suppressible by just a few additional annotations.

The most high-level requirement of an annotation assistant is simple: it
should make the task faced by the developer easier.

This requirement can be split into two parts: on the one hand it should
actually assist the developer by adding suitable annotations to the code, faster
than it could have been done manually. On the other hand it should not �get in
the way� of the developer. The latter requirement can be split into some more
concrete guidelines:

41
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• The assistant should honour any already manually inserted annotations
• It should keep the code (including formatting and comments) intact as
much as possible

• It should keep spurious and incorrect annotations to a minimum
The next section will look at some design considerations in more depth and
determine which choice best �ts the requirements for an annotation assistant.

4.2 Design considerations

4.2.1 Code external to the analysis

An important aspect is handling unannotated libraries and other code called
by the program under analysis. In section 2.1.3, we have introduced some
terminology to classify the ways external code can be handled.

As we have seen, the tools that focus on reducing false positives (like Eclipse
and FindBugs) make maximal optimistic assumptions. Houdini and the JastAdd
Inferrer also chose this approach.

Our goal, however was to annotate the code to be more suitable for checking
with ESC/Java, which makes pessimistic assumptions about the environment in
order to produce more reliable results. Therefore an annotation assistant which
makes maximal optimistic assumptions is likely to infer many spurious non-null
annotations, especially if it is non-null biased. Making pessimistic assumptions,
however, might lead to many missed non-null annotations.

A viable middle road for annotation assistants is, we feel, is to record where
an optimistic assumption is actually needed by the application. The optimistic
assumption can be used temporarily for the analysis, but will eventually have to
be veri�ed in some other way � either manually or possibly also tool-assisted.
After verifying and possibly removing an assumption about external code, the
annotation assistant should be able to resume its task without this assumption.

4.2.2 Limits of type-based approaches

Type-based nullness analysis such as that performed by JastAdd (seen in section
3.1.2) or Nice (section 2.3.1.2) often introduces a considerable annotation bur-
den, because it is not able to analyse the e�ect of indirect nullness information.

Consider the simple example of Figure 4.1: in this method, a type-based
approach will not be able to infer that foo is not null in the bodies of the
if-statements. Most type-based approaches are pragmatic and can recognise
common checks for null such as the �rst conditional of the example. More
complex conditionals, such as the second one, are generally not caught by such
tools. One solution to this might be to force developers to adhere to certain
programming patterns. Ei�el requires the developer to write the check in a
special syntax, like this:

if (x : T) exp then
... instructions ...

end
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void Method (Object foo)
{

// foo can be nullable here
if (foo != null) {

// this dereference is safe
foo.toString();

}
boolean fooisnull = (foo == null);
if (!fooisnull) {

// this dereference is also safe
foo.toString();

}
}

Figure 4.1: Example showing limits of type-based approaches
void Method (Object foo, boolean fooisnonnull)
{

if (fooisnonnull)
{

foo.toString();
}

}

Figure 4.2: Example of a method with a simple invariant

This evaluates exp, and if this evaluates to an attached (non-null) type, the
local, read-only variable x is �lled with the result and the body executed. If the
expression evaluates to null, the body is skipped. It might be argued that such
restrictions improve the clarity and readability of the code, on the other hand
being required to add some code to make the type system happy is something
that many developers tend to object to. Especially when retro�tting existing
code (which has been developed without these restrictions in mind) refactoring
the code to adhere to these new rules might be a cumbersome task which is hard
to automate. More rich methods, such as the logic-based analysis of ESC/Java,
will generally be able to automatically infer the correctness of constructs like in
this example.

More complicated cases such as the one in Figure 4.2 may or may not be
caught by a logic-based analysis, but in any case can be resolved by adding
an annotation, for example the precondition //@requires fooisnonnull ==>
foo != null. Such annotations might be too complex to be automatically
inferred, but after the developer has speci�ed them it would be desirable that
a subsequent analysis by the annotation assistant would take this precondition
into account. Type-based methods will generally not be able to take advantage
of this information.

If the invariant is too complex for the developer to write down, this probably
means it is a good idea to either refactor the code or add a run-time check to
prevent errors. As a last resort an //@assume statement can be used.
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public void setMultizoek(String multizoek) {
this.multizoek = multizoek;
evaluateMultizoek();

}
(...)
//@requires this.multizoek != null
private void evaluateMultiZoek() {

(...) multizoek.length() (...)
}

Figure 4.3: An example from the Promedico HIS case study

Another example that shows a situation where a type-based approach is
not su�ciently powerful is shown in Figure 4.3, taken from the Promedico HIS
case study: the PatientZoekCriteria class contained a �eld called multizoek
which was quite de�nitely nullable. However, if �lled, some processing and
validation was performed. The private method which performed this step,
evaluateMultiZoek(), was called from the setter method for this �eld. Unsur-
prisingly, it assumed the multizoek �eld was non-null, which is not the case in
general. In a type-based setting, probably the code would need to be changed:
possibly by adding a spurious check for nullity or by passing the value as a
parameter rather than via the �eld. The latter solution could arguably be a
more elegant solution in this case, but in general it would be desirable not to
be required to change the code. With the logic-based approach as provided by
ESC/Java, we could simply specify the precondition this.multizoek != null
for evaluateMultiZoek().

Note that for example a non-modular (interprocedural) data�ow-based anal-
ysis could also have veri�ed the correctness of this case. The logic-based ap-
proach shown here, however, results in code with a clear, formal speci�cation
(of this aspect), that remains checkable in a modular way for performance, scal-
ability and reusability.

4.2.2.1 Combining type- and logic-based analysis
A possible way to stretch the limits of type-based methods could be to combine
it with logic-based techniques. Type-based annotation assistants will generally
not be able to take into account the more advanced invariants added by the
developer. This could be worked around by adding assertions to the code:
revisiting the example in section 4.2.2, now adding an assertion as shown in
Figure 4.4.

The type-based algorithm would treat the assertion as an assumption, and
therefore foo.toString() would be accepted by the type-based algorithm. The
logic-based system could complete the system by treating the assertions as proof
obligations. This way, the type system guarantees the absence of NullPointerEx-
ceptions assuming that the assertions hold, and the logic-based system veri�es
that these assumptions indeed hold. Hence, these techniques combined would
prove the absence of NullPointerExceptions.
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void Method (Object foo, boolean fooisnonnull)
{

if (fooisnonnull)
{

assert foo != null
System.out.println(foo.toString())

}
}

Figure 4.4: Code with a simple invariant, revisited

4.2.2.2 Nullness type inference
The technique described in the previous section is not very suitable for imple-
menting an annotation assistant: the annotation burden of adding non-nullness
assertions actually looks a lot like the problem we wanted to solve in the �rst
place. Since the kind of checkers we are targeting will do more `intelligent'
things than just type checking (though they might deploy some typechecking
techniques transparently `under the hood'), most of the the assertions will prob-
ably be spurious once all non-null and other annotations are properly added.
Hence, it does not seem to be a good idea to require the user to spend a lot of
e�ort adding these assertions.

