
RADBOUD UNIVERSITY NIJMEGEN

Master in Computer Science

SEEK AND DEOBFUSCATE

Uncovering JavaScript

Master’s Thesis no 587

Alejandro Pardo López

Supervisors:

Marko Van Eekelen

Pieter Claassen

Digital Security Section

Nijmegen 2008





Contents

1 Introduction 2

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Introduction to BROWSE, the Web analyser . . . . . . . 3

1.1.2 Shortcomings of BROWSE . . . . . . . . . . . . . . . . . 3

1.1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Why is JavaScript so important when talking about security? . . 4

1.2.1 Examples of JavaScript misuse research . . . . . . . . . . 5

1.2.2 OK, JavaScript can be really dangerous. Then, why not
disabling it? . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Research questions 12

2.1 Main goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 JavaScript language Research 14

3.1 JavaScript code location . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 script tags . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.2 src attribute . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.3 HTML events . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Introduction to JavaScript code compression and obfuscation . . 16

3.2.1 JavaScript compression . . . . . . . . . . . . . . . . . . . 16

3.2.2 JavaScript obfuscation . . . . . . . . . . . . . . . . . . . . 18

3.2.3 eval, escape and unescape top-level functions . . . . . . . 19

3.3 Introduction to DOM . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 document.write function . . . . . . . . . . . . . . . . . . . 20

iii



4 Proposed hypothesis for extending the BROWSE tool 21

4.1 Which is the role of the JavaScript interpreter once integrated in
the BROWSE tool? . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Procedure to carry out the hypothesis . . . . . . . . . . . . . . . 23

5 Searching a suitable JavaScript interpreter 25

5.1 Introduction to BROWSE module . . . . . . . . . . . . . . . . . 25

5.2 Desired features of the JavaScript interpreter . . . . . . . . . . . 26

5.3 Motivations for the choice of Rhino, the open source JavaScript
interpreter based on Java . . . . . . . . . . . . . . . . . . . . . . 26

6 Extending the interpreter’s functionality 28

6.1 Why adding DOM compatibility to the interpreter? . . . . . . . 28

6.1.1 Rhino DOM compatibility . . . . . . . . . . . . . . . . . . 28

6.2 Gathering all the JavaScript code in Rhino . . . . . . . . . . . . 31

6.2.1 HTML script tags . . . . . . . . . . . . . . . . . . . . . . 31

6.2.2 The src HTML script tag attribute . . . . . . . . . . . . . 31

6.2.3 HTML events . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2.4 The document.write function . . . . . . . . . . . . . . . . 33

6.3 Processing the JavaScript code . . . . . . . . . . . . . . . . . . . 35

6.3.1 Executing JavaScript . . . . . . . . . . . . . . . . . . . . . 35

6.3.2 Breaking through JavaScript code obfuscation and com-
pression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.4 Integrating Rhino in Browse . . . . . . . . . . . . . . . . . . . . . 37

6.4.1 Communication between BROWSE and Rhino . . . . . . 37

7 Evaluation 40

7.1 How to evaluate the improvement . . . . . . . . . . . . . . . . . . 40

7.1.1 Test plan . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.2 Testing BROWSE and Rhino against the sets of webpages . . . . 41

7.2.1 Set 1: Non-real HTML pages . . . . . . . . . . . . . . . . 41

7.2.2 Set 2: Concrete real JavaScript examples . . . . . . . . . 48

7.2.3 Set 3: Real webpages . . . . . . . . . . . . . . . . . . . . . 51



7.3 Evaluation and analysis of results . . . . . . . . . . . . . . . . . . 55

7.3.1 Evaluation of the first set of HTML pages . . . . . . . . . 55

7.3.2 Evaluation of the second set of HTML pages . . . . . . . 58

7.3.3 Evaluation of the third set of HTML pages . . . . . . . . 58

7.4 Limitations of the project . . . . . . . . . . . . . . . . . . . . . . 59

7.4.1 User interaction . . . . . . . . . . . . . . . . . . . . . . . 59

7.4.2 DOM and browser features and technologies . . . . . . . . 59

7.4.3 Parser - Interpreter interaction . . . . . . . . . . . . . . . 60

7.5 Advantages of the project . . . . . . . . . . . . . . . . . . . . . . 60

7.5.1 Sandbox environment . . . . . . . . . . . . . . . . . . . . 60

7.5.2 Code execution monitoring . . . . . . . . . . . . . . . . . 60

7.5.3 Specific JavaScript execution, deobfuscation and analysis 61

7.5.4 Easy interpreter extension . . . . . . . . . . . . . . . . . . 61

7.5.5 Real time analysis . . . . . . . . . . . . . . . . . . . . . . 61

7.6 Alternative proposals . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.6.1 SpiderMonkey combined with Mozilla Browser Engine . . 62

7.6.2 Sandboxing using virtual machines . . . . . . . . . . . . . 62

7.6.3 Lobo, the browser written in Java . . . . . . . . . . . . . 63

8 Future work 64

9 Conclusions 65



List of Figures

1.1 Popup flooding example (Image extracted from www.wikipedia.org) 6

1.2 DDoS attack architecture . . . . . . . . . . . . . . . . . . . . . . 7

1.3 How XSS attacks work . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Example of a simple JavaScript endless loop . . . . . . . . . . . . 10

1.5 Example of a JavaScript endless loop based on function calls . . 11

3.1 Example of JavaScript code located in script tags . . . . . . . . . 14

3.2 Example of JavaScript code located in an external file using the
src property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Example of JavaScript compression . . . . . . . . . . . . . . . . . 17

3.4 Example of unescape usage . . . . . . . . . . . . . . . . . . . . . 19

3.5 Example of the document.write function . . . . . . . . . . . . . . 20

6.1 Extract from the extension’s code . . . . . . . . . . . . . . . . . . 29

6.2 Java Document Object internal representation, including src at-
tribute processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.3 Example of how Rhino keeps track of appended code . . . . . . . 34

6.4 Example of JavaScript compression . . . . . . . . . . . . . . . . . 36

6.5 Example of JavaScript decompression using the Rhino print state-
ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.6 Source code of top-level function eval . . . . . . . . . . . . . . . 37

6.7 BROWSE - RHINO interaction activity diagram . . . . . . . . . 39

7.1 HTML code of example1.html . . . . . . . . . . . . . . . . . . . . 42

7.2 HTML code of srcExample1.js . . . . . . . . . . . . . . . . . . . 42

vi



7.3 HTML code of srcExample1 after having been executed by Rhino.js 44

7.4 HTML code of example2.html, including obfuscated and com-
pressed JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.5 Result HTML code from example2.html execution . . . . . . . . 46

7.6 example3.html HTML code . . . . . . . . . . . . . . . . . . . . . 47

7.7 example3.html HTML code . . . . . . . . . . . . . . . . . . . . . 49

7.8 Part of the deobfuscated code from http://www.keithjarrett.it . . 50

7.9 Deobfuscated real attack code from example2 . . . . . . . . . . . 52

7.10 Original obfuscated JavaScript code from real example 3 . . . . . 53

7.11 First layer of obfuscated JavaScript code from real example 3 . . 54

7.12 Script execution results for the well-known pages set . . . . . . . 56

7.13 Script execution results for the well-known pages set . . . . . . . 57



Abstract

Internet has become one of the major issues regarding to computer security.
One of the most exploited Web technologies is JavaScript, a scripting lan-
guage embedded in HTML documents. A tool called BROWSE was recently
developed to inspect webpages’ code and find malicious patterns. It is a new
approach because webpages are analysed in real-time. Nevertheless, BROWSE
is currently limited. This project is an extension to such tool, focusing
on the JavaScript processing.

The JavaScript processing consists of two actions: Seeking and deobfuscating.
That is, searching for all the JavaScript code and processing and deobfuscating
it, in order to uncover possible hidden attacks. After an initial research about
this language was done, a JavaScript interpreter was added to the tool to gather,
execute and process the JavaScript code and return a useful output to BROWSE
so to find the malicious patterns. The interpreter was modified, including its
source code, so to implement this functionality. Besides, additional features
have been included in it, as for example support for the DOM(Document Object
Model), an HTML parser and an XPath search engine.

Finally, the extension was tested against several sets of webpages. The
results were really positive, since real JavaScript obfuscated attacks were un-
covered. We showed that we could cover many pages. This can be improved in
the future by incorporating more parts of the DOM into the interpreter.



Acknowledgements

First, I would like to thank my supervisors, Marko Van Eekelen and Pieter
Claassen, for the time they dedicated to me, guiding me through the complex
process of doing a Master Thesis. What is more, Vinesh Kali, my Master Thesis
mate, unselfishly offered his support during all this time in the Netherlands.
Thanks also to my faculty mates.

I dedicate this thesis to my family for the incredible effort they all made. I
want to do a special mention to my parents, because they made all this possible.
Their eternal will to help me cannot be paid back with anything. Maria, my
sister, also encouraged me in difficult moments, illuminating them with her
smile.

Finally, thanks to my friends, both the ones living in Spain and the ones I
met in this Erasmus period. I feel really fortunate of having met all of them.
Thanks as well to the people participating in the Capoeira course, in special to
Maria.

1



Chapter 1

Introduction

1.1 Background

Nowadays advances in computer and communication technologies have made
possible a public access to the Internet. It has become very popular and not
only for searching information, but also for on-line shopping, making bank trans-
actions, etc...

At the beginning the Internet consisted of few static HTML web pages, but
as time went by this tendency changed and now we have dynamic HTML pages
that allow developers to implement better Web applications. However, this huge
popularity increase of the Internet has discovered a new drawback that is one
of its major issues: Security.

The possibility of creating dynamic web pages allows adding dynamic be-
haviour, which can be applied not only for developing better on-line applications,
but also for attacking systems.

One of the major advances in HTML is the definition of a language called
JavaScript, also known as the ECMAScript standard[47]. This language allows
the developer to add dynamic behaviour to web applications, so to increase
their functionality. For that reason it has become really popular and nowadays
most of Web pages include some JavaScript[1]. However, bad intentioned users
can use this language so to attack other systems. Hence JavaScript is one of
the major issues when talking about security. Some research about this
affirmation is done in section 1.2 of this document, including some examples as
well.

What is more, currently there is a wide range of antivirus tools that scan
the user’s computer so to detect malicious programs in its memory. But most of
them do not scan webpages so to detect bad code as well. That is also another
reason why the Web has become the most popular way of attacking systems.

This issue inspired the development of a tool that would carry out this job:
analysing web pages so to determine whether they are harmful or

2



1. Introduction

not.

1.1.1 Introduction to BROWSE, the Web analyser

The project developed so to analyse the Web was called BROWSE[14], and it
was conceived to detect potential malicious code embedded in web pages.

The original author of the project is Pieter Classsen, who initiated it.
However, it is also mandatory to mention Vinesh Kali, the master student
that took this project so to do his Master Thesis[1] and carried on the work
initiated by Pieter. All the work shown in this paper is based on theirs.

The idea behind BROWSE is searching specific patterns that point out that
the risk of visiting the current analysed web page is high for the visitor’s com-
puter.

So, the main strategy the tool uses is retrieving and processing the code of
specified web pages, trying to find eventually signatures that confirm malicious
code was found. Each time a signature is matched, the risk indicator increases,
and it will we logged as a result of the analysis.

The tool is divided in several modules that work together but each one has
its own specific functionality. This modularity ensures that good maintenance
and development are implicit in the project. For example, there is one module
just for signature matching, another one for the URL fetcher, another for results
logs, etc...

1.1.2 Shortcomings of BROWSE

The idea behind the BROWSE project is really interesting regarding to the
point of view of security. It tries to search malicious code in a scope that was
not traditionally covered. However, some limitations of the current version of
BROWSE make it still unable to achieve its goal: finding malicious code or
patterns in webpages. These limitations can be grouped in two main categories:

JavaScript

As already explained, JavaScript is a really important issue when talking about
security. Most of the risks present in web pages are due to JavaScript code,
therefore it is crucial for BROWSE project.

