

Complex Event Processing

Master Thesis Computer Science
Radboud University Nijmegen
October 2007

Name: Paul Dekkers
Thesis number: 574

Supervisors:
prof. dr. M. van Vliet (Faculty of Computer Science)
dr. P.E.M. Ligthart (Faculty of Management Sciences)
ir. H. de Man (Cordys)
ir. G. Ligtenberg (Cordys)

Complex Event Processing ii

Colophon

Radboud University Nijmegen
Nijmegen Institute for Computing and Information Sciences (NIII)
Toernooiveld 1
6525 ED Nijmegen

Cordys (R&D NL department)
Vanenburgerallee 3
3882 RH Putten

Complex Event Processing iii

Abstract

Nowadays enterprises are more complex than ever. Different processes take place

all over the world and events are flying through the enterprise IT systems. These

systems have grown from standalone applications that were able to handle a

certain aspect within an enterprise to an enterprise wide IT system that provides a

coupling between the different IT applications.

These enterprise wide IT systems are widespread across large enterprises and

generate many events that flow through the enterprise system layers. The events

feed other applications or services which generate new events on their turn. We

can truly speak about an event-cloud that hangs within an enterprise. Because of

this event-cloud the event-flow of an enterprise IT system becomes non-

transparent and difficult to understand.

A new innovation is arising that can help tackle this problem: Complex Event

Processing (CEP). With CEP it is possible to correlate events and detect complex

situations. This thesis deals with a number of CEP related questions. The first part

describes surrounding concepts that help understanding what CEP really is about.

The second part introduces a general CEP language and six representative cases.

Three different CEP engines are evaluated and each case is expressed for all

engines. To complete the impression of these engines also some performance tests

are run.

The third and last part is not directly about CEP but more about innovation

management. It introduces innovation management on different levels and the

integration between these levels. This will help to bring structure to innovations.

Complex Event Processing iv

Table of contents

List of Figures...vi

List of Definitions ...vi

List of Tables .. vii

Preface... 1

1 Introduction... 3
1.1 Complex Event Processing... 3
1.2 Research questions .. 4

1.2.1 Main research questions...4
1.2.2 Sub-questions ...4

1.3 Research details ... 5
1.3.1 Phase 1: Literature / context study ..5
1.3.2 Phase 2: Focused research ..6

1.4 Thesis structure.. 9

2 Context.. 10
2.1 Purposes.. 10

2.1.1 Event-Driven Architecture ..11
2.1.2 Enterprise Application Integration..12
2.1.3 Business Process Management ..13
2.1.4 Business Activity Monitoring ...14

2.2 Enterprise system layers... 16
2.3 Event diversity ... 16
2.4 Event receiving .. 17
2.5 Complex event patterns.. 17

3 Framework ... 18
3.1 Topologies .. 18
3.2 Communication and CEP... 20

3.2.1 Point-to-point...21
3.2.2 Bus..23
3.2.3 Star...23

3.3 Cordys SOA Grid .. 24

4 Model .. 26
4.1 Streaming vs. non-streaming ... 26
4.2 CEP engine characteristics ... 26
4.3 Six CEP cases.. 26

4.3.1 Case 1: “Simple use of logical operators”...29
4.3.2 Case 2: “Why the not operator is so important”..30
4.3.3 Case 3: “No CEP without time” ..32

Complex Event Processing v

4.3.4 Case 4: “The sequence of events” ...33
4.3.5 Case 5: “Not in stock”..34
4.3.6 Case 6: “Combination of different operators: detect possible unsatisfied customer”35

4.4 Performance tests... 37
4.4.1 Latency test ..38
4.4.2 Throughput test ...39

5 Engines ... 41
5.1 Esper .. 41
5.2 StreamCruncher... 43
5.3 ruleCore Server .. 44

6 Research results .. 46
6.1 Six CEP cases.. 46

6.1.1 Case 1 ...46
6.1.2 Case 2 to 6 ..49

6.2 Performance tests... 50

7 Conclusions ... 57
7.1 Key concepts... 57
7.2 Optimal engine .. 57
7.3 Recommendations ... 58
7.4 Future research .. 58
7.5 Final words... 58

8 Innovation management on three levels.. 59
8.1 Overview .. 59
8.2 Stage-Gate Systems ... 61
8.3 Technology Maps .. 67
8.4 Innovation Funnel ... 72
8.5 Gaps and overlap... 78
8.6 Innovation management at Cordys .. 81

8.6.1 Methodology...81
8.6.2 Interview ..82

8.7 Summary and Conclusions .. 83

References .. 86

List of Acronyms... 89

Appendix.. 90

Complex Event Processing vi

List of Figures

Figure 1-1: Focus in our research ..6
Figure 1-2: Technological research model..8
Figure 1-3: Management research model...9
Figure 2-1: The CEP-cloud..10
Figure 2-2: EDA components ..11
Figure 2-3: EDA example ..12
Figure 2-4: EAI model ...13
Figure 2-5: Business processes across product divisions and systems ..14
Figure 2-6: BAM application used in flight business..15
Figure 2-7: Typical enterprise system layers ...16
Figure 3-1: Point-to-point topology...19
Figure 3-2: Bus topology..19
Figure 3-3: Star topology...20
Figure 3-4: CEP point-to-point integration with new connectors ..22
Figure 3-5: CEP point-to-point integration with existing connectors ..22
Figure 3-6: CEP bus integration ...23
Figure 3-7: CEP star integration...24
Figure 3-8: Cordys SOA Grid ...25
Figure 3-9: CEP Cordys integration..25
Figure 5-1: Using a state machine to express a pattern...41
Figure 5-2: Esper combines ESP and CEP ..42
Figure 5-3: Esper engine overview ..42
Figure 5-4: Using a tree notation to express a pattern ..45
Figure 6-1: Latency tests results..52
Figure 6-2: Throughput tests results (without noise) ...54
Figure 6-3: Throughput tests results (with noise)...55
Figure 6-4: Memory usage...56
Figure 8-1: Management research model...61
Figure 8-2: Stage-Gate system overview ...63
Figure 8-3: Technology map ..68
Figure 8-4: Innovation management funnel model ...79

List of Definitions

Definition 2-1: EAI definition ...12
Definition 2-2: BPM definition ...14
Definition 2-3: BAM definition...15
Definition 4-1: General CEP language definition ...28

Complex Event Processing vii

List of Tables

Table 4-1: Introduction of operators in the cases ...28
Table 6-1: Patterns for case 1...48
Table 6-2: Latency tests results..51
Table 6-3: Throughput tests results (without noise) ...53
Table 6-4: Throughput tests results (with noise)...54

Complex Event Processing 1

Preface

This thesis is the result of a seven month lasting research and is the final assignment

of the computer science education at the Radboud University of Nijmegen (RU).

Because I chose the specialization of Management & Application (MA) the research is

conducted at an external organization. In this case Cordys, a company that is on the

edge of technology with their composite Business Process Management Suite

(BPMS).

This thesis would not be as it is now without the contribution of several people,

which I would like to thank for their effort and support. First of all I would like to

thank my four supervisors: Mario van Vliet (supervisor computer science, RU), Paul

Ligthart (supervisor applied management, RU), Henk de Man (supervisor content,

Cordys), and Gerwin Ligtenberg (global supervisor/manager, Cordys).

For their help, time, and support I would like to thank Thomas Bernhardt (Esper),

Ashwin Jayaprakash (StreamCruncher), and Marco Seiriö (ruleCore Server).

During the research some progress meetings were held at Cordys where I showed

my latest findings. Fruity discussions helped me to fine-tune my thesis. For their time

and effort I would like to thank Theodoor van Donge, Thijs Petter, and Hans Bank.

Last but not least I would like to thank Cor van Dijk and Mike Moran, both ‘room-

mates’ at Cordys, for their help and company. Especially in the last part where most

of the writing was done, they really helped a lot with some English ‘problems’, or as

Mike likes to call it: “Dunglish”.

As English is not my native language and even though Cor and Mike helped a lot,

there still can be some misspelling or erroneous sentences in this thesis, which I

would like to apologize for in advance.

Complex Event Processing 3

1 Introduction

The subject of this thesis is complex event processing. Because this is a very broad

research area there has to be focused on a section of this research area. This chapter

starts with an introduction to complex event processing. After that more details

about the research are given.

1.1 Complex Event Processing
Nowadays enterprises are more complex than ever. Different processes take place all

over the world and events are flying through the enterprise IT systems. These

systems have grown from standalone applications that were able to handle a certain

aspect within an enterprise to an enterprise wide IT system that provides a coupling

between the different IT applications.

The world of enterprise IT systems is full of acronyms. Some of the latest are SOA

(Service-Oriented Architecture) and EDA (Event-Driven Architecture) which both are

architectures that enable the coupling of IT applications and allow integrating

processes, distributed and enterprise wide, possible even among multiple

enterprises.

These enterprise wide IT systems are widespread across large enterprises and

generate many events that flow through the enterprise system layers. The events feed

other applications or services which generate new events on their turn. We can truly

speak about an event-cloud that hangs within an enterprise. Because of this event-

cloud the event-flow of an enterprise IT system becomes non-transparent and

difficult to understand. The simplest events are traceable, but the more complex

events (which consist of multiple, unrelated simple events) are hard to keep track off.

To tackle this problem and to make more use of complex events a new acronym is

introduced: CEP (Complex Event Processing). CEP can be used to view and react to

complex events, in real time. When a problem or opportunity arises it should be

Complex Event Processing 4

noticed right away, in real time, to make sure the right action can be taken at the

right moment. Otherwise there will only be historical data that reveals possible

problems which already have become a real problem or opportunities which already

have vanished. With CEP it is possible to act in real time and make better use of the

already available events in an enterprise.

1.2 Research questions
In the following two subparagraphs the main research questions with the

corresponding sub-questions are introduced. In the next paragraph further detail

about the research is given.

1.2.1 Main research questions
The main research questions are defined as followed:

a) “What are the key concepts involved with complex event processing (CEP)?”

b) “What is an optimal engine for including CEP within the Cordys

environment?”

c) “What are factors that involve innovation management on different levels and

how do they integrate?” (Innovation management research, involving Cordys

situation)

1.2.2 Sub-questions
Some sub-questions that will help answering the main questions.

Sub-questions with question 1:

a) “What are the prerequisites for a CEP engine in regard to the information

architecture (environment)?” (CEP framework)

b) “What are usable algorithms to create a CEP engine?”

Complex Event Processing 5

Sub-questions with question 2:

a) “What are key CEP pattern constructs?”

b) “Which of the existing engines satisfies these key pattern constructs the

most?”

c) “What is the optimal engine?”

Sub-questions with question 3:

a) “What is innovation management and on which levels does it occur?”

b) “How can these levels be integrated to enhance innovation management

within the company?”

c) “How is Cordys applying innovation management and how does this relate to

the theory?”

1.3 Research details
In this paragraph a layout is given in which way the research is conducted. The

research took place at Cordys. Their mission is design, develop and deliver

technology and applications that allow their customers to rapidly design and

enhance processes, integrate these processes with other processes, applications and

data sets.

1.3.1 Phase 1: Literature / context study
In this phase the main task is studying literature and articles to get more general

knowledge about the subject and concerning concepts. Also presentations and

interviews with people that have special knowledge about this area are used in this

process. At the end of this phase it can be decided where to focus on for further

research. The end product of this phase will be a finished version of the research

plan.

Complex Event Processing 6

This phase acts as a sort of funnel; starting with a wide research area slowly

narrowing this area down to a small focused area for conducting further research.

Graphically this phase is presented in Figure 1-1.

Figure 1-1: Focus in our research

At the left side of the funnel the CEP-cloud is shown. This is a cloud consisting of

several key concepts surrounding CEP. More information about this CEP-cloud is

given in chapter 2. At the right side of the funnel the focused area is shown. The

focus is chosen according to the interests of Cordys.

1.3.2 Phase 2: Focused research
In this phase the main task is answering the research questions and thus conducting

the main research. This will be divided in the following steps (in short):

1) Research what the most important aspects are when we want to use CEP

within an enterprise architecture. The end product of this step will be a CEP

framework (a description of the environment that is needed to incorporate

CEP).

Complex Event Processing 7

2) Research which constructs are the key ingredients for CEP engine patterns.

These constructs or operators will be introduced in cases, facing real world

problems. The end product of this step will be a description about the different

constructs for CEP patterns and these will be introduced within several real

world cases. These cases can be used to evaluate the different engines and to

draw conclusions upon.

3) After the conclusion about which existing engine matches the criteria the best

we go one step further, resulting in an overall conclusion about the optimal

engine, where it is possible that a combination of existing engines with maybe

some new ideas will be the optimal solution for Cordys. The end product of

this step will be an overall conclusion concerning the optimal engine for

including the power of CEP within the Cordys environment.

4) To address the last main question three different articles about innovation

management will be reviewed and discussed. After that, possible overlap and

gaps are discussed. To compare theory with practice a (small) interview will

take place at Cordys, concerning their views on innovation management.

These interviews will be used to make a comparison between theory and

practice.

This phase can be divided into two parts: a technology part and a management part.

The first two research questions concern the technology part, while the last question

deals with the management part.

The second research phase is graphically presented in two research models, shown in

Figure 1-2: Technological research model and Figure 1-3: Management research model (further

referred to as the technological and management research model).

Complex Event Processing 8

Figure 1-2: Technological research model

Most
important

aspects

Research
existing
engines

CEP
framework

Define key
pattern

constructs

Evaluate
existing
engines

Combinati
ons / ideas

Optimal
engine

Complex Event Processing 9

Figure 1-3: Management research model

1.4 Thesis structure
In this paragraph the structure of the thesis is explained. Chapter 2 introduces the

context of CEP and leads to a better understanding of what CEP is. In chapter 3 the

CEP framework is introduced, which provides a base for integrating a CEP engine

within an enterprise IT system. The fourth chapter introduces a model that is used to

compare different CEP engines. In chapter 5 the different CEP engines are

introduced, which are tested for the ability to express the cases introduced in chapter

4. Also some (simple) performance tests are run. The results of the comparison of the

different CEP engines are shown and discussed in chapter 6. In chapter 7 we state the

conclusions. After the conclusions, chapter 8 deals with innovation management on

three different levels.

Research different
levels of innovation

management

Describe possible
overlap and gaps

Theory view on
innovation

management

Interview at
Cordys for

practical view

Practice versus
theory

comparison

Complex Event Processing 10

2 Context

In this chapter the key concepts concerning CEP are discussed. In the “CEP-cloud” all

different concepts that can be related to CEP are indicated and the most relevant

concepts out of the CEP-cloud are introduced in the following paragraphs. In Figure

2-1 we indicate which concepts are further introduced. The book “The Power of

Events” from David Luckham [Luckham 2002] provided much inspiration for this

thesis and helped a lot to get a better insight in what CEP is all about. The complex

events website [ComplexEvents n.d.], also initiated by Luckham contributed to this

insight too.