However, if the assertions could be automatically inferred, this might still
be a viable route.
Adding a `complex non-null' type One possible way of inferring these
assertions was thought to be a classical type inference algorithm � though one
with a `twist' in that the nullability-type of a variable can change due to a
conditional comparing the value to null. We would have a very simple type
system consisting of the types 'non-null', 'nullable' and 'complex non-null'. The
trick would be that it would be safe to assign a nullable value to a complex
non-null location, and the nullity would then generate a veri�cation obligation
for that location. Checking the veri�cation obligation would be left to the logic-
based part of the system.

It is, unfortunately, easy to see that this approach will not work with a
traditional type inference algorithm. The normal nullness type lattice is trivial:
it simply contains only `nullable' and `non-null', where non-null <: nullable
(since non-null values are `special cases' of the more general set of nullable
values. You can assign a non-null value to a nullable �eld, but not vice-versa).
We could add a `null' element to the lattice (with null <: nullable), but it
seems this merely makes the type lattice more complicated without providing
any additional value.

The `complex non-null' type cannot be correctly added to this lattice: it
would have to be assignable to both nonnull and nullable types (and thus
complex-non-null <: non-null), but it should also be possible to assign nul-
lable values to it (these are the assignments that would need to be checked
later), requiring that nullable <: complex-non-null. By this reasoning, the type
lattice has become a graph, since nullable <: complex-non-null <: nonnull <:
nullable.
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Figure 4.5: Normal nullness type lattice with and without speci�c null type

Figure 4.6: complex-non-null does not �t into the lattice

More complex type lattices FindBugs, which we evaluated in section 3.1.5,
uses the more complex lattice shown in Figure 3.3 to guide its analysis, repre-
senting various degrees of certainty about nullability. This works well because
FindBugs is performing a more fuzzy analysis mainly targeted at reducing false
warnings, without providing guarantees about the correctness of the code in the
absence of warnings. Such a more �ne-grained lattice is less suitable for the
more solid analyses like ESC/Java performs, but might be useful in an anno-
tation assistant to determine whether or not to propagate an annotation, or to
choose which annotation to propagate in case of con�ict.
A heuristic type inference algorithm Another approach would be to adapt
the type inference algorithm. Type inference algorithms are generally designed
to work on well-typed code, and simply abort with an error message when a
type con�ict is found. Unfortunately, the location where the �rst type con�ict
is found is not necessarily close to the location of the actual problem. This is
a well-known problem in languages that do aggressive type inference, such as
Haskell or ML. Even though e�ort is being put in �nding the most likely root
cause of the type con�ict [12] and for improving the error messages themselves
[14], this remains a hard problem. The known existing techniques are tuned to
a situation where there are few type con�icts and they are corrected manually
one by one, where by contrast the code which is analysed by the annotation
assistant contains many `con�icts' (which may be checkable by the logic-based
checker). This makes the known techniques less suitable for type inference in
annotation assistants.

A traditional type inferrer generally works in two phases: �rst, it parses
the code, introduces type variables and records restrictions about those type
variables. After that, it uses some algorithm to �nd values for the type variables
such that all recorded restrictions hold.

A possible way to do type annotation assistance would be to add type vari-
ables and record restrictions as usual, but instead of satisfying the restriction
set completely, �nding a set of solutions that corresponds to the restrictions
best (for some reasonable de�nition of `best'). Then the type checking process
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would easily �nd those spots where the restrictions could not be satis�ed, and
invoke the intelligent checker to possibly cover those cases.

Type variables and constraints could be represented as a graph with special
directed edges. The 'nullability' of each node could be derived from the nul-
lability of the nodes directly connected to it. In case these surrounding nodes
contradict each other, an analysis of the 'certainty' of those nodes could be made
to make an informed decision.

This seems like an interesting approach, but we chose to abandon this in
favour of more checker-driven approaches. We certainly do not wish to dismiss
technique, but as we have not been able to �nd any existing research on this
approach (let alone implementations), we have decided not to pursue this idea
further in the context of this project. It remains, however, interesting and
promising future work.
4.2.3 Impact of incorrectly inferred annotations

An annotation assistant will generally not be able to annotate a program en-
tirely, eliminating all con�icts. Possible sources of con�icts include:

• Actual bugs in the application under analysis
• Dereferences that are guarded by a conditional which indirectly implies
the non-nullness of the reference

• Situations where a reference cannot be null because of a complex invariant
that can not be inferred automatically

Because this problem is so common, an annotation assistant must be relatively
robust against it. This causes problems especially in type-based assistants such
as JastAdd: one con�ict can have a huge impact on the inferred annotations of
other elements, as has been illustrated in section 3.2.1. FindBugs and ESC/Java
su�er less from this problem because of their modular nature, which prevents
small mistakes to spread across modules.

It is hard to prevent this problem from occurring, but to mitigate it we feel it
could be desirable to propagate both `nullness' and `non-nullness' information,
and to be able to represent the con�dence in an annotation. The latter could
be done with a more �ne-grained nullness type lattice like the FindBugs lattice,
or for example by discriminating between annotations that have been added by
the developer and those which have been added by the annotation assistant.

When in doubt, we believe it is preferable for an annotation assistant not to
add the annotation, and to leave it up to the developer. An annotation assistant
that fails to add some annotations is still probably an improvement over no
assistance at all. An assistant which adds incorrect annotations, however, can
be frustrating to work with and be perceived to do more harm than good.
4.2.4 Initial Annotations

A tool calling the checker to identify problems, like CANAPA, might require
several iterations of adding obvious annotations before it gets to the interesting
issues. This is problematic because running the checker tends to be resource-
intensive, and doing it too often makes the assistant slow and therefore incon-
venient to use.
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To make processes reach a �xedpoint more quickly, it might be a good idea to
start the annotation assistance process by adding some likely initial annotations,
possibly removing them again later on.

We have determined some candidates for initial annotations:
• Fields that are directly initialized with some value
• Local variables that are not assigned a literal null
• Return values of methods that never return a literal null

This list could easily be extended with more and more advanced techniques,
for example taking into account initialisations in static blocks or constructors,
or even running a lightweight annotation inferrer like the JastAdd Inferrer.
Experience will have to show which initial annotations yield the best results.