Security threats come from its dynamic behaviour, rather than from plain
HTML code. Unfortunately, the current version of BROWSE only performs
a static analysis of the web page’s code, missing as a consequence the chance
of analysing all the possible executed code and therefore not carrying out a
trustworthy analysis.

One of the limitations comes from the different possibilities of locating
JavaScript code. It is usually embedded in the HTML page, but that is not the

3



1. Introduction

only place to insert it. These JavaScript programs are known just as scripts.
In the BROWSE version from which this project started, not all the JavaScript
code was properly gathered.

Besides, it is not so simple to retrieve the code and try to match signatures.
It can be obfuscated or compressed, preventing the tool from finding attack
patterns. What is more, JavaScript can also add code dynamically to the HTML
document. These situations are not properly covered in the tool.

The signature matcher

Human imagination is extremely powerful, which means a lot of different ways
can be used to create malicious code. That is why the number of signatures to
detect can be really high and complex. Sometimes the tool will not even be sure
an attack pattern is present in the code, so then it has to know with intuition
that such code is potentially dangerous.

But there is also an important drawback of using signatures, and it is the
natural evolution of attacks. When attacks are discovered solutions are found so
to block them. There is always a time interval between the moment the attack
is performed and when it is acknowledged and the solution is available. This
interval is critical since in the meanwhile systems are unprotected and the risk
is really high. In addition, new forms of attack will be developed as solutions
for former ones are released, which means that the signature database should
be always kept updated so to keep as close as possible to the emerging range of
possible attacks. This is a general problem of signature-based tools([4] - section
3.9).

1.1.3 Conclusion

As a conclusion, BROWSE was conceived to detect malicious coded embedded
in Web pages. It analyses the HTML code and signature matches it against a
set of signatures. After this process, a log is returned as output with the results.

However, JavaScript possibilities make BROWSE be limited, since it is not
able to gather all the JavaScript actually executed in a browser, and if code is
obfuscated or compressed signatures will just not match.

This project focuses on the first issue: JavaScript.

1.2 Why is JavaScript so important when talking
about security?

In this section some types of common JavaScript attacks will be described, so
to show how dangerous it can be and also make the reader of this paper aware
of how important this language is.

4



1. Introduction

These examples are also an introduction to the following section(3), where
a deeper research about the language is done .

To sum up, JavaScript is an add-on to HTML code so to enhance static web
pages. JavaScript programs are embedded in HTML documents. When the
HTML page is retrieved by a web browser, it is rendered, and if the browser
finds a JavaScript program (usually known as script) it executes the code in
its internal interpreter, and shows the final web page to the user. As it can be
seen, scripts are executed in the client machine, and not in the server side.

As explained in section 2.1 of [7], JavaScript scripts can have restricted access
to the client machine. It can be obtained by using the DOM (Document Object
Model, see section 3.3) and browser features. This feature can derive in
severe security issues.

1.2.1 Examples of JavaScript misuse research

In order to realise how JavaScript can affect security, some common malicious
uses of JavaScript are described in this section. JavaScript can be the main tool
so to carry out them, or just a secondary one, but it is present in all somehow.

User’s computer environment cataloguing

JavaScript can have restricted access to some information related to the user’s
computer. One of the most remarkable information that can be seen is the
browser used and version, as well as the operating system.

Since browsers can have security flaws, and although some patches appear
so to fix them, there can be still a lot of out-of-date browsers. Attackers can
use JavaScript so to catalog systematically the user’s computer environment, in
order to create a list of possible vulnerabilities and therefore apply their attacks
based on these lists([11] - section 5.1, [4] - section 4.5).

Popups

JavaScript can handle windows in the client browser. For example, it can resize
the window itself, or change its position. One of the most popular uses with
windows is using popups. A popup window is a new window created by the
browser. JavaScript can set the size, position, and the HTML source of it. This
technique has been largely used for advertisement or other purposes, flooding
the user’s screen with lots of popups containing unwanted information [45].

This motivated the creation of several tools to avoid this misuse of popups,
such as [24], [39] and many more.

5



1. Introduction

Figure 1.1: Popup flooding example (Image extracted from www.wikipedia.org)

DoS and DDos

A DoS (Denial-of-Service) attack consists of launching a significant number of
requests from a single computer to a specific victim so to overload it and there-
fore deny its services to the rest of users, since it will not be able to respond
to all the requests. A DDoS attack works as a normal DoS, but sending re-
quests from a distributed network. These attacks are very popular and really
powerful([3], [2] - section 2.1).

JavaScript can be used for sending those requests to the servers, creating
the desired overload in the victim machine ([5] - section 2). Figure 1.2 shows a
typical DDoS attack.

Phishing, Pharming and Web Spoofing

The Phishing ([13],[5] - section 1.1) technique is based on identity theft so to
try to obtain confidential data from the user. The main technique to carry out
this scam is email or instant messaging. The idea is to try to trick the user and
make him or her believe that has received an email or message from a trusted
source, like a bank. However, they can be fakes so to cheat users and therefore
obtain their confidential data.

An example of phishing is when the user receives an email with images
corresponding to his or her usual bank entity. Besides, the address of the email
can be quite similar to the real one, so he or she can believe it is a trustworthy

6



1. Introduction

Figure 1.2: DDoS attack architecture

sender. Then, the email asks the user to send confidential data so to perform
some routine checks. If the user trusts the email, and replies it, the attackers
can obtain critical data, such as the credit card number and PIN, for example.

Pharming extends the Phishing ([13],[5]) technique, and consists in misdi-
recting users to fraudulent sites or proxy servers, typically through DNS hijack-
ing or poisoning. Therefore, the user can believe he or she is visiting trustworthy
webpages and that the sent confidential data will not be used for bad purposes.

JavaScript is used for Phishing and Pharming techniques, as shown in section
4 of [5] and in [44] - Web forgery section. Basically, it can be used for altering
status information in the browser so to trick the user, do port scanning, or even
to perform domestic router attacks and try to modify their configuration[5].

For instance, if a home router is hacked it can be used to misdirect requests
to another server that inspects the information sent and received from and to
the user, acting as a man in the middle ([9] - appendix D.4). As a consequence,
this malicious server can inspect all the information flow. Another misuse is
combining this exploit with Web Spoofing, so to redirect the user to a fake Web
page.

Related to Pharming examples, there is an interesting and curious descrip-
tion(among several) in [5] that shows a round about way of misusing JavaScript.
The purpose of the authors is to try to determine the model of a user’s home
router. Most routers have a web interface so to configure them. But in order to
access that HTML page it is necessary to authenticate, so it is not possible to
classify the model by the page. What they did is retrieving one image from that
HTML page, which needs no authentication, and then with a JavaScript script
its size was compared against an image-model database and they could achieve
their purpose. As a consequence, depending on the router model attacks can be
applied regarding to its possible vulnerabilities.

Finally, Web spoofing[8] allows an attacker to create a shadow copy of an

7



1. Introduction

entire Web page. In this way, the user believes he or she is visiting the actual
page and can enter some confidential data that the attacker will use on its profit.
This technique uses for example misspelled URLs so to direct the user to the
fraudulent page. For example, www.gogle.com can be a common misspelling
for www.google.com. In order to prevent it companies usually register similar
domain names. JavaScript can also help to carry out this attack, for example
by manipulating information displayed in the browser: the status bar, hiding
the real location bar and replacing it with a fake one that also accepts keyboard
input, etc...

Fortunately, latest versions of popular browsers have developed mechanisms
so to prevent these attacks. JavaScript access to some browser resources, as for
example the status bar, is restricted. But older versions can still have security
bugs. It is really important to keep them updated.

Cross-Site-Scripting

Cross-site scripting (XSS)[6],[1] is an attack against web applications in
which scripting code is injected into the output of an application that is then
sent to a users web browser. In the browser, this scripting code is executed and
used to transfer sensitive data to a third party (i.e., the attacker). Most of the
times this scripting code is JavaScript.

Browsers define the same-origin policy[29] and access control policies, which
restrict JavaScript access to resources. The same-origin policy establishes that
JavaScript can only access another documents’ properties only if they belong
to the same origin(domain). If not, access is blocked and the document is
inaccessible. This prevents unauthorised accesses.

However, this can be circumvented using XSS. The idea so to carry out the
attack is injecting the malicious code in the trusted web application. When
users send their requests to this application, the returned output is now tainted
because the harmful code is injected in it. Therefore, user’s browser executes
the attacker’s code and information related to this application can be easily
accessed, since now the same-origin policy is not infringed (the malicious code
is integrated in the trusted web application’s output). Figure 1.3 shows an
example where users send requests and the malicious code gathers the desired
data to the attacker.

For example, webpages use cookies[42] quite often. These cookies store user’s
information. They can only be manipulated from sources from the same domain,
but if XSS is used then a third party entity can retrieve confidential information
about the attacked user. For instance, if an attacker implements an script
in a malicious website which tries to read cookies that were created by other
webpage(e.g. a bank webpage) so to try to obtain sensitive data, the attempt
will fail. But if such bank site is exploited and malicious code is injected then
its cookies can be read by the attacker.

8



1. Introduction

Figure 1.3: How XSS attacks work

Drive-by Downloads

A Drive-by Download ([11] - Section 5, [4] - section 4) consists basically
in installing malware or malicious software in a client machine when the user
visits a web page. Most of the times this is achieved by exploiting browser
security flaws using JavaScript. This type of downloads can be carried out
in several steps, as proposed in [11] - Section 5.1. In that paper, a popular
Internet Explorer browser exploit is described including the steps so to carry
it out, which of course includes misuse of JavaScript. For example, an iframe
[43] can refer to JavaScript code that instantiates ActiveX Objects [12],[41] so
to gain access to the local hard drive. After some more steps, JavaScript makes
XMLHTTP requests so to retrieve executable files that contain malicious code.
Not all the steps are described here, but it can be seen how JavaScript can help
in performing these kind of attacks.

A very common use of drive-by download is spyware installation on the user’s
machine. There are several tools so to search for this kind of malicious software.
One of the most popular is [31].

Since arbitrary software can be installed in the client machine this
attack is really dangerous.

Third-party widgets/Advertising

As described in [11], third-party widgets consist of embedded links to external
sources. This allows web owners to include features developed by others in their
webpages. One common example of this are visitor counters: just by referencing
them they can be included in webpages.

But, as always, this feature can become an important security hole since
sources from where these small applications are linked can also point to mali-
cious code that eventually will be embedded in the webpage, turning it into a
dangerous site.

9



1. Introduction

The main problem is that most of the times sources cannot be trusted, and
still web developers trust them so to include features in their webs. A nice
example that shows these kind of vulnerabilities is included as well in [11]. It
consists of a counter that was a harmless application since 2002 until 2006, when
its developer modified it so to turn it into a way of infection. Webpages that
used it became harmful. Again, referenced sources should only be trusted ones.

Same happens with advertising, since it works in the same way: in order
to include advertising in a webpage webmasters have to reference the source of
advertisements. The problem comes when an advertisement company supplies
them from another one, and so on, as explained in [11] - section 4.3. Then a
trusted advertisement company can refer to another one that points to a third
one that is not trusted. As a consequence the user has the wrong perception of
adding safe advertisement in the webpage.

The major cause of this vulnerability is not checking if the sources can be
trusted or not, which derives in embedding code that might be harmful.

Endless loops

JavaScript, as many other languages, offers the possibility of creating loops with
specific statements. There is a simple, but effective way of crashing a browser.
It is using endless loops, that is, loops that their breaking condition is never
satisfied, so the code remains executing a loop forever.

This is not desirable for a web application, so this feature has to be taken
into account as well.