Figure 2-1: The CEP-cloud

2.1 Purposes
CEP can be used to serve many purposes. In this paragraph the most relevant

purposes of CEP are introduced and briefly explained: Event-Driven Architectures,

Enterprise Application Integration, Business Process Management, and Business

Activity Monitoring.

[par. 2.1]

[par. 2.2]

[par. 2.3]

[par. 2.4]

[par. 2.5]

Complex Event Processing 11

2.1.1 Event-Driven Architecture
Event-Driven Architecture (EDA) is a software infrastructure that by nature is very

loosely coupled. The main idea behind EDA is that a large software system consists

of many small components that all have their own function. The communication

between the components is done by using events. An event can be seen as a

notification, which tells other components that a certain ‘job’ is done. Because events

are very important within an Event-Driven Architecture also the handling and

routing of events is very important. CEP is a very powerful addition to EDA, as it can

detect complex situations in real-time. In a short summary about EDA, retrieved

from [DataDirect n.d.] the need for CEP within EDA is also mentioned:

“…As enterprises embrace Event-Driven Architectures, the requirements of BAM / BPM
initiatives dictate requirements for detecting complex patterns comprised of multiple events
which may occur across an organizations event matrix. There is tremendous value in
discovering and understanding these complex patterns in a real-time fashion, allowing critical
business decisions to be made…”

A model of EDA components and an EDA example [Elemental 2006] are found in

Figure 2-2 and in Figure 2-3.

Figure 2-2: EDA components

Complex Event Processing 12

Figure 2-3: EDA example

2.1.2 Enterprise Application Integration
Today’s enterprises already have many different types of applications, including:

CRM (Customer Relationship Management), SCM (Supply Chain Management) and

BI (Business intelligence) applications. Much information and knowledge is stored in

these systems and a lot of money has been spent on them. Enterprise Application

Integration (EAI) is a method to link these legacy applications and combine them

with new applications. With EAI the data in different systems can also be kept

consistent.

Many definitions of Enterprise Application Integration (EAI) are found. A global

definition is retrieved from [SearchWebServices 2006]. SearchWebServices is a web

services and SOA resource for enterprise IT professionals.

Definition 2-1: EAI definition

A model of EAI, retrieved from [SOAWorld 2004] is found in Figure 2-4.

“EAI is a business computing term for the plans, methods, and tools aimed at
modernizing, consolidating, and coordinating the computer applications in an enterprise.

Complex Event Processing 13

Figure 2-4: EAI model

2.1.3 Business Process Management
Business Process Management (BPM) is a concept that intersects the fields of

management and Information Technology. BPM is all about business processes that,

among others, consist of organizations, humans, and systems. BPM includes three

activities: process design, execution, and monitoring. While the (business)

management field provides the knowledge to design the business processes, the IT

Complex Event Processing 14

field provides the technology to execute them. A tool for monitoring business

processes is Business Activity Monitoring, more about that in paragraph 2.1.4.

A definition for BPM [Bitpipe n.d.] is shown in Definition 2-2.

Definition 2-2: BPM definition

Figure 2-5 [BEAS 2006] shows how business processes cut across organizational and

system boundaries.

Figure 2-5: Business processes across product divisions and systems

2.1.4 Business Activity Monitoring
Business Activity Monitoring (BAM) is a supportive tool to give insight in the

business performance and can help finding possible bottlenecks. BAM consists of

three main steps: collecting data, processing data, and displaying the results. CEP is a

very welcome addition to BAM, because it can detect complex situations that occur in

BPM is a systematic approach to improving an organization’s business processes. BPM
activities seek to make business processes more effective, more efficient, and more capable
of adapting to an ever-changing environment.

Complex Event Processing 15

a large enterprise, and thus can help BAM report even more complex information.

webMethods [webMethods 2006] also indicates that the newest BAM level includes

‘complex pattern recognition’.

“…Second-level BAM strategies focused on Business Assurance and Visibility, Control
Services and Complex Pattern Recognition blend the core strengths of BAM with these
powerful analysis capabilities to provide an effective approach for targeting business problems
in areas like compliance, change management, quality improvement, and operational business
health, delivering more business value and reducing risk…”

SearchSMB [SearchSMB 2006] provides a global definition of BAM, found in Definition

2-3. In Figure 2-6 a BAM example is shown.

Definition 2-3: BAM definition

Figure 2-6: BAM application used in flight business

“Business activity monitoring (BAM), also called business activity management, is the
use of technology to proactively define and analyze critical opportunities and risks in an
enterprise to maximize profitability and optimize efficiency.

Complex Event Processing 16

2.2 Enterprise system layers
A typical enterprise system consist of several layers. These layers provide a level of

abstraction, making integration of different systems more easy. An example of

enterprise system layers is found in Figure 2-7.

Figure 2-7: Typical enterprise system layers

The two top layers are the most abstract layers; monitoring and control provides user

interfaces for the users to work with and gives them control over the system. In the

(business) processes layer the different processes are defined. As explained in

paragraph 2.1.3, these processes often cut across system and organizational

boundaries. The ESB provides the connection to the different (often legacy)

applications and makes integrating these applications possible.

2.3 Event diversity
In an enterprise IT system different types of events can occur. Ranging from lower

level network events to higher level business events. Examples of lower level events

are: networkTrafficHigh, routerDown, IPAddressUnknown, etcetera. Some examples

Monitoring and control (users)

(Business) processes

Enterprise service bus (ESB)

Applications

Complex Event Processing 17

of higher level business events are: newCustomer, newOrder, orderCancelled,

etcetera.

2.4 Event receiving
Events are the main ingredient for a CEP engine. It is of great importance that all

events of interest are received by the CEP engine, otherwise defined situations will

never be detected. The CEP engine can be connected to the enterprise IT system in

different ways, depending on the type of connection used within the enterprise IT

system. More details on connecting the CEP engine can be found in chapter 3.

2.5 Complex event patterns
Patterns are used to express situations that have to be detected. In a pattern, events

are correlated with each other, with the use of operators. Because detecting patterns

is the main function of a CEP engine, it is very important to know which operators

are necessary and to have a uniform pattern notation. A definition of a uniform

pattern notation is found in paragraph 4.3.

Complex Event Processing 18

3 Framework

In this chapter the framework for a CEP engine is described. This framework

provides a base for using a CEP engine within an enterprise IT system. Enterprise IT

systems are event-driven systems that involve many different applications. These

applications have to communicate with each other, but what has that to do with the

CEP engine?

3.1 Topologies
Before looking into this we first go into the different ways in which communication

is arranged. In literature there are several communication arrangements described

(also known as (network) topologies). Before we proceed with the framework first

the most common topologies are introduced:

• Point-to-point

Point-to-point (mesh) topology is defined by single connections between the

nodes. When all nodes are connected this is called a full or true mesh. Because

of the many connections (for n nodes there are n*(n-1) connections) the point-

to-point topology is often referred to as a ‘spaghetti’. Every connection has a

connector which translates from an application domain to another application

domain. For example when application A is connected to application B the

side of the connector connected to application A translates ‘A’ to ‘B’, while the

other side of the connector, connected to application B works the other way

around, translating ‘B’ to ‘A’. This example, together with an example of a

point-to-point topology are combined in Figure 3-1.

Complex Event Processing 19

Figure 3-1: Point-to-point topology

• Bus
The bus topology is defined by a bus connection that is used by all nodes to

communicate with each other. The “language” that is “spoken” on the bus

should be a universal language. The great advantage over a mesh network

becomes immediately clear: there are only n connectors needed for n nodes.

When a node is added, only one extra connector is needed to translate from

the application domain to the bus domain and the other way around. When

adding a note to a point-to-point connection there should be made a connector

for every existing node in the mesh, so also adding nodes becomes more easy

when a bus topology is used. In Figure 3-2 a graphical representation of a bus is

shown.

Figure 3-2: Bus topology

• Star
The star topology is defined by a central node that is connected to all other

nodes. When two nodes want to communicate this is always done via the

central node. This topology is also known as “hub” and “spoke”, where the

central node acts like a hub and the other nodes are the spokes. There are two

A

Lang. A
Lang. Bus Connector

Bus

A

Lang. A
Lang. B

B
Connector

Complex Event Processing 20

possible connector types: the connector can translate the application domain of

the node to a general domain (like the bus topology), or the connector consists

of modules that are able to translate from any of the application domains of all

the other nodes to the application domain of the node where the connector is

connected to. To keep things simple the first variant is of course favourable,

but in older systems this variant is maybe not yet used. An graphical

representation of a star is shown in Figure 3-3.

Figure 3-3: Star topology

3.2 Communication and CEP
At the start of this chapter the question “Why is communication within an enterprise

IT system of any importance to a CEP engine?” arose. The answer to this question is

simple: “A CEP engine uses events to reason upon”. An example will clarify this:

let’s say that within a particular enterprise IT system the events A,B, C and D exist.

These events are abstract but in reality they are synonym to for example the

following events: newCustomer, newOrder, newTransaction, etcetera. The CEP

engine can detect patterns of events, like “A and D” or “A followed by C”, more on

these event patterns is explained in chapter 4. If the CEP engine has to detect these

patterns it becomes clear that it is of great importance that a CEP engine receives all

events from the enterprise IT system that are used within these patterns. The events

can be divided into the different layers that are typically used within an enterprise IT

system, ranging from lower level network events to higher level business events.

Examples of lower level events are: networkTrafficHigh, routerDown,

A

Lang. A
Lang. Hub

Connector
Hub

Complex Event Processing 21

IPAddressUnknown, etcetera. In this thesis the focus is on business events, like:

newCustomer, newOrder, orderCancelled, etcetera. While answering the question

“Why is communication within an enterprise IT system of any importance to a CEP

engine?” is simple, bringing it in practice can be quite hard. Several problems occur

in different communication topologies. The CEP framework gives support when

using a CEP engine within different communication topologies.

First, the basic preconditions that need to be satisfied to successfully implement a

CEP engine within an enterprise IT system are described. After that, these

preconditions will be dealt with for each topology.

The CEP engine should be able to:

• receive all events of interest, system wide.

• send events to different nodes, system wide.

• understand the events from the different nodes.

3.2.1 Point-to-point
In the point-to-point topology all nodes are directly connected to each other, as

described in paragraph 3.1. When application A sends an event to application B this

will be done through a direct connection between A and B. Other nodes do not

receive this event. Here a problem arises: the CEP engine should get (a copy of) every

event. How can this be achieved? A possible solution is to create communication

lines between the CEP engine and all other nodes. In this way events can be send just

as normal, only a copy arrives at the CEP engine. The second problem that has to be

faced is the format of the events. In the point-to-point topology there is not one

universal language that is “spoken”. There are two solutions for this problem:

• The first solution is that for each node a new connector is created that

translates from the application domain to the CEP engine domain. This means

Complex Event Processing 22

that for every added node, connectors to all other nodes (including the CEP

engine) have to be created. This is not very good for complexity, but that was

already a problem with a point-to-point topology. A graphical reproduction of

this solution is presented in Figure 3-4.

Figure 3-4: CEP point-to-point integration with new connectors

• The second solution is to extend the existing connectors, in the way that they

also translate from the application domains to the CEP engine domain. The

total amount of effort is about the same as with the first solution. For every

application domain there should be a translate module from that application

domain to the CEP engine domain. This module has to be added to all

connectors of the concerning application connectors. The solution is

graphically presented in Figure 3-5.

Figure 3-5: CEP point-to-point integration with existing connectors

A

CEP

Connector

CEP

B

F

Lang. A
Lang. B

C
E
P

Lang. F
Lang. A

C
E
P

Lang. F
Lang. B

C
E
P

Connector

Connector

A

Lang. A
Lang. CEP

CEP
Connector

CEP

Complex Event Processing 23

3.2.2 Bus
The rather modern bus topology allows for a more easy integration of a CEP engine.

This is due to the universal language that is used on the bus. The CEP engine only

has to understand this language to be able to read every event and to generate new

events.

Figure 3-6: CEP bus integration

3.2.3 Star
In a star topology the easiest way to integrate a CEP engine is to connect the CEP

engine to the central hub. The hub has to be altered in such a way that it sends (a

copy of) all the events that he receives. In this way the CEP engine receives all events

of importance, and with that the first precondition is met. In this framework only the

“simple” variant of the star topology is dealt with. This variant is described in

paragraph 3.1, and is recognized by the general language that is introduced at the

hub. The problem when there is no general hub language is that, in order to let the

CEP engine understand the events, a special connector has to be designed. This

connector should be able to translate from every application domain in the enterprise

IT system to the CEP engine domain and vice versa of course. With the special

connector the CEP engine is able to understand the incoming events and can generate

new events and send these to different applications in the enterprise IT system. In

Figure 3-7 is graphically shown how the CEP engine can be integrated with a star

topology.

Connector

Bus

CEP

Lang. Bus
Lang. CEP

CEP

Complex Event Processing 24

Figure 3-7: CEP star integration

3.3 Cordys SOA Grid
Cordys has an advanced communication topology named the Cordys SOA Grid. The

unique feature of this SOA Grid is that it is fully based on a widely adopted

standard: XML. The SOA Grid is presented as a kind of bus, but it actually works

slightly different. The main difference is that the shared connection bus is used to

locate a node in the system. After the location is known the two nodes start a direct

communication line. The key factors of the Cordys SOA Grid are the state registry and

the location registry. These two registries make sure that the Cordys SOA Grid

maintains its high availability and that the state and location of the different nodes

are available. A great advantage of this way of communicating is that the traffic over

the shared part is limited. However, it makes integrating the CEP engine a little bit

harder, because receiving all events of interest can be somewhat of a hazard. In Figure

3-8 a graphical representation of the Cordys SOA Grid is presented.

Lang. CEP
Lang. Hub

Connector

Hub

CEP

CEP

Complex Event Processing 25

Figure 3-8: Cordys SOA Grid

A possibility to integrate the CEP engine with Cordys is to use the publish / subscribe

methods. All nodes that have to be connected to the CEP engine can subscribe to the

CEP engine. In this way the Cordys SOA Grid will be optimally used to support CEP.

A graphical representation of the CEP engine integrated with the Cordys SOA Grid is

found in Figure 3-9.

Figure 3-9: CEP Cordys integration

CEP Connector
XML

Lang. CEP

CEP

Complex Event Processing 26

4 Model

In this chapter the model that is used for researching and comparing different CEP

engines is described.