To get an idea of the e�ect such initial annotations would have on the
analysis, we have added some simple initial annotations to a sample from our
Promedico HIS case study and did some tests. The results of those tests are
described in section 6.3.4.
4.2.4.1 Using a type-based analysis for pre-processing
Even though many annotations will be missed when using a type-based system
like JastAdd, those annotations that are added are almost certainly correct, and
the JastAdd analysis is very fast compared to logic-based approaches. If some
of the practical issues were resolved, and the implementation was extended to
support parsing existing annotations, JastAdd could still be a powerful nullness
inference tool. Its main weakness is its inability to take into account more
complicated invariants, which is possible ESC/Java is used.

It could well be imagined that a system like this would be put to use in the
pre-processing step of our annotation algorithm.

4.2.5 Termination

CANAPA starts with an incompletely annotated application, and iteratively
runs ESC/Java to add new annotations. CANAPA never removes any anno-
tations, and will not add an annotation to the same place twice. Given that
there are a constant number of locations where an annotation can be added, it
is trivial to see that this process terminates.

Houdini initially adds a large number of annotations, and after that only
removes them. It is easy to see this also terminates.

For approaches that are less clearly monotonic, other ways to ensure termi-
nation must be found. A simple yet usable method would be to honour two
simple rules:

• Never change an explicit annotation by the developer
• Never add or remove the same annotation twice (also across iterations)

The �rst rule is required to prevent cases where the annotation assistance algo-
rithm keeps adding an application which is incorrect, and the developer must
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keep removing it because it is incorrect. We feel that for an assistance tool it is
always a bad idea to override the choice of the developer.

The reason for the second rule is twofold: primarily, the removal of an au-
tomatically generated annotation by the developer is also a choice that should
not be overridden by the assistant. Also, this rule prevents endless loops where
the tool keeps adding and subsequently removing the same annotation.

4.2.6 Interactivity

Even if the annotation assistant has a reasonable response to con�icts, it is still
unlikely that the assistant �gets it right� all the time.

Many of the assistants we have seen simply run once, and leave the developer
on his own after that. However, because con�icts that cannot be automatically
resolved occur so often, it is highly desirable that the tool can be run iteratively.
The tool should obviously take into account any annotations from previous runs
and those that were added by the developer. Also, if the developer has removed
an automatically generated annotation, of course the tool should never add this
annotation back again.

The JastAdd inferrer does not currently support parsing and assuming ex-
isting annotations. This could be added relatively easily, although JastAdd sup-
ports merely simple annotations, not complex JML invariants and pre/postconditions.
Houdini and CANAPA fully support being re-run on code which already con-
tains annotations. However, because their logic-based analyses are rather resource-
intensive, they are not very suitable to be run iteratively. We will elaborate on
this issue in section 4.2.8.

4.2.7 Scalability

Unlike type-based systems like the JastAdd inferrer, logic-based inferrers like
Houdini and CANAPA tend to be very resource-intensive. To ensure scalability
(both in time and in memory usage), it seems desirable to introduce some more
modularity into the analysis.

For example, the CANAPA system runs ESC/Java over the entire code-
base under analysis each iteration. This caused some analyses to be needlessly
performed multiple times.

This led us to try to �rst reach a �xedpoint for each source �le separately,
and then maybe do a �nal run over the entire codebase. This might change
the order in which annotations are added, and therefore it might change which
annotations are added at all: for example, suppose there are two locations which
assume a certain method to return non-null. The second location consists of
a local variable to which the result of this method is assigned, and which is
subsequently dereferenced. If the �rst location is encountered before the second
location, the second location is probably accepted without adding any further
annotations. However, when the second location is encountered earlier, it might
�rst add an annotation to the local variable and only after that to the method.
This is of course a rather harmless example, and our intuition is that most
di�erences will be of such a subtle form.

We have tested this approach on our DigiD test case. The results of this
tests were quite positive, though not as radical as we hoped. The results are
described in section 6.2.1.
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While this introduction of modularity appears to have a positive impact
on performance, its real bene�t lies in the fact that it makes a higher level of
interactivity possible, which will be discussed in the next section.
4.2.8 Iterative, Modular Interaction

Modularity is not only useful to speed up the entire annotation process: it can
also prove very useful to improve the interactivity in the annotation process. As
we have seen in section 4.2.6, interactivity is an essential aspect of an annotation
assistant.

Assistants like Houdini are implemented in a modular way internally, but
from the users' perspective they are still monolithic: one has to wait for the
entire automated annotation to �nish before annotations can be added and
bugs can be �xed, after which the entire analysis will have to be run all over
again.

An approach that we consider much more practical is to introduce more
modularity in the interaction with the tool. As we have seen a lightweight
checker-directed assistant like CANAPA can be successfully applied to separate
�les or even methods before looking at the entire program at once. We can
exploit this by designing a user interface which allows the developer to review
analysed modules while the assistant is still working on analysing the rest of the
application. After making changes to a module it can be added to the queue of
modules in need of analysing again, until the developer accepts the result.

Another advantage of this approach is that it might make it easier to see what
e�ects a small change in the code has. However, once you are already working
with a reasonably well-annotated version of the source, just running the checker
(and not using the annotation assistant at all) will likely be su�cient. Also,
applying richer visualisation techniques might be a more suitable way to get an
insight of how the nullness aspects of a given piece code relate, which is future
work as described in section 7.1.3.



Chapter 5

Annotation Assistance

Algorithm

Based on the experiences and observations we gathered while working with
the tools described in the previous chapters, we have chosen to modify the
CANAPA algorithm to meet the requirements we formulated in section 4.1. In
this chapter we will describe the updated algorithm and the rationale behind
some of its properties in some detail.

We have also developed a proof-of-concept implementation of the algorithm,
in part based on the code from the CANAPA project which was generously dis-
tributed as Free, Open Source Software under the GNU General Public License.
This implementation, which was also used to get some of the the benchmark
measurements of chapter 6.1, is described in more detail in section 5.5.

5.1 Algorithm description

Input is a queue of �les F, initially in state `initial'. A set of con�icts C is
obtained by running the checker over a source �le. This set is converted to
a set of suggestions S. The process adds annotations to the �les and records
assumptions about the environment in the set A. During the process a history
of previously handled suggestions is stored in the set H.

We have described the algorithm in some ad-hoc pseudo-code in Figure 5.1.
We used a hash sign (#) to denote counting the elements of lists (which are
denoted by < and > symbols) and sets. We express �ltering a list with a set-
like | notation: for example, the expression #<f ∈ F | f.state == pending>
stands for the number of elements in the list of �les f from F which are in the
`pending' state.

