

SOLVING NP COMPLETE PROBLEMS WITH MEMETIC ALGORITHMS:

How can Memetic Algorithms be used
efficiently to generate timetables for the

knowledge center of Info Support?

MASTER THESIS COMPUTING SCIENCE
RADBOUD UNIVERSITY NIJMEGEN

Martijn Ermers

February 13, 2009

Thesis number 599

SUPERVISORS

Computing Science – Elena Marchiori

Management & Technology – Geert Vissers

Second Reader – Peter Lucas

Info Support – Arjan ter Horst & Marian Wagenaar

 2

Abstract

This thesis addresses the specification of a Memetic Algorithm, designed for coping

with the timetabling problem. Timetabling problems are known to be NP-complete.

The proposed algorithm consists of an adaptive local search algorithm and an

adapted selection method. The local search algorithm starts out as a hill climbing

algorithm for initial candidates and gradually gets more characteristics of a steepest

ascent algorithm for better candidates. The selection occurs within the set of

candidates of a crossover pair to ensure variation in the population. Test results

show that the algorithm performs well for the specified problem with a very low

chance to converge into local optima.

Another part of the thesis addresses the market determination of the courses on offer

from the Knowledge Center from Info Support. In this part, the currently used

sources and techniques for the market determination are described from the

viewpoint of different stakeholders within the company. The measurements Info

Support is taking that improve the knowledge of the market for courses are

elaborated. This information is accompanied by suggestions how the market

determination could be further improved.

 3

Table of Contents

1 INTRODUCTION .. 5
2 CONTEXT... 6

2.1. NP-Complete problems... 6

2.2. Scheduling problems .. 6

2.3. Genetic Algorithms .. 6

2.4. Memetic Algorithms ... 8

2.5. Multi Threading ... 9

PART I: MEMETIC ALGORITHM ..10

3 TIMETABLE REPRESENTATION ..11
3.1. Expressiveness ... 11

3.2. Fitness Determination .. 13

3.3. Storage Space .. 14

3.4. Evolutionary Operators .. 15

4 INPUT FORMAT DETERMINATION ..16
4.1. Definition of Input attributes .. 16

4.2. Definition of Restrictions .. 18

5 EVOLUTIONARY OPERATORS DETERMINATION ..20
5.1. Crossover operator ... 20

5.2. Mutation operator ... 23

6 REPLACEMENT STRATEGY DETERMINATION..28
6.1. Population size ... 28

6.2. Improving fitness ... 28

6.3. Maintaining diversity ... 28

6.4. Final Determination ... 29

7 TERMINATION CRITERIA ...32
7.1. Time Contraint ... 32

7.2. Iteration Constraint .. 32

7.3. Relative Improvement Stagnation Constraint.. 33

7.4. Mixed Termination Constraint .. 33

PART II: PRACTICAL EVALUATION ...35

8 INTRODUCTION CONCRETE PROBLEM ...36
8.1. Timetable Usage .. 37

8.2. Concrete Assignment ... 37

9 CONCRETE DESIGN...38
9.1. Functional Requirements .. 38

9.2. Technical Requirements ... 40

9.3. Functional Design... 40

 4

10 RESULT EVALUATION..44
10.1. Test Plan .. 44

10.2. Test Results .. 46

10.3. Test Conclusions ... 51

11 OVERALL PERFORMANCE & CONCLUSIONS ..52

PART III: MARKET DETERMINATION ..53

12 DEFINING CURRENT DETERMINATION PROCESS ...54
12.1. Technology Suppliers.. 54

12.2. Internal Demand .. 56

12.3. External Demand ... 57

12.4. Overlap between internal and external demand ... 58

12.5. Market Domain .. 58

13 QUALITY OF THE CURRENT DETERMINATION PROCESS ...59
13.1. Internal Demand .. 59

13.2. Resource Problems ... 62

13.3. Technology Suppliers.. 64

13.4. Course Evaluation Forms .. 65

14 COMPLETENESS OF CURRENT DETERMINATION PROCESS......................................67
14.1. Creativity Techniques ... 67

14.2. External Cooperation ... 67

14.3. Priority problem with Customer Relations ... 69

14.4. Specialising general courses ... 69

14.5. Tapping into new markets .. 70

15 CONCLUSIONS...71

PART IV...72

16 FUTURE RESEARCH...73
16.1. Generic Timetable Representation .. 73

16.2. Concrete Program Additions ... 73

17 TABLE OF FIGURES ...74
18 REFERENCES ..75

 5

1 Introduction

In the modern world there is a striking cliché called “time is money”. In order to use

time efficiently it is necessary to make a schedule for one‟s activities. There are

multiple advantages of constructing a timetable instead of just starting with an

arbitrarily chosen activity. One advantage is that you can make appointments with

other people on chosen times. Another advantage is that it is possible to manage your

scarce time efficiently to be as productive as possible.

Traditionally timetables are constructed by hand. A human scheduler typically

adjusts a single timetable until all restrictions are satisfied. A typical restriction is

that a person can be at only one place at a time. This process is a time consuming

matter, which is why it is useful to automate it. Another reason for automation is

that the complexity of some timetables is exceeding the limits of human capacity.

Solving a scheduling problem is not trivial, even for a computer. If you want to

determine the best timetable by brute force, it will take a tremendous amount of

computation time. In order to get a timetable faster you can use Memetic Algorithms

(MA) [Mitchell, 1994]. These work in a probabilistic fashion and make a tradeoff in

quality versus time. If you want to make sure to have the best possible timetable, you

need to validate all timetables. In this case, MA will not help in improving the

performance. Most of the time you want a timetable which is sufficient to meet your

requirements. In these cases, MA has a better performance. More information about

the problem domain can be found in chapter 2.

The main goal of this thesis is the determination what characteristics are

contributing to an effective and efficient timetable solving MA. The entire MA is

evaluated in Part I to create a definition of what characteristics the MA ought to

contain. With this definition, a concrete implementation will be made in Part II. This

implementation is evaluated on the quality of the generated timetable versus the

computation time.

Another goal of this thesis is to determine the market for courses for the Knowledge

Center of Info Support. Info Support is further introduced in chapter 8.. The demand

for courses is relevant, because an innovative and competitive curriculum provides

internal and external advantages. The internal advantage is that the consultants

from Info Support have access to the newest technologies available. The external

advantage is that new technologies attract more customers than older technologies.

This subject will be handled in part III

In part IV, the future research recommendations are proposed.

 6

2 Context

2.1. NP-Complete problems

A NP-Complete problem is a problem that cannot be solved in polynomial time. This

means that the calculation time finding the best solution for such a problem rapidly

increases when the scope increases. A well-known NP-Complete problem is the three-

dimensional matching problem. Three-dimensional matchings are important in

scheduling problems.

2.2. Scheduling problems

Scheduling problems are optimization problems. This means that there are multiple

possible answers to the problem, but the challenge is to find the best suitable

solution. The amount of restrictions in a schedule is proportional with the difficulty

of obtaining a solution that meets these restrictions. It can also occur that there is no

solution, meeting all restrictions. It is desirable to know the one that fits best.