4.1 Streaming vs. non-streaming
There are two major streams within the area of event processing, namely CEP and

ESP (Event Stream Processing). ESP also contains complex event processing features,

but focuses mainly on processing large, dense data streams. A much used ESP

example is processing streams from different stock markets. Because the ESP engines

have to handle up to millions of events per second the key factor of ESP is high

speed. The “normal” CEP is more about non-streaming events, like business events

that are traveling around through an enterprise IT system.

4.2 CEP engine characteristics
In this research different CEP engines will be reviewed on the abilities of “normal”

(non-streaming) CEP with the focus being on business events. The CEP engine

should not be seen as a “black box” that does its thing and gives output. CEP

engines consist of many linked components that all have a small function in the total

CEP solution. Possible functions are: event extraction, event sampling, event filtering,

event parsing, semantic matching, structure transformation, event enrichment,

content based routing, event aggregation / composition / correlation, event splitting,

event generation, event storing, action triggering, etcetera. In this thesis the focus is

on event correlation. This is a very important function of a CEP engine because this is

the place where patterns are defined and handled, which is the basic concept of CEP.

4.3 Six CEP cases
To review the different CEP engines it is crucial to know what important criteria for

CEP engines are. The recognition of patterns, including the composition of the

Complex Event Processing 27

patterns themselves is the main criterion for comparing the engines. A second

criterion is performance, more about this in paragraph 4.4. In this paragraph the

main criterion for comparing the engines is described. The result of the comparison is

found in chapter 6.

To describe situations that need to be detected, the pattern language should

introduce the needed key constructs to do that. These constructs define the

relationship between different events that are used in a pattern (event aggregation /

composition / correlation). In the six cases in this paragraph the key CEP pattern

constructs are introduced. These cases consist of two parts, where the first part is an

example of a real life problem that has to be solved. In the second part a CEP solution

is described that is able to solve the problem. The CEP solution is again divided into

two parts; in the first part necessary events are defined and in the second part a CEP

pattern is introduced that will detect the “problem situation”. The cases will start

with simple ‘complex’ event patterns and will gradually become more complex. They

also they give a good view on what is possible with CEP.

In the cases a general CEP language is used that is inspired by the CEP language of

Esper [Esper n.d.]. The definition of this language is found in Definition 4-1.

Complex Event Processing 28

Definition 4-1: General CEP language definition

In Table 4-1 the introduction of the different operators in the six cases is shown.

Logical operators Time operator Sequence operator
and / or not within ->

Case 1 ●
Case 2 ● ●
Case 3 ● ●
Case 4 ● ●
Case 5 ● ● ●
Case 6 ● ● ● ●
Table 4-1: Introduction of operators in the cases

Notation:
• C = Set of all events.
• V = value
• Xi, Yi = Event with order number i (= X, Y if max i = 1 and Xi, Yi ∈ C).
• Xi(a,b,…) = a,b,… are attributes of event Xi.
• Xi(where a=V) = Attribute a is matched with value V.
• Xi(where a= Yi.a) = Attribute a is matched with attribute a from event Yi.
• T = time interval, expressed in seconds, minutes, hours, days, weeks, months or years.
• Z = expression that is build with elements from this general CEP language.
• Events are written in lower camel case; the name starts with lower case and each new

word starts with a capital: “newOrder”.

Operators:
Operators are divided into three classes:
• Logical operators: “and”, ”or” and “not”.
• Time operator: “within T (Z)”.
• Sequence operator: “->”.

Example expressions:
• Z = “X and Y”.
• “within 40 seconds (Z)”.
• “A -> B” (event B has to arrive after A).

Complex Event Processing 29

4.3.1 Case 1: “Simple use of logical operators”
Logical operators are widely used within different approaches of describing CEP

patterns, and that’s logical: these logical operators are very intuitive when events

have to be aggregated and relations between them have to be expressed.

Imagine a sales company that has its own warehouse. When a customer orders a

product, the order is send to the package department. Here the product will be

packaged, ready for transport to the customer. After packaging the order will go to

the post department that puts the address on the package and delivers the package at

the post-office. When a customer cancels an order and the order is already packaged

then the order normally will be unpacked and put back at the stock in the warehouse.

But what if another customer just placed the same order? Then the first order should

just get the address of the last customer. When a customer cancels an order this can

be seen as an event, also the fact that a product is packaged can be seen as an event.

This way of using events in real time can provide extra efficiency within a company.

First the three events that are used in this case are defined:

• “newOrder” event. This event is raised when a customer places an order. The

attributes of this event are “customerID”, “orderID” and “productID”. In this

simple example a customer can only choose one product per order.

• “orderPackaged” event. This event is raised when an order is packaged and

thus heading to the post department for addressing and sending. The

attributes of this event are “orderID” and “productID”.

• “orderCancelled” event. This event is raised when an order is cancelled by the

customer. The attributes of this event are “customerID” and “orderID”.

Complex Event Processing 30

Now a pattern can be defined that will detect the situation where customer A cancels

an already packaged order and customer B orders the same product. The following

pattern will detect this situation:

“orderPackaged and orderCancelled(where orderID=orderPackaged.orderID) and

newOrder(where productID=orderPackaged.productID)”

A brief explanation of this pattern: the first part of the pattern “orderPackaged and

orderCancelled(where orderID=orderPackaged.orderID)” detects when both - an

orderPackaged and an orderCancelled - events take place. The part between brackets

“(where orderID=orderPackaged.orderID)” makes sure that both events are about the

same order. The last part of the pattern “and newOrder(where

productID=orderPackaged.productID)” detects that a customer places an new order

with the same product as the just cancelled order that was already packaged. The

pattern only fires (becomes true) when both parts of the pattern become true.

When the where statements between brackets are omitted (the pattern then would be

“(orderPackaged and orderCancelled) and newOrder”) the pattern also would

become true when for example the order with a product “chair” is packaged and an

order from another customer is cancelled and again another customer places a new

order that contains a “table”. In some detection situations the ‘where statements’ will

not be necessary, but it’s clear that in this case they are needed to make any sense of

the detected situation.

4.3.2 Case 2: “Why the not operator is so important”
With a not operator it is possible to detect if some event did not happen. At first it’s

not directly clear what the added value of a not operator would be. But the next

example will clarify this and shows that not having a not operator, is not a good idea.

Complex Event Processing 31

Let’s say that the sales company in the previous case wants that expensive orders (for

example orders that are priced higher than 5.000 euros) are first verified by a sales

manager. When everything is okay, the sales manager gives “green light” to the

order and the order is sent to the package department. But what if there’s an

“orderPackaged” event of an order that was 5.500 euros, but there has never been an

“orderApproved” event from the same order? In that case an expensive order is

processed without approval. In this example CEP is used to detect a “faulty”

situation.

First the two events that are used in this case are defined:

• “orderPackaged” event. The description of this event is the same as for case 1,

only the attribute “totalPrice” is added.

• “orderApproved” event. This event is raised when a sales manager approves

an expensive order. The only attribute of this event is “orderID”.

Now a pattern can be defined that will detect the situation where expense order X is

packaged without an approval from a sales manager. The following pattern will

detect this situation:

“orderPackaged(totalPrice>5000) and not orderApproved(where

orderID=orderPackaged.orderID)”

A brief explanation of this pattern: “orderPackaged(totalPrice>5000)” filters out

expensive packaged orders from all packaged orders. “and not

orderApproved(where orderID=orderPackaged.orderID)” looks if there is no order

Complex Event Processing 32

approval for an expensive order. For every expensive packaged order there will be a

check if there was an order approval. If this is not the case the pattern will become

true and fires.

4.3.3 Case 3: “No CEP without time”
Time is a very important aspect within CEP. Many patterns have a time aspect to

express a situation. In this case an example is provided where time is an essential

aspect.

In this case we are helping a bank dealing with fraud. When someone draws money

with a bankcard from an ATM and within a short time again money is drawn from

another ATM in a different city then this should be investigated. For drawing money

from an ATM a bankcard is necessary, so if there are two withdrawals within

specified time limit in two different cities it looks like bankcard fraud.

First the event that is used in this case is defined:

• “cashWithdrawal” event. This event is raised when someone withdraws cash

from an ATM. The attributes of this event are “bankcardNumber”,

“accountNumber”, “cityID”.

Now a pattern can be defined that will detect the situation where two withdrawals in

two different cities within a specified time interval take place. The following pattern

will detect this situation:

“within 120 seconds (cashWithdrawal1 and cashWithdrawal2 (where

bankcardNumber=cashWithdrawal1.bankcardNumber,

accountNumber=cashWithdrawal1.accountNumber,

cityID!=cashWithdrawal1.cityID))”

Complex Event Processing 33

A brief explanation of this pattern: “within 120 seconds (…)” does exactly what is

expected: the part between brackets should become true within the time limit of 120

seconds. Now let’s look at the part between brackets: “cashWithdrawal1 and

cashWithdrawal2 (where bankcardNumber=cashWithdrawal1.bankcardNumber,

accountNumber=cashWithdrawal1.accountNumber,

cityID!=cashWithdrawal1. cityID))”. This part ‘looks’ for two cash withdrawals from

one bank account with one bankcard but in two different cities.

4.3.4 Case 4: “The sequence of events”
Next to the time aspect also the sequence aspect of events is very important. In many

situations it is important that events happen in a specified sequence, in this case the

sequence operator is introduced.

For the next example we stay in the financial business, this time in the stock market

business. Sometimes it happens that a company or individual sells a fairly large

amount of stocks just before the price of that particular stock takes a deep fall. This is

known as insider trading and is of course illegal. In this problem, as in many

problems, the time aspect is also of importance. The insider trading story holds only

when the selling of the stock happens just before the price crash. Where ‘just’ should

be read as a couple of days.

First the two events that are used in this case are defined:

• “sellStock” event. This event is raised when stocks are sold. The attributes of

this event are “stockID”, “sellerID” and “amount”.

Complex Event Processing 34

• “stockPriceChange” event. This event is raised when the price of a stock is

changed. The attributes of this event are “stockID”, “newPrice” and

“priceChangePercentage”.

Now a pattern can be defined that will detect the insider trading situation:

“within 7 days (sellStock (amount>10000) -> stockPriceChange (where

stockID=sellStock.stockID, priceChangePercentage< -20))”

A brief explanation of this pattern: “within 7 days (…)”does exactly what is expected:

the part between brackets should become true within the time limit of 7 days. Now

let’s look at the part between brackets: “sellStock (amount>10000) ->

stockPriceChange (where stockID=sellStock.stockID, priceChangePercentage< -20)”.

“sellStock (amount>10000)” selects sellStock events that describe a large amount of

stocks sold. “-> stockPriceChange (where stockID=sellStock.stockID,

priceChangePercentage< -20)” selects a stockPriceChange event that is about the

same stock as the large sellStock event. “priceChangePercentage< -20” makes sure

that only big price falls are detected. The sequence operator (“->”) makes sure that

first the sellStock event comes in and after that the stockPriceChange event. The

order of the events is critical to detect an insider trading situation.

4.3.5 Case 5: “Not in stock”
In this case the not operator and time operator are combined. This is a common

combination because it is able to check if something did not happen within a certain

amount of time.

Let’s say that the sales company in the first two cases wants that customers that place

orders are notified when a product is not in stock and thus there order is not shipped

Complex Event Processing 35

yet. The policy of this sales company is that placed orders should be packaged within

three hours after the order is placed. If the order is not packaged within this time

limit then the product is not in stock and the customer should be notified of this.

First the two events that are used in this case are defined:

• “newOrder” event. This event is raised when a customer places an order. The

attributes of this event are “customerID”, “orderID” and “productID”. In this

simple example a customer can only choose one product per order.

• “orderPackaged” event. This event is raised when an order is packaged and

thus heading to the post department for addressing and sending. The

attributes of this event are “orderID” and “productID”.

Now a pattern can be defined that will detect the situation where an ordered product

is not in stock:

“newOrder and not within 3 hours (orderPackaged (where

orderID=newOrder.orderID))”

A brief explanation of this pattern: “newOrder and not within 3 hours

(orderPackaged (where orderID=newOrder.orderID))” checks that within 3 hours the

orderPackage event of an order does not come. If this is the case then the pattern will

become true.

4.3.6 Case 6: “Combination of different operators: detect possible
unsatisfied customer”

In this last case the different operators are combined into one pattern to show some

real power of what CEP can add to enterprise IT systems.

Complex Event Processing 36

Again the sales company in the first two cases is used, but for this case the service

department is added. This department is responsible for helping customers when

they have questions or problems. In this case the situation where a customer contacts

the service department twice within two weeks and after the calls this customers

suddenly stops placing new orders, is detected. An extra condition of this case is that

the customer in question is a regularly ordering customer. Of course this ‘order stop’

can be a coincidence but it is also possible that the customer is not satisfied by the

support that is delivered by the service department and therefore chose not to place

new orders anymore. In this case an unsatisfied customer is detected and maybe the

problems that were not solved to full satisfaction of the customer can be solved in

another way. This is the right moment to contact this customer and see if there is a

way to solve the problem and with that try to win over the customer again, before it

is too late and this customer is lost to a rival company.

First the two events that are used in this case are defined:

• “newOrder” event. This event is raised when a customer places an order. The

attributes of this event are “customerID”, “orderID” and “productID”. In this

simple example a customer can only choose one product per order.

• “serviceCalled” event. This event is raised when a customer makes a call to the

service department. The attribute of this event is “customerID”.

Now a pattern can be defined that will detect the situation of a possible unsatisfied

customer:

Complex Event Processing 37

 “within 2 weeks (serviceCalled1 and serviceCalled2 (where customerID =

serviceCalled1.customerID)) -> not within 2 weeks (newOrder (where customerID

= serviceCalled1.customerID))”

A brief explanation of this pattern: “within 2 weeks (serviceCalled1 and

serviceCalled2 (where customerID = serviceCalled1.customerID))” checks for the

situation where the same customer calls the service department twice within two

weeks. “-> not within 2 weeks (newOrder (where customerID =

serviceCalled1.customerID))” checks for the situation where the same customer did

not place new orders anymore. The sequence operator (“->”) makes sure that the

check for no new orders is done after the check for the two calls to the service

department.

4.4 Performance tests
The six CEP cases, described in paragraph 4.3 are the main research factor, but to

make the results more complete also some (simple) performance tests cannot be left

out. In this paragraph the performance tests are defined, results are presented and

discussed in paragraph 6.2.

Of the three researched engines, Esper, StreamCruncher and ruleCore, only the first

two could be tested for performance. This is because ruleCore is only available for

testing on the servers of MS Analog Software kb, the company behind ruleCore. In

that case the results will not be comparable because the tests are not executed on the

same machine. Performance tests are executed on a Dell Latitude D600 notebook,

equipped with an Intel Pentium-M 1.6 GHz processor and 1 GB main memory.