5.2 Interactivity

During the automatic processing the developer can manually set the state of
a �le to `blocked', temporarily preventing it from being analysed. This gives
him time to �x any issues in the code and annotations, after which he can put
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forall <f ∈ F | f.state == initial>
preProcess (f)
f.state := pending

repeat:
if #<f ∈ F | f.state == pending> == 0:

wait for manual intervention
else:

current_file := head(<f ∈ F | f.state == pending>)
current_file.state := busy
repeat:
C := runChecker (current_file, A)
S := infersuggestions(C)
n_new_suggestions := #(S \ H)
for every s ∈ (S \ H):
add s to H
if assumption about the environment then

add the assumption to A
else

add an annotation to a source file
until n_new_suggestions == 0
current_file.state := done

until manually aborted

Figure 5.1: Annotation Assistance Algorithm

it back to `pending' to allow the assistant to incorporate those changes in the
analysis.

He can also manipulate the order of the elements in the list of �les. This
way, he is in control of the order in which the �les are analysed.

5.3 Termination

This process never truly terminates, since the developer may always put a �les
into pending state manually. However, in the absence of interaction, the process
will automatically end up in a state where no �les are left pending and the system
waits for manual intervention.

It is easy to see this is the case: there is a �nite number of �les which can
be pending, and every time the outer loop executes one of those �les goes from
`pending' to `done'.

Of course this assumes the inner loop terminates. Fortunately, it is also easy
to see that this is the case: observe that since there's a �nite number of elements
in the code, there is also only a �nite number of possible suggestions to solve
any con�icts. Since every iteration at least one suggestion is implemented and
added to the history set H, eventually S \ H will be empty.
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5.4 A note about soundness

One might notice that some changes to one �le will a�ect other �les. For
example, a change in the nullability of a method's return value will a�ect the
way the �les that call it are veri�ed. Yet, those other �les are not put back
into `pending' state. This could be changed (without violating termination
properties, even though the proof would get a little less clear), but the impact
on the performance of the system outweighs the small improvement in results.

One needs not be concerned about the e�ect this choice has on the sound-
ness of the system as a whole: soundness is not guaranteed by the annotation
assistant, but by the checker. In a sense it is irrelevant whether the assistant is
sound. After the initial assistant-aided annotation process is over, the checker
can be run over the entire codebase, and will show any remaining problems
which have not yet been �xed.

5.5 Implementation

This section gives a more concrete explanation of the algorithm. It can be safely
skipped by readers only interested in the general methods and techniques, but
may serve to give a better idea of how this algorithm can work in practice.

We based this proof-of-concept implementation on CANAPA, the Com-
pletely Automated Non-null Annotation Propagation Application. Since one
of the key changes was to introduce a much higher level of interactivity in the
annotation assistance algorithm, we dubbed our modi�ed implementation IN-
APA: the Interactive Non-null Annotation Propagation Assistant.

5.5.1 The codebase (F)

The queue of �les, represented as F in the algorithm, is represented as a simple
Vector of SourceFile objects. A SourceFile holds some general information,
such as the �le name, the current state of the �le (`initial', `pending', `busy' or
`blocked') and the ESC/Java errors shown in the last run for this �le.

5.5.2 Parsing Java

CANAPA was written in Java and used Jparse1 for parsing the Java code.
Unfortunately, the abstract syntax tree (AST) provided by Jparse is not very
suitable for our needs: it turned out to be hard to �nd out where exactly in the
tree an annotation should be inserted. This led to bugs which in some cases
even broke the termination properties, making them tricky to debug.

To be able to continue testing, we have implemented a small Perl script to
replace Jparse where it was used in CANAPA. While this is clearly a temporary
solution, it does perform more accurately at adding the annotations in the
correct place and allows us to run our proof-of-concept on real-world production
code.

In the long run, it will be desirable for the application to have access to the
Java code as an AST. Jparse provides a primitive tree, but does not support

1http://www.ittc.ku.edu/JParse/, generated from a grammar with the ANTLR[24] lan-
guage tools.
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functionality like resolving bindings. This is required, for example, to �nd the
de�nition of a method given its call site. To be able to parse the Java code
into such an AST, modify it and write the modi�ed code back to a �le, we have
started implementing functionality with the Eclipse Java Development Tools2
(JDT) library where possible. This library can be used independent of the
Eclipse IDE, and among other features provides an advanced AST API. This
should especially prove worthwhile when implementing more advanced mappings
from ESC/Java warnings to actual Suggestions.

In order to be able to record the assumptions about the environment in a
way accepted by ESC/Java, the exact type of those external methods has to
be looked up in their respective class or jar �le. This would probably not have
been feasible if we had not started using the Eclipse JDT library.

5.5.3 Initial annotations

The pre-processing step could be quite easily implemented now that we can
use Eclipse's RewriteAST interfaces, even though it currently only does a very
rudimentary job. It cycles through all SourceFiles, and for each �eld checks if
the following conditions hold:

• Its type is not primitive, but a reference
• The �eld is not already annotated
• The �eld has an initializer
• This initializer is not the literal `null' value

The pre-processor marks all class �elds for which those conditions hold with
/*@non_null*/. After pre-processing each SourceFile, it sets its status to `pend-
ing'.

If the annotation e�ort has been interrupted for some reason, the pre-
processing step can be skipped when analysing code that has already been
preprocessed.

5.5.4 File selection

As soon as �les start to get into Pending state, INAPA will start processing
them, one at a time, each time taking the �rst `pending' �le in the queue.

While a �le is being processed, the user can manipulate the order of �les in
the queue, and change their state manually.

5.5.5 Running ESC/Java

Whenever a SourceFile is selected, ESC/Java is ran over this �le. Because
of the modular implementation of ESC/Java, this means it takes into account
the speci�cations (annotations) of the other �les in the projects, but not their
implementations. We invoke ESC/Java with warnings about Casts, Exceptions,
Modi�es clauses disabled, because we currently have no meaningful response to
those.

2http://www.eclipse.org/jdt
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We give ESC/Java plenty of memory to work with, but limit the running time

of the prover to 40 seconds per method, a value slightly below the default. This
is useful because Simplify, the theorem prover on which ESC/Java is currently
based, uses some heuristics to decide which way to prove a method correct.
When the heuristics make an unfortunate choice, the theorem might take a
considerable amount of time and memory to �nish, if it succeeds at all. When
the heuristics perform well, and they have been carefully tuned to perform well
in most cases, the answer is usually produced quickly. We abort the Simplify
process if it does not produce quick results, since it might not produce results
at all. This threshold can be raised when the iterative annotation process has
progressed to a more stable state.

5.5.6 Processing con�icts

After ESC/Java output is received, the engine.Modi�er class is invoked. This
class implements the Con�ictListener interface, and starts the ESC/Java parser
which is implemented as a Con�ictReporter instance. The parser reports any
con�icts found in the ESC/Java output back to the Modi�er class.

A Con�ict contains the Location of the o�ending code. In case of a NonNull
warning (where some code violates a non-null speci�cation) the declaration that
is violated is also stored. In case of a Null warning (where a possibly-null ref-
erence is dereferenced) the ESC/Java suggestion is also stored. This suggestion
contains the name and kind (for example local variable, parameter or �eld) of
the element that should be annotated as non-null to remove this con�ict. If the
Java source �le for this element is present, the �lename and location within this
�le is reported. When this element is external (i.e. only present in a class or jar
�le) only the �le and class name are reported.