For instance, solve a timetable creation problem involving the parameters: work

periods, workers, tasks. The problem with scheduling is that the choices you make for

each parameter influence other parameters as well. If workers have a day off this

leads to a limitation concerning a combination of work periods and workers. Not all

workers can perform all tasks, so not all worker-task combinations are valid either.

The total scheduling problem becomes rather complex because of this. If you let a

computer solve this problem the conventional way, you have to check all

combinations of parameters in the worst case. This is because if you adjust one

parameter, it can interfere with another parameter. Therefore, it is not possible to

adjust each variable a single time to its best value. Every change of a parameter can

make another parameter become sub-optimal. This behavior makes it a NP-Complete

problem. For a formal determination of the complexity of timetable generation see

[Even, 1975].

2.3. Genetic Algorithms

John Holland developed Genetic Algorithms (GA) [Holland, 1975]. Genetic

algorithms are a search technique used in computing to find approximate solutions

for problems that are NP-Complete.

 7

2.3.1. The reason for Genetic Algorithms

If you want to be 100% sure you have the best possible solution to your problem, you

must pay the price for computation time needed for evaluating all solutions. Most of

the time people are satisfied with solutions that are good enough, if it saves them a

huge computation time. Genetic Algorithms are useful in this situation.

2.3.2. The idea behind Genetic Algorithms

A genetic algorithm mimics natural evolution. In nature, each creature consists of

DNA. All life adjusts to its environment in order to become better at surviving. The

most suitable species reproduce and occasionally mutate into other species. The least

suitable species become extinct and disappear from the eco system. This is a

continuous process, which keeps making creatures better suitable.

Figure 1 – Genetic Algorithm

The Genetic Algorithm proposed by Holland mimics this behavior, by using a bit

string as DNA and translating ability of surviving into rate of meeting requirements

(short: fitness value). Each bit string represents a possible solution to your problem.

(initial)
Population

Selection

Crossover

Mutation

 8

In the case of a timetable problem, a bit string represents a timetable. The fitness

value of this timetable is determined by the rate of meeting the restrictions set by the

user of the Genetic Algorithm.

Like in nature there are multiple candidate solutions available at all times in a

Genetic Algorithm. In nature reproduction only happens intra species, while in

Genetic Algorithms the reproduction will be done inter species.

In our case, all candidate timetables can reproduce with any other candidate.

Mutation can happen to a child that has been formed with reproduction. The chance

of mutation is rather limited.

In general, the overall quality of the population tends to increase each iteration step.

However, the algorithm proposed by Holland has the disadvantage that new

candidate solutions are formed without using domain knowledge. The reason the

algorithm works is that better candidate solutions have a bigger chance of surviving,

the chance of making a suitable candidate when using characteristics of two more

suitable candidates also tends to be higher than using characteristics of two inferior

candidates.

2.4. Memetic Algorithms

Hybrid Genetic Algorithms or Memetic Algorithms (MAs) are Genetic Algorithms,

which use local search techniques during the evolutionary cycle. In short, they

reproduce and mutate using heuristics in order to enlarge the chance of getting

better candidate solutions. The more heuristics one uses in a MA the more

specialized the algorithm gets. So using heuristics limits the problem domain.

Beside limiting the problem domain one should be aware that heuristics could be a

source of slipping into local optima, which in turn can result in suboptimal results.

Especially in MA it is very important to keep the population as diverse as possible,

this limits the chance that the entire population ends up in local optima it cannot get

out. More information about the performance of heuristic approaches and genetic

algorithm approaches on different landscapes can be found in [Mitchell, 1994].

2.4.1. From heuristics to Genetic Algorithms

Since a Memetic Algorithm is a hybrid between heuristics and GAs, you can vary the

balance of using heuristics in your algorithm. In the figure below, you can see how

the rate of heuristic narrows the problem domain, but also increases the performance

on problems within that domain.

 9

Figure 2 – Heuristics vs. Genetic Algorithm vs. Memetic Algorithm

A Genetic Algorithm is an all-round problem solver that does not have an area of

expertise. Since we are going to use the algorithm for a specific domain (generating

timetables), it is useful to use some heuristics within the algorithm. Note that the

figure seems to imply that heuristics alone have the best possible performance.

However, the problem with pure heuristics is that the domain is narrowed to

problems without separate local optima. In general, it is plausible that the solution

space of timetables contains local optima. Therefore, it is desirable to have at least a

minimum amount of GA in your algorithm.

2.5. Multi Threading

Multi threading is a way to calculate multiple tasks at the same time. Nowadays, it

is quite common to have multi core processors in pc‟s. This makes it useful to make a

program able to divide its tasks and execute them simultaneously. Since a genetic

algorithm performs the same task independently on multiple candidate solutions, it

is easy to split these into separate threads. This is easily realized, because the used

candidate solutions do not need to be modified (which could make threads intervene

with each other). Multi threading is not an objective in this research, but since it is

not hard to implement, current multi core processors may just as well be used with

their full power.

Heuristics

Genetic Algorithm

Memetic Algorithm

 Range of problems 

P
e
rf

o
rm

a
n

ce
 o

f
m

e
th

o
d

 

 10

Part I: Memetic Algorithm

The goal of this part is defining our Memetic Algorithm. This MA is going to be

tailored to solving scheduling problems. The definition will be at a conceptual

abstraction level: It serves the purpose of getting an overview of what design choices

are made. The concrete design, implementation and testing will be addressed in Part

II.

This part consists of the determination of the timetable representation, the

determination of the input formats, evolutionary operators, replacement strategy and

the termination criteria of the Memetic Algorithm.

The general Memetic Algorithm is based on the overview below. This part will define

all the aspects mentioned in the overview.

Figure 3 – Overview of the Memetic Algorithm.

In order to keep the algorithm comprehensive for educated people without scientific

knowledge of the artificial intelligence domain, the different parts of the algorithm

are described in natural language rather than formal language.

(Initial)
Population

Crossover

SelectionMutation

Selection

 11

3 Timetable representation

The representation of the timetable is one of the most relevant choices to make when

you want to use some kind of GA. This decision is important because it has effect on

the expressiveness of timetables in general. It is important to maximize the

expressiveness, because the algorithm should become able to cope with as many

timetable problems as possible.

Perhaps the most important practical property of the representation is the ease of

fitness determination of a timetable in that representation. When there is a large

population of timetables in a GA, it is relevant that the size of a timetable is within

certain boundaries. A timetable is being used in the evolutionary operators, so it is

useful that these operators can work efficiently on the chosen representation.

3.1. Expressiveness

In order to keep the algorithm as generally applicable as possible, it will be necessary

to make a representation that can describe all relevant timetables. There are massive

amounts of possible timetable representations, so it is necessary to set boundaries of

what should be representable.

The following definition of timetable will be used in the rest of the thesis. A timetable

always has the following core attributes: when, where, what and who.

Figure 4 – Overview of a timetable

Timetable

When

Who

Where

What

 12

3.1.1. When

The primary problem with scheduling is when something is scheduled. The

representation should allow a significant amount of periods. A period is defined as

the scope of the timetable. It should be possible to set the period to your wishes, but

with boundaries for the sake of efficiency and keeping it countable.