These loops can be created by using explicit JavaScript loop statements, or
by other ways, as for example function calls. An example of simple endless loop
is the following:

Figure 1.4: Example of a simple JavaScript endless loop

The example of the above figure uses the JavaScript loop statement while,
and the script would prompt the user a message with text “Hello world” forever.

In the following example an implicit loop is created by using function calls.
This simple way works as follows: one function calls the other one, and vice

10



1. Introduction

versa. As a consequence, these functions will never stop calling themselves,
which means an endless loop.

Figure 1.5: Example of a JavaScript endless loop based on function calls

1.2.2 OK, JavaScript can be really dangerous. Then, why not dis-
abling it?

Almost all browsers include the possibility of deactivating JavaScript interpre-
tation. Therefore this could be the solution to the security problems related to
this technology.

Unfortunately, disabling JavaScript involves losing most of the functional-
ity(if not all) of the webpage, which most of the times is not desirable. Besides,
the web application may not be displayed correctly, what can be really annoying
for common users.

What is more, most of the times those users are not concerned about security
risks, and they just want to see their web page in the best and nicest way possible
and fully functional. For example, any warnings shown by the browser will we
systematically ignored by most of the users, as explained in [38].

Therefore, although a solution is given, this might not be accepted by the
majority of the users, so then it is needed to deal with JavaScript.

11



Chapter 2

Research questions

There are several questions related to JavaScript and BROWSE limitations:

• Since HTML code can be added to the webpage dynamically, and since
JavaScript code can be located in different sources, is it possible to retrieve
all the JavaScript/HTML code so to analyse it?

• BROWSE uses regular expressions so to find attack patterns. If the code
is compressed or obfuscated: how can these patterns be found?

• The previous question leads to the following one: is it feasible to develop
signatures for obfuscated or compressed JavaScript code?

• If it is not feasible, is there any way of getting over JavaScript obfuscation
and therefore obtain readable code for the signature matcher, and as a
consequence develop simpler signatures?

2.1 Main goal

Due to initial limitations of BROWSE, it was decided that it should be extended
to add more functionality and then solve as much of them as possible.

The goal of this project focuses on JavaScript, since it is one of the major
issues in Web security: BROWSE has to analyse JavaScript in a more
efficient way than the current version does.

There are two possibilities described in the research questions, regarding to
JavaScript. Since the code can be hidden, and it can be located in several places,
then:

• Is it better to develop complex signatures so to analyse hidden code di-
rectly?

12



2. Research questions

• Or is it better to process dynamically the code so to obtain a more readable
one?

To answer this questions it is necessary to study with detail the JavaScript
features that affect the goal of this project. In the research section 3 these
possibilities are studied.

13



Chapter 3

JavaScript language Research

This chapter consists of a JavaScript study, focusing in features that are relevant
for the project.

3.1 JavaScript code location

JavaScript code can be located in different sources. All of them should be
inspected so to gather all the code. Each different one is described in this
section.

3.1.1 script tags

Standard HTML defines special tags for inserting JavaScript scripts. These
scripts are located in the HTML page between script tags. An example of a
simple JavaScript script is the following one:

Figure 3.1: Example of JavaScript code located in script tags

14



3. JavaScript language Research

This is the most common way of locating JavaScript code, although it is
not the only one. Regarding to the JavaScript gathering, it is the easiest so to
extract code from it, since it is only needed to locate the beginning and ending
tag and extract the code in between.

3.1.2 src attribute

JavaScript offers the possibility of writing the code in an external file, so it
can be reused in several pages, or several times in the same one, which avoids
rewriting code.

This feature can be used by specifying the src property of script tags. This
property uses as parameter a URL to locate the file. Doing so makes the browser
retrieve the specified JavaScript file from the given URL and execute it.

This is potentially one of the most dangerous aspects of JavaScript due to
the possibility of hiding the code from the HTML source. Since the malicious
code can be stored in an external file (so the code is not embedded in the HTML
document) a static scan of the page will not reveal anything.

Figure 3.2: Example of JavaScript code located in an external file using the src
property

If this code wants to be analysed, the source JavaScript code has to be
retrieved from this file, which involves retrieving the file itself as well. This
functionality complicates the tool.

3.1.3 HTML events

The DOM (Document Object Model) [40] defines HTML events that can be
used for adding dynamism to the HTML document. These events can have
associated JavaScript code that is executed when the event is fired.

Examples of events are:

• onload: Fires when the user agent finishes loading all content within a
document, including window, frames, objects and images

15



3. JavaScript language Research

• onchange: Fires when a control loses the input focus and its value has
been modified since gaining focus

• onmouseover:Fires when the pointing device is moved onto an element

• etc...

The complete reference of events can be found at [23].

These kind of events allow to execute JavaScript in not a certain and deter-
mined moment: it can be executed later than page load. The user cannot notice
that when he or she is browsing some malicious code has just been executed, so
it is more difficult to detect it.

As an example, a function that increases a counter each time the MouseOver
event is fired until some specific value, when some code is executed, makes
JavaScript execution undetermined in time.

Then the execution of code associated to events has to be done so to execute
all JavaScript code present on the page. Besides, executing this code can reveal
that an apparently safe web page is actually harmful in terms of security.

3.2 Introduction to JavaScript code compression and
obfuscation

BROWSE uses signature matching for detecting common attack patterns, or at
least, to find possible malicious code(it may not be clear enough to know it is an
attack, but may indicate the possibility of it). This signature matching is based
on regular expressions: there is a module containing the signature list through
which the analysed code has to pass. If positive matches are found, then the
risk indicator increases.

However, this approach is not so easy, since malicious JavaScript code is
usually obfuscated, or normal code is just compressed.

3.2.1 JavaScript compression

Since JavaScript is embedded in the webpage’s HTML source code, it means that
including many scripts can increase the page size noticeably, involving higher
downloading time. JavaScript code compression techniques where developed in
order to decrease webpages size, by manipulating it. That is the main reason
for their use, but after applying them JavaScript code is no longer readable(in
most of the techniques). The result is the same as if it was obfuscated.

Most of compression techniques use string[20] operations so to compress the
code. A common way of compressing is changing the code itself, and replacing
it with some functions that operate with regular expressions and string opera-
tions, such as replacements. The result of their execution is a string containing

16



3. JavaScript language Research

a valid JavaScript statement. Then, that statement can be executed using the
JavaScript top level function eval[19]. This function allows to execute a valid
JavaScript statement, using a string as argument. It can be seen that com-
pressed code decompresses itself before being executed.

An example of compression is the one in figure 3.3. An arbitrary JavaScript
compressor has been used for this example. There are plenty of them in the
Web. In this example the chosen one is [26].

Figure 3.3: Example of JavaScript compression

After compressing the code, the resulting one consists of the eval function
and some code that will be evaluated. The code passed as parameter to such
function is the original one, but compressed. As it can be seen, it now consists
of several string operations. How compressed code is executed can be described
in the following steps:

• Eval is called, and the compressed code is passed as parameter. This pa-
rameter consists of function calls that operate with characters and return
a string with the original code.

• Since the parameter consists of function calls, these are executed.

• A string containing the original is returned as a result.

• Eval executes the code of the string.

17



3. JavaScript language Research

Note that in this case compressed code is larger than original one, but be-
cause the original one is too small and this certain compressor uses an specific
algorithm thought for larger scripts. Other compressors apply different tech-
niques depending on the original code size so to obtain a reasonable output
size.

Nevertheless, this presents a new a problem for BROWSE, due to the fact
that these techniques make JavaScript code unreadable in a similar way as if it
was obfuscated, so signatures will not work properly in this case.

Hence, the code has to be decompressed so to analyze it, because it is not
possible to affirm that each time it is compressed, it is a sign of malicious code.
Normal users can use compression just for decreasing downloading time of their
web pages.

3.2.2 JavaScript obfuscation

As well as compression, obfuscation techniques also use regular expressions and
string operations so to hide code from analysers. Hence, most of the times
the eval function is called in obfuscated code. It works as in the previous
section 3.2.1, and in this case it can also be affirmed that obfuscated code
deobfuscates itself before being actually executed. The parameter is code
that deobfuscates itself and returns a string with the valid code. Eventually, it
is executed with eval.

However, these techniques are not so easy to break, since users can make
their own deobfuscation functions. Then it is much harder to find an automated
process to break through it.

Complex obfuscation example In order to show how code can be obfuscated
in a complex way, the following example, obtained from [16], will be shown.

Basically, the JavaScript code treated is obfuscated in several layers, most
of them in a similar way as the already examples seen. However, in one
layer, this particular code used a parameter that prevented common de-
obfuscating techniques from success.

It used the arguments.callee property[18]. It returns the function cur-
rently executed. It is used for recursive calls in anonymous JavaScript
functions[17].

The attackers used the toString() method combined with this property
so to obtain the code itself and measured its size in characters. Then,
their own deobfuscating function used this value so to deobfuscate the
code. This involves that any change on the original code will prevent
a proper deobfuscation, because the number of characters will be differ-
ent. A common deobfuscating technique is changing eval for the print
statement, which changes the original code size, so this way prevents code
analysers deobfuscate it using this solution.

18



3. JavaScript language Research

3.2.3 eval, escape and unescape top-level functions

As it has been shown, in the majority of obfuscation or compressing techniques
several functions are usually used. They are explained in detail in this section.

Basically, it was seen that obfuscation and compression techniques manipu-
late the source code by using string operations and regular expressions, leaving it
unreadable but also not executable. This means that the obfuscated code
has mandatory to deobfuscate itself before executing it. Deobfuscating
the code means operating the obfuscated one, and then return the executable
code. Since the obfuscated code is treated as a string, when it deobfuscates
itself it remains as so. The resulting string contains the code to execute, and
it is done using eval. However, not only this function is usually used, but also
escape and unescape.

• eval

The standard top-level eval function allows to execute a string as JavaScript
code. So, in the end, the result of deobfuscating the code is given to this
function that runs it.

Obtaining this code is essential. How this issue is solved is explained in
6.3.2.

• escape and unescape

These functions work in opposite ways. escape encodes a string, so it can
be read on all computers. unescape function decodes a string encoded
with escape.

So, the usual pattern of obfuscating here is encoding the code with escape
and therefore, use unescape to decode it and execute the result. However,
unescape is usually combined with the techniques previously seen, since
the power of escape and unescape is limited. Nevertheless, they can still
hide code so they should be taken into account when trying to deobfuscate
JavaScript.

In the following example the combination of this two functions can be seen.
As explained, code is already obfuscated with escape, but in order to execute
it first has to be deobfuscated. Then, unescape returns a string with the
deobfuscated code and therefore it is executed by eval.

Figure 3.4: Example of unescape usage

All functions documentation can be found at [47].

19



3. JavaScript language Research

3.3 Introduction to DOM

The Document Object Model (DOM) [40] is a platform- and language-independent
standard object model for representing HTML or XML and related formats.

A web browser is not obliged to use DOM in order to render an HTML
document. However, the DOM is required by JavaScript scripts that wish to
inspect or modify a web page dynamically. In other words, the Document Object
Model is the way JavaScript sees its containing HTML page and browser state.

This feature can be a back door in terms of security. Allowing JavaScript
to manipulate the page freely can open the way for attacks. Therefore, it is
important to keep track of DOM possibilities.

3.3.1 document.write function

There is a particular DOM statement that is really important for this project.
It is the document.write function.

Basically, this function allows a JavaScript script to append code to the
HTML page dynamically, so the source code can be modified. It opens a lot of
possibilities to attack a system, directly or indirectly. That is, it can append
directly malicious code or can be used so to write code that will reference the
dangerous one. The possibilities of this function are huge.

In the example of the figure below, this function is used to add an iframe[43](frame
whose source is an HTML file) to the page, that refers to a URL that contains
the malicious code:

Figure 3.5: Example of the document.write function

At first it seems that there is no need to worry much about this function
because in this example the code is readable and an iframe with low height
and width values signature would match. However, this function is usually
obfuscated or hidden in some way. This small example was extracted from
another more complete one, that explains the whole attack[28].