5.5.7 From con�ict to suggestion

CANAPA does not handle warnings for which ESC/Java gives no suggestion,
such as NonNull warnings (where a speci�cation is violated). It could be argued
that giving suggestions should be implemented at the ESC/Java level rather
than the INAPA level. However, we believe it is suitable for the annotation
assistance tool to have more control over the handling of con�icts, so that the
automatic inference techniques can be tweaked more easily.

We have implemented one such tweak: normally, CANAPA would have
blindly added a non-null suggestion to each �eld that ESC/Java suggests to
be annotated. This is likely not to be desirable for �elds that are in fact initial-
ized with a literal non-null value, so in that case we choose not to sustain that
suggestion.

An obvious other improvement would be to add automatic annotation prop-
agation for NonNull warnings. Some infrastructure for this task has been put
into place by converting much of the code to the Eclipse JDT API, but unfor-
tunately implementing the needed functionality to resolve a given identi�er is
too involved to �nish in the context of this project.
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5.5.7.1 Suggestions about external �les
As we have described in section 4.2.1, we want to make minimal optimistic
assumptions about the environment. In practice this means we will have to
dynamically add speci�cations for ESC/Java to read. This can be done by
generating so-called .spec �les into a local speci�cation repository.

To cut down on the false positives, ESC/Java comes with a set of .spec �les
for the standard library. Also, there might be an existing set of speci�cations
already present. When looking for a speci�cation, ESC/Java will search though
the classpath looking for �les with certain names, as described in more detail
in section 5.1 of [16] and section 3.1 of [4]. As soon as it �nds one such �le, it
stops.

This is unfortunate, since it makes it hard to add an assumption about a
class for which there is already a speci�cation available: it would be desirable
to be able to keep the speci�cations that have been inferred by INAPA separate
from the existing more trustworthy annotations, and have ESC/Java merge
those automatically. This is not currently implemented.

As a workaround, all existing speci�cations are copied to a localspecs
directory, and additional assumptions will be merged into them. In a seperate
log �le a list of the additional assumptions is recorded so they may be veri�ed
by the developer.

An alternative workaround would be not to make any assumptions about
�les for which a .spec �le already exists. We feel this is not not desirable
because it makes it impractical to use partial speci�cation of external code.
Being able to use partial speci�cations is important because it allows a project
to incrementally collect speci�cations, instead of having to provide either a
complete speci�cation or no speci�cation at all.

We recommend to use the former workaround for this issue.

5.5.8 Applying suggestions

Before applying a suggestion, the history of past suggestion is referenced to
see if this suggestion has been applied before. If that would be the case, the
suggestion is not applied again. This prevents loops in which the annotation
assistant might keep adding an annotation and subsequently removing it3, and
makes sure a previously inferred annotation which has removed by the developer
is not added again. Also, during an iteration over one �le there might be several
con�icts that lead to the same suggestion. Of course then also it is only applied
once.

While applying a suggestion, it will report what part of the code is a�ected
by this change. In our implementation, this will usually simply report that the
whole �le needs to be checked again. When an annotation is added to a local
variable, however, we report that only the method in which the variable is visible
is a�ected. This lays the foundation for reducing the amount of code that has
to be checked again in more cases, but we have chosen not to implement that
at this point. There is obviously room for improvement here.

3This currently does not occur since none of our rules for converting Con�icts to Suggestions
result in the removal of an annotation. Nonetheless it can be imagined that such rules might
be added in the future.
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class Example {

void run (String nullable) {
/*INAPA*//*@non_null*/String external1 = Thread.currentThread().getName();
String external2 = Thread.currentThread().toString();
// force assumption that external1 is non-null
external1.toString();
String nonnullstring = new String (�Example�);
/*INAPA*//*@non_null*/String t1 = returnParam1(nonnullstring);
String t2 = returnParam2(nonnullstring);
// force assumption that t1 is non-null
t1.toString();

}
/*INAPA*//*@non_null*/String returnParam1 (String param) {

return param;
}
String returnParam2 (String param) {

return param;
}
public static void main (String[] args) {

Example e = new Example();
// force parameter of e.run() to be nullable
e.run(null);

}
}

Figure 5.2: Annotation assistance example: INAPA result

5.5.9 Example

After constructing INAPA, we revisited the example class we used to illustrate
the way JastAdd, Houdini and CANAPA work in chapter 2. The example
consists of only one �le, and because of that it does not demonstrate the most
important advantage of INAPA: its modular, iterative nature. The improvement
that INAPA is less strictly non-null-propagating because of the extra step when
converting a con�ict to a suggestion is also not illustrated here. Nonetheless we
can illustrate some other properties:

First, the INAPA Pre-Processor is ran over the �le (the original code for
which is in Figure 3.4). In this case, however, that does not have any e�ect: the
current implementation of the pre-processor only adds annotations to method
�elds, and this class has no �elds. After running the analysis itself over the
example, it produces the output shown in Figure 5.2 after the �rst run.

One obvious considerable improvement over CANAPA is that we no longer
need to manually suppress warnings about external code: since INAPA makes
minimal, optimistic assumptions about the environment it will catch this au-
tomatically. The assumptions about the environment that were made are in
Figure 5.3: it can clearly be seen that INAPA makes no spurious assumptions
about external code.

The rest of the output itself is equal to the output of the original CANAPA,
already discussed in section 3.2.3.1.
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package java.lang;
class Thread {

/*INAPA*//*@non_null*/public static native java.lang.Thread currentThread();
/*INAPA*//*@non_null*/public final java.lang.String getName();

}

Figure 5.3: INAPA's assumptions about the environment



Chapter 6

Case studies and Benchmarks

This chapter reports the results of several benchmarking tests carried out on
two case studies. Section 6.1 contains some general notes on the approach we
took. Sections 6.2 and 6.3 contain the actual results of the tests on the DigiD
and the Promedico HIS case studies, respectively.

As described in more detail in chapter 6.1, there are various practical prob-
lems with automatically testing properties of annotation assistants. Because
of the limited time and resources available to us it is not feasible to perform
full-blown, statistically meaningful analyses of the interesting properties of the
cases. Nonetheless we deemed it appropriate to perform some practical tests
to acquire at least some intuition of whether our improvements indeed seem to
have the desired e�ect in practise. Hence, we must be very cautious with the
conclusions we draw from the results. They should not be seen as empirical
proof of our statements, but serve merely to gain some practical feedback on
the proposed changes.

6.1 Benchmarking annotation assistants

There are two main properties based on which we can compare variations on the
annotation assistance algorithm: the quality of the output and the performance
in terms of resource usage (such as time and memory).