The boundaries are based on human limitations; this is a reasonable thing to do

because the timetables are about human resource planning. For a human it is not

contributing to have a timetable that has a precision of less than minutes. Because of

this limitation it is safe to say that the minimal time can and will be set at a minute.

The largest human measure for time is years. There are some larger quantities, but

they are easy to calculate based on years. Because of the large capacity for numbers

in computers, it makes sense that years make a very large upper bound. Therefore,

the maximal time will be set at years.

To keep the algorithm as efficient as possible it makes sense to set the minimal time

block for scheduled items. The advantage is that the larger the blocks of the

algorithm are the fewer timetables can be generated. The possible disadvantage of

making use of large blocks is that some solutions will never be generated, because

this limits the amount of freedom for the scheduler. It is up to the user of the

algorithm to make this decision.

It is very common in scheduling that not all timeslots can be used. For example,

working during the evening or weekends is generally not allowed. It should be

possible to set per block whether it is schedulable. These restrictions can also be set

for individual persons, locations and courses.

3.1.2. Who

When thinking about scheduling it usually involves people, however it is also

possible to make for instance a timetable for a production line involving a variety of

products. In this case the products fall under the category „who‟ of the timetable. The

problem with accepting this kind of scheduling problem is that a batch of products

can be produced at multiple product lines. The problem is breaking the basic rule

that a person cannot be at multiple places at the same time. This is the reason why

the scheduling algorithm is restricted to persons.

There are groups of stakeholders involved in scheduling. A group has certain

attributes like “must attend” and “can give”. Think for instance about students who

must attend specific courses and teachers who can give specific courses. It should be

possible to set restrictions like “A teacher must be attached to a course.” and “All

students must be able to attend a course.”

 13

Based on these prerequisites it should be enough to have entities that have the

previously described attributes. These entities should be attachable to groups. The

relevance of groups is that you can set restrictions like “Each course must have a

person from the group teachers attached.”

It must also be possible to make a single entity count as multiple persons. This is

relevant when there is a group of persons with no relevant specific attributes (like

students) and if there are capacity limitations on the locations.

3.1.3. Where

The location is on first sight a rather trivial part of the scheduling. However, there

are multiple possible representations of locations. A typical high school has a set of

classrooms that are all near each other, but it is possible to have a distance between

locations. This makes it impossible to schedule two consecutive things on two distant

places, as travel time must be administered in this case.

There may also be restrictions in locations like “Not every course can be given in each

location” and “There are capacity limitations on locations”.

Finally, it is possible that multiple courses can be given at the same location at the

same time. In this case, it must be checked whether the maximum number of courses

is not exceeded.

3.1.4. What

Previously, the word course was already mentioned. A course is a possible „what‟ in a

timetable. In general, it is an appointment between multiple stakeholders. The

objective can be information sharing or working together; this does not matter in the

scheduling context.

It can occur that a course has to be given a certain amount of times within a period,

but it can also be person driven. If there are persons who need to follow a specific

course, you can derive from that that the course needs to be given too.

3.2. Fitness Determination

The chosen representation has influence on all operations concerning concrete

timetables. The determination of fitness is one of the hardest operations during the

evolution process. The reason for the complexity is that not all restrictions can be

verified easily.

Take for instance a representation in which courses form the basis with dates,

teachers and students connected to them. Now try to determine whether the teacher

 14

has to work more than two courses directly after each other. In this case, you must

check for each course whether the specific teacher gives that course and if this is

true, look at the time. After all times are gathered you can determine how many

times the two courses rule is exceeded.

The choice for a suitable representation is dependent of the restrictions you want to

use in your algorithm. This problem is similar to the “No Free Lunch” theorem

[Wolpert, 1997], which states that there is no single optimum algorithm for multiple

problem areas. The resemblance is that no matter which representation you choose

the average performance over all sets of restrictions does not increase (on average).

Since the aim is to keep the MA as general as possible the choice of representation

should also be an input parameter. The problem with this is that for each possible

representation the access functions are different. The „two courses‟ problem described

above is a nice example of usage of an access function. It should be possible to keep

the representation generic. However, this very complex problem does not contribute

to my main research. This problem is elaborated in more detail in the Future

Research chapter. The next best thing is to choose a representation that suits the

scheduling problem of Info Support, with the possibility to implement other

representations without having to change anything not directly associated with

access functions. In other words, the representation is a black box, only the access

function names are known for the algorithm.

3.3. Storage Space

Storage space may form a serious problem when computing with GAs. A GA has the

characteristic that all candidate solutions of an iteration step need to be stored in the

memory. Depending on the chosen algorithm, the results of the evolutionary

operators need to be stored for a minimal time too. Depending on the nature of the

problem population, the memory typically contains no more than several hundreds or

thousands of candidate solutions during execution time.

Because of this significant amount of candidate solutions in memory, it is important

to know how large a typical candidate solution is. In the case of a scheduling

problem, the worst-case scenario would be that one would choose a representation

with time blocks as a basis. Then every time block has a reference (can be null) to a

course (or perhaps even a teacher). When the timetable period is large and the time

blocks small, there are a huge amount of null-references which all need memory.

Take for instance a timetable for a year with time blocks of 15 minutes. The

references are 32 bit and for the ease of calculation ignore every other attribute in

the timetable. There are 35 thousand time blocks within that year. Therefore, each

empty schedule cost around 137 KB. When you take a large population pool of ten

 15

thousand and keep the results of the evolutionary operators temporary in memory

too, you will end up with roughly twenty thousand candidate solutions in memory.

The total storage space needed will be around 2.6 GB. When you add other

information like courses/teachers/students, you will quickly run out of memory. It is

possible to use other memory than RAM, but you will suffer serious decrease in

performance.

Depending on the size of the timetable, it is wise to choose a representation that does

not suffer from large amounts of null references. The memory usage only becomes an

issue when the limit is approached. A representation that uses more memory can

perform better than a more economical representation.

3.4. Evolutionary Operators

The evolutionary operators from a standard GA work content independent. With this

method, the representation of the timetable does not matter at all. However, a MA is

described in this paper. The evolutionary operators perform actions of which is likely

that the fitness of the candidate will improve. In order to achieve this improvement it

is necessary to know which restrictions are violated. It can be wise to change

especially the characteristics that are source of the violation.

Determining which characteristics are sources of restriction violations is used in both

the determination of fitness and the determination which action is performed by the

evolutionary operator. Like with the fitness determination it is relevant to know

what the set of restrictions is.

 16

4 Input Format Determination

The determination of the input format is relevant because the format directly effects

the restrictions that can be described. The goal is to make a format, which supports

all restrictions used in timetables. The first part is to make a definition which inputs

should be used in what way in the timetable. The second part is the determination of

all restrictions and defining how they ought to be represented in the input.

4.1. Definition of Input attributes

Like described in the previous chapter there are four main attributes (when, who,

where and what). For each of these attributes the input format will be defined below

based on the choices made in the previous chapter.

4.1.1. When

 The input format must meet the following standards concerning the time aspect:

 Every date and duration is represented in a combination of minutes,

hours, days, weeks, months and years.