20



Chapter 4

Proposed hypothesis for extending
the BROWSE tool

According to the research information about JavaScript, two main features have
to be sorted out:

• JavaScript code location.

• JavaScript compression and obfuscation.

This two issues can be solved in two different ways of analysing the HTML
source code, which are:

1. Static analysis, which involves developing extremely complex signatures.

2. Dynamic analysis, which involves adding a JavaScript processor.

Static analysis: The advantage of this kind of analysis is that there is no need
of a JavaScript processor. However, it has a really important drawback: in
order to analyse compressed or obfuscated code, signatures for detecting
malicious patterns become really complex, and creating them is now much
more difficult, most of the times even unfeasible.

Besides, retrieving and analysing all JavaScript code not possible in all
cases, since obfuscated/compressed code can hide a reference to JavaScript,
regardless it is an external file, or appended code that includes script tags
or HTML events.

This approach seems quite unfeasible since JavaScript has many possibil-
ities and it can be really hard to get over them with the static analysis.

Dynamic analysis: This kind of analysis makes use of a JavaScript processor,
since it tries to get more readable JavaScript, using decompression and
deobfuscation techniques. Signatures become simpler because code is not
hidden any more, which is an important advantage.

21



4. Proposed hypothesis for extending the BROWSE tool

Gathering of JavaScript is more efficient now, since the code can be re-
trieved as it would be done in a real browser. Besides, although code can
be compressed or obfuscated, it will still be executed, so the JavaScript
code will be always retrieved.

However, the inclusion of a JavaScript processor is now needed, and it has
to be integrated to the tool.

According to the possibilities below, the chosen one for this project is the
second one: Adding a JavaScript processor to the tool. Particularly, the
processor will be a JavaScript interpreter.

The reasons for this choice are:

• The static analysis seems to be unfeasible to achieve the goals proposed.
Using an interpreter allows to perform a dynamic analysis, which is the
most powerful and suitable approach.

• The interpreter allows not only to execute JavaScript, but also to monitor
its execution. This can be really helpful so to analyse some critical
JavaScript/DOM statements and carry out specific actions.

• JavaScript compression/obfuscation techniques leave the code in a very
unreadable way. Therefore, signatures to detect malicious code can be ex-
tremely complex so to detect it(even unfeasible). But using an interpreter
makes possible to return the code to BROWSE in a more readable way,
so the signatures can be much simpler.

• JavaScript code can be retrieved dynamically, which is easier and more
efficient than doing it statically. What is more, in case the code is obfus-
cated, it will still be executed, and if it refers to any other code source, it
will be retrieved in runtime.

So, the hypothesis chosen is to extend BROWSE with a JavaScript
interpreter in order to to achieve the goal of the project. The interpreter
should be able to get over the JavaScript difficulties and to analyse all the code
that would be executed in a real browser when the user visited a web page.

Therefore, with the interpreter add-on BROWSE can retrieve all the JavaScript
code, and also get it in a more readable way for the signature matcher, just by
checking the interpreter output. Hence the interpreter has to return a useful
output for BROWSE.

4.1 Which is the role of the JavaScript interpreter
once integrated in the BROWSE tool?

As explained, the addition of the interpreter is due to the multiple JavaScript
possibilities. The interpreter has a main purpose, which is gather, execute and

22



4. Proposed hypothesis for extending the BROWSE tool

process the JavaScript code and return an useful output to the BROWSE mod-
ule.

So, the interpreter receives an input code, retrieves all the JavaScript code,
executes and monitors it, and then returns the result to the BROWSE module.

In the process the JavaScript code will have been gathered, as well as pro-
cessed so to get over obfuscation and decompression so to make it more readable
to the signature matcher.

However, the interpreter does not carry out any signature matching
or detection of malicious code(but it can still keep record of some important
functions executed). It is not the purpose of this improvement, because that is
the role of the BROWSE tool.

4.2 Procedure to carry out the hypothesis

Since the proposal of this project is adding a JavaScript interpreter, the first
and crucial starting point is choosing one. The choice has to be done regarding
to some requirements: not all JavaScript interpreters are valid for the project.

Once that the interpreter has been chosen, then the following issue appears:
DOM compatibility. JavaScript present in webpages often uses the DOM,
and it will be executed by the interpreter. However, stand-alone interpreters do
not support it. That means that when trying to execute a DOM statement it
will crash and stop execution. As a consequence, there should be some kind of
DOM support so to execute JavaScript properly and therefore return a useful
output for the signature matcher.

Not only the interpreter has to able to execute the JavaScript code, but also
it has to retrieve all the code that would be normally executed in a real browser,
from all possible sources.

Finally, when the interpreter is able to execute and gather all the code with-
out crashing, then it should return something useful to the signature matcher.
Useful in this case means readable.

There are infinite possibilities with JavaScript. These possibilities involve
code obfuscation and compression. Those techniques make code unreadable for
the signature matcher, since it will not recognize any patterns because actual
code will be hidden.

So, the final step is to make the interpreter return processed code that is
readable for the signature matcher.

Then, the described steps are, in a brief summary:

1. Find a suitable interpreter.

2. Add DOM compatibility to it.

23



4. Proposed hypothesis for extending the BROWSE tool

3. Make it capable of retrieving all the JavaScript code.

4. Process code given so to return readable one for the signature matcher.

24



Chapter 5

Searching a suitable JavaScript
interpreter

5.1 Introduction to BROWSE module

Before introducing all the information about the interpreter it is interesting to
take a glance at the initial state of BROWSE.

At first BROWSE was the only main module of the application. It is coded
in Python, and divided as well in several .py files(Python modules). However,
with the inclusion of the JavaScript interpreter it needs to be modified so the
communication between the two main modules is correctly done.

The basic functionality (before adding the JavaScript interpreter) of BROWSE
is described as follows:

1. Read an URL from a URL list defined by user.

2. Get the HTML page from read URL.

3. Extract JavaScript from it.

4. Match it against a set of signatures.

5. If there are more URLs, read next one from list and go back to step 2.

6. Log results.

But after adding the interpreter some steps should be added. Now, the whole
web page is given to the interpreter, and after its processing, the code is given
back so it is signature matched.

So the current the steps are :

1. Read an URL from an URL list defined by user.

25



5. Searching a suitable JavaScript interpreter

2. Get the HTML page from read URL.

3. Call the interpreter and pass the HTML page to it.

4. The interpreter parses the page and processes it.

5. BROWSE reads the output and matches it against a set of signatures.

6. If there are more URLs, read next one from list and go back to step 2.

7. Log results.

5.2 Desired features of the JavaScript interpreter

There are lots of possibilities when choosing a JavaScript interpreter. Some
features have to be taken into account so the right and most suitable interpreter
for the tool is chosen. These are:

• It is mandatory that it is open source, since the project itself is open
source.

• Continuous support is desired, so new features can be added or bugs re-
paired.

• It should be portable, so it is platform independent.

• Additional features that make it more powerful, like possibility of using
external modules or easiness to create add-ons for it.

5.3 Motivations for the choice of Rhino, the open
source JavaScript interpreter based on Java

The chosen JavaScript interpreter for BROWSE project is Rhino. The main
reasons for its choice were:

Open source: The interpreter is an open source project, which is essential
since the BROWSE tool is also open source.

What is more, this feature allows the developers to make any changes in
the source code of the interpreter if any improvement made it necessary,
so to obtain the desired functionality.

Mozilla Project: The interpreter was developed by the Mozilla Project and it
is in continuous development, so new features will be added in the future
as well as possible bugs will be fixed.

Another advantage is that there is complete documentation about the
interpreter available, as well as discussion forums so to ask for any doubts
or suggestions when starting working with the interpreter.

26



5. Searching a suitable JavaScript interpreter

Based on Java: The interpreter is coded in Java. This feature is a really
important advantage, since Java is a really famous programming language
and there is a lot of support and documentation about it. Besides, the
interpreter is totally portable and source code can be modified easily.

However, these are not the most important advantages, but it is that it
is possible to execute Java programs in the interpreter, which
increases notably its power: Java features can be included easily so to
enhance the analysis performed. Actually, this was one of the main reasons
for its definite choice.

The Rhino documentation is held on the Mozilla’s Project web site [35].

27



Chapter 6

Extending the interpreter’s
functionality

After choosing an interpreter, it has to be modified so to carry out a proper anal-
ysis. That is, some additional features have to be added. These are described
in this section.

6.1 Why adding DOM compatibility to the inter-
preter?

Unfortunately DOM[40] is not supported in the standard specification of JavaScript.
That implies that stand-alone JavaScript interpreters are not able to deal with
it. Only web browsers do.

This involves adding DOM compatibility so the interpreter does not crash
when executing JavaScript code, due to the fact that DOM statements are not
recognized. It is widely used (specially in attacks), so support has to be included.
Several possibilities can be chosen as a possible solution:

• Develop an external module that adds the functionality to the interpreter.

• Find another interpreter that includes a browser environment, like for
example SpiderMonkey combined with Mozilla engine.

• Find an already developed patch for the interpreter.

6.1.1 Rhino DOM compatibility

After some research an external extension specifically designed for Rhino was
found. It was coded in JavaScript, so it was easier to include it in the interpreter.

28



6. Extending the interpreter’s functionality

Figure 6.1: Extract from the extension’s code

It was developed by a Mozilla’s Project member under MIT License. See [48]
for more details.

This extension uses Java to parse an HTML page and create the necessary
variables like window, document, navigator, etc... so to have a basic browser
environment. It provides access to the HTML page elements, which is really
important for the interpreter so to be able to get and analyse JavaScript and
some more elements, like events. Nevertheless, some more features needed to
be still added, like the document.write function. All the code is included in
a file that can be easily loaded by the interpreter, just by using the command
load(file.js). Figure 6.1 shows part of the code.

Unfortunately, this extension had an important limitation: The parser used
for accessing the HTML page was really limited: it could not deal properly
with real-life examples that had non well-formed HTML code. That was an
important drawback.

As a consequence a new issue appears: should the whole HTML page be
given to the interpreter or just the JavaScript code embedded in a dummy
HTML page? In the end the whole HTML page will be given. The reason for
this is that not only scripts have to be accessed, but also some other elements,
like events. What is more, document.write might append code that would
have no sense if the whole HTML page is not present.

29



6. Extending the interpreter’s functionality

So, the parser limitations described above forced to search for a solution:

• Decide not to use this extension and try to look for another type of DOM
compatibility.

• Find another parser which is more powerful than the current one.

Java HTML parser

In order to keep using the extension, and to integrate the HTML parser in it, two
possibilities were given: Search for a parser written in JavaScript, or another
one written in Java.

Since Rhino makes possible the use of Java, and it is more powerful and
popular than JavaScript, the option of using a Java parser was much more
interesting. Then, some open source Java HTML parsers where tried. Most of
them had also some limitations, but one was really interesting: the Mozilla
Java HTML parser [25].

The Mozilla Java HTML Parser is a Java package that enables to parse
HTML pages into a Java Document object. The parser is a wrapper around
Mozilla’s HTML Parser, thus giving the user a browser-quality HTML parser.
It uses XPCOM objects, which are the implementation of objects in Mozilla’s
browser (also in Firefox). This parser turned out to be the most powerful of the
whole set tried, so eventually it was included in the extension.

The reason for keeping the external extension written in JavaScript is that
most of the needed features were already coded there. Besides, some helper
methods are also included. So, the idea is to parse the HTML page with the new
parser but still use the extension.

Integrating the parser with the extension is not a complex task. First, the
extension is initialized with a dummy HTML page, so to initialize all variables.
Then, the real HTML page is parsed and the returned Java Document object is
assigned to the global variable document that the extension uses (which is also
a Java Document). Hence, all variables and methods are available but regarding
to the new HTML page.