6.1.1 Resource usage

It turns out that the ESC/Java analysis which is part of our annotation assis-
tance algorithm is quite a resource-intensive task. Because of this it is important
that e�ort is also put into reducing the amount of work we leave to ESC/Java.

Measuring resource usage is not always simple, however: measuring the time
an analysis takes and measuring it again after a change is made to the analysis
technique, as we have done here, gives a reasonable indication. However, a
changed analysis technique often also results in di�erent results. In those cases,
it is hard to determine the e�ect of the change on resource usage.
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6.1.2 Quality

It is non-trivial to �nd a suitable measure for the quality of the output of an
annotation assistant. It is easy to identify some desirable features that determine
the quality of the assistance:

• The number of correct annotations should be high
• The number of incorrect annotations should be low
• The amount of user interaction required should be as low as possible (but
now lower)

6.1.2.1 Determining whether an annotation is correct
While it is obvious that the tool should produce many correct and few incorrect
annotations, for any given annotation it is hard to tell whether it is `correct'.
Indeed, if we were able to automatically and reliably determine whether an
annotation is correct, annotation assistance would be a much easier task.

6.1.3 Taking into account user interaction

As we have argued in section 4.2.6, user interaction is a key part of the program
annotation process. However, it makes automating the benchmarking process
almost impossible. Because of this, properly benchmarking the entire annota-
tion assistance process would be an extremely time-consuming task. Because of
this we have only performed benchmarks which look at a single iteration, which
allows us to ignore user interaction.

6.2 DigiD Gateway

Since the 1st of January, 2005, the Dutch government has implemented a single
sign on and central identi�cation service for digitally available government ser-
vices. This is an interesting project: it can be desirable to be able to digitally
authenticate yourself to any municipality using the same credentials. However,
it is not required that the municipality knows your credentials, only that it
knows you have correctly identi�ed yourself. Requiring civilians to authenticate
via the municipality would be a security risk. Instead, the user is redirected to
the central DigiD service, authenticates himself there, and gets redirected back
to the municipality. Behind the scenes, the central DigiD server con�rms to the
municipality that you have identi�ed yourself.

The municipality of The Hague developed an `exchange platform' for con-
necting its websites to DigiD. This platform was released as open source soft-
ware. We chose to take this code to run some of our benchmarks.

6.2.1 Introduction of modularity

Originally, CANAPA would iteratively run ESC/Java over the entire codebase
under analysis at once. While this is undesirable from a user interface point
of view, we decided to run some benchmarks to get a feel for the performance
impact of modularizing this analysis.
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CANAPA runs ESC/Java until a �xedpoint is reached where ESC/Java

shows no new errors. We modi�ed this behaviour, trying to reach a �xed-
point for each module seperately. Because processing a module might introduce
warnings in previous modules (for instance when a parameter of a method called
by a previous module is annotated as non-null), we �nally run the CANAPA
again over the whole codebase at once.

6.2.1.1 Resource usage

For the size of a `module' we have tried both a per-�le and a per-method mod-
ularisation. The running times of the analysis are shown in the following table:

Module size Modularized analysis Final run Total time spent
Full run n/a 45 minutes 45 minutes
Per �le 25 minutes 13 minutes 38 minutes

Per method 27 minutes 21 minutes 48 minutes
A modularization per �le, in this case, resulted in a reduction of the total

running time of 15%. Modularization per method added 7% to the running
time. It is interesting to notice that the modularized analysis per method is
only slightly slower compared to per �le (2 minutes), probably the result of
some overhead when starting the analysis. On the other hand, the �nal run is
much slower: this makes sense, because the methods within a �le are likely to
be more tightly coupled compared to methods in di�erent classes. Because of
this, treating every �le as a module seems like a reasonable choice.

6.2.1.2 Quality

Upon closer inspection, it turned out that running the analysis in a modular
way in fact reduced the number of spurious annotations. However, we do not
conclude that the modularized approach is better in this sense: we expect this to
be a coincidence, and probably mainly depends on the order in which methods
have been processed. In general, we expect a modularized approach probably
does not lead to changes in the quality of the analysis.

6.3 Promedico ASP

Promedico ASP is an advanced web-based information system for health care
centres used by more than 2500 users every day. Among other tasks, it takes
care of the storage and exchange of patient data among health care institutions,
but also performs calendaring and accounting. It is interesting because it is a
considerably large amount of real production code, which is bound to bring to
the light issues which do not occur in smaller projects.

The code consists of roughly 1425 java �les, 287 of which should not be taken
into account because they have been generated from some other source rather
than written by a developer directly.
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6.3.1 Generated code

It is quite common for large Java projects to use a object/relational database
persistence layer like Hibernate1. To guide the transformation between the
database entities and objects, a mapping is usually de�ned in an XML �le,
and Java classes to access the information in the database can be automati-
cally generated from that mapping de�nition. Also tools like the Apache Axis
WSDL2Java emitter2 generate code (67 �les in this case).

Because it should be possible to re-generate the Java when the XML �le
changes, annotations should not be added to those Java �les. The annotation
assistant should either learn the XML format and make changes there, or con-
sider these Java �les `external'. The latter is obviously the most pragmatic route
to go for now.

6.3.2 Dependencies required

Since ESC/Java2 requires the dependencies of the code (at least in bytecode)
to be on the classpath, INAPA also requires this. This turned can be quite an
e�ort for a larger project like this. Luckily, this project used Maven3 which
could be used to automatically download all dependencies.

6.3.3 toString() methods

In terms of performance, we found that the toString() methods of classes of-
ten take up extreme amounts of resources. This might be due to the ESC/Java
implementation, which is known not to handle string operations (like concate-
nation) too well yet. This, combined with the notion that toString() methods
often are mostly used for debugging purposes, leads to the idea that it might
be good to postpone checking the toString() methods until after the assisted
annotation process.

6.3.4 Pre-processing performance

In section 5.5.3 we described the primitive pre-processing step we implemented.
We decided to put this functionality to the test by comparing the analysis
process on preprocessed code and on unpreprocessed code.

We took a sample from the Promedico HIS codebase and recorded a couple
of properties:

• the number of iterations
• the time the analysis took per source �le
• the number of ESC/Java warnings that remained after INAPA was run.

1http://www.hibernate.org
2http://ws.apache.org/axis
3http://maven.apache.org
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6.3.4.1 Quality
Looking at the number of ESC/Java warnings that remained after INAPA was
run, for each �le the number of remaining warnings was the same with or without
pre-processing. This gives a reasonable con�dence in the correctness of the
annotations. Apparently, in most cases INAPA was able to verify that the
non-nullness of the automatically annotated �elds indeed holds.
6.3.4.2 Performance
The main idea behind the pre-processing step was to improve performance by
adding annotations up-front that are likely to have been inferred later anyway.