 Timetable period – Start date and stop date or start date and duration.

 Block size – The size of a time unit, the smallest schedulable period.

 Non-schedulable blocks – Start date and duration, can be followed by

repetition time, which is calculated, from the start date.

4.1.2. Who

The purpose of this input format is not only specifying which persons and groups

there are, but also the specific time restrictions each person has (in example

holidays). A person has the following attributes:

 Identifier – A string of characters that serves as an identifier of the

person or persons.

 Multiplier – The multiplier is a number equal to the amount of persons

the identity represents.

 List of “can give” what‟s – A list of courses the person is allowed to give

and a priority number which indicates the relative preference that that

teacher gives the specific course.

 List of “must follow” what‟s – A list of courses the person should be able

to follow.

 17

 Non-schedulable blocks – Start date and duration, can be followed by

repetition time that is calculated from the start date. For dates, a person

cannot be scheduled like days off and holidays.

 Schedulable time – In the case of “can give” tasks there is a limit possible

for courses he can give, this can also be a minimal and maximal time.

A group has the following attributes:

 Identifier – A string of characters, which serves as an identifier of the

group.

 List of Persons – A list of all persons belonging to the specific group.

4.1.3. Where

The locations are specified in a direct manner, but they also belong to groups of

locations. Groups are specified in order to make a separation between different

locations and different rooms. A location has the following attributes:

 Identifier – A string of characters, which serves as an identifier of the

location.

 Multiplier – The multiplier is a number equal to the amount of locations

the identity represents (useful in cases they are exchangeable).

 Facilities – All facilities, which are available in the location. This is

relevant for course requirements. (for instance desks, a beamer)

 Capacity – The amount of persons possible to be attached to the location.

A group of locations has the following attributes:

 Identifier – A string of characters, which serves as an identifier of the

group.

 List of Locations – A list of all locations belonging to the specific group.

 Distance To – A list of all other location groups with a travel time

specification.

 Facilities – All facilities, which are available in the location. This is

relevant for course requirements.

4.1.4. What

A course has the following attributes:

 Identifier – A string of characters, which serves as an identifier of the

course.

 Location demands – A list of needed facilities on the location.

 18

 Has Prerequisites – A list of needed courses before this course can be

participated.

4.2. Definition of Restrictions

Restrictions are very common in scheduling. In order to keep the input flexible

restrictions can be made in the form of:

 Identifier – A string of characters, which serves as an identifier of the

restriction.

 Argument 1 – One or more objects, optionally with a fact specified.

o Object – The object of which the fact has to be evaluated

o Fact – The fact which has to be evaluated

 Argument 2 – One or more objects, optionally with a fact specified.

o Object – The object of which the fact has to be evaluated

o Fact – The fact which has to be evaluated

 Argument 3 – Optional. A number, time, object or string

 Comparison rule – The rule that has to be used on the two arguments. The

rule can pass or fail which indicates the violation of a restriction. The third

argument can be used for comparisons that are more elaborate.

 Weight – The importance of the restriction.

The explanation of the comparison rule is not elaborate enough. For instance, it

would be great if the algorithm could comprehend a proposed comparison. In order to

achieve this, the comparison rule must follow a certain syntax and semantics. The

evaluation of this code must be done at runtime of the algorithm, so it is not feasible

to make an elaborate input language. The proposed solution consists of a set of

operations that can be used; the program checks what operation is selected and then

executes the right operation.

4.2.1. Restriction operators

The following operators can be used in the restriction rules:

 Equals – A check whether the two arguments are the same.

 Smaller then – A check whether the first argument is smaller than the

second argument.

 Contains – A check whether the collection from argument 1 contains all

elements from argument 2.

 Is over scheduled – A check whether the argument 1 is scheduled too many

times. Argument 2 points to the desired value. Argument 3 holds an optional

threshold for over scheduling.

 19

 Is under scheduled – A check whether the argument 1 is scheduled too few

times. Argument 2 points to the desired value. Argument 3 holds an optional

threshold for under scheduling.

 Is Better Teacher – A check whether the preference number for teacher given

in argument 1 is higher than the preference number for teacher given in

argument 2 for the course given in argument 3.

 Are scheduled before – A check whether the courses from argument 1 are

scheduled before the course from argument 2.

 Total persons is valid – A check whether the sum of the persons in argument

1 is below the value in argument 2.

 20

5 Evolutionary Operators Determination

The evolutionary operators are responsible for the generation of new candidate

solutions in a GA. This gives the evolutionary operators a vital role in the efficiency

of the GA. The difference between GA and MA is that MA use heuristics to generate

new candidate solutions. A standard GA makes new candidate solutions, which have

in general an equal chance to improve or deteriorate. The reason why a standard GA

works with these operators is that they work for all problem domains. The natural

selection makes that poor results are discarded in evolution. The advantage of using

heuristics is that the generated offspring will be better for a specific problem domain.

In this chapter, the two evolutionary operators are modified to increase the efficiency

for generation of timetables.

5.1. Crossover operator

The crossover operator is a function, which uses two or more candidate solutions to

generate one or more new candidate solutions. The general idea with crossover is

using characteristics of each parent candidate solution in order to generate new child

candidate solutions. The main idea is recombination features from multiple

candidate solutions to obtain new and hopefully better solutions.

In standard GA, the crossover operator works on bit strings. New solutions are

formed by using a selection of bits from one parent and the missing bits from the

other parent (see picture below). This method is easy to implement since the

crossover operator does not know or care for the implications of combinations of bits.

The disadvantage of this method is that the fitness of the new candidates is

completely random. The answer to this poor generation method is using heuristics.

1 0 1 1 0 1 0 0 0 1

1 1 0 1 1 0 0 1 1 1

1 0 0 1 1 0 0 0 0 1

1 1 1 1 0 1 0 1 1 1

Parent 1

Parent 2

Child 1

Child 2

Figure 5 – Two Point Crossover Example on bit strings

 21

5.1.1. Heuristic Determination

The first step in heuristics is determining what all bits in the representation do. The

best way to achieve this is completely release the bit string approach. Let the

operators work on the representation as it is intended; use factors like

dates/teachers/locations which can be adjusted to different instances of the same

factor. In [Alkan, 2003] the writer proposes to do crossover with complete factors or

within factors. Since all factors have a narrow scope of legal input it makes sense to

do crossover with complete factors. The advantage of this method is that there is no

chance of creating non-existing values for the factors.

5.1.2. Heuristic Implementation

Since the format of the representation is defined in chapter 4, the only decision to be

made is to choose between single point and multi point crossover. In order to keep the

algorithm non-biased it is also possible to decide per factor whether to cross or not.

This can be done by chance, the more the chance shifts to 50% the more

diversification occurs. When the chance shifts to 0% or 100%, the child solutions will

have a higher degree of resemblance with the parent solutions. The figure below

shows the resemblance of the child solutions with their parents. On the vertical side,

the resemblance level (0% ~ 100%) is indicated. On the horizontal side, the rate of

mutation (0% ~ 100%) is expressed. It shows that on 50% the child will (on average)

be mostly differed from their parents. The different curves represent different rates

of resemblance between the two parents. If the parent solutions are the same, so will

be the child solutions. Maximum differentiation occurs with maximum differentiation

between parents.