Windows XP Professional SP2 is used as operating system. Both Esper and

StreamCruncher use Java, the installed Java version is 1.6.0_02. For the tests version

1.10.0 (19-07-2007) of Esper, and version 2.2 Beta (19-08-2007) of StreamCruncher are

used.

Complex Event Processing 38

The performance tests are divided into two parts: the latency test and the throughput

test, which will be described in the two following paragraphs.

4.4.1 Latency test
The latency test measures the total time that is needed to completely detect a pattern,

from sending the first event to the engine until a callback is received when the

pattern fires. Initialization time is not taken into account with test as this is not a

factor of the latency. First a simple pattern is set, after that events are raised causing

the pattern to fire and the engine to do a call back. In the first run all the events

needed for the pattern to fire are raised, without any other events that are not used or

are out of order. This first run is so to speak free of any noise. To see how the engine

handles noise the test is repeated some times with increasing noise.

A function that describes the results of this test is:

Latency (Xn, Nm) = Tx1 + Tx2 + … + Txn + Tn1 + Tn2 + … + Tnm + Tcallback

Where Xn are the events needed for the pattern to fire, sent in the right order. Nm

stands for the noise events. This can be events out of order or events that are not

correlated to the pattern. The result of this function is the total sum of time needed to

send all the (noise) events and added to that the time needed to do the callback when

the pattern is detected.

Test plan

The test plan of this test is:

• Set the pattern “A and B (where ID = A.ID) -> C (where ID = A.ID)”

Complex Event Processing 39

• First test is without noise: just send A(1), B(1), C(1) and measure the total time

from sending the A event until the engine gives a callback after the pattern is

detected.

• Now rerun this test a couple of times with increasing noise and again

measure the total time: send A(1), Y times B(2), B(1), Y times C(2), C(1) (where

Y = 50, 100, 200, 500, and 2000).

4.4.2 Throughput test
The throughput test measures how the engine is performing in more stressed

situations. In this test the engine gets flooded with events and there is more than one

pattern registered for the engine to detect. The two variables in this test are: the total

number of events send and the event-noise ratio. The total number of events and the

event-noise ratio will both increase, but first there is a series of test runs that do not

involve noise.

Each test the following factors are measured: total time to complete test, total number

of recognized patterns and the memory usage of the engine.

A function that describes the results of this test is:

Throughput (Xn, Nm) = Tx1 + Tx2 + … + Txn + Tn1 + Tn2 + … + Tnm + Tcallback

Where Xn are the events needed for the patterns to fire, sent in the right order. Nm

stands for the noise events. This can be events out of order or events that are not

correlated to the pattern. The result of this function is the total sum of time needed to

send all the (noise) events and added to that the time needed to do the callback when

the pattern is detected.

Test plan

Complex Event Processing 40

The test plan of this test is:

• Set three patterns that have to be detected:

o “A and B (where ID = A.ID) -> C (where ID = A.ID)”

o “C -> D (where ID = C.ID)”

o “A and C (where ID = A.ID) and D (where ID = A.ID)”

• First a series of tests without noise are run: just send X times (A(x), B(x), C(x),

D(x)), where X = 2, 500, 1.000, 2.000, 5.000, 10.000, 50.000, 200.000, and 500.000,

and measure the total time from sending the first An event until the engine

gives the callback after the last pattern is detected. The three patterns should

be detected all once per X: total patterns that have to be recognized: 3 * X.

• Now a second series of tests, with increasing noise, are run. The events are

sent: X times (A(x), Y times B(-1), B(x), C(x), Y times C(-1), D(x)). X and Y are

both increasing: (X = 2, Y = 1), (X = 500, Y = 2), (X = 1.000, Y = 3), (X = 2.000, Y =

4), (X = 5.000, Y = 5), (X = 10.000, Y = 6), and (X = 50.000, Y = 7).

Complex Event Processing 41

5 Engines

In this chapter the three researched CEP engines are introduced.

5.1 Esper
Esper [Esper n.d.] is an open source engine that combines both ESP and CEP

capabilities. Esper is available as Java source and C# .Net source (NEsper). In October

2004 the Esper open source project started, delivering the first alpha version (0.7.0) of

Esper in January 2006. Now, more than one and a half years later a mature version of

the product is available (1.10.0).

The Esper CEP engine is build with the use of state machine technology, while the

ESP engine works with delta-flow networks. State machines are a very intuitive

choice when building a CEP engine due to the fact that a CEP pattern is easy to

express in a state machine. Let’s consider the pattern “A -> (B and C) -> D”, this

pattern in state machine notation is presented in Figure 5-1.

Figure 5-1: Using a state machine to express a pattern

To arrange extra support, training and licensing for commercial use EsperTech Inc. is

founded. Two figures from their website [EsperTech n.d.] visualize the design and

capabilities of the Esper ESP/CEP engine. Figure 5-2 shows how Esper combines ESP

and CEP. Their Event Query Language (EQL) is used to express filtering,

aggregation, and joins, possibly over multiple event streams, while the pattern

D

D C

B

B

A Qo

Q2

Start Q1

Q4

Q3 Q5

Q6

C

Complex Event Processing 42

language is used to define more complex patterns on different types of events. In

Figure 5-3 an overview of the Esper engine is presented.

Figure 5-2: Esper combines ESP and CEP

Figure 5-3: Esper engine overview

Esper also includes a historical data access layer to connect to the most popular

databases, also combining historical data and real time data in one single query is

possible. Esper can be easily integrated with most available servers, ranging from JEE

server (Weblogic, Websphere, JBoss, Tomcat, etcetera), service busses, grid platforms,

and Microsoft based .Net technologies. Esper supports different kind of event

formats, from Java / .Net objects and maps to XML documents. In Q3 2007 Esper will

Complex Event Processing 43

release an extension for their engine to include failover and recovery capabilities,

ensuring that the engine is non-stop usable (high-availability). Also an extension to

add event storage options will be released in Q3 2007. With this extension persistence

of events becomes fully customizable.

As performance tests show Esper scales vertically nearly linearly (adding more CPU

power). In a VWAP (Volume Weighted Average) benchmark [Esper benchmark n.d.]

Esper exceeded 500.000 events per second on a dual CPU server class hardware, with

only 5 microsecond average latency. Horizontally scaling is best handled by logical

partitioning of statements and data streams to separate Esper instances.

5.2 StreamCruncher
StreamCruncher [StreamCruncher n.d.] is a closed source, free to use ESP engine. The

program is created and maintained by one person, Ashwin Jayaprakash. Ashwin’s

interest in event processing started when he worked for BEA Systems, where he

worked on their “event generators”. Towards the end of 2005 he started noticing

several ESP/CEP products and his interest in event processing emerged again.

StreamCruncher has been developed by Ashwin in his personal time. The current

version being 2.2 Beta, which was released in August 2007.

StreamCruncher, being an ESP engine, works with streams of events. Also correlation

between streams is possible, state machines are used for this functionality. Next to

correlation between different streams, StreamCruncher also incorporates event

filtering, partitioning and aggregation. To help vertical scalability StreamCruncher

uses a configuration file to extensively configure kernel performance. Also the kernel

uses SEDA (Staged Event-Driven Architecture) technique to pipeline various

processing stages that are processed by thread pools. StreamCruncher scales well on

multi-CPU hardware. Horizontal scalability is not possible: StreamCruncher does not

support a cluster of servers.

Complex Event Processing 44

The user has a choice of using different databases, either in-memory or persistent

databases. So, it is possible to combine real time data streams with historical data.

Queries can access/lookup/join database data transparently with streams.

StreamCruncher is not high-available and non-stop usable, also storing of events can

only be done manually.

StreamCruncher is a pure Java kernel, ensuring easy integration with most existing

applications, and it is free, giving users (even commercial ones) the opportunity to

get accustomed to the world of event processing.

5.3 ruleCore Server
The CEP solution ruleCore Server [ruleCore n.d.], from MS Analog Software kb

originates from the (business) rule world. The ruleCore engine is based on a graph

based algorithm. This algorithm has its roots in the active database research. An

interesting paper on this subject is “Snoop: An Expressive Event Specification

Language For Active Databases” [Snoop 1993], written by Sharma Chakravarthy and

Deepak Mishra. Some CEP concepts are addressed in this paper, long before ESP or

CEP were known, so maybe this paper was ahead of its time. Chakravarthy and

Mishra for example made a distinction between primitive events and

composite/complex events: “primitive events: events that are pre-defined in the

system, composite or complex events: events that are formed by applying a set of

operators to primitive and composite events”.

The ruleCore engine algorithm is presented as a tree, where the operators represent

the nodes and events the leafs. Each node becomes true as the operator in it becomes

true. Depending on the type of operator, for example an “and” operator becomes true

when both its leafs become true, but for the “or” operator only one of its leafs has to

become true to let the or operator become true. When the root node becomes true the

defined situation is detected. To clarify this tree approach the pattern “A and B and C

or D” is presented in tree notation in Figure 5-4.

Complex Event Processing 45

Figure 5-4: Using a tree notation to express a pattern

The ruleCore Server is partially scaleable; it consists of two major parts: the event I/O

part and the engine. These two components communicate with each other through

TCP/IP sockets. The event I/O part is based on Mule, an open source ESB with

routing capabilities, making it is possible to run several engines on multiple servers

that all receive their events of interest though the event I/O machine. Even the use of

multiple event I/O machines is possible.

All events that flow to the event I/O part are stored in a persistent database.

Although ruleCore has no real non-stop capabilities, the events and the states of the

patterns are stored in a database, so after a server crash nothing is lost. This crash

recovery mechanism can be used to create real non-stop capabilities, by letting a

second server with a ruleCore engine running recover the states of the patterns and

events from the crashed server.

node
leaf

root node

D C

B

A

and

and

or

Complex Event Processing 46

6 Research results

In this chapter the result of the research is presented. In the first paragraph the six

cases, described in paragraph 4.3 are evaluated for the three researched engines. In

the second paragraph the results of the performance tests, described in paragraph 4.4

are presented and discussed.

6.1 Six CEP cases
In this paragraph the six CEP cases are evaluated in the different CEP engine

languages. Each case will be presented in a new subparagraph. Only in the first case

the patterns of the different engines are shown, and discussed in detail. The patterns

of all cases are included in the appendix. From the five other cases only striking

differences are discussed.

6.1.1 Case 1
The detailed description of this case can be found in subparagraph 4.3.1. The pattern

that has to be detected in this case, detects the situation where customer A cancels an

already packaged order and customer B orders the same product. The following

pattern will detect this situation:

“orderPackaged and orderCancelled(where orderID=orderPackaged.orderID) and

newOrder(where productID=orderPackaged.productID)”

Now the patterns to detect this situation in Esper, StreamCruncher and ruleCore are

presented in Table 6-1.

It is notable that there is a big difference between the different pattern languages. The

Esper pattern really looks like the general CEP language that is defined in Definition

4-1. In fact it is the other way around: the general CEP language is inspired by the

Complex Event Processing 47

CEP language of Esper, this is because the notation really feels intuitive when

defining patterns. However there are some differences: note the “every” keyword in

the beginning of the pattern. This every keyword sees to it that for every new

orderPackaged event that arrives at the engine a new pattern instance is created.

Another difference is the way to create a reference to an event. In the general CEP

language this is done by adding increasing numbers to events form the same type to

prevent ambiguousness, but when an event type only occurrence, the reference to it

is just its type name. Also the use of the sequence operator catches the eye. The

reason why this is necessary is because when the orderCancelled event arrives the

engine wants to evaluate the attribute of the reference a, in this case the

orderPackaged event. So using the “and” operator in combination with an attribute

match between both events is not possible. Of course there is a workaround: lets say

the pattern “A and B (where ID=A.ID)” is defined. This pattern looks for an A and B

event with an equal “ID” attribute. It doesn’t matter which events arrives first,

otherwise the sequence operator should have been used. In Esper the pattern “a=A

and B(ID=a.ID)” is not valid, because of the ‘dangling reference’ problem described

earlier. A work around with use of the sequence operator is able to express the same

as the pattern with the “and” operator and the attribute matching between the two

events: “(a=A -> B(ID=a.ID)) or (b=B -> A(ID=b.ID))”.

When looking at the StreamCruncher pattern there are several notable items. The

first item is the structure, this looks very much like SQL (Structured Query

Language) that is used for most databases. An advantage of this is that it will look

familiar to many developers, a disadvantage is that the structure is less suitable for

describing CEP patterns and therefore takes more writing effort. The second item is

the use of streams. StreamCruncher works with streams of events, where every

streams can only hold one type of event. In the world of business events (like

newOrder, newCustomer, etcetera) the use of streams seems not so logical. There are

Complex Event Processing 48

many event types used in enterprise IT systems and the interval between the events

can be much larger than the interval between events in event streams, therefore

working with loose events seems much more intuitive. The last item are the

partitions that are defined manually, in the pattern. This partitions are a sort of

temporal memory that remember the last X events in a stream or the last X minutes

of events in a stream.

Esper StreamCruncher ruleCore

"every
a=orderPackaged ->
(orderCancelled(orderI
D=a.orderID) and
newOrder(productID=
a.productID))"

select newOrderStream.orderId,
 orderPackStream.orderId,
 orderPackStream.productId
from orderPack (partition store last 40
 minutes) as orderPackStream,
 orderCancel (partition store last
 40 minutes) as orderCancelStream,
 newOrder (partition store latest
 1000) as newOrderStream
where newOrderStream.$row_status is
 new and
 orderPackStream.$row_status is
 not dead and
 orderCancelStream.$row_status is
 not dead and
 newOrderStream.productId =
 orderPackStream.productId
 and orderPackStream.orderId =
 orderCancelStream.orderId;

<view>
 <match>
 <value>
 <event>$xpath("event-def[@eventType=
 "orderPackaged"]")</event>
 <field>$xpath("EventBody/orderID")</field>
 </value>
 <value>
 <event>$xpath("event-def[@eventType=
 "orderCancelled"]")</event>
 <field>$xpath("EventBody/orderID")</field>
 </value>
 </match>
 <match>
 <value>
 <event>$xpath("event-def[@eventType=
 "newOrder"]")</event>
 <field>$xpath("EventBody/productID")</field>

 </value>
 <value>
 <event>$xpath("event-def[@eventType=
 "orderPackaged"]")</event>
 <field>$xpath("EventBody/productID")</field>

 </value>
 </match>
</view>
<detector>
 <and>
 <event-pickup>$xpath("view/event[@type=
 "orderPackaged"]")</event-pickup>
 <event-pickup>$xpath("view/event[@type=
 "orderCancelled"]")</event-pickup>
 <event-pickup>$xpath("view/event[@type=
 "newOrder"]")</event-pickup>
 </and>
</detector>

Table 6-1: Patterns for case 1

Complex Event Processing 49

The first item noted from the ruleCore pattern is again the structure. ruleCore

patterns are defined in XML. This can be seen as an advantage, XML being one of the

most embraced standards for data exchange now-a-days. Attributes of an event are

selected with the <value> tag. The matching of attributes is done with the <match>

tag. All matching is done in the first definition: the view definition. After the view is

defined the detector has to be defined. In this definition the different operators are

defined. In this pattern the two “and” operators from the general pattern can be

replaced by only one “and” operator in the <detector> part, due to the fact that the

two “and” operators in the general pattern are used to check three events (with their

attributes).