Looking at the number of iterations, at �rst sight we seem to have gained
little: there are as many �les that have taken an extra iteration than there
are that now �nish in fewer annotations. Measured in seconds, however, we do
notice we cut down the total running time by 10%. Also, it might well be that
an additional iteration in this run would have been necessary at a later stage
anyway (i.e. when running INAPA over the �le again after manual changes), in
which case the pre-processing would have its positive e�ect on performance at
that later stage.
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Chapter 7

Conclusions

Static analysis of non-null properties of code is a useful technique that is starting
to �nd its way into the mainstream: the addition of nullness analysis to the
Eclipse IDE is a clear sign of this. This might be a stepping stone for more
advanced static analysis tools, like the extended static checking of ESC/Java2,
towards more general acceptance. This is good, but there is a lot of work to be
done: when tools are developed in an academic setting, the resources to �nish
them as a product ready to be used in industry are often lacking. Even if the
tool has reached a certain maturity, as is the case with ESC/Java2, maintaining
it can be a problem: for example, ESC/Java2 has not yet been updated to work
with Java 5 code and classes, and there are currently no plans to implement
this.

As for annotation assistants, we feel we have made some important observa-
tions about the way such a tool should work, and we have implemented a proof-
of-concept that contains some real improvements over the previously available
work. We are highly con�dent that our tool indeed �ts the requirements for an
annotation assistant: it really does help the developer in adding nullness anno-
tations to an existing, unannotated codebase faster and more easily � without
getting in the way.

While an improvement over existing work is certainly good news, the real
question remains: is it good enough? Does an annotation assistant make the
work not just easier, but so easy that the cost of annotating software will be
clearly outweighed by the bene�ts? The Promedico ASP case study shows that,
for large codebases, adding annotations is still a daunting task. Improvements
the checker and the additional propagation techniques that can be built into a
tool like INAPA might eventually tip the balance, also for larger projects.

7.1 Further Research

7.1.1 Interoperability of nullness analysis tools

Currently, all tools that support nullness annotations use di�erent ways to rep-
resent those annotations. Intuïtively, these are di�erent ways to convey much
the same information � that is, nullness information.

Interoperability of nullness analysis tools, by way of adopting a common rep-
resentation of nullness attributes, would probably aid the adoptance of nullness
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checkers in general. If a common format could be de�ned, it would get much
more attractive for libraries to produce and distribute formal nullness speci�ca-
tions for their library, as those would not be bound to a particular tool anymore.
Eclipse is known to have delayed its support for nullness attributes because of
the lack of standardisation in this area.

The addition of user-de�nable annotations into the Java 5 language is a big
step forward: all Java nullness analysis tools are currently considering moving
to this format. However, this only solves the di�erence in presentation, not
the di�erences in semantics. These can be subtle: an obvious example is the
di�erence between object invariants and nullity modi�ers in ESC/Java.

We believe interoperability of nullness analysis tools would be bene�cial to
all, but there are some fundamental issues that still have to be resolved.

7.1.2 Heuristic type inference

We consider the heuristic variation on type inference we described in section
4.2.2.2 a promising approach.

7.1.3 User Interface improvements

This thesis has mainly focused on automatically adding annotations, in order
to reduce the work required to start using a tool like ESC/Java on an existing
project.

Besides reducing the amount of work that has to be done, we can also make
the job itself easier. One of the problems with annotating existing code is that
it is often hard to see which references in�uence the nullness properties of a
given element.

This could be made much easier with some user interface extensions visual-
izing this aspect of the code. For instance, a list could be constructed showing
all assignments to a given element. Those could for example be colour-coded
with the nullness of their right hand sides, and allow for easy navigation to the
locations of the assignments. Doing this recursively might yield a tree giving a
map of the ways an element is used.

It would be interesting to see some research into code visualisation techniques
for these and other properties.

7.1.4 Non-null by default

There is currently an ongoing debate on considering references to be non-null by
default in JML. Throughout this thesis we have followed the traditional point
of view that references are nullable by default, like they are in vanilla Java.

However, research has shown that in most cases a declaration is actually
expected to be non-null[3], and following that reasoning current versions of
JML consider references to be non-nullable unless they are annotated with a
/*@nullable*/ annotation, or the class or interface containing the annotation
has been annotated as nullable_by_default.

This has been a controversial, recent change, and most tools currently still
treat all classes as nullable_by_default. Which approach is suitable in which
cases remains to be seen. For this reason we have considered the traditional
nullable-by-default interpretation for this thesis.
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Ei�el has also chosen non-null as the default, but unlike JML (which forbids

mixing nullable and non_null annotations) it explicitly encourages using both
nullable- and non-null-annotations (represented as ? and !) annotations and
using a compiler �ag to invert the default for migration purposes.
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Appendix A

Example tool output

In this appendix we show the results of various tools on some simple Java source
�les, to give some intuition of the type of output they provide.

A.1 Clean Java �les

A.1.1 External.java

class External
{
public static Object staticMethod (External param) {
return param;

}

public Object method (External param) {
return param;

}
} 10

A.1.2 Test1.java

class WordStat {
WordStat (String s) {
}

void increaseCount () {
}

}

class Dictionary {
WordStat �ndStats (String word) { 10
return null;

}

void addStat (WordStat stat) {
}
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}

class WordCounter {
void addWord (Dictionary dict, String word)
{ 20
WordStat s = dict.�ndStats (word);
if (s == null)
{
WordStat new stat = new WordStat (word);
dict.addStat (new stat);

} else {
s.increaseCount();

}
} 30

}

class Test1 {
public static void main (String[ ] args) {
Dictionary mydict = null;
WordCounter C = new WordCounter ();
C.addWord (mydict, "Henk");

}
}

A.1.3 Test2.java

public class Test2 extends External
{
public void method (Object param)
{
System.out.println(param.toString());

}
}

A.1.4 Test3.java

class Test3
{
void Member ()
{
Object var = External.staticMethod (new External());
System.out.println(var.toString());
External var2 = new External();
System.out.println(var2.method(new External()).toString());

} 10
}
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A.1.5 Test4.java

class Test4
{
void member (Object param)
{
System.out.println (param.toString());

}
}

A.2 JastAdd inferrer results

A.2.1 External.java

class External
{
public static Object staticMethod (External param) {
return param;

}

public Object method (External param) {
return param;

}
} 10

A.2.2 Test1.java

class WordStat {
WordStat(String s){
}
void increaseCount() {
}

}

class Dictionary {
WordStat �ndStats(String word) {
return null; 10

}
void addStat(/*@non null*/WordStat stat) {
}
Dictionary(){
}

}

class WordCounter {
void addWord(Dictionary dict, String word) {
WordStat s = dict.�ndStats(word); 20
if(s == null) {
/*@non null*/WordStat new stat = new WordStat(word);
dict.addStat(new stat);
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}
else {
s.increaseCount();