Nevertheless, including the Java Mozilla’s HTML parser needs specific set up
configuration so to be able to run XPCOM objects, and it is not really efficient
in terms of time. But the goal of the interpreter focuses on correct JavaScript
execution, not in the most efficient implementation.

XPath

XPath is a language for finding information in an XML document, that is,
navigating through elements and attributes in it. The complete specification
of XPath can be found at [46]. Hence, XPath can be used as well to navigate
elements in an HTML document. In our case, it is used with the HTML page
currently analysed.

30



6. Extending the interpreter’s functionality

Since Rhino needs to access not only JavaScript, but also DOM events and
src attributes, a mechanism for finding them is needed. One option is using
regular expressions, but XPath is much simpler and powerful to get that infor-
mation, so it is included in the interpreter as well so to find such data.

The XPath search engine gets a Document object as input (the one returned
by the parser), and a string with the specified path to locate.

The standard Java package javax.xml.xpath containing all the implemen-
tation of XPath was included in the interpreter’s environment. As the reader
can notice, the advantage of being able to use Java in the interpreter makes it
really powerful.

6.2 Gathering all the JavaScript code in Rhino

As explained in the JavaScript language research chapter(3), code can be located
in different places. The interpreter has to get all the code and execute it. In
this section it is explained how this process is done.

6.2.1 HTML script tags

The usual location of JavaScript code is between HTML script tags. These
define the beginning and ending of JavaScript code.

Retrieving the code inside is done by using a DOM statement defined in the
fake browser environment: getElementsByTagName(tagName). This function
returns a list with all the elements which name corresponds to the value of the
argument tagName. So, in order to get the script tags, this function is called
passing ”script” as argument. Then, a list containing all the scripts is returned
and they are executed one by one using the top-level function eval.

6.2.2 The src HTML script tag attribute

The HTML src attribute is potentially one of the most dangerous aspects of
JavaScript, since the malicious code can be stored in an external file. In this
case script tags do not contain code inside, but only a reference to an external
JavaScript file. That prevents analysis to fail as the JavaScript code is not in
the main HTML page. A real web browser retrieves that file and executes the
code inside.

Therefore BROWSE needs to get it. Before adding the interpreter to BROWSE
the src attribute was matched with regular expressions and the URL of the ex-
ternal file was added to the URL list, so it was treated as another web page to
analyse, which is not the most efficient way to deal with it.

Since now there is a need to execute the JavaScript code, the external
JavaScript file has to be retrieved in the interpreter and executed with the
rest of the code present in the HTML page.

31



6. Extending the interpreter’s functionality

The idea of how to implement this is as follows:

• Search with XPath for src attributes.

• For each src attribute found, retrieve its referenced external file.

• Replace such src attribute with an empty string.

• Add the code contained in the retrieved file inside the script tags.

• Eventually the script will be executed as a normal one.

In section 7.2.1 an example of how this process works inside the interpreter
is shown.

Since the Java Document object representation consists of a tree composed
of nodes, XPath can be used to find script nodes with src attribute. After re-
trieving this external code, it is appended to the Document object, concretely
to the current script node, as a new text node. Figure 6.2 shows the internal
representation of a Java Document.

Figure 6.2: Java Document Object internal representation, including src at-
tribute processing

6.2.3 HTML events

Since events can have associated JavaScript code that is executed when they
are fired, it has to be processed in the interpreter. But JavaScript interpreters
are not aware of HTML events. Then, their associated code has to be extracted
and executed as normal one.

Accessing events’ code is easy using XPath: It is only necessary to search
for an specific attribute(event). For example, if the onload event wanted to be
obtained, it could be done by specifying the following search criteria: //@onload.
As a result XPath returns all attributes called onload.

32



6. Extending the interpreter’s functionality

Once that the code associated is retrieved, it has to be added at a certain
place in the HTML page so to be executed in the interpreter, and afterwards
given back to BROWSE so to signature match it.

Events’ code will be appended to the end of the page as scripts. Then, their
code will be the last one executed. That is because these events are usually
executed when the page is loaded. For example, it makes no sense to execute
the onclick event code before the JavaScript contained in the HTML page.

6.2.4 The document.write function

This function allows the user to add dynamically HTML code to the
page. When it is executed the code given as argument is written to the HTML
page.

The main issue about this function is that it is possible to write anything:
HTML code, JavaScript code, plain text, etc...So, the new code written has
to go through the whole parsing and analysis process again. This involves not
only extracting the possible new JavaScript code, but also events, src attributes,
etc...So, when this function is called at least once Rhino enters a loop so to go
through the whole process again, but with the written code included in the
page. This introduces iterations in the analysis process.

Implementing document.write is not so simple, since there should be a
record of which code was already appended and which not, due to the iterative
analysis process. This is because Rhino extracts written code, appends it and
re-analyses the whole page again: if there was no record of already written code
it would enter an endless loop because it would rewrite the same code in each
cycle without specifying any condition to stop.

In order to distinguish new code from already written one, the calls to docu-
ment.write are substituted by a dummy function, called dummyWrite. The
function itself does nothing when it is called:it just ignores the arguments passed.
This simple technique prevents the interpreter to execute again the same calls
to document.write. Substituting the calls is made just by using regular ex-
pressions.

However, this is not enough, since calls to this function are not visible in ob-
fuscated or compressed code. Then no replacements can be done since real code
is hidden and regular expressions do not work. The solution is numbering scripts
in order of execution. When a script is executed and uses document.write
function, its associated number is stored in a global array that keeps track of
the scripts that already wrote additional code to the HTML document. Hence,
in future analysis iterations the code is not written again. The process can be
seen in the example below.

33



6. Extending the interpreter’s functionality

Figure 6.3: Example of how Rhino keeps track of appended code

The diagram above represents an arbitrary HTML page analysed. At first
it doesn’t seem reasonable that more than one analysis cycle will be executed,
since it is not normal that the document.write function writes again another
document.write function.

However, if document.write adds a script with a src property, it is more
likely that more calls to document.write are written in that file. Then, Rhino
would append the script with the src property to the HTML page. On next
cycle, it would substitute the property for the code inside the external file, and
when executing it it would find again more calls to document.write.

That is what happens in this example: in the first iteration, a script with
a specified external JavaScript file is written to the HTML document. In the
second iteration, its code is retrieved and executed. It writes another script as
well, therefore this last one will be executed in the last iteration. As it can
be seen in the diagram, scripts number two and three are marked so in future
iterations the same code is not appended again. An example can be found in
section 7.2.1 of this document.

Nevertheless, an important drawback is present in the current implementa-
tion of document.write. Since the web page is parsed and processed after-
wards, the code written is not placed in its real location, but appended at the
end of the document. This can affect the JavaScript execution, since it might
not be located on its original source.

The solution for the flaw above described is execute the JavaScript as the
page is rendered. That involves that Rhino should be able to communicate
with the HTML parser, but unfortunately that is not an easy feature to carry
out in the current implementation, and doing that would be similar to start
developing a real web browser, which is not the goal of this project. Some
alternative proposals are described in 7.6.

34



6. Extending the interpreter’s functionality

6.3 Processing the JavaScript code

In this section all aspects about how the JavaScript code is executed and treated
are explained in detail.

6.3.1 Executing JavaScript

Once that all the JavaScript has been gathered it is added to the webpage as
HTML scripts, so Rhino can easily find and execute them.

As explained in 6.2.1, the scripts are obtained using the getElementsBy-
TagName(tagName) DOM function. Then, a list containing all the scripts is
returned. Finally, each script is executed using the eval top-level function(see
section 3.2.3).

However, not all the JavaScript code is always executed properly in the
interpreter. Some technical limitations prevent it from performing a proper
execution. This issue is discussed in 7.3.3.

6.3.2 Breaking through JavaScript code obfuscation and compression

Compressing and obfuscating techniques make JavaScript code unreadable for
the signature matcher, so creating regular expressions for detecting malicious
patterns is not feasible. Therefore Rhino has to deobfuscate this compressed/ob-
fuscated code. Note that the compressed/obfuscated code will still be
executed in the interpreter without any problem, but the signature
matcher will not be aware of any possible patterns in it. That is the
reason why this code has to be processed so to make it readable for the signature
matcher.

As explained in the research section 3.2, most of the compression and obfus-
cation techniques use the JavaScript top level eval function. It tries to execute
the argument given as valid JavaScript code. Compression and obfuscation
techniques usually use regular expressions and string operations so to obfuscate
code. However, obfuscated code cannot be directly executed in a browser. First,
it has to be deobfuscated. So, obfuscated code most of the times consists of sev-
eral functions that perform string and regular expression operations so to obtain
a final string, which is the real code to be executed. This one is readable for
the signature matcher. Eventually, that string containing the code is executed
using the eval statement.

One very simple way of getting over this situation is using the print state-
ment of the interpreter. What it does is printing the argument passed in the
standard output. Then, just by changing eval for print the readable code will
be displayed. If that printed code is given back to BROWSE it will be able to
signature match it properly.

In the example below compressed JavaScript is decompressed using print
statement. It is the same example used in section 3.2.1:

35



6. Extending the interpreter’s functionality

Figure 6.4: Example of JavaScript compression

As it can be seen compressed code is unreadable for the signature matcher.
Now, the Rhino shell will be used to show how print statement returns readable
code using code above, just by changing eval for it:

Figure 6.5: Example of JavaScript decompression using the Rhino print state-
ment

However, automating this process is not always possible, and sometimes it
has to be done manually, as mentioned in the JavaScript deobfuscation with
Rhino post in PandaLabs Blog[27].

Overwriting eval and unescape top-level functions

The idea shown in the previous example(substituting eval for print) can be
easily carried out, just by using regular expressions. However, it is not so
simple. Nested calls to eval will prevent this approach from success, since only

36



6. Extending the interpreter’s functionality

the first call will be changed, but not the deeper nested ones. What is more, as
seen in 3.2.2, some obfuscating techniques ensure that the original code is not
changed so to get it properly deobfuscated. This prevents code analysers to find
the malicious code examined. This a new issue to solve.

To get over these obstacles, the solution implemented is as follows: eval will
not be changed for print, but it will be changed inside Rhino’s source code, in
its implementation. In this way, eval will work in the same way but will also
print the valid JavaScript given as argument in the output . As a consequence,
no changes in the analysed code need to be done. This is a transparent code
treatment, which is an important advantage to prevent deobfuscation barriers.

Not only the eval function is modified, but also the unescape one. In this
way any argument passed when calling any of these functions will we monitored.

The source code of these functions is located in the NativeGloval.java file of
Rhino’s source code.

Figure 6.6: Source code of top-level function eval

The code inside the red box is the added one. This addition consists of the
source code of the print function and a statistic counter adder, used for statistic
purposes.

Same changes are applied to the unescape function: the argument is printed,
as well as another statistic counter is increased.

6.4 Integrating Rhino in Browse

6.4.1 Communication between BROWSE and Rhino

Since BROWSE was itself a stand-alone application, with the inclusion of Rhino
communication between both has to be defined. The roles are precisely defined:

BROWSE: Retrieve HTML pages specified in a URL list. Then, send them to
the JavaScript interpreter to obtain all code(in the most readable way as

37



6. Extending the interpreter’s functionality

possible) from its output. Signature match the interpreter’s output, and
finally log results.

Rhino: Read the HTML page given by BROWSE. Extract and gather all
JavaScript code, execute and process until all code is retrieved, and de-
compress/deobfuscate it as much as possible. Finally, give it as output for
BROWSE.

Communication process implementation

The implementation of the communication process between BROWSE and Rhino
is as follows: BROWSE is executed and its process keeps alive while Rhino is
invoked on each URL checked, so its execution begins and ends always at the
same point. That is, BROWSE invokes Rhino when it is needed, and waits for
its answer.