6.1.2 Case 2 to 6
In case 2, two events of the same type are correlated. Because StreamCruncher works

with event streams it has a special self-join operator to effectively match multiple

events from the same stream.

Also case 2 shows that next to matching event attributes with each other also

matching event attributes with a value is done in the <view> part, for this the <assert>

tag is used. Also case 3 shows a new tag for the ruleCore <view> part: the <age> tag.

With the age tag it is possible to create time related patterns. Only it does not seem

logical to use the <age> tag in the <view> part, as the <age> tag is a time operator it

would better fit in the <detector> part where all other operators are used. Why

ruleCore chose for this location for the <age> tag is unclear, but that it leads to

problems becomes clear in case 6. Case six consists of two parts, both with a time

operator. These parts are joined with a sequence operator. Because the time operator

(<age> tag) is in the view part and the rest of the operators are in the <detector> part

case 6 can not be expressed in one ruleCore pattern. When it is split into two parts;

the first part detecting the two customer calls within two weeks and emitting a

Complex Event Processing 50

customerCallsALot event when this situation happens, and the second part that uses

this customerCallsALot event and then looks for no new orders within two weeks.

When looking at the Esper patterns for case 5 and 6 it becomes clear that there are

two types of timers in Esper: “timer:within” and “timer:interval”. The “timer:within”

acts as a sort of stopwatch: if that part of the pattern where the “timer:within” is

defined does not become true within the specified time then the pattern becomes

false. “timer:interval” waits before that part of the pattern where it is defined

becomes true. A many used situation is the combination with “and not”. For example

the situation where an A event can not be followed by a B event within 60 seconds.

The last thing that is worth noting is the way StreamCruncher solves the last case. It

uses a ordinary SQL-exists clause and a chained partition. The first partition counts

the number of service calls per customer in an interval of two weeks, while the

seconds partition checks if this number is larger than 1. If that is the case then it starts

checking if that customer does not place a new order within two weeks.

6.2 Performance tests
In this paragraph the results of the performance tests, defined in paragraph 4.4, are

shown and discussed. All shown scores are averages of three executed tests. Because

Esper and StreamCruncher are both written in java, first the Java Virtual Machine

(JVM) tuning that is used per engine is given:

• Esper: Only JVM tuning is used at the last throughput test with noise (X =

50.000, Y = 7), because this test needed more memory. The used JVM tuning in

this case was: “-Xms512m -Xmx512m -XX:+UseParNewGC”.

• StreamCruncher: For all tests with StreamCruncher the JVM used tuning was:

“-server -XX:+UseBiasedLocking -XX:CompileThreshold=5000

-XX:ThreadStackSize=256 -XX:+UseParallelGC -XX:ParallelGCThreads=2

-XX:MaxGCPauseMillis=100 -Xms768m -Xmx768m”.

Complex Event Processing 51

Also it should be noted that the next release of StreamCruncher should give a great

performance boost (30%-80%), because that version will use byte code instead of

interpreted code.

First the latency tests are shown. As a reminder the pattern to detect and the sent

events per test are given:

• Pattern to detect: “A and B (where ID = A.ID) -> C (where ID = A.ID)”

• Sent events (Y are noise events): “A(1), Y times B(2), B(1), Y times C(2), C(1)”

 Y = 0 Y = 50 Y = 100 Y = 200 Y = 500 Y = 2.000

Esper 15 18 21 28 43 80

StreamCruncher 13 47 100 484 331 361

Table 6-2: Latency tests results

In Table 6-2 the results of the latency tests are given, to show the course of the results

better they are also shown in a graph in Figure 6-1. The first test (Y = 0) is without

noise. The curve in the beginning of the StreamCruncher results line is probably due

to optimization of the StreamCruncher engine for higher volumes. In the end both

Esper and StreamCruncher seem to develop a linear results line. Please note that the

number of noise events in the graph are twice as high as the corresponding Y

number. That is because in the send events part the Y is used twice.

Complex Event Processing 52

Figure 6-1: Latency tests results

Now the results of the throughput tests, with and without noise are shown. First the

patterns to detect and the sent events per test are given:

• Patterns to detect:

o “A and B (where ID = A.ID) -> C (where ID = A.ID)”

o “C -> D (where ID = C.ID)”

o “A and C (where ID = A.ID) and D (where ID = A.ID)”

• Sent events (tests without noise): X times (A(x), B(x), C(x), D(x))

• Sent events (tests with noise): X times (A(x), Y times B(-1), B(x), C(x), Y times

C(-1), D(x))

In Table 6-3 the results of the throughput tests without noise are shown. The X =

200.000 test results of StreamCruncher are shown between brackets because not all

patterns that had to be detected were detected, but the test did finish. The tests were

Complex Event Processing 53

run on a older model notebook, so it is possible that StreamCruncher hit the roof of

the notebooks performance with this many events.

 Esper (ms) SC (ms) Esper (MB) SC (MB)

X = 2 30 159 35 35

X = 500 474 981 35 46

X = 1.000 494 641 35 56

X = 2.000 574 1.073 35 78

X = 5.000 744 1.685 35 93

X = 10.000 1.035 2.763 35 117

X = 50.000 3.291 14.869 35 224

X = 200.000 11.660 (92.723) 35 (431)

X = 500.000 28.024 36

Table 6-3: Throughput tests results (without noise)

From the graph in Figure 6-2, that shows the results of the throughput tests without

noise, it becomes clear that Esper scales roughly linearly while StreamCruncher

results show a much steeper line. Also the event numbers in the graph are higher

than the corresponding X numbers, for the same reason as with the latency tests.

Complex Event Processing 54

Figure 6-2: Throughput tests results (without noise)

Table 6-4 shows the results of the throughput tests with noise. Again the last

StreamCruncher test did not detect all patterns. Also note the memory use of the last

Esper test, that is because of the needed JVM tuning to let Esper complete that test.

Without this tuning a heap overflow error occurred.

 Esper (ms) SC (ms) Esper (MB) SC (MB)

X = 2, Y = 1 37 116 35 35

X = 500, Y = 2 494 818 35 46

X = 1.000, Y = 3 608 878 35 56

X = 2.000, Y = 4 905 1.118 35 89

X = 5.000, Y = 5 1.592 2.529 35 113

X = 10.000, Y = 6 3.107 7.373 35 144

X = 50.000, Y = 7 13.877 (82.364) 222 (449)

Table 6-4: Throughput tests results (with noise)

Complex Event Processing 55

In the graph shown in Figure 6-3 the results of the throughput tests are shown. To

make comparison easy also the results of the throughput tests without noise are

shown. The last throughput test with noise is not added to the graph because that

would make the graph zoom out too much. Do not underestimate the number of

events in these tests. The ‘normal’ A(x), B(x), C(x), and D(x) events are all sent X

times, so that makes a total of X * 4 ‘normal’ events. Because the Y is used two times

in the main loop (X) the number of noise events is equal to: X * Y * 2. So the total

number of all sent events (normal and noise) in the last test is: 50.000 * 4 + 50.000 * 7 *

2 = 200.000 + 700.000 = 900.000. Note that the events number used in the graph

represents only the normal events, because otherwise the domain of the X-axle would

be too large and details would have been lost.

Figure 6-3: Throughput tests results (with noise)

Complex Event Processing 56

Figure 6-4: Memory usage

Figure 6-4 shows the memory usage of Esper and StreamCruncher while running the

different throughput tests. As stated before only for the last test with noise, JVM

tuning for Esper had to be used in order to give the engine enough memory. In all

other tests Esper only used roughly 35 MB. StreamCruncher’s memory usage

increased when the number of events did. This is probably due to the fact that

StreamCruncher has to build up the four events streams and then runs the queries

against them, while Esper evaluates the incoming events on-the-fly. Also in this tests

StreamCruncher stored the test result in memory.

Complex Event Processing 57

7 Conclusions

In this chapter the conclusions, based on the research questions are drawn, also an

indication for possible future research is provided. The conclusions on the innovation

management research can be found in chapter 8.

7.1 Key concepts
The first research question deals with key concepts that are involved with CEP. After

an intense literature study it became clear that CEP is linked with many concepts,

like event flow intensity, algorithms, event communication and diversity, complex

pattern description, and of course enterprise IT systems. The most relevant concepts

are introduced in chapter 2. This first question also lead to the definition of a CEP

framework, which helps to integrate a CEP engine within an enterprise IT system.

7.2 Optimal engine
The second research question concerns about what the optimal CEP engine would be

for integrating with the Cordys environment. In order to answer this question there

are three different engines chosen: Esper, StreamCruncher, and ruleCore Server. To

compare these three engines six representative CEP business cases are defined and

expressed for all three engines. The results of this comparison are extensively

described and discussed in chapter 6. The overall conclusion is that all three engines were

able to handle all six cases, so more roads lead to Rome. Is one road better, or maybe

shorter than the other? Yes, while every engine has its advantage and disadvantage,

Esper seems to be the most mature engine. Their combination of ESP and CEP is

well-considered and their CEP pattern language is short and intuitive. Also the

performance tests show that Esper is performing very well, even on a dated laptop.

Complex Event Processing 58

7.3 Recommendations
While conducting this research, it became clear that CEP is a very promising

technology to enhance current enterprise IT systems. However, no real standards are

formed at the moment and it is very important for Cordys to follow this closely and

even take part in this standardization process if possible.

The Cordys SOA grid is very advanced and with minor alterations/extensions it

should be capable to incorporate a CEP engine. Esper really shows some promising

features and it should definitely be taken into consideration for use within the

Cordys environment, because developing a CEP engine from the scratch can cost a

lot of resources and knowledge.

7.4 Future research
Talking about ESP and CEP often leads to a discussion if these are two different

concepts or that they are both (roughly) the same. My view on this is that ESP is more

about high throughput and streams with one event type per stream, while CEP is

more about detecting more complex situations. Further research has to be done in

order to provide clearness in this discussion. Also it is highly necessary that CEP

standards are formed. The CEP glossary on the website of David Luckham is a start

for this. These standards should insure that integrating CEP in common enterprise IT

systems becomes a smooth process.

7.5 Final words
This thesis should give some understanding about the world of CEP, which is

certainly one of the most promising developments for enterprise IT systems at the

moment, and for the near future. I hope that this thesis, and the six CEP business

cases in particular, put people to think about what is possible with CEP. More

research in the CEP field are necessary and hopefully this thesis helps waking the

interest of researchers for this interesting and promising subject.

Complex Event Processing 59

8 Innovation management on three levels

A recent book on innovation management, “Managing Innovation” from Tidd et

al. [2005] shows that innovation is a very important aspect for corporations to

ensure continuity, staying ahead of competition and keeping customers satisfied.

Innovation does not come for ‘free’, it should be a well structured, managed

process. In this research innovation management will be viewed on three different

levels: product/project level, company level and global/national level. What are the

similarities and differences on these three levels and do they link up to each other

or are there gaps between them? An interview within a medium sized high-tech

company will reveal if this theory is put into practice.

8.1 Overview
Tidd et al. [2005] conclude in the second chapter of their book that innovation

management is more than just an invention: “Definitions of innovation may vary in

their wording, but they all stress the need to complete the development and

exploitation aspects of new knowledge, not just its invention”. So innovation

management is “the process of growing innovations into practical use”.

What is the link between innovation management and CEP? These are both quite

different subjects, but CEP can be seen as an innovation in current enterprise IT

systems. Working “on” CEP in such systems should be a well managed process, not

only for the companies developing CEP, but also for the clients using it. The study of

innovation management on three different levels, which are introduced hereafter, can

contribute to that, and to many other innovative processes.

Complex Event Processing 60

• Product / project level

The product level describes the trajectory that a product or project has to cover

to have the greatest chance of success. For this level a paper about Stage-Gate

Systems from Robert G. Cooper [1990] is used.

• Company level

The company level is more focussed on a long term overview. Two

technologically focussed views are combined: the technology maps from the

book “Marketing of High-Technology Products and Innovations” written by

Mohr et all. [2005] and the article “Roadmapping in the Corporation” by

Albright and Kappel [2003].

• Global / National level

The research of Dunphy et al. [1996] reveals four global and national level

innovation factors. Also some additions to the micro level (product/project

and company level) are shown.

Innovation management studies, like the four used for this research [Cooper, Mohr,

Albright, Dunphy], are often focused to only one level of innovation management. It

is very important to see how these different levels relate to each other, because

possible gaps and overlaps can obstruct integration. This research focuses on that

and the following research question is formulated:

“What are factors that involve innovation management on different levels and

how do they integrate?”

The management research model, shown in Figure 8-1, helps answering this question.

Complex Event Processing 61

Figure 8-1: Management research model

The upper left block in this research represents the theory view of innovation

management, viewed upon three different levels, from three different insights. A

zoom-out view of these three levels is used because the first part of this thesis is a

zoom-in view on a single innovation: CEP. Also the most zoomed-out view;

global/national level, reveals many interesting factors that are not so common in

most innovation management researches.

To complete the theory view the different overlaps and gaps are analysed in

paragraph 8.5, titled: ‘Gaps and overlap’.

After the theory view is completed an interview at Cordys is used to see what

innovation management constructs are used in a midsized high-tech company like

Cordys.

8.2 Stage-Gate Systems
In 1988 Robert G. Cooper introduced Stage-Gate systems [1990] to give corporations

a tool to manage their innovative projects. In many different fields corporations are

battling for their share in the market. The key in winning this war is, according to

Research different
levels of innovation

management

Describe possible
overlap and gaps

Theory view on
innovation

management

Interview at
Cordys for

practical view

Practice versus
theory

comparison

Complex Event Processing 62

Cooper, “To get better at the innovation process: to drive new products from idea to

market faster and with fewer mistakes”. Many researches share this thought: A study

by the Conference Board [Hopkins 1980] shows that most CEOs believed that new

products would become much more important for their firms in the coming years. A

Coopers & Lybrand survey [1985] reported that most corporations are counting

heavily on new product development for growth and profitability. Even an annual

Fortune survey among the top American corporations underlines the importance of

innovation: “The results were provocative: The single strongest predictor of

investment value is ‘degree of innovativeness of the company’”.