Figure 6 – The overlap between parent and child solutions

0

20

40

60

80

100

120

0 20 40 60 80 100 120

0% overlap

25% overlap

50% overlap

100% overlap

 22

The differentiation between parent solution and child solution is proportionate to the

chance on improvement and deterioration. It is up to the user to choose the rate of

crossover. This rate is typically low, since the chance to adjust multiple factors with a

positive effect is low. Note that the chance crossover happens over the entire

candidate is much higher than on factor basis. For example the chance that crossover

happens in a solution with 20 factors is with a 10% crossover rate 88% (1 – ((1 – 0.1)

^ 20) = 0.88). It is wise to have a near certainty that crossover happens, since not

doing crossover makes it possible to discard one parent because the other parent and

child are identical.

Another possibility is determining the crossover chance per factor depending on the

combined violation rate of the factors of both parents. The advantage of this method

is that the fitness of the child solution is likely to be better than the fitness of the

parent solution. The downside is that the violations of all factors have to be

determined separately, which will cost an enormous overhead to determine. This

overhead per factor is of the same order as a normal fitness evaluation. Therefore,

the advantage of better offspring is negated by the computation cost.

5.1.3. Pseudo Code

The following pseudo code is implementing the fixed rate crossover operator.

Candidate Solution 3 = new Candidate Solution ();

Candidate Solution 4 = new Candidate Solution ();

For (int I = 0; I < Candidate Solution1. Length; I++)

{

 If (Random Number (0% ~ 100%) < Crossover Rate)

 {

 Candidate Solution3 [I] = Candidate Solution2 [I];

 Candidate Solution4 [I] = Candidate Solution1 [I];

 }

 Else

 {

 Candidate Solution3 [I] = Candidate Solution1 [I];

 Candidate Solution4 [I] = Candidate Solution2 [I];

 }

}

As you can see, two new solutions are being generated. The original solutions are

needed for selection afterwards. The pseudo code lets the solution three to be similar

to solution one, with the assumption that crossover rates are lower than 50%.

The proportionate crossover operator calculates the factor violation level of the factor

from both candidates. If the violation level is zero, the chance on crossover is 0%. If

the violation level is equal to the maximum factor violation level, the chance on

crossover is 100%. The following pseudo code is implementing the proportionate

crossover operator.

 23

For (int I = 0; I < Candidate Solution1. Length; I++)

{

 If (Random Number (0.0 ~ 1.0) < (Factor Violation Level (Candidate Solution1 [I])

 + Factor Violation Level (Candidate Solution2 [I]))

 / (2 * Maximum Factor Violation Level))

 {

 Candidate Solution3 [I] = Candidate Solution2 [I];

 Candidate Solution4 [I] = Candidate Solution1 [I];

 }

 Else

 {

 Candidate Solution3 [I] = Candidate Solution1 [I];

 Candidate Solution4 [I] = Candidate Solution2 [I];

 }

}

This crossover method is impractical because for each factor the violation level has to

be determined. This is a very costly operation, which negates the positive effect of

stimulating better factors to survive.

The crossover operator will be used on a percentage of the population of candidate

solutions. The other candidate solutions are preserved in the population. More about

this will be elaborated in chapter 6.4.

5.2. Mutation operator

The mutation operator is used after the crossover operator. The main purpose of this

operator is introducing new values to the candidates. The crossover operator only

recombines existing solutions without introducing new values. The mutation operator

is, compared to the crossover operator, relatively easy to improve with heuristics.

Like with the crossover operator it is desirable to work with factors instead of bit

strings. Below both the bit string method and factor approach are visualized.

 Figure 8 – Mutation Example on factors

Figure 7 – Mutation Example on bit strings

1 0 1 1 1 1 0 1 0 1

1 0 0 1 1 1 0 1 0 1

Before

After

Monday Tuesday Before

After

Sunday Friday

Monday Saturday Sunday Friday

 24

The advantage of this method is that there is no chance of creating non-existing

values for the factors; the bit wise method can create in the example above a non-

existing day.

5.2.1. Heuristic Determination

The first step in adjusting the mutation operator is only adjusting the factors that

cause restriction violations. Like with crossover it is useful to make the mutation

chance proportionate with the rate of violations. Then the choice of substitute value

has to be made. It is relevant to use values that are valid in the context.

The decision has to be made whether the best substitute or a random substitute has

to be chosen. The problem with choosing the best substitute is that the randomness

decreases which could increase the chance of stranding in local optima. Another issue

is that you have to evaluate all possibilities before you can make a choice, this can

seriously decrease performance.

A well-known selection method is tournament selection. The idea is that the

algorithm selects a set of values from the entire set of values. The best of these

contestants is selected. The advantage of tournament selection is that it is able to

balance between quality, performance and randomness. More information about

tournament selection can be found in [Eiben, 2007].

To continue with the same example as in figure the figure below an example of a

tournament is displayed below. The tournament size is three in this example. This

means that for the chosen factor three alternate values are tried, of which the best

one is kept. The best individual in this example is Mutant 1. This individual will

survive in the evolution.

Figure 9 – Example of Mutation with Tournament Selection

Monday Tuesday Before

Mutant 1

Sunday Friday

Monday Saturday Sunday Friday

100

110

Mutant 2 Monday Friday Sunday Friday 70

Mutant 3 Monday Monday Sunday Friday 65

Fitness

 25

In the determination of fitness between different values, it is only necessary to check

the relative difference between the values. It is not useful to check on other

restriction violations, because they have the same violation level for each of the

values.

5.2.2. Heuristic Implementation

In order to keep the algorithm fast tournament selection is an appropriate choice for

factor selection. Pick a random set of factors and determine their violation rate.

Mutate the factor with the highest violation rate. The replacement strategy can also

be done with tournament selection, pick some random alternate values for the factor

and determine their violation rate. Pick the one with the lowest violation rate.

The size of the tournaments should be reversed proportionate with the violation rate

of the candidate solution. The violation rate of the worst candidate solution evaluated

by the algorithm is used as lower bound. The upper bound for violation is set to zero,

with the assumption that the best solution possible should approximate to no

violations. This relation is visualized below.

Figure 10 – Relation between Tournament Size and Violation Rate

The result is a hill climber algorithm for worse candidates changing into a steepest

ascent algorithm when the optimum solution is approached.

 The advantage of this method is that in early stages of evolution the selection

pressure is low which decreases the change of early convergence. While in later

stages of evolution the tournament size increases which increases the chance of

convergence, but that is not a problem at later stages since only minor optimizations

are needed at that point.

0%

20%

40%

60%

80%

100%

120%

Initial Optimal

Violation Rate

Tournament Size

 26

The maximum tournament size is set at 50% of the factors/values. The reason for

choosing 50% is to prevent extreme convergence on fitter candidates. It also saves

near 50% computation time compared to the evaluation of almost the entire set of

factors/values.