Once that Rhino returns its output BROWSE does signature matching on
it, treating it as another URL. Nevertheless, Rhino is no longer called so to
analyse its previous output again (if so it would enter an endless loop).

Data used in the communication process is stored in files that are read by the
two modules when needed: BROWSE writes the HTML code in a file that Rhino
reads when it is executed, and it returns two files as output: One containing all
the gathered code, and another one for capturing print statements results used
for decompressing or deobfuscating code.

The diagram shown in figure 6.7 shows how interaction between BROWSE
and Rhino is made, as well as the activities the interpreter carries out.

38



6. Extending the interpreter’s functionality

Figure 6.7: BROWSE - RHINO interaction activity diagram

39



Chapter 7

Evaluation

7.1 How to evaluate the improvement

After describing how this project was carried out, now it is time to test it so to
determine its positive aspects, reveal possible shortcomings, and eventually, to
conclude if the chosen hypothesis was a good approach to fulfil the objectives
proposed at the beginning of this document. During the evaluation process is
really important to keep in mind the goal of the project, so to focus on aspects
that really matter.

As explained in section 2.1, the objective here is to extend the functional-
ity of the BROWSE tool. Its improvement consisted in adding a JavaScript
interpreter, as described in chapter 4, so to overcome the language obfuscation
and other possibilities (see chapter 3) and try to get a useful output for proper
signature matching.

The ideal parameter so to measure the success of the project would be the
”unreadable input code”/”readable output code” ratio. That shows the
power of Rhino in processing the input code and returning a more readable one
for BROWSE. However, ”readable” is not so simple to define, since the pro-
cess can return half-way results, i.e., the returned code can have been partially
deobfuscated or decompressed, or partially gathered (not all code could be ex-
tracted). Therefore, instead of using a parameter the results will be classified in
three categories: totally successful, partially successful or unsuccessful.

The evaluation of the improvement will be done by testing the tool against
a set of non-real HTML pages, another set containing concrete malicious code
examples and a set of real HTML pages. It will be based on the results returned
by the interpreter when executing the examples proposed.

40



7. Evaluation

7.1.1 Test plan

As explained in previous section, the improvement will be tested against three
sets of HTML pages.

• First, the interpreter will be tested with some fake HTML pages so to
assure its correct operation. That is, check if the tool gathers all the
JavaScript code, executes it properly and deobfuscates it (in case it has
been obfuscated or compressed).

These test pages include different JavaScript code locations as well as
obfuscation and compression techniques so to check if the basic desired
features of the interpreter work properly.

• Secondly, some specific obfuscated JavaScript real attack examples will be
tested so to determine if the interpreter is able to deobfuscate them. These
examples might not be the complete original HTML document, but only
the malicious script.

• Finally, a set of varied real HTML pages (divided in two categories, well-
known companies webpages and crack webpages) will be tested and some
statistic data will be gathered so to evaluate the interpreter’s behaviour
when analysing those pages.

7.2 Testing BROWSE and Rhino against the sets
of webpages

In this section Rhino will be tested against the prepared sets of HTML pages
so to check the expected functionality of the interpreter. Several examples with
different purposes will be tried so to check all the desired features work properly.
The goal of this section is to show the results of the tests. Evaluation of results
is done in the following section (7.3).

7.2.1 Set 1: Non-real HTML pages

Example 1 - Gathering events’ code, executing document.write and
specifying external JavaScript file

In the following example several features of the interpreter are tested at the
same time. These are: capturing events and their associated code, managing
the document.write function and retrieving and executing the JavaScript code
contained in an external file.

The code of the first example web page is the following:

41



7. Evaluation

Figure 7.1: HTML code of example1.html

The code above contains two scripts inside the body of the HTML document.
Both consist of a function declaration, and both of them make use of docu-
ment.write. However, none of them is called inside the script tags. Instead,
the call of one of them is made when the onload event is fired.

When that occurs, the JavaScript code associated is executed. Therefore,
the function writeHTML will be called. It also calls the other function defined,
writeSrc. So, both functions will write code in the HTML document. First,
writeSrc will append a script that refers to an external source. After calling
it, writeHTML will add a paragraph containing some text as well.

After appending the new text to the HTML document, Rhino parses again
the new page and executes the scripts, but with document.write calls replaced
by the dummy function explained before (section 6.2.4) and the scripts marked
so to distinguish if they already appended code or not. Now, the external file
will be retrieved and its code will be added to the page. The JavaScript code
contained in such file is the following:

Figure 7.2: HTML code of srcExample1.js

Once that the file has been retrieved, its content is added to the HTML
document, in the associated script. It is executed as well, and since it consists
of a new call to document.write,more code will be added. However, in this
case it is remarkable the usage of variables values as part of the arguments of
the call. As it can be seen, string objects are combined with the value of the
JavaScript variable str.

Finally, the code appended writes again another script, but in this case a
function call (sum(30,20)) is also given as part of the arguments, so what is
being written is the result of its execution in a new HTML paragraph.

42



7. Evaluation

The final code returned by the interpreter after analysing the HTML docu-
ment is shown in figure 7.3. In the resulting code all the extracted JavaScript
has been added as HTML scripts and executed as well by the interpreter.

Example 2 - Deobfuscating JavaScript

In the previous example the gathering of all the JavaScript was shown. Now, an
example of JavaScript obfuscation and compression will be explained, although
the real examples will be treated in next section(7.2.2).

So, in this test a simple JavaScript script will be obfuscated and compressed,
and eventually executed by the interpreter. The compressor used is [21](This
compressor has several options, the chosen ones make the code actually larger
but quite unreadable, which is the target of this example).

The compression and obfuscation applied in this example are simple: first,
the original code was escaped using the escape function. However, this resulting
code has to be unescaped using the unescape function so to obtain the original
one before trying to execute it. Finally, the code was compressed afterwards.
The tested code is the one in figure 7.4. The result of executing it in the
interpreter is shown in figure 7.5.

This simple but powerful technique allows the interpreter to monitor data
passed to critical functions. By printing the arguments passed to them the
original code can be get easily.

Example 3 - Combining the two examples above

Now, in this final example, both features of the interpreter will be tested at
the same time: JavaScript code gathering and deobfuscating. The original code
used is the same as in example one, but in this test it is hidden. The obfuscation
technique used is described in the following steps:

1. First, double quotes are replaced by another character, in this case ’ !’. The
reason for doing this is for not confusing the interpreter. What is more,
other characters can be also replaced so to hide even more the code(this
replacing tactic is widely used in real life examples).

2. Secondly, the code is escaped. A call to unescape has to be added then
so to obtain the original code when it is executed. The function replace is
also called so to get again the double quotes previously replaced. Finally,
this code is evaluated using eval, so to execute the original code after
deobfuscating it.

3. However, the code can be obfuscated even more, if for example we use the
same compressor as in example two. After applying it, the code it totally
hidden, so to prevent as much as possible any further analysis performed
on it.

43



7. Evaluation

Figure 7.3: HTML code of srcExample1 after having been executed by Rhino.js

44



7. Evaluation

Figure 7.4: HTML code of example2.html, including obfuscated and compressed
JavaScript

45



7. Evaluation

Figure 7.5: Result HTML code from example2.html execution

46



7. Evaluation

Figure 7.6: example3.html HTML code

47



7. Evaluation

After following the previous steps the code remains as in figure 7.6.

So, the result should be the same than in example two, except that now
the interpreter should print deobfuscated JavaScript code. Figure 7.7 shows the
output printed.

The interpreter printed more times some of the information shown in the
picture above, due to several iterations. However, the only matter is to deob-
fuscate the code, and the redundant information returned has been removed
from the figure so to make the results clearer for the reader.

Regarding to figure 7.7, the code inside green boxes is the one located be-
tween the script tags from the HTML document currently analysed (remember
that scripts are executed in the interpreter using eval, so that is why they are
also printed on screen). The first two are obfuscated JavaScript, and the third
one is the result of getting events code, adding the external JavaScript file and
appending a script using document.write, just like in example 1.

Now, when scripts are executed, the eval function that evaluates the com-
pressed code prints its argument (in the figure it is the one on the right of the
orange brackets). The code in blue boxes is the one printed by the function
unescape. This code is the original one but with replaced characters: “ for !.
That is why also a call to replace is included, so to restore the original double
quotes. Finally, eval executes this code and therefore it is printed, showing the
original code in a totally readable way for signature matching.

The returned HTML code is the same as in example 1, except that ob-
fuscated code remains in that state. However, the interpreter printed it
deobfuscated and returned it as an output.

7.2.2 Set 2: Concrete real JavaScript examples

Example 1 - Malicious web page: http://www.keithjarrett.it

In [30] a study about malicious web pages is carried. It is interesting how
the webs are classified in categories and the ranking of malicious web sites
encountered per category. The authors also made a comparison between the
Internet Explorer browser and Mozilla Firefox.

However, what is of interest now is a particular example given as dangerous
web site: http://www.keithjarrett.it

According to the authors, this site includes obfuscated JavaScript code,
among other dangerous capabilities. The obfuscated JavaScript code found
can be seen in figure 7.8, as well as the deobfuscated one returned by the inter-
preter. However, the code was so long that only part of it is shown so to fit in
the picture.

As it can be seen, the obfuscated code uses the eval function, and when this
is done, the deobfuscated code is printed.

48



7. Evaluation

Figure 7.7: example3.html HTML code

49



7. Evaluation

Figure 7.8: Part of the deobfuscated code from http://www.keithjarrett.it

50



7. Evaluation

Example 2 - JavaScript exploit 1

In [36], several JavaScript deobfuscation methods are proposed. However, none
of them is the one chosen for this project, except the fourth one, which suggests
using a stand-alone JavaScript interpreter - SpyderMonkey. Nevertheless, their
interpreter is not modified so to break the obfuscation, and does not include a
DOM environment or parsing HTML features.

But apart from the techniques suggested, some real examples of attacks
involving obfuscated JavaScript are shown. This example and the following one
will contain these obfuscated JavaScript code examples.

So, the first step is embedding the JavaScript code into an HTML page so
to analyse it with the tool. The result of executing such JavaScript code is
included in figure 7.9.

The result obtained here is really interesting, since it is a real attack and the
original code has been totally deobfuscated. The function inside the orange box
is the key of the obfuscation here. Basically, it manipulates single characters,
and the results of all the calls to this function are concatenated so to obtain the
final code.

This code exploits the famous ADODB.Stream exploit [22]. Basically, it
uses the ADODB.Stream object to write data on the client machine’s hard
drive (which allows to install arbitrary software, a very dangerous attack). It
only affects Microsoft’s Internet Explorer browser due to it is the only one that
provides support to ActiveX objects.

However, this exploit was already solved and updated browsers do not present
this vulnerability.

Example 3 - JavaScript exploit 2

Again, another obfuscated JavaScript code, obtained from the same source than
in example 2 [49]. This example contains two layers of obfuscated code. First,
the original code is shown in figure 7.10:

Since eval is called, the interpreter will print out what is being evaluated.
It can be seen in figure 7.11. In this case, the obfuscation is made in two layers.
When deobfuscating the first one the result is the code inside the blue box.
Again, eval is executed and as output the exploit code is obtained in a readable
way for the signature matcher (code in the red box).

This exploit is the same type as presented in example 2.

7.2.3 Set 3: Real webpages

In this section several real webpages will be tested. They will be divided into
two groups: well-known companies pages and crack sites pages. According to

51



7. Evaluation

Figure 7.9: Deobfuscated real attack code from example2

52



7. Evaluation

Figure 7.10: Original obfuscated JavaScript code from real example 3

53



7. Evaluation

Figure 7.11: First layer of obfuscated JavaScript code from real example 3

54



7. Evaluation

[4], crack webpages belong to one of the most dangerous groups of websites, so
it has been chosen as a representative one.