So it becomes clear that innovation is a very important weapon for companies in their

struggle for market share and survival. A new tool for managing innovation is sorely

needed because only one in four projects becomes a winner. Furthermore

corporations are facing increased pressure to reduce cycle time (time to market) and

at the same time improve the ‘hit rate’ of their new products.

Stage-Gate systems form one solution for these firms to effectively manage their

innovations. What exactly are stage gate systems? “A Stage-Gate systems is both a

conceptual and an operational model for moving a new product from idea to launch.

It is a blueprint for managing the new product process to improve effectiveness and

efficiency.” Stage-Gate systems recognize that product innovation is a process. And

like other processes, innovation can be managed. Stage-Gate systems simply apply

process-management methodologies to this innovation process. The innovation

process can be compared with the production process of a physical product. To

improve the quality of the output of the process the focus should be on the process

itself: “to remove variances in the process”.

Typically a process is divided into a number of stages. To keep the output quality

under control there is a quality control checkpoint or gate at the end of each stage.

For each gate a set of deliverables and quality criteria are specified. The product has

Complex Event Processing 63

to pass this gate in order to continue to the next stage. The work is done in the stages

and the gates guard the quality and progress of the product. Note that it is not

possible to work on every innovative idea, the first gate acts as a selection device but

when there are too many ideas to evaluate possible some pre-selection might be

necessary.

Stage-Gate systems work on a similar way. The innovation process is divided into a

set of predetermined stages. These stages consist of prescribed, related and often

parallel activities. The number of stages and gates may vary from implementation to

implementation, but are often between four and seven stages and gates. Also in

general each stage gets more expensive than its preceding one, but also information

becomes better so risk is managed.

In Figure 8-2 an overview of a typical Stage-Gate system is shown. Before each stage is

a gate that guards the entrance to that stage. This gate controls the process and is

characterized by a set of deliverables or inputs, a set of exit criteria, and an output.

Figure 8-2: Stage-Gate system overview

• Gate 1: Initial Screen

At this gate there is decided if an idea has enough potential to be further

developed. This first screen is very “gentle” and doesn’t include financial

criteria. Only a handful of key “must meet” and “should meet” criteria that

deal with strategic alignment, project feasibility, magnitude of the

Complex Event Processing 64

opportunity, differential advantage, synergy with the firm’s core business and

resources, and market attractiveness are included.

• Stage 1: Preliminary Assessment

This first, inexpensive stage has the objective to gather more information about

the market and the technical aspects of the product. In this short stage a

preliminary market assessment is carried out, this involves a variety of

relatively inexpensive activities: a library search, contacts with key users, focus

groups, and a quick concept test with a handful of potential users. Purpose of

the preliminary market assessment is to determine market size, market

potential, and likely market acceptance. The purpose of the technical

preliminary assessment is to assess development and manufacturing

feasibility, and possible costs and times to execute.

In summary the first stage provides for the gathering of market and technical

information, at low cost and in a short time, so the project can be re-evaluated

more thoroughly at the next gate.

• Gate 2: Second Screen

This gate is more a repeat of the first gate. The same “must meet” and “should

meet” criteria are considered, but now with the new information gathered in

the first stage. Some additional “should meet” criteria dealing with sales force

and customer reaction to the proposed product are introduced. The Go/No go

decision that has to be taken at this point is very important, because the next

stage will bring increasing costs.

• Stage 2: Definition

Complex Event Processing 65

This is the last stage before the development starts. In this stage the definition

of the project must be very clear. Because the next stage will be very expensive

it is important that the prospects of the product are very good and it should be

technically feasible. Market research studies are undertaken to determine the

customer’s needs, wants and preferences to help define the “winning” new

product. Also a competitive analysis, concept testing and a detailed technical

appraisal are part of this stage. Finally, a detailed financial analysis is

conducted as an input to the next gate.

• Gate 3: Decision on Business Case

Gate 3 is a very important gate, because this is the gate prior to the very

expensive development stage. The financial analysis, conducted in stage 2 has

to be thoroughly checked. Once again the “must meet” and “should meet”

criteria from gate 2 are reviewed, and as a qualitative addition the activities in

stage 2 are reviewed: checking of the quality of execution was sound, and the

results were positive. The second part of gate 3 concerns definition of the

project. Agreement on a number of key items must me reached, including:

target market definition, definition of the product concept, specification of a

product positioning strategy, delineation of the product benefits to be

delivered, and last but not least agreement on essential and desired product

features, attributes, and specifications.

• Stage 3: Development

Next to development also detailed testing, marketing and operation plans are

part of this stage. Also an updated financial analysis is prepared and

legal/patent/copyright issues are solved.

Complex Event Processing 66

• Gate 4: Post-Development Review

The fourth gate checks the progress and continued attractiveness of the

product and project. The development work done in stage 3 is reviewed and

checked. Also the economic questions is revisited via a revised financial

analysis based on new and more accurate data. Test and validation plans for

stage 4 are approved.

• Stage 4: Validation

This stage is all about validating the entire viability of the project, including:

the product itself, the production process, customer acceptance, and the

economics of the project. Validating is done by a number of activities: in-house

product tests, user of field trails of the product, trial or pilot production, pre

test market or trial sell, and a revised financial analysis.

• Gate 5: Pre-Commercialization Decision

This is the final gate where a project still can be killed. After this gate the door

to the last stage is opened and full commercialization starts. The main function

is this gate is to review and check the quality and the results of the activities in

the fourth stage. Before going ahead financial aspects are checked once again,

after that the operations and marketing plans are reviewed and approved.

• Stage 5: Commercialization

In this final stage the marketing launch plan and the operation plan are both

implemented.

Complex Event Processing 67

• Post-Implementation Review

After the commercialization stage the product becomes a “regular product” of

the firm. This is also the right point to review the performance of the project

and product. Finally a post-audit is carried out (a critical assessment of the

project’s strengths and weaknesses, learning points and what can be done

better in the future) and implemented.

The gates are manned by senior managers that together form a multidisciplinary and

multifunctional group with enough experience to take the decisions and enough

authority to approve the needed resources. Also some organizational changes may be

required in order to implement a Stage-Gate system in a firm: project teams are

fundamental for this approach, where projects no longer moves from department to

department but one project leader carries the project through all stages.

Stage-Gate systems seem to form a sort of paved road for a project to travel on, where

crossings guard the quality and progress of the project. The project being a truck,

driven by the project leader that leads the project through all gates, ensuring the

greatest change on success.

After this zoomed-in view on innovation management, on product/project level, we

zoom-out to company level. Mohr [2005] gives a great tool for managing innovations

that is introduced in the next paragraph.

8.3 Technology Maps
When developing new products it is, according to Mohr [2005], very important to be

up to date on the latest technological developments and to be sure that new products

enter the market on time. A tool to help with this is the technology map. This map,

shown in Figure 8-3, describes the stream of new products (breakthrough and

incremental) that a company can develop in the coming time. This technology map

can act as a flexible blueprint for corporations and has to be revised on a regular base.

Complex Event Processing 68

Figure 8-3: Technology map

The technology map consists of four phases:

• Technological identification

Decide which ideas are the most valuable, based on al present knowledge in a

company.

• Decide on needed technology additions

Weaknesses from the first phase can arise that can be solved with the use of

extra knowledge. This knowledge can be developed internally, but can also be

acquired externally for example by buying a company that possesses the

needed knowledge.

• Decide on “what to sell” strategy

The marketing issue is the crux in this phase. The company has to decide

when during the process of development the product has to be advertised.

Also the decision about what to sell has to be made. Is the company going to

2. Decide on needed
technology additions

3. Decide on “what to sell”
strategy

4. Ongoing management

1. Technological identification

Complex Event Processing 69

produce, market and sell the end product itself, or are they going to outsource

this. Another possibility is to sell the technology in the form of licenses.

• Ongoing management

In this last phase it is of great importance that the core technology is well

managed, this includes managing the development of possible product

derivations. Also it is important to know when a new project has to be

stopped.

To strengthen the innovation management view on this level a second model is used

from the article “Roadmapping in the corporation” by Albright and Kappel [2003].

Both models have their strong points, but technology is definitely the central

keyword. The “Product-Technology Roadmap” is the central model in the article

from Albright and Kappel. In this model there are four different sections that are

short reviewed below. After that the strongest points of both models are integrated.

• The market

This sections handles different market related subjects like market size and

growth, the most import customer needs and an analysis of the strong and

weak points of the competitors.

• The product

In the product section the central notion is the product drivers. Product

drivers are the properties of a product that potential customers value the most,

and that they find the most important aspect when considering to buy such

product.

Complex Event Processing 70

• The technology

The technology section is the central Point within the roadmap and contains

much information. Technological changes are not only written as evolution in

time, but are also linked to the product strategy. Also it is important that only

technologies that support the product drivers are mentioned.

• Summary / action plan

This section is referred to as the ‘attack strategy’. The purpose of this section is

to define the technologies with the highest priority and to identify the

matching action plans that are necessary for developing these technologies.

Similarities and differences

The two described models have a number of similarities. In both models technology

is the central keyword. Also the market where the product is sold is very important.

A difference between the models is that the model from Mohr [2005] starts with the

use of present knowledge in a company to define product development, while the

model of Albright and Kappel [2003] points at the product drivers for this definition.

Putting the product drivers central looks like a good idea, product drivers are namely

the properties within a product group that contribute to the decision of customers

choosing for your product and not that of the competitor. This product drivers

should not be lost out of sight while further developing the product, because this can

lead to losing customers and with that the market position. Below is a summary that

combines the best of both models:

• The market

This sections is taken from the “Product-Technology roadmap” model and

handles different market related subjects like market size and growth, the

Complex Event Processing 71

most import customer needs and an analysis of the strong and weak points of

the competitors.

• The product

The base of this section is taken from the “Product-Technology roadmap”

model. In the product section the central notion is the product drivers. Product

drivers are the properties of a product that potential customers value the most

and that they find the most important aspect when considering to buy such

product.

From the “Technology maps” model the process of defining exactly what is

sold is added. Next to the product itself this can also be the technology behind

the product, when doing so the technology becomes the actual product.

• The technology

The base of this section is again taken from the “Product-Technology

roadmap” model. The technology section is the central Point within the

roadmap and contains much information. Technological changes are not only

written as evolution in time, but are also linked to the product strategy. Also it

is important that only technologies that support the product drivers are

mentioned.

From the “Technology maps” model the process of defining which knowledge

is present within the company and which knowledge should be acquired from

external sources. This is important because innovations that need much

external knowledge are maybe more risky or expensive than the ones that

depend on present internal knowledge.

Complex Event Processing 72

• Action plan

This sections is taken from the “Product-Technology roadmap” model and is

referred to as the ‘attack strategy’. The purpose of this section is to define the

technologies with the highest priority and to identify the matching action

plans that are necessary for developing these technologies.

After this company view level, it is time to further zoom-out, even outside the

company and proceed to the global/national level, which shows for factors that

influence innovation that do not directly come into mind when thinking of

innovation.

8.4 Innovation Funnel
In the research “The Innovation Funnel”, conducted by Steven M. Dunphy, Paul R.

Herbig, and Mary E. Howes [Dunphy 1996] the path to technological innovation is

divided into two levels: macro and micro level. In total seven discriminators on these

two levels are identified. Especially the macro level is interesting because it is

subdivided into two levels: global level and national level, which link up neatly to

our previous two levels. The global level consists of two discriminators:

• Technological prerequisites

Before most innovations become feasible often certain technological

prerequisites must be met. A good example of this is the analytical engine

created by Charles Babbage during the 1840s. This analytical engine can be

seen as the predecessor of the modern computer. All elements of a modern

computer were included in the design: memory, control, arithmetic unit and

input/output devices like discs and printers. Babbage’s invention was,

although elaborate and ingenious, doomed to failure because it attempted to

defy the then current, technological limitations. Without the necessary

Complex Event Processing 73

innovations (Boolean algebra and electronics) it was then impossible to create

a viable mechanical computer.

Often innovation is simulated by necessity. When the need of some type of

product becomes critical, the time to innovation shortens significantly. Also

governmental or marketplace irregularity such as the lack of sewing machines

in India can delay a need. Also wartime can have its influence on certain

needs: the audio tube, invented in 1906 by DeForest should, under normal

usage and diffusion patterns, have led to a radio product in the late 1930s, but

World War I forced governments to speed the development of wireless

transmission. World War II speeded the development of penicillin because the

British and later the American governments needed a drug to fight infections.

Innovations rarely occur in isolation, but rather tend to arrive in swarms or

clusters; the computer was feasible by 1950, but it required a certain set of

clustered innovations before it was diffusible: software, peripherals,

communication links, support services, and applications.

• Socio-cultural tendencies

After the adoption of any and all new technologies, social change is imminent.

All societies have a certain inertia to such change, but some cultures are more

conservative, risk averse, and change resistant than others. Innovations

sometimes thrives in one country but not in another. For example even before

the advent of the Middle Ages, China invented paper and gunpowder, but it

was Western Europe that improved upon them. Algebra was an Arabic

discovery, but it was the Western world that exploited the mathematics.

The traditions of the society and the nature of the market often have their

influence on innovation. Some culture even permit changes and do not reward

entrepreneurs, which will postpone or even stop innovative advances. To

Complex Event Processing 74

support innovation the cultural climate must be open to change and risk. Also

the environment has its influence on innovation. Implementing changes in an

organisation is easier when the environment is perceived as non-threatening.

The limits of change are defined by a culture, beyond this limits the innovator

may risk social ostracism or even death by violating a taboo. Culture has been

shown to have profound influence on a society’s innate ability to innovate. A

research of Maccoby [1990] showed that the individualism of a society was

positively correlated with its innovative potential; the greater the freedom of

the individual to explore and express his opinions, the greater the likelihood

the individual will develop new ideas. In a research of Rothwell and

Wissemann [1986] a number of important adoption factors for innovations are

described. Four of them were directly related to culture:

1. A willingness to face uncertainties and take balanced risks.

2. Urgency and timeliness.

3. The readiness to accept change.

4. A dynamic long-term orientation.

Culture is, next to technological prerequisites a very important discriminator

of innovation.

On national level Dunphy et al. [1996] also distinguish two discriminators:

infrastructure and industry structure. Together with the two global discriminators

these discriminators form the upper global/national level of this innovation

management research.

Complex Event Processing 75

• Infrastructure

Infrastructure has a great influence on innovation. A good example of this are

the United States after World War II; Europe and Japan required over a decade

to rebuild their infrastructure. The material infrastructure of the United States

was still intact, just like their population (human infrastructure) was largely

whole and unaffected. Because the 1950s lacked any real, global competition, it

was the golden age for American industry. In the 1960s international

competition emerged again and heated up in the 1970s and beyond.