5.2.3. Pseudo Code

The pseudo code of the tournament selection method for factor determination is

displayed below. The pseudo code assumes a global variable called “Candidate

Solution”. Another assumption is that “Factor List” is a list containing all possible

values for a type, the only type. The “Tournament Size Factor Determination” is the

amount of factors to be evaluated in order to choose the best factor for improvement.

This size is between 1% and 50% of the total amount of factors, depending on the

fitness of the candidate.

Mutate Candidate Solution (Tournament Size Factor Determination)

{

 Number List = Generate Numbers (Tournament Size Factor Determination),

 0 ~ Candidate Solution. Length);

 Worst Factor = -1;

 Worst Factor Violation Level = 0;

 For (int I = 0; I < Tournament Size Factor Determination); I++)

 {

 Temp = Factor Violation Level (Candidate Solution1 [Number List [I]]);

 If (Temp > Worst Factor Violation Level)

 {

 Worst Factor = Number List [I];

 Worst Factor Violation Level = Temp;

 }

 }

 //The size of the tournament for values is relative to the size of the tournament for factors

 Tournament Size Value Determination = Tournament Size Factor Determination

 * Factor List. Length

 / Candidate Solution. Length;

 Candidate Solution[Worst Factor] = Mutate Factor (Worst Factor,

 Tournament Size Value Determination));

}

The “Generate Numbers” function is a unique number generator with (for example)

the following pseudo code. Note that this function can iterate endlessly when the

boundaries permit less different numbers than the amount needed.

 27

Number List Generate Numbers (Amount, Boundaries)

{

 Number List = new Empty List;

 While (Amount > 0)

 {

 Temp = Random Number (Boundaries);

 If (Not Number List. Contains (Temp))

 {

 Number List. Add Number (Temp);

 Amount--;

 }

 }

 Return Number List;

}

The pseudo code for the “Mutate Factor” function is:

Factor Mutate Factor (Worst Factor, Tournament Size Value Determination)

{

 Number List = Generate Numbers (Tournament Size Value Determination,

 0 ~ Factor List. Length);

 Best Factor = Factor List. Get Index (Candidate Solution [Worst Factor]);

 Best Factor Violation Level = Factor Violation Level (Candidate Solution [Worst Factor]);

 For (int I = 0; I < Tournament Size Value Determination; I++)

 {

 Temp = Factor Violation Level (Factor List [Number List [I]]);

 If (Temp < Best Factor Violation Level)

 {

 Best Factor = Number List [I];

 Best Factor Violation Level = Temp;

 }

 }

 Return Factor List [Best Factor];

}

Note that the selection of the best factor happens inside this function while the

functionality is defined separately for the algorithm.

 28

6 Replacement Strategy Determination

The key step in evolution is the selection of the surviving candidate solutions. The

main objectives of the selection are keeping the population size limited, improving

the average fitness of the population and maintaining diversity. Before the

replacement strategy will be determined, all objectives will be defined.

6.1. Population size

Each time the evolutionary operators are used there are a number of new candidate

solutions available. A direct result of this is that the population size exceeds the

boundary set by the user. The only relevance for this objective is that the amount of

candidate solutions is reduced to the level defined by the user.

6.2. Improving fitness

The core functionality of the evolutionary operators is generating new candidate

solutions. Since these operators do not always generate better solutions then their

parents, it is relevant that the replacement strategy selects candidates who have a

higher average fitness than the previous population. A well-known algorithm for

improving fitness value is Elitism. The use of Elitism by other researchers can be

found in [Őzcan, 2005], [Monfroglio, 1996], [Burke, 2004] and [Alkan, 2003].

6.3. Maintaining diversity

The problem with Elitism is that the population tends to lose diversity. This behavior

comes from the fact that most candidates with a high fitness value come from other

candidates with high fitness values. The problem with losing diversity is that the

chance increases that the algorithm strands in local optima. Avoiding stranding in

local optima is the main reason to use genetic algorithms in the first place. Since

algorithms like hill climber and steepest ascent are faster than genetic algorithms

but have (depending on the problem area) a significant chance run into local optima;

these algorithms are not preferable for making timetables because of the significant

amount of local optima in the search space. Research to the application of genetic

algorithms has been done in [Mitchell, 1994].

It is hard for a computer to determine the similarity between different candidate

solutions. By selecting between the child solutions and parent solutions, the

advantage is that you know these solutions are alike. One can choose to keep the best

of them that takes reasonable good care of similar solutions. The tradeoff between

computation time and convergence is quite acceptable.

 29

6.4. Final Determination

The replacement strategy needs to implement the following properties:

 Respect the population size

 Keep the best known solution

 Improve average fitness

 Maintain diversity

In order to keep the algorithm fast and effective a variant of tournament selection is

a valid choice. The following algorithm manages to comply with previously defined

properties.

Take for each crossover operation all parent solutions and all child solutions (which

are mutated at this point). Keep the best solutions of this group. The amount of

solutions kept must be the same as the amount of parent solutions. This process is

visualized below. It also includes the random operator, which makes different

variants of the selected candidate solutions. The random operator also passes the

unmodified solution to the selection operator. Note that this process happens for all

crossover operations.

Population

Crossover

Canditate Solution 1

Canditate Solution 2

Select

Mutate Select

Mutate

New

Candidate

Solution 1

Select

New

Candidate

Solution 2

Figure 11 – Integration of the Selection Operators between the Evolutionary Operators

Since the part of the population that gets „crossovered‟ generates the same amount of

candidates as it removes from the population, the population size stays the same; the

parents are exchanged by the best of their offspring (or themselves if they have

better fitness). The part of the population that is not used for crossover is preserved

for the next iteration.

 30

This algorithm keeps the best-known solution because it is the best one of the

crossover operation group. If a child replaced it, the child should be better than the

previous best solution. If it was not used in crossover, it is per definition preserved.

Note that the best solution is not always on the same spot; if you want to determine

the best candidate you have to search the entire population.

This algorithm improves the average fitness because only the best ones of each

crossover group are maintained in the population.

The mutation operator determines the parameter to adjust by random, and then it

determines by tournament selection the replacement value. The tournament size is

determined by the fitness value of the candidate before it is mutated. The reason to

choose the factor by random is the increased computation cost of tournament

selection which makes that option too expensive. The selection after the mutation is

incorporated in the mutation operator. See chapter 5.2.2 for a more detailed

description.

The diversity is reasonably guaranteed because the algorithm prefers to release

lesser variants of a „bloodline‟; in most cases the parent or the child is being

discarded, leaving the case that the crossover chance was very small which could lead

to discarding of one parent and his most alike child.

6.4.1. Local Optimum Problem

A potential problem with all selection methods (except for random selection) is the

chance of running into local optima. The advantage of this algorithm is that a certain

amount of diversity is preserved. The practical implementation will show whether

this measure is sufficient.

A solution for this problem is to randomize a part of the population while keeping the

best possibilities when an optimum is detected. However, it is not possible to check

whether it is a local optimum or a global optimum, so the user must choose the

maximum computation time or iteration amount. Otherwise, this process will never

end. This problem will be handled in the next chapter.

6.4.2. Population Trace Example

To give an impression of how the algorithm can operate on a population a trace is

displayed below. Each box is a candidate solution.