However, in this case each web page will not be studied in detail. Instead,
some statistics will be obtained from their analysis. The reason for this is
that after the previous examples the tool can be considered as successful when
gathering and deobfuscating JavaScript. Nevertheless, it still does not carry
out the analysis process in a totally proper way: its DOM environment is not
complete enough so to deal with all the HTML pages around the web. Most of
the times some browser properties, DOM statements or any other features not
included in the standard JavaScript specification will make the interpreter to
crash, since it has a fake environment that does not cover all the features a real
browser would do.

This problem means that not all the scripts present in a web page might not
be properly executed. Then, not all the JavaScript code will be covered,
so the tool will not fully accomplish its goal. This is its major flaw.

But still the tool is quite powerful. It still deobfuscates JavaScript code,
which is one of the main goals. Besides, as it will be explained further in 8, this
problem can be solved in a matter of time: it consists basically in improving
the DOM environment used.

So, when trying to execute real webpages some statistical data was gathered,
such as number of total scripts present in a page, successfully executed scripts,
number of calls to document.write, etc...Nevertheless, in the end only the
number of scripts was useful data so to include in this paper.

Firstly, a set of well-known pages was analysed and, regarding with script
executions, the results are represented as the graph included in figure 7.12. The
results vary on which page was analysed. On average, the interpreter could
execute successfully 53% of the total number of scripts per page.

Finally, the results from the set of crack sites are more less the same as
the previous set(see figure 7.13): on average, 61.5% of the scripts present in
webpages were executed properly, which is a bit higher than the previous set.

7.3 Evaluation and analysis of results

In this section the results obtained from the tests performed will be evaluated.
Each test set will be studied, and after the limitations and advantages of the hy-
pothesis chosen will be shown and discussed. Finally, some alternative proposals
to this project are described.

7.3.1 Evaluation of the first set of HTML pages

In this set of test examples the result is totally satisfactory, since the
objectives proposed for this project are achieved successfully: all the JavaScript

55



7. Evaluation

Figure 7.12: Script execution results for the well-known pages set

56



7. Evaluation

Figure 7.13: Script execution results for the well-known pages set

57



7. Evaluation

code is gathered and deobfuscated, returning therefore useful output to the
BROWSE tool.

It can be concluded that for this set the desired features of the inter-
preter fulfil the objectives proposed.

However, this set consists of non-real webpages, so despite the satisfactory
results, it cannot be affirmed that the tool is totally operational and the objec-
tives are fully achieved.

7.3.2 Evaluation of the second set of HTML pages

In this case, the set of HTML pages tried consist of real JavaScript attacks,
although some of them are only part of the original code, since the sources
from which these examples where obtained did not supply the complete source
code, but only the dangerous one. Some of them referenced the webpages that
launched the attack, but many were already unavailable. It is common that
harmful webpages are kept on line only for short periods of time. What is more,
most of these attacks are performed using iframes. An iframe, as already
explained, can embed another HTML document [43]. This feature is highly
exploited so to perform attacks and inject malicious JavaScript [10],[5].

Nevertheless, the results of this tests are very positive, since in all the ex-
amples tried the JavaScript code was successfully decrypted, which allows the
signature matcher to recognize patterns of attack quite easily.

Besides, these examples tried are real-life JavaScript malicious scripts, which
already exploited security vulnerabilities. The sources from where these scripts
were obtained described several techniques so to break through the obfuscation.
Some of them were unsuccessful, and as in [49], one of the solutions that worked
was using a JavaScript interpreter, the same idea as the hypothesis chosen for
this project.

These examples show that the interpreter is able by itself to break through
obfuscation. However, the DOM is still one of its limitations: if the code uses
DOM features so to get deobfuscated and these are not supported by the cur-
rent environment the interpreter has, the deobfuscation will be unsuccessful.
One possibility is using a real browser engine, but that introduces the risk of
executing the malicious code itself without the safety of sandboxing, as it is
done in the hypothesis shown in this paper.

In the examples tried the interpreter deobfuscated all the JavaScript
code without any problem so this set can be considered successfully pro-
cessed as well.

7.3.3 Evaluation of the third set of HTML pages

Finally, the set of real web pages was analysed, and in this case the results were
not as satisfactory as in the previous two.

58



7. Evaluation

Here, the interpreter failed to execute the complete JavaScript present in
the webpages tried, so only part of the total scripts were actually processed, as
shown in figures 7.12 and 7.13. Why? The main reason is the DOM. Not all its
features are included in the interpreter. Besides, some browser features can also
be used in JavaScript, but these are not included in the standard specification.
And finally non-well-formed HTML does not help as well.

A particular reason for failing is the document.write function. It should
append code as the page is rendered. Instead, it appends code to the end of
the page, once that the HTML document has been parsed and a Java DOM
Document object was returned. The problem, as explained in section 6.2.4, is
that adding interaction between Rhino and the parser is as really complex task,
which would make the development of the tool become really difficult, and it
would get close to developing a web browser, which is not the goal here.

7.4 Limitations of the project

After testing the tool against several types of examples, some limitations have
revealed and it is important to take them into account. Not only the ones about
the tool itself are described, but also more generic ones:

7.4.1 User interaction

There is an inbuilt limitation about this tool and any other in general: User
interaction. It is a general problem when regarding to security. Even though
the BROWSE tool or any other are perfect and they point out any malicious
or risky webpage, users are the ones operating the computer and still might
perform dangerous actions. That is, security also relies on them, because they
are responsible for the usage of their machine.

For example, these tools can warn the user but he or she can still ignore the
warnings and visit dangerous webpages, or install possible malicious add-ons
into their browsers without checking who developed them and verifying if they
come from a trusted source.

So, in the end, the final decision relies on the user.

7.4.2 DOM and browser features and technologies

Unfortunately, the fake browser environment developed so to make the DOM
compatible with the interpreter is not as complete as desired, since sometimes
the interpreter cannot deal with certain DOM statements. Besides, browser
features are not supported as well, which will also force the interpreter not to
execute some scripts properly.

However, developing a complete DOM environment can involve a huge amount
of work, since the interpreter should have an environment as close as a real

59



7. Evaluation

browser so to deal properly with JavaScript. Unfortunately, most of the attacks
use browser security holes and bugs so to carry out the exploits, and the use of
these might cause the interpreter to crash when executing the JavaScript code.

Besides, there are security holes as well in plug-ins for browsers, like Adobe
Flash or Active X, which are not supported by the interpreter. Specific support
should be given for these kind of technologies so to get deeper in the analysis,
but that is out of the scope of this project.

7.4.3 Parser - Interpreter interaction

In order to improve the performance of the tool it would be desirable to develop
a way of communicating the interpreter with the parser during the parsing
process, so to analyse the webpage more efficiently.

This feature would allow to implement a more accurate version of the doc-
ument.write function, which is one of the flaws of the current version of the
interpreter. As it was mentioned in 6.2.4, if the interpreter could interact with
the HTML parser it would work as in a real browser.

7.5 Advantages of the project

Despite all the limitations in the project, there are still important advantages
that make this option a valuable one:

7.5.1 Sandbox environment

One of the major flaws detected in this implementation of the hypothesis is
that the DOM environment in the interpreter is not so complete as desired so
to execute JavaScript scripts more efficiently.

One possible solution is using a real browser engine, but then malicious
code would be executed and then the exploits could be performed in the testing
machine.

However, this approach makes the interpreter be a sandbox: it still
executes the scripts, but in a harmless way, since the browser exploits are no
longer available for this malicious code. For example, no Active X objects are
available, no cookies can be read, no code can be installed, etc...

7.5.2 Code execution monitoring

The usage of a modified and open-source JavaScript interpreter allows to mon-
itor the execution of code.

60



7. Evaluation

Several functions were modified in the source code of the interpreter(see
section 6.3.2). This not only performs deobfuscation but also allows to monitor
the execution and carry out useful actions in runtime, as it is already done when
printing the arguments passed to eval and unescape functions.

7.5.3 Specific JavaScript execution, deobfuscation and analysis

The interpreter, including its fake browser environment, can be still used only
for analysing certain pieces of JavaScript code, as for example to deobfuscate
them or other purposes.

When a piece of JavaScript code needs to be analysed manually the inter-
preter is quite useful for carrying that task out. The code to analyse can be
embedded in a fake HTML page and executed by the interpreter, using it to
monitor the execution of JavaScript.

In this case the fake browser environment should be enough so to carry out
this task.

7.5.4 Easy interpreter extension

Since the interpreter used (Rhino) is based on Java technology, and since it
allows easy Java language features importation, any desired extension can be
done in an easier way since all the power of Java and JavaScript can be combined
together.

This feature made possible lots of features of the current modified version
of Rhino, as for example the inclusion of the Mozilla HTML parser based in
Java, or even the modification of the source code of the interpreter, since it is
implemented in Java as well.

7.5.5 Real time analysis

Finally, another advantage of using this tool is that it performs a real-time
analysis. Most of the rest of approaches, as for example [33], do not perform
real-time analysis. Webpages are analysed but the results have to be updated
from time to time to stay updated.

For example, in [11] it was mentioned that a public counter was harmless
from 2002 to 2006, but then it was modified and it became harmful. In this
case these tools will take some time so to get updated, most of the times when
it is too late. In our approach the website is analysed on real-time and these
dangerous attacks can be detected immediately.

61



7. Evaluation

7.6 Alternative proposals

7.6.1 SpiderMonkey combined with Mozilla Browser Engine

An option already proposed is using a JavaScript interpreter with a browser
engine. In this case, the JavaScript interpreter is SpiderMonkey [37], the one
inbuilt in the Mozilla Firefox browser [34].

The interpreter can use the browser engine so to use its environment and
execute JavaScript without any problem. However, this approach introduces a
potential danger, since the exploits are actually executed in the testing machine,
and that is not desirable.

Finally, there is not much documentation about how to implement this ap-
proach. That is, developing the inclusion of an interpreter can be harder than
normal due to the time spent on understanding this option. What is more, this
alternative is only applicable to Mozilla engine features. Any other browsers
are not supported, which limits the capabilities of the tool.

7.6.2 Sandboxing using virtual machines

In this case, no JavaScript interpreters or other tools are used. Instead, the
technique is using a virtual machine, with any browser of the tester’s choice
installed. This virtual machine acts as a normal system that would be
operated by a common user.

In this approach, the analysers first load a webpage to test in the virtual
machine. After visiting the page and interacting with it, the final status of the
virtual machine is compared to the initial one. If any changes in the memory or
any other critical sections (as the register in Windows operating systems) are
detected then they are checked and eventually the page can be considered as
malicious.

After analysing a webpage the virtual machine is reset and tested again
against another one. Since the virtual machine can have restricted access to the
system resources, it ensures that the exploits are harmless although they are
actually performed.

This is the approach followed in [4]. Here, the analysers set the virtual
machine for analysis, by changing some parameters. For example, the system
clock is accelerated so to detect time bombs (code that is executed some time
after page load).

This is the best alternative proposed, because:

• JavaScript is totally executed.

• Attacks are performed in real browsers, including their flaws, security holes
and bugs, as well as operating system vulnerabilities.

62



7. Evaluation

• By checking the status of the virtual machine malicious actions are de-
tected, as well as their damage

• Tests are carried out in a sandbox environment that prevents them from
infecting the testing system.

7.6.3 Lobo, the browser written in Java

Lobo [32] is an open source web browser based in Java. It implements most of
the standard DOM, and although it is still limited (compared to other browsers,
such as Mozilla Firefox or Internet Explorer) it can be useful for this project.

The documentation about this browser is not as complete as it would be
desired. What is more, there is not much information or links to this project on
the rest of the Web. However, it is in continuous development, and new versions
are released quite often.