Immediately after World War II the U.S. had a dominant share of worldwide

innovation of 75 percent. This share fell to less than 50 percent in the late

1960s. Alarmists believed that it was a sign of the fall of U.S. innovation

prowess, but it was inevitable once the European and Japanese material

infrastructures were rebuilt and re-established. The U.S. share of worldwide

innovation should continue to drop as the infrastructure of developing

countries continues to grow.

Venture capital (financial infrastructure) also has a great influence on

innovation. In the U.S. when the level of venture capital available was high,

innovations have flourished. The level of innovation within a country appears

to be directly linked with the ease in which capital is mad available.

Governments form a major portion of a country’s institutional infrastructure.

Generally believed is that massive government regulation has a negative effect

on innovation. The U.S. pharmaceutical industry is a classical example of

governmental overregulation. The FDA (Food and Drug Administration), in

attempting to guarantee zero adverse reactions, severely impacts the

innovation capabilities of American drug companies. Because of this, diffusion

often follows years behind the innovation/diffusion cycle enjoyed by foreign

competitors. Government bureaucracy also has negative influence on

Complex Event Processing 76

innovation. Often regulatory agencies then to be risk averse by nature and do

not stimulate new technologies. Dunphy et al. [1996] conclude that “The

greater the central government’s bureaucracy and regulatory powers, the less

inclination there is for innovation within the country” and “The type and

power of the government also plays a strong role in determining the

innovativeness of the society”.

The legal infrastructure also has its influence on innovation. New innovations

have more uncertainties then the mature ones and are more risky for the

innovators. The newer the technology, the greater the scientific uncertainty

about its risks and benefits. This predisposition inherently tilts the liability

system against newness. To survive against the legal system and the

regulatory system requires a large stable of lobbyists and liability lawyers,

which only larger companies can afford.

• Industry structure

The degree of regulation in the industry impacts on the industry’s capacity for

innovation. An example is the transport industry: before deregulation this

industry was severely controlled by location, service and price. In this period

few new participants entered this industry, afterward, many new ventures

appeared. During the period of regulation, innovation stagnated, afterward

competition was fierce and innovation thrived. Protective regulations to

protect industries to external competition reduce the incentives to innovate. At

first it seems that the protected industry is done a favour, but in the end

technological obsolescence will occur. The degree of competitiveness also

contributes to the need to innovate. As large company are mostly followers,

smaller companies are usually the innovators.

Complex Event Processing 77

Next to this four macro discriminators Dunphy et al. also introduce three micro level

discriminators. These will only be reviewed in short because they will only serve as

an addition to information from the Stage-Gate systems research and the Technology

maps research.

• Firm size

Large firms with high R&D expenditures should have a disproportional

number of innovations. This theory is however, in contrast with reality, where

larger firms do not even have a close to proportional share. Large firms suffer

from grossly inefficient R&D budgets, unfocused marketing, and diverse

approaches to new product development. Unfortunately, smaller firms often

do not survive a innovation failure. A study of Ettlie and Rubenstein [1987]

showed how the firm size correlated to the innovativeness of a company.

When a company has less than 1.000 employees, no relationship between size

and the number of innovations is shown. Companies with 1.200 to 11.000

employees have a positive relationship between size and the number of

innovations. This relationship becomes less significant when a company has

more than 11.000, but less than 40.000 employees. Companies with over 45.000

employees have a only a slight chance of developing a radical new product.

Though firm size in sheer number of employees in not the whole truth.

Successful, large, and innovative companies like 3M and Hewlett Packard had

there own method to make innovations more successful. These companies

form units that are entrepreneurial start-ups in almost every respect. So it is

not the size of the firm that counts, but the size of the decision-making unit

and its degree of autonomy and flexibility that determines the company’s

innovativeness potential.

Complex Event Processing 78

• Management Attitudes

Innovation brings change, so management must be capable of managing these

changes. Sunk investments in technology have to be overcome if they inhibit

new innovations. Management should be intimately involved with significant

innovations. When attention is delegated downward, the firm may lose its

competitive edge and much of its innovativeness.

• Standards

A technological innovation does not imply a commercial success. Setting a

standard is a major force in expediting the diffusion of the innovation.

Standards help to remove user uncertainties about a new technology.

Standards also have a downside: when a standard is set, the innovation should

defuse more widely, helping the maturation process. However, future

innovations may be slowed by the very factor that propelled the initial

innovation: the new standards now in place.

This third and last view completes the innovation management view on three levels.

In the next paragraph the gaps and overlap of these different levels are discussed.

8.5 Gaps and overlap
The three researches, discussed in paragraphs 8.2, 8.3, and 8.4 are analysed for gaps

and overlap in this paragraph. To show the relations between the three researches an

adapted funnel model is used, which is introduced in Figure 8-4.

Often when talking about innovation management the most subjects are on company

or product level. Global/national level is a rare subject within innovation

management, but as the research of Dunphy et al. [1996] shows many interesting

factors are found on this level. Culture, being one of these factors, is often very

Complex Event Processing 79

underestimated in its influence on innovativeness. The research shows its importance

through a number of great examples of cultural influence on innovativeness.

Figure 8-4: Innovation management funnel model

A very nice red line through these three researches is (market) need. On global level

this is discussed in the technological prerequisites, where Dunphy et al. [1996]

conclude that technological prerequisites should be met in order to do a feasible

innovation and that necessity often accelerates innovation. On company level this red

line is clearly present in the composed technology map where ‘the market’ is the first

part of this model. Also in the second part of the model (the product) the market is

clearly present in the form of ‘product drivers’, which are the main aspects for

potential customers when considering to buy a new product. In the Stage-Gate

systems research, on product/project level, Cooper [1990] introduces many market

related operations already in the first stage (Preliminary Assessment). In his research

he also emphasizes that ‘doing the homework’ is very important for a successful

innovation. A great technological innovation is one thing, but to make it a

commercial success the market need should never be underestimated.

Technology is often related with innovation, which is also the case in this three level

view, as technology forms the second overlap in this combined model. On the global

level technology is present in the first part ‘technological prerequisites’, as becomes

- Technology map
- Product-Technology
roadmap

Global/national
level

- Technological prerequisites
- Socio-cultural tendencies
- Infrastructure
- Industry structure

Company
level Product/project

level

- Stage-Gate systems

Complex Event Processing 80

clear from the example of Babbage design of an analytical engine, which consisted of

many parts that modern computers contain. Though it design was very good, it was

doomed to failure due to the lack of the right technology in the 1840s. On company

level technology is present in the whole model, but especially in the technology

section, which acts as the central point of the roadmap. In the Stage-Gate systems the

technology aspect is also part of the first stage. In this stage the technical aspects of

the innovation are inspected and a technical preliminary assessment is conducted to

assess development and manufacturing feasibility. Dunphy et al. [1996] add another

nice item to this technological red line; the fact that companies that have invested a

lot in a particular technology (which are called ‘sunk-cost’) will not easy change to a

new technology, which gives them an arrear to companies that are working with new

innovative technologies. So the technological leaders of today can be overtaken by

the innovative new companies of tomorrow.

The two red lines show that there is enough overlap in the combined model. But

what about gaps? Are there missing constructs in one of these models which do not

permit seamless integration? On the global/national level Dunphy et al. [1996]

discuss infrastructure and industry structure which, among other things, includes

legal issues and governmental regulation. Nothing of this is used in the company

level model, while these are very important factors that have great influence on

innovation. Another small gap that is worth mentioning is the absence of any “what

to sell” decision in the Stage-Gate systems on product/project level that Mohr [2005]

has included in the technology map. The “what to sell” decision is not a pure

financial aspect, which are used in the entire Stage-Gate model, but focuses on the

question whether to sell, for example, an end product to customers or maybe a

license of the technology behind the product and let other companies produce the

read end products based on that technology.

Complex Event Processing 81

A possible explanation for this gaps can be found when looking to the different

stakeholders at the different levels. On global level governments (including

politicians) are the main stakeholders, on company level high management are the

main stakeholders and on product/project level lower management and technicians

are the main stakeholders. The two gaps between the three levels can be explained

through the differences between the stakeholders of these levels. The big differences

between the stakeholders of global/national level and the company level result in the

larger gap between these two levels. The differences between the stakeholders from

the company level and the product/project level are much smaller, resulting in a

smaller gap between these levels.

8.6 Innovation management at Cordys
This paragraph gives an insight about innovation management at a medium sized,

High-tech company like Cordys. First the interview methodology is explained and

after that the findings of the interview are discussed.

8.6.1 Methodology
To learn more about innovation management at Cordys there are to two interviews

held. An interview with a Senior Architect and with the CTO (Chief Technical

Officer) is planned because these two persons are directly involved with innovation

management at Cordys.

An interview is used because of the direct communication with the interviewed and

the possibility to change directions in the questions if necessary. Also open questions

in an interview will most of the times be answered more extensively than for

example when a questionnaire is used.

The focus of this interview is starting at the global/national level and then moves

down, toward the company level and finally to the product/project level.

Complex Event Processing 82

The open questions in the face-to-face interview are intended to provide structure,

but also leave room for unforeseen direction change. In Appendix C the questions of

the interview are provided.

8.6.2 Interview
A large share of the development of the Cordys product is done at their big R&D

establishment in India. India’s culture is very different to the culture here in the

Netherlands, and a common thought is that the innovativeness of India is lacking

behind that of the Western European countries, like the Netherlands. The CTO of

Cordys does not agree with this common thought and states that it is more a

difference in attitude than in culture. To back up this opinion he mentioned a real

innovative project that comes from India: a new stunning user interface.

Staying on the global/national level, subsidy is acquired by joining projects from the

JACQUARD program, a research program that focuses on software engineering.

Joining such projects helps innovation of software engineering techniques and also

gives some recognition.

Another important factor on this level is the government. While some subsidies are

provided the government can help innovative companies more when acting as a

reference customer. The CTO of Cordys states that a reference customer is very

important for a successful innovation and it is very hard to get these reference

customers, so the government could be a big help in this when taking this reference

role into account.

When looking at company level Cordys is working with business requirements (BR)

to define important improvements and innovations to their products. These BR’s are

coming mostly from (big) customers and R&D at the moment. In the ideal situation

they should come mostly from the market but that is not yet the case at this moment.

From these BR’s a prove of concept (POC) is created. Then the Product Committee

Complex Event Processing 83

(PC) proposes these POC’s to the Product Management Board (PMB) that has to

approve them.

While technology was the original drive for Cordys, it is now the market that

becomes more and more important. At this moment they are in the middle of this

transformation process, and present customers are their main drive. This is also

noticeable in the decisions about which BR’s are developed further to a real

improvement / innovation; the (big) customers are the driving force at the moment,

and money should come in.

Arriving at the lowest level: product/project level, it is interesting to see how Cordys

structures the projects that are evolved from the BR’s / POC’s. The teams work in

sprints that last four weeks. After each sprint there is a sprint review with the

program managers that have to make sure that the project is still running according

to plan. The sprints are development phases, before development definition and

retrieving more information is done in the BR / POC phase.

8.7 Summary and Conclusions
While the combined model of the three levels of innovation management shows

some gaps, it can be concluded that it gives a very broad, well connected view on

innovation management on three different levels. An innovation can be a real

breakthrough, but if the necessary technologies are not available and there is no real

need for the product then the chance of an equal commercial success is minor. The

two redlines, technology and the market, support this.

The interviews, held at Cordys, have shown that there is definitely resemblance

between the theory and practice, but also show some differences, like the culture

aspect. The technology part that was one of the theory red lines is clearly present

within Cordys. The second theory red line: the market is also present but is becoming

more important while Cordys is transforming from being technology driven to

becoming more market driven.

Complex Event Processing 84

The three levels are clearly visible within Cordys: their sprint model can be mapped

to the Stage-Gate model from the product/project level. The BR/POC phase, with its

involved management boards, is linked closely to the technology maps model from

the company level. Factors from the last level, global/national level, return in the

international oriented R&D of Cordys, but also in the joining of subsidized research

groups like JACQUARD.

Cordys is in the process of changing from technology driven to market driven, and in

this moment their strategy is maybe best described as customer driven. It is very

important that they do not loose sight in this process and stay too much customer

driven in stead of market driven. At this moment the (big) customers are the main

driving force and the pressure to perform is very high. This pressure to perform can

prohibit innovation management investments on short term, which include: people,

time, and management capacity. However, short term urgency can really hurt long

term benefits and efficiency. It is therefore very important to always keep track of the

long term impact that decisions have.

While the difference in stakeholders are a possible explanation for the gaps in the

integrated model, further research is necessary to check this and maybe come up

with other explanations or even better: find a solution to fill the gaps and provide an

even more smooth transition between the different levels. In further research also the

reference customer should be taken into account, as these are not present in the

researched models, and, according to the CTO of Cordys, are very important for a

high-tech company like Cordys, also segmenting innovations is very important to

make sure that the chance that an innovation becomes a commercial success is

maximized.

Complex Event Processing 86

References

[Albright 2003] Richard E. Albright and Thomas A. Kappel, “Roadmapping in the

Corporation”, Research Technology Management, March-April 2003

[BEAS 2006] BEA Systems, “Extending the Business Value of SOA Through Business

Process Management”,

http://www.bpm.com/IndustryResearchRO.asp?IndustryResearchid=15

[Bitpipe n.d.] TechTarget library of white papers,

http://www.bitpipe.com/tlist/Business-Process-Management.html

[ComplexEvents n.d.] David Luckham et. al, “Complex Event Processing”,

http://www.complexevents.com

[Cooper 1990] Robert G. Cooper, “Stage-Gate Systems: A New Tool for Managing

New Producs”, Business Horizons, May-June 1990

[Coopers 1985] Coopers & Lybrand Consulting Group, “Business Planning in the

Eighties: The New Marketing Shape of North American Corporations”.

[DataDirect n.d.] DataDirect Technologies, “Event-Driven Architectures (EDA)”,

http://www.neonsys.com/Solutions/event-driven_architecture.asp#

[Dunphy 1996] Steven M. Dunphy, Paul R. Herbig, and Mary E. Howes, “The

Innovation Funnel], Elsevier Science Inc.

http://www.bpm.com/IndustryResearchRO.asp?IndustryResearchid=15
http://www.bitpipe.com/tlist/Business-Process-Management.html
http://www.complexevents.com
http://www.neonsys.com/Solutions/event-driven_architecture.asp#

Complex Event Processing 87

[Elemental 2006] Brenda Michelson, “Event-Driven Architecture Overview”,

Elemental Links,

http://elementallinks.typepad.com/bmichelson/2006/02/eventdriven_arc.html

[Esper n.d.] Thomas Bernhardt, Esper, http://esper.codehaus.org

[Esper benchmark n.d.] Esper VWAP benchmark,

http://www.espertech.com/news/20070814_performance.php

[EsperTech n.d.] Thomas Bernhardt (CEO), EsperTech, http://www.espertech.com

[Ettlie 1987] John E. Ettlie and Albert H. Rubenstein, “Firm Size and Product

Innovation”, Journal of Product Innovation and Management, June, 89-108 (1987).