}
}
WordCounter(){
} 30

}

class Test1 {
public static void main(/*@non null*/java.lang.String[ ] args) {
Dictionary mydict = null;
/*@non null*/WordCounter C = new WordCounter();
C.addWord(mydict, "Henk");

}
Test1(){
} 40

}

class External {
/*@non null*/ public static Object staticMethod(/*@non null*/External param) {

return param;
}

/*@non null*/ public Object method(/*@non null*/External param) {
return param;

}
External(){ 50
}

}

A.2.3 Test2.java

class External {
/*@non null*/ public static Object staticMethod(/*@non null*/External param) {

return param;
}

/*@non null*/ public Object method(/*@non null*/External param) {
return param;

}
External(){
}

} 10

public class Test2 extends External {
public void method(/*@non null*/Object param) {
System.out.println(param.toString());

}
public Test2(){
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}

}

20

A.2.4 Test3.java

class External {
/*@non null*/ public static Object staticMethod(/*@non null*/External param) {

return param;
}

/*@non null*/ public Object method(/*@non null*/External param) {
return param;

}
External(){
}

} 10

class Test3 {
void Member() {
/*@non null*/Object var = External.staticMethod(new External());
System.out.println(var.toString());
/*@non null*/External var2 = new External();
System.out.println(var2.method(new External()).toString());

}
Test3(){
} 20

}

A.2.5 Test4.java

class Test4 {
void member(/*@non null*/Object param) {
System.out.println(param.toString());

}
Test4(){
}

}

class External {
/*@non null*/ public static Object staticMethod(/*@non null*/External param) { 10

return param;
}

/*@non null*/ public Object method(/*@non null*/External param) {
return param;

}
External(){
}
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}

20

A.3 Houdini results

A.3.1 External.java

class External
{
public static Object staticMethod (External param) {
return param;

}

public Object method (External param) {
return param;

}
} 10

A.3.2 Test1.java

class WordStat {
/*@(houdini:constructor) requires false; */
WordStat (/*@(houdini:parameter:constructor) non null */ String s) {
}

/*@(houdini:instance method) */�nal/* */
/*@(houdini:instance method) requires false; */
void increaseCount () {
}

} 10

class Dictionary {
/*@(houdini:defaultconstructor) */public Dictionary(){}/* Explicating default constructor here */
/*@(houdini:instance method) */�nal/* */
/*@(houdini:instance method) ensures \result != null; */
/*@(houdini:instance method) requires false; */
/*@(houdini:instance method) ensures \fresh(\result); */
/*@(houdini:instance method) ensures word == null ==> \result != null; */
/*@(houdini:instance method) ensures word != null ==> \result != null; */
WordStat �ndStats (/*@(houdini:parameter:instance method) non null */ String word) { 20
return null;

}

/*@(houdini:instance method) */�nal/* */
/*@(houdini:instance method) requires false; */
void addStat (/*@(houdini:parameter:instance method) non null */ WordStat stat) {
}

}
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class WordCounter { 30
/*@(houdini:defaultconstructor) */public WordCounter(){}/* Explicating default constructor here */
/*@(houdini:instance method) */�nal/* */
/*@(houdini:instance method) requires false; */
void addWord (/*@(houdini:parameter:instance method) non null */ Dictionary dict, /*@(houdini:parameter:instance method) non null */ String word)
{
WordStat s = dict.�ndStats (word);
if (s == null)
{
WordStat new stat = new WordStat (word); 40
dict.addStat (new stat);

} else {
s.increaseCount();

}
}

}

class Test1 {
/*@(houdini:defaultconstructor) */public Test1(){}/* Explicating default constructor here */
/*@(houdini:parameter:static method) requires \nonnullelements(args); */ 50
public static void main (String[ ] args) {
Dictionary mydict = null;
WordCounter C = new WordCounter ();
C.addWord (mydict, "Henk");

}
}

A.3.3 Test2.java

public class Test2 extends External
{
/*@(houdini:defaultconstructor) */public Test2(){}/* Explicating default constructor here */
/*@(houdini:instance method) */�nal/* */
/*@(houdini:instance method) requires false; */
public void method (/*@(houdini:parameter:instance method) non null */ Object param)
{
System.out.println(param.toString());

}
} 10

A.3.4 Test3.java

class Test3
{
/*@(houdini:defaultconstructor) */public Test3(){}/* Explicating default constructor here */
/*@(houdini:instance method) */�nal/* */
/*@(houdini:instance method) requires false; */
void Member ()
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{
Object var = External.staticMethod (new External());
System.out.println(var.toString());

10
External var2 = new External();
System.out.println(var2.method(new External()).toString());

}
}

A.3.5 Test4.java

class Test4
{
/*@(houdini:defaultconstructor) */public Test4(){}/* Explicating default constructor here */
/*@(houdini:instance method) */�nal/* */
/*@(houdini:instance method) requires false; */
void member (/*@(houdini:parameter:instance method) non null */ Object param)
{
System.out.println (param.toString());

}
} 10

A.4 CANAPA results

A.4.1 External.java

class External
{
public static /*CANAPA*//*@ non null @*/Object staticMethod (External param) {
return param;

}

public /*CANAPA*//*@ non null @*/Object method (External param) {
return param;

}
} 10

A.4.2 Test1.java

class WordStat {
WordStat (String s) {
}

void increaseCount () {
}

}

class Dictionary {
WordStat �ndStats (String word) { 10
return null;



A.4. CANAPA RESULTS 77
}

void addStat (WordStat stat) {
}

}

class WordCounter {
void addWord (/*CANAPA*//*@ non null @*/Dictionary dict, String word)
{ 20
WordStat s = dict.�ndStats (word);
if (s == null)
{
WordStat new stat = new WordStat (word);
dict.addStat (new stat);

} else {
s.increaseCount();

}
} 30

}

class Test1 {
public static void main (String[ ] args) {
Dictionary mydict = null;
WordCounter C = new WordCounter ();
C.addWord (mydict, "Henk");

}
}

A.4.3 Test2.java

public class Test2 extends External
{
public void method (/*CANAPA*//*@ non null @*/Object param)
{
System.out.println(param.toString());

}
}

A.4.4 Test3.java

class Test3
{
void Member ()
{
/*CANAPA*//*@ non null @*/Object var = External.staticMethod (new External());
System.out.println(var.toString());
External var2 = new External();
System.out.println(var2.method(new External()).toString());
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} 10
}

A.4.5 Test4.java

class Test4
{
void member (/*CANAPA*//*@ non null @*/Object param)
{
System.out.println (param.toString());

}
}
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