The numbers inside each candidate have the following meaning:

<Identifier>: <Fitness Value>

(<Inherited From List>)

 31

Each row is a population on a certain time. The arrows indicate the impact they have

on their offspring.

 The green arrow indicates a copy of the original into the new population

 The blue arrow indicates a mayor influence in the child

 The black arrow indicates a minor influence in the child

 The red arrow indicates no influence in the child

Note that all candidates, which are selected to be maintained, can be mutated.

However, mutation is visible in this figure.

The combinations of incoming arrows have the following meaning:

 Green – The green candidate is copied into the new population

 Green, Red – The green candidate is copied into the new population

 Blue, Black – The new candidate has mayor influence of the blue candidate

and minor influence of the black candidate

 Blue, Red – The new candidate is a mutated version of the blue candidate

The identifier expresses the name of his predecessor plus a letter making it unique.

This way you can see from the identifier who his most relevant parent is. The

inherited from list indicates which parents had minor influence in the candidate.

The Fitness value is the violation rate subtracted from zero.

1 : -76 2 : -43 3 : -234 4 : -83 5 : -121 6 : -40 7 : -172

1a : -40
(2)

2a : -29
(1)

4 : -83 4a: -73 6 : -40 7 : -1725 : -121

1a : -40

(2)
4 : -83

4b : -100

(5)

6a : -20

(7)
6 : -404a: -73

2a : -29

(1)

1a : -40

(2)

4c : -22

(2,1)

4ba: -60

(5,4)

6a : -20

(7)
6 : -404a: -73

2aa: -27

(4,1)

1aa: -16

(2,4,2,1)

4c : -22

(2,1)

6a : -20

(7)

6aa: - 25

(7,4,5,4)
6 : -404a: -73

2aa: -27

(4,1)

Initial Population

After 1 Iteration

After 2 Iterations

After 3 Iterations

After 4 Iterations

Figure 12 – Example of a Population Trace through evolution

 32

7 Termination Criteria

Every Genetic Algorithm has the property that it is a continuous process. The process

will end naturally when the global optimum has been found. In the timetable case,

this optimum is a timetable that has the lowest violation rate of all timetables. The

ideal case would be that no restrictions are violated. However, this is not always

feasible due to too high expectations with too few resources. When the amount of

restrictions increases, the chance of a violation free timetable decreases. Therefore, it

is not feasible to set only the restraint to halt on obtaining a violation free timetable.

There are three options to end the process artificially: time constraints, iteration

constraints and the relative improvement stagnation constraints.

The user can decide which constraints to use, however it is not advisable to use only

the stagnation constraint and enable the local optimum fix.

7.1. Time Contraint

The user can set the maximum amount of time the algorithm is allowed to calculate

before it needs to give a timetable. The advantage of this method is that the user will

know how long it is going to take before he will get his timetable. A minor

disadvantage is that it is not determined what to do when the algorithm is halfway

an iteration. Another minor disadvantage is that when the algorithm gets little

computation power during the execution time the resulting timetable will be less fit

than a timetable being generated with much computation power during generation.

The disadvantage is that the algorithm could be on a point on which the fitness

improvement per iteration is very high. So the algorithm would be forced to stop

functioning while much progress can be retrieved by adding a small amount of time.

The problem is however that the algorithm cannot be sure to have a high fitness

improvement the next few steps.

7.2. Iteration Constraint

The user can set the maximum amount of evolutionary iterations to be calculated

before the algorithm needs to give a timetable. The advantage over time constraints

is that it is a bit easier to make the algorithm stop after a certain amount of

iterations than after a certain amount of time. For instance what should the

algorithm do when it is halfway an iteration when the time elapses?

Another advantage is that it is guaranteed that the algorithm gets a certain amount

of computation time.

 33

7.3. Relative Improvement Stagnation Constraint

It is desirable to give a result when an optimum is reached. When the algorithm is

not improving the average solution any more, the algorithm can stop. Since the

chance of gaining better alternatives is low. The advantage is that the algorithm will

stop on a time relative fitness improvement is low. The disadvantage is that it is not

known in advance, what the calculation time will be.

However, it is possible to have run into a local optimum, which can be a very

undesirable timetable. In this case, you want to gain variation in the population

again without losing the good candidates that are already calculated. A solution is to

replace a part of the population with new random candidates.

7.4. Mixed Termination Constraint

Due to the various advantages and disadvantages of the different constraints, it is

useful to combine them into a single constraint with less influence of the

disadvantages.

Let the algorithm work for the duration given by the user, except if the minimum

amount of iterations has not been met (useful for computation on computers on which

the computation power available to the algorithm is not guaranteed).

The algorithm has the following routine:

1. Make an initial population of candidate solutions.

2. Start the algorithm to evolve the candidates.

3. Continue until the relative improvement is stagnated.

4. If the time (and iteration minimum) has been met, stop the algorithm and

output the best-calculated timetable. The routine stops here.

5. Replace a part of the population with new random candidates while keeping

the best candidates.

6. Continue with step 2.

The advantage of this algorithm is that all disadvantages of the separate constraints

are eliminated. The disadvantage is that the time constraint is likely to be exceeded

with this mixed termination constraint. However, it is not desirable to halt the

algorithm when much improvement is expected, so taking more time should be in the

interest of the user. It is up to the user to make an estimation how complex the

scheduling problem is when determining the expected computation time.

 34

The algorithm is expected to have a reduction of restriction violations during the

execution of the algorithm. The expected estimated graph of the minimum, average

and maximum restriction violation is displayed in the figure below.

Figure 13 – Fitness Improvement during execution using the Mixed Termination Constraint

The larger the population size, the higher the chance that the randomization process

will pull the population entirely out of the local optimum. The reason for this is that

the only way to achieve fitness devaluation is with the crossover operator.

The crossover function makes it possible to generate a less fit child who is still better

than the other parent is and other child. This is the only way to escape a tight local

optimum. The more fitness decreases are necessary to escape the local optimum, the

tighter the local optimum is.

The larger the population is the more often an individual from the local optimum can

crossover so that a less fit child is maintained. The result is that a larger population

can slip out of tighter local optima than smaller populations.

The higher the fitness of the candidates in the local optimum is, the smaller the

chance that they will slip out the local optimum. This is a direct result from the 100%

chance of mutation in the algorithm. When the fitness is high, a lot of effort is done to

mutate with high fitness improvement. The result of this is that the chance of

undoing the effect of the previously performed crossover action.

7.4.1. Dynamic interface

Since the algorithm has at any point in the evolution process a best-known solution,

it is possible to stop the algorithm and output the current best timetable. This way

the user can even put no termination criteria in the algorithm and stop at the time

he desires his timetable. This way the user is free to run the algorithm according to

his termination criteria.

0
50

100
150
200
250
300

In
it

ia
l

Im
p

ro
ve

m
en

t …

R
an

d
o

m
iz

e …

Ti
m

e
Li

m
it

Im
p

ro
ve

m
en

t …

R
an

d
o

m
iz

e …

It
er

at
io

n
 L

im
it

Im
p

ro
ve

m
en

t …

H
al

t

Minimum

Average

Maximum

 35

Part II: Practical Evaluation

In this part, the Memetic Algorithm designed in the previous part is put to the test

by a practical evaluation.