Lobo uses Rhino as JavaScript interpreter, and includes a quite remarkable
library: Cobra [15]. It is written in Java, but the most interesting aspect of
it is that it is able to parse an HTML document and to modify its content
dynamically within the process (for example, when document.write is called
and as a result its argument is appended). Cobra can be used itself, not only
combined with Lobo, the web browser. However, in this case the features
present in the browser will not be available.

One of the major advantages of using Lobo is that popular browsers’ security
flaws will not be abused in this one. However, it is not such a complete browser
as them.

To conclude, this alternative is one of the most serious ones to take into
account, along with sandboxing with virtual machines. It could solve prob-
lems present in the current version of this project. Nevertheless, the lack of
documentation increases noticeably the difficulty of developing this approach.

63



Chapter 8

Future work

After adding the JavaScript interpreter to BROWSE and implementing the
features described in this document, there are still more possibilities to continue
developing this project. Some proposed tasks are the following:

• The next step to keep on this project is improving the current DOM
environment of the interpreter. If a really good DOM environment is
included the power of the interpreter can be really high. However, adding
a complete DOM environment can involve much work, and it would be a
task quite similar to developing a web browser

• The document.write function should be improved, as long as the current
HTML parser (or any other) allows to interact with the interpreter in
parsing time. That would allow to executed code and append it in the
right place will parsing the HTML document.

• The interpreter executes the maximum JavaScript as it can. However,
not all the conditional statements are covered since not all the conditions
are satisfied. Then, the proposed task here is to study the viability of
analysing conditional statements so to execute all possible JavaScript ex-
ecution flows.

• The signature matcher should be updated with new signatures when new
patterns of attack have been discovered, so to keep it up ([4] - section 3.9).
A periodical study so to find new signatures is recommended for this task.

• After having a stable and approved version of the tool, it would be in-
teresting to create a web service or webpage, so to install BROWSE in a
server and make it available on line. Users only would have to visit the
webpage, specify their own URL list and submit it to the server, which
would return the results and display them in the user’s browser.

This approach is also interesting under the point of view of users, because
they feel safer due to the fact that analysis would be done in the server
machine and not in their own computers.

64



Chapter 9

Conclusions

This project is an attempt to make a further step in Internet malware detection.
BROWSE opened the way, introducing a new approach: webpage real-time
analysis. Now, the goal is to extend its possibilities and get over some of the
initial limitations the tool had.

The JavaScript language research revealed not only interesting features it
has, but also how important it is regarding to security. There is a huge
concern about the dangers of JavaScript in the Internet community.
A lot of information is available, and some companies are really supporting
solutions and/or providing related information. Common attacks are widely
discussed and explained. JavaScript is one of the most discussed issues
(if not the most) regarding to Internet Security, as well as one of the
most exploited Web technologies.

As a JavaScript language research conclusion, it was observed that it cannot
be analysed statically. Its dynamic nature, combined with the multiple pos-
sibilities of manipulating the code so to obfuscate it, makes the static analysis
approach unfeasible.

BROWSE only carried out a static analysis, so it was decided to add a
JavaScript processor, in particular an interpreter. The chosen one was Rhino,
the Mozilla’s Project interpreter written in Java. This choice was really sat-
isfactory because Rhino is a popular interpreter, for which exists a lot of
available documentation. What is more, the possibility of importing
and executing Java libraries and programs made the work much eas-
ier. Many of the improvements applied in the version used in this project are
possible thanks to this Java compatibility, as for example the HTML parser or
the XPath support. The possibilities of this interpreter are huge due to
this feature, therefore it is highly recommendable if any work related with
JavaScript needs to be done.

However, JavaScript often uses external technologies as the DOM. The stan-
dard JavaScript specification does not provide support for it, but most of web
browsers do. No stand-alone JavaScript interpreter is able to deal with it, so a
fake browser environment was implemented.

65



9. Conclusions

In the current status of the extension not all the DOM can be properly
executed, as the environment is not complete. Withal, achieving that task is
really difficult, similar to developing a web browser. As a consequence not all
the JavaScript code will be executed, due to the fact that it might use some
DOM statements that will not be supported. Besides, each browser includes
unique features that should be also added so not to focus the analysis in one
specific web browser.

On the other hand, no malware will actually carry out any dangerous ac-
tion because this environment acts as a sandbox. So, this approach limits
the execution of JavaScript, but acts as a sandbox environment that
prevents the attacks from being actually performed. As a remark, it
was thought that developing a fake browser environment would be easier that
actually it was. It turned out to be an extremely hard task, and it is not
clear if it is worth developing such a complex and complete browser
environment, due to the possible amount of work it can involve.

But despite all the difficulties, the results are quite good. It has been
proved that this approach is useful and works, since it was possible to gather
and deobfuscate JavaScript code and return it in a readable way to
BROWSE. This successful code processing and gathering is the major
goal of this project.

As a final conclusion, the hypothesis chosen accomplishes partly the objec-
tives proposed, due to the impossibility of executing all the JavaScript code
present in a webpage. Still, the interpreter is able to deobfuscate and gather
successfully JavaScript code in most of the cases.

66



Academic References

[1] Vinesh Kali. BROWSE: Inspecting the constituents of webpages and detect-
ing malware on the internet . Master’s thesis, Radboud University Nijmegen,
the Netherlands, May 2008.

[2] V. T. Lam, S. Antonatos, P. Akritidis, and K. G. Anagnostakis. Puppetnets:
misusing web browsers as a distributed attack infrastructure. In CCS ’06:
Proceedings of the 13th ACM conference on Computer and communications
security, pages 221–234. ACM Press, 2006.

[3] David Moore, Colleen Shannon, Douglas J. Brown, Geoffrey M. Voelker,
and Stefan Savage. Inferring internet denial-of-service activity. ACM Trans.
Comput. Syst., 24(2):115–139, 2006.

[4] Alexander Moshchuk, Tanya Bragin, Steven D. Gribble, and Henry M.
Levy. A crawler-based study of spyware on the web. In Proceedings of the
13th Annual Network and Distributed Systems Security Symposium (NDSS
2006), San Diego, CA, February 2006.

[5] Sid Stamm, Zulfikar Ramzan, and Markus Jakobsson. Drive-by pharming.
In Sihan Qing, Hideki Imai, and Guilin Wang, editors, ICICS, volume 4861
of Lecture Notes in Computer Science, pages 495–506. Springer, 2007.

[6] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. Cross site scripting prevention with dynamic
data tainting and static analysis. In Cross Site Scripting Prevention with
Dynamic Data Tainting and Static Analysis, February 2007.

[7] Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov. Javascript
instrumentation for browser security. In POPL ’07: Proceedings of the 34th
annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 237–249, New York, NY, USA, 2007. ACM.

67



Non Academic References

[8] Edward W. Felten, Dirk Balfanz, Drew Dean, and Dan S. Wallach. Web
Spoofing: An Internet Con Game. Technical Report Technical Report 54096
(revised Feb. 1997), Department of Computer Science, Princeton University,
February 1997.

[9] K. Hickman. The ssl protocol. Netscape Communications Corp., Feb, 9,
1995.

[10] Moheeb Abu Rajab Niels Provos, Panayiotis Mavrommatis and Fabian
Monrose. In All Your iFRAMEs Point to Us, February 2008.

[11] Niels Provos, Dean McNamee, Panayiotis Mavrommatis, Ke Wang, and
Nagendra Modadugu. The ghost in the browser analysis of web-based mal-
ware. In HotBots’07: Proceedings of the first conference on First Workshop
on Hot Topics in Understanding Botnets, pages 4–4, Berkeley, CA, USA,
2007. USENIX Association.

68



Web References

[12] ActiveX Controls.
http://msdn2.microsoft.com/en-us/library/aa751968(VS.85).aspx.

[13] Anti-Phishing Working Group.
http://www.antiphishing.org/.

[14] BROWSE home page. http://wiki.science.ru.nl/browse/Main Page.

[15] Cobra: Java HTML Renderer and Parser.
http://lobobrowser.org/cobra.jsp.

[16] Complex JavaScript deobfuscation.
http://isc.sans.org/diary.html?storyid=1519.

[17] Core JavaScript 1.5 Reference:Functions.
http://developer.mozilla.org/en/docs/Core JavaScript 1.5
Reference:Functions.

[18] Core JavaScript 1.5 Reference:Functions:arguments:callee.
http://developer.mozilla.org/en/docs/Core JavaScript 1.5
Reference:Objects:Function:arguments:callee.

[19] Core JavaScript 1.5 Reference:Global Functions:eval.
http://developer.mozilla.org/en/docs/Core JavaScript 1.5
Reference:Global Functions:eval.

[20] Core JavaScript 1.5 Reference:Global Objects:String.
http://developer.mozilla.org/en/docs/Core JavaScript 1.5
Reference:Global Objects:String.

[21] Dean Edwards JavaScript Packer.
http://dean.edwards.name/packer/.

[22] Disable ADODB.Stream object from Internet Explorer.
http://www.microsoft.com/downloads/details.aspx?FamilyID=4D056748-
C538-46F6-B7C8-2FBFD0D237E3.

[23] Document Object Model Events.
http://www.w3.org/TR/DOM-Level-2-Events/events.html.

[24] Google toolbar.
http://www.google.com/tools/firefox/toolbar/FT3/intl/en/.

69



WEB REFERENCES

[25] Java Mozilla Html Parser.
http://mozillaparser.sourceforge.net/.

[26] JavaScript compressor.
http://javascriptcompressor.com/.

[27] JavaScript de-obfuscation with Rhino.
http://pandalabs.pandasecurity.com/archive/2007/08.aspx.

[28] JavaScript obfuscation and document.write function example.
http://asert.arbornetworks.com/2006/04/safely-investigating-malicious-
javascript/.

[29] JavaScript security: Same Origin.
http://www.mozilla.org/projects/security/components/same-origin.html.

[30] Know Your Enemy: Malicious Web Servers.
http://www.honeynet.org/papers/mws.

[31] Lavasoft Ad-Ware.
http://www.lavasoftusa.com/.

[32] Lobo: Java Web Browser.
http://lobobrowser.org/java-browser.jsp.

[33] McAfee SiteAdvisor.
http://www.siteadvisor.com/.

[34] Mozilla Firefox.
http://www.mozilla-europe.org/en/products/firefox/.

[35] Rhino: JavaScript for Java.
http://www.mozilla.org/rhino/.

[36] SANS Internet Storm Center; Cooperative Network Security Community -
Internet Security - isc.
https://isc2.sans.org/diary.html?storyid=2268.

[37] SpiderMonkey (JavaScript-C) Engine.
http://www.mozilla.org/js/spidermonkey/.

[38] A study in socially transmitted malware.
http://www.indiana.edu/ phishing/verybigad/.

[39] Synergeticsoft Pop-Up Blocker.
http://www.synergeticsoft.com/.

[40] W3C Document Object Model (DOM).
http://www.w3.org/DOM/.

[41] Wikipedia, the free encyclopedia. ActiveX Object definition.
http://en.wikipedia.org/wiki/ActiveX.

[42] Wikipedia, the free encyclopedia. Cookie definition.
http://en.wikipedia.org/wiki/HTTP cookie.

70



WEB REFERENCES

[43] Wikipedia, the free encyclopedia. Iframe definition.
http://en.wikipedia.org/wiki/Iframe.

[44] Wikipedia, the free encyclopedia. Phising definition.
http://en.wikipedia.org/wiki/Phising.

[45] Wikipedia, the free encyclopedia. Popup definition.
http://en.wikipedia.org/wiki/Popup.

[46] XML Path Language (XPath).
http://www.w3.org/TR/xpath.

[47] ECMA internacional. ECMAScript Language Specification, Dec. 1999.
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-
262.pdf.

[48] John Resig. Bringing The Browser To The Server.
http://ejohn.org/blog/bringing-the-browser-to-the-server/.

[49] Daniel Wesemann. Decoding Javascript.
http://handlers.sans.org/dwesemann/decode/exercise.html.

71