[Hopkins 1980] D.S. Hopkins, “New Products Winners and Losers”, The Conference

Board, Report no. 773, New York, 1980.

[Luckham 2002] David Luckham, “The Power of Events – An Introduction to

Complex Event Processing in Distributed Enterprise Systems”, Addison-Wesley 2002

[Maccoby 1990] Michael Maccoby, “The American Character: The Organization

Man”, Current 326, 4-9 (1990).

[Mohr 2005] Jakki Mohr, Sanjit Sengupta, and Stanley Slater, “Marketing of High-

Technology Producs and Innovations – second edition”, “Technology Map”, pg 204-

211.

http://elementallinks.typepad.com/bmichelson/2006/02/eventdriven_arc.html
http://esper.codehaus.org
http://www.espertech.com/news/20070814_performance.php
http://www.espertech.com

Complex Event Processing 88

[Rothwell 1986] Roy Rothwell and Hans Wissemann, “Technology, Culture, and

Public Policy”, Technovation 4, 91-115 (1986).

[ruleCore n.d.] Marco Seiriö, MS Analog Software kb, ruleCore,

http://www.rulecore.com

[SearchSMB 2006] SearchSMB, “BAM definition”,

http://searchsmb.techtarget.com/sDefinition/0,290660,sid44_gci1224512,00.html

[SearchWebServices 2006] SearchWebServices, “EAI definition”,

http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci213523,00.html

[Snoop 1993] Sharma Chakravarthy and Deepak Mishra, “Snoop: An Expressive
Event Specification Language For Active Databases”.

[SOAWorld 2004] SOA World Magazine “Web Services Integration Brokers and

Enterprise Application Integration”, SYS-CON Media, http://webservices.sys-

con.com/read/45523.htm

[StreamCruncher n.d.] Ashwin Jayaprakash, StreamCruncher,

http://www.streamcruncher.com

[Tidd 2005] Joe Tidd, John Bessant, and Keith Pavitt, “Managing Innovation – third

edition”, John Wiley & Sons 2005

[WebMethods 2006] webMethods, “BAM – the New Face of BPM”,

http://www1.webmethods.com/PDF/whitepapers/BAM-The_New_Face_of_BPM.pdf

http://www.rulecore.com
http://searchsmb.techtarget.com/sDefinition/0,290660,sid44_gci1224512,00.html
http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci213523,00.html
http://webservices.sys
http://www.streamcruncher.com
http://www1.webmethods.com/PDF/whitepapers/BAM-The_New_Face_of_BPM.pdf

Complex Event Processing 89

List of Acronyms

BAM Business Activity Monitoring

BI Business intelligence

BPM Business Process Management

BPMG Business Process Management Group

CEP Complex Event Processing

CRM Customer Relationship Management

DSL Domain Specific Language

EDA Event-Driven Architecture

ERP Enterprise Resource Planning

ESB Enterprise Service Bus

ESP Event Stream Processing

EQL Event Query Language

FDA Food and Drug Administration

IT Information Technology

PUB/SUB Publish / Subscribe

SCM Supply Chain Management

SEDA Staged Event-Driven Architecture

SOA Service-Oriented Architecture

SQL Structured Query Language

VWAP Volume Weighted Average (Price)

XML Extensible Markup Language

Complex Event Processing 90

Appendix

A. Research results six CEP cases.

Case 1:
Esper
every a=orderPackaged -> (orderCancelled(orderID=a.orderID) and
newOrder(productID=a.productID))"

StreamCruncher
select newOrderStream.orderId, orderPackStream.orderId,

orderPackStream.productId
from orderPack (partition store last 40 minutes) as orderPackStream,

orderCancel (partition store last 40 minutes) as orderCancelStream,
newOrder (partition store latest 1000) as newOrderStream

where newOrderStream.$row_status is new
and orderPackStream.$row_status is not dead
and orderCancelStream.$row_status is not dead
and newOrderStream.productId = orderPackStream.productId
and orderPackStream.orderId = orderCancelStream.orderId;

ruleCore
<view>
 <match>
 <value>
 <event>$xpath("event-def[@eventType="orderPackaged"]")</event>
 <field>$xpath("EventBody/orderID")</field>
 </value>
 <value>
 <event>$xpath("event-def[@eventType="orderCancelled"]")</event>
 <field>$xpath("EventBody/orderID")</field>
 </value>
 </match>
 <match>
 <value>
 <event>$xpath("event-def[@eventType="newOrder"]")</event>
 <field>$xpath("EventBody/productID")</field>
 </value>
 <value>
 <event>$xpath("event-def[@eventType="orderPackaged"]")</event>

Complex Event Processing 91

 <field>$xpath("EventBody/productID")</field>
 </value>
 </match>
</view>
<detector>
 <and>
 <event-pickup>$xpath("view/event[@type="orderPackaged"]")</event-pickup>
 <event-pickup>$xpath("view/event[@type="orderCancelled"]")</event-pickup>
 <event-pickup>$xpath("view/event[@type="newOrder"]")</event-pickup>
 </and>
</detector>

Case 2:
Esper
“every a=orderPackaged(totalPrice>5000) -> not orderApproved
(orderID=a.orderID)”

StreamCruncher
select unapprovedOrderId, price
from
 alert orderPackStream.orderId as unapprovedOrderId,
 orderPackStream.totalPrice as price
 using orderPack (partition store latest 1000 where totalPrice > 5000) as
 orderPackStream correlate on orderId, orderApprove (partition store last 40
 minutes) as orderApproveStream correlate on orderId
 when present(orderPackStream and not orderApproveStream);

ruleCore
<view>
 <assert>
 <event>$xpath("event-def[@eventType="orderPackaged"]")</event>
 <expression>$xpath("EventBody/totalPrice > 5000")</expression>
 </assert>
 <match>
 <value>
 <event>$xpath("event-def[@eventType="orderPackaged"]")</event>
 <field>$xpath("EventBody/orderID")</field>
 </value>
 <value>

Complex Event Processing 92

 <event>$xpath("event-def[@eventType="orderApproved"]")</event>
 <field>$xpath("EventBody/orderID")</field>
 </value>
 </match>
</view>
<detector>
 <and>
 <event-pickup>$xpath("view/event[@type="orderPackaged"]")</event-pickup>
 <not>
 <event-pickup>$xpath("view/event[@type="orderApproved"]")</event-
 pickup>
 </not>
 </and>
</detector>

Case 3:
Esper
“every a=cashWithdrawal ->
(cashWithdrawal(bankcardNumber=a.bankcardNumber,
accountNumber=a.accountNumber, cityID!=a.cityID) where timer:within(120 sec))”

StreamCruncher
select cashWithdrawalStreamX.accountNumber,
 cashWithdrawalStreamX.cardNumber, cashWithdrawalStreamX.cityId as City1,
 cashWithdrawalStreamX.cityId as City2
from cashWithdrawal (partition by accountNumber store 120 seconds) as
 cashWithdrawalStreamX, self#cashWithdrawalStreamX as
 cashWithdrawalStreamY
where cashWithdrawalStreamX.$row_status is new
 and cashWithdrawalStreamY.$row_status is not dead
 and cashWithdrawalStreamX.accountNumber =
 cashWithdrawalStreamY.accountNumber
 and cashWithdrawalStreamX.cardNumber =
 cashWithdrawalStreamY.cardNumber
 and cashWithdrawalStreamX.cityId != cashWithdrawalStreamY.cityId;

ruleCore
<view>
 <age>
 <max>0000-00-00-00-02</max>

Complex Event Processing 93

 </age>
 <match>
 <value>
 <event>$xpath("event-def[@eventType="cashWithdrawal"]")</event>
 <field>$xpath("EventBody/bankcardNumber")</field>

<field>$xpath("EventBody/accountNumber")</field>
 </value>
 <value>
 <event>$xpath("event-def[@eventType="cashWithdrawal"]")</event>
 <field>$xpath("EventBody/bankcardNumber")</field>

<field>$xpath("EventBody/accountNumber")</field>
 </value>
 </match>
</view>
<detector>
 <and>
 <event-pickup>$xpath("view/event[@type="cashWithdrawal"]")</event-pickup>
 <event-pickup>$xpath("view/event[@type="cashWithdrawal"]")</event-pickup>
 </and>
</detector>

Case 4:
Esper
“every a=sellStock(amount>10000) -> (stockPriceChange(stockID=a.stockID,
priceChangePercentage < -20) where timer:within(7 day))”

StreamCruncher
select firstSellStream.sellerId, firstSellStream.stockId, firstSellStream.amount,
 priceChangeStream.priceChange
from stockSell (partition by stockId store last 168 hours where amount > 10000) as
 firstSellStream, stockPriceChange (partition by stockId store latest 100 where
 priceChange < -20) as priceChangeStream
where priceChangeStream.$row_status is new
 /* This means that the Event is not New, but not Dead either, i.e Event
 arrived in an older cycle - before a Price change Event. */
 and firstSellStream.$row_status is not dead
 and not(firstSellStream.$row_status is new)
 and firstSellStream.stockId = priceChangeStream.stockId;

ruleCore

Complex Event Processing 94

<view>
 <age>
 <max>0000-00-07</max>
 </age>
 <assert>
 <event>$xpath("event-def[@eventType="sellStock"]")</event>
 <expression>$xpath("EventBody/amount > 10000")</expression>
 </assert>
 <assert>
 <event>$xpath("event-def[@eventType="stockPriceChange"]")</event>
 <expression>$xpath("EventBody/ priceChangePercentage <
 -20")</expression>
 </assert>
 <match>
 <value>
 <event>$xpath("event-def[@eventType="sellStock"]")</event>
 <field>$xpath("EventBody/stockID")</field>
 </value>
 <value>
 <event>$xpath("event-def[@eventType="stockPriceChange"]")</event>
 <field>$xpath("EventBody/stockID")</field>
 </value>
 </match>
</view>
<detector>
 <sequence>
 <event-pickup>$xpath("view/event[@type="sellStock"]")</event-pickup>
 <event-pickup>$xpath("view/event[@type="stockPriceChange"]")</event-
 pickup>
 </sequence>
</detector>

Case 5:
Esper
“every a=newOrder -> (timer:interval(3 hour) and not
orderPackaged(orderID=a.orderID))”

StreamCruncher
select missedOrderId

Complex Event Processing 95

from
 alert newOrderStream.orderId as missedOrderId
 using newOrder (partition store last 3 hours) as newOrderStream correlate on
 orderId, orderPack (partition store latest 100) as orderPackStream correlate on
 orderId
 when present(newOrderStream and not orderPackStream);

ruleCore
<view>
 <age>
 <max>0000-00-00-03</max>
 </age>
 <match>
 <value>
 <event>$xpath("event-def[@eventType="newOrder"]")</event>
 <field>$xpath("EventBody/orderID")</field>
 </value>
 <value>
 <event>$xpath("event-def[@eventType="orderPackaged"]")</event>
 <field>$xpath("EventBody/orderID")</field>
 </value>
 </match>
</view>
<detector>
 <and>
 <event-pickup>$xpath("view/event[@type="newOrder"]")</event-pickup>
 <not>
 <event-pickup>$xpath("view/event[@type="orderPackaged"]")</event-
 pickup>
 </not>
 </and>
</detector>

Case 6:
Esper
“every a=serviceCalled -> ((serviceCalled(customerID=a.customerID) where
timer:within(14 day)) -> (timer:interval(14 day) and not
newOrder(customerID=a.customerID)))”

StreamCruncher

Complex Event Processing 96

select customerId, serviceCallsMade
from serviceCalled (partition by customerId store last 336 hours with
 count(customerId) as serviceCallsMade) to (partition store last 336 hours where
 $row_status is new and serviceCallsMade >= 2) as serviceCalledStream
where serviceCalledStream.$row_status is dead
 and not exists (
 select customerId
 from newOrder (partition by customerId store last 336 hours) as
 newOrderStream
 where newOrderStream.$row_status is not dead
 and newOrderStream.customerId = serviceCalledStream.customerId
);

ruleCore
<view>
 <age>
 <max>0000-00-14</max>
 </age>
 <match>
 <value>
 <event>$xpath("event-def[@eventType="serviceCalled"]")</event>
 <field>$xpath("EventBody/customerID")</field>
 </value>
 <value>
 <event>$xpath("event-def[@eventType="serviceCalled"]")</event>
 <field>$xpath("EventBody/customerID")</field>
 </value>
 </match>
</view>
<detector emit “customerComplainingALot” event>
 <and>
 <event-pickup>$xpath("view/event[@type="serviceCalled"]")</event-pickup>
 <event-pickup>$xpath("view/event[@type="serviceCalled"]")</event-pickup>
 </and>
</detector>

<view>
 <age>
 <max>0000-00-14</max>

Complex Event Processing 97

 </age>
 <match>
 <value>
 <event>$xpath("event-
 def[@eventType="customerComplainingALot"]")</event>
 <field>$xpath("EventBody/customerID")</field>
 </value>
 <value>
 <event>$xpath("event-def[@eventType="newOrder"]")</event>
 <field>$xpath("EventBody/customerID")</field>
 </value>
 </match>
</view>
<detector>
 <and>
 <eventpickup>$xpath("view/event[@type=
 "customerComplainingALot"]")</event-pickup>
 <not>
 <event-pickup>$xpath("view/event[@type=
 "newOrder"]")</event-pickup>
 </not>
 </and>
</detector>

B. Research results six CEP cases.

Erik van de Ven, Senior Architect at Cordys, created non formal standard ECA

(Event Condition Action) like diagrams for the six CEP cases.

Complex Event Processing 98

Case 1:

Case 2:

Complex Event Processing 99

Case 3:

Case 4:

Complex Event Processing 100

Case 5:

Case 6:

Complex Event Processing 101

C. Interview questions

The focus of this interview is starting at the global/national level and then moves

down, toward the company level and finally to the product/project level. First a short

introduction about innovation management is provided.

Global/national level:

• Which factors can play a role on global/national level, and why?

• Are there any concrete examples for Cordys, concerning these factors?

• Does Cordys also has partners that are used to obtain a better market share?

• What is the role of the government on this level?

Company level:
• Which factors can play a role on company level, and why?

• How is decided which innovations are important to Cordys?

• Is Cordys more technology or market driven, and why?

• What is your view on the relation between the size of a company and its

innovativeness?

Product/project level:
• Which phases are known within an innovative project, and what happens

roughly in these phases?

• How is decided which innovations are implemented and who decides that?

• Which decisions are made while a innovations progresses through the

different phases?