First, an introduction to the concrete problem at Info Support is given in chapter 8.

Then a concrete solution to the scheduling problem is designed in chapter 9, followed

by an evaluation of the implementation in chapter 10.

In chapter 11, the general algorithm is evaluated on the overall performance of the

algorithm on scheduling problems.

 36

8 Introduction Concrete Problem

Info Support is a medium sized IT company with its own Knowledge Center. The

position of the Knowledge Center within the organization is visualized in the figure

below.

Figure 14 – Overview of Info Supports hierarchy

This center provides training for IT professionals from other companies and for their

own consultants to enable them to keep their technological knowhow up to date. Now

the timetables for the courses are scheduled by hand. However, Info Support would

like to see this process automated with a timetable generator.

 37

8.1. Timetable Usage

A customer can register for training on a specific place and date. The available dates

are present in a training calendar, which gives an overview for all training courses.

An example is presented in the table below.

Figure 15 – Example of a partial training calendar

For the non-Dutch readers a short translation of the columns present in the table

above. From left to right the names are training name, training code, number of days,

cost and starting date. After the date pops up a „V‟ or a „U‟, this represents the

location (Veenendaal/Utrecht)

The courses are scheduled, and then the customers can sign in the desired scheduled

courses. An employee of the knowledge center does the scheduling by hand. This is a

time consuming task, which can be done by a computer. What you see in the figure is

only a part of the planning. There is also a schedule for teachers. Therefore, a

timetable does not only contain trainings and dates, but also a teacher per training.

8.2. Concrete Assignment

Info Support would like the creation of the entire timetable to be automated, because

it takes a lot of time making each schedule. Besides that, it can very well occur that a

computer finds better schedules than the manual scheduler makes.

Because the courses are scheduled before they know the customer‟s demand, it is

valuable to know how to determine which courses should be scheduled. This problem

is not going to be solved by an algorithm; this is a management problem concerning

market prediction. This problem is going to be address in the next part of this thesis.

 38

9 Concrete Design

9.1. Functional Requirements

The main functionality of the program is that it gives a suitable timetable based on

requirements from the user.

A timetable consists of courses, teachers, locations and times. The attributes of these

parts are a subset of the general set described in Part I. This subset is the relevant

part for Info Support.

Another relevant functional requirement is the weight of the restrictions.

9.1.1. Courses

For each course the course identifier (IS. Code), the duration, the prerequisite

courses and the times to be scheduled are relevant attributes.

 The identifier is used in other input requirements provided by the user.

 The duration of the course is relevant in the scheduling because a location

(and teacher) is busy for the duration of the course. A course must be planned

within a workweek.

 The prerequisite courses are a collection of identifiers of courses that are to

be scheduled before the current course.

 For the timetable period, each course has an amount of times to be scheduled.

The courses should be planned as widely spread in time as possible.

 The desired location must be set. If there is no preference for location, the

course must be evenly divided between locations.

Other course information is not relevant for the generation of the timetable. This

information will be entirely excluded from the algorithm.

9.1.2. Teachers

A teacher consists of an identifier, contract hours, deployment rate, course

competences, days off, location preference, tolerance period for teaching activity and

variation between courses desire.

 The identifier is not used in other attributes; however, it is needed for

identification in the timetable representation.

 Contract hours are the amount of hours a teacher is available at work.

 The deployment rate is the percentage of the contract hours the teacher

ought to be scheduled for teaching.

 39

 The course competences are represented as a list of courses the teacher can

give. Each course has numerical indication of how experienced the teacher is

with the course. In addition, an override check can be made to ensure the

teacher is scheduled for a certain course. In this case, a specified period (in

days) before the actual course is to be kept free from teaching.

 The days off are registered with the teacher. Each start and end of days off is

inserted in a list.

 Preference for location. A teacher can give a preference for Veenendaal or

Utrecht.

 Tolerance period for teaching activity. A teacher can give the size of the

timeframe in which he wants his hours to be evenly spread out. A small

timeframe ensures not to be scheduled for days in a row, while a large

timeframe allows it. The smaller the timeframe is, the harder the scheduling

process is.

 Variation between courses desire. This is a numerical value giving the

divergence of courses in the scheduling period. The higher the number is, the

larger the penalty of scheduling few sorts of courses for the teacher will be.

Note that a teacher who can give only one course will more easily violate this

rule, so by giving a large value it will by definition give a low fitness value to

the timetable.

Other teacher information is not relevant for the generation of the timetable. The

only attribute which can be useful when finalizing the timetable is the entire teacher

name. This name is excluded from the algorithm.

9.1.3. Locations

Info Support has two locations where courses can be given (Veenendaal and Utrecht).

On these locations, multiple rooms are available for giving courses. The

determination in which room the courses are given is postponed until the actual

course registrations are known. Based on these requirements the following attributes

are determined:

 Location ID (V for Veenendaal, U for Utrecht)

 Room capacity on location – The overscheduling of a location on a specific

time may not exceed certain limits.

9.1.4. Time

The courses are scheduled with an amount of days; the size of a time block is 1 day.

The timetable period is set on a quart year. A day is represented in DD/MM/YYYY.

The algorithm gets the start date and end date as parameters.

 40

9.1.5. Weight of restrictions

The previously mentioned restrictions must be weighted in order to control the

output of the algorithm better. Some requirements are less important than other

requirements to be achieved in the final timetable.

It is also necessary to be able to give a violation level based penalty for a

requirement. For example, a certain teacher should be scheduled for three days a

week. Whether the teacher is scheduled for four days or for zero days, it is both a

violation of the restriction. However, the four days scheduled can be better than zero

days.

It must be possible to give hard upper and lower bounds and soft upper and soft

lower bounds for a restriction. With these bounds, it is possible to determine the

violation level of restrictions gradually.

Figure 16 – Visualization of restriction penalties by bounds

9.2. Technical Requirements

The main reason for this research is to make a scheduling program using Memetic

Algorithms in order to validate how a MA performs on generating timetables; the

incorporation of MA in the program is the main requirement.

9.3. Functional Design

The program will consist of all required input files and the executing program. When

the calculation is done, a timetable is saved to an xml file. Besides the timetable, a

quality report is also saved.

Hard
Lowerbound

Soft
Lowerbound

Soft
Upperbound

Hard
Upperbound

Penalty

 41

Input Files

User Input

Program Timetable

Quality Report

Figure 17 – Black box representation of the program

9.3.1. Input files

The input files will consist of objects in xml version 1.0 with the utf-8 encoding. This

is the standard representation used by the XML-Serializer available in C# .NET

framework 2.0 ~ 3.5. These files contain all the information needed to generate a

timetable. The following information is available in separate input files:

 Course information

 Teacher information

 Location information

 Time information

 Weight of Restrictions

 Algorithm and interface settings

 Previous timetable (optional)

A basic editor for the input files will be provided with the program. The main purpose

of this editor is to avoid the manual generation of the xml input. Making the input

files is not the goal of this assignment, but they are needed in order to test the

functionality of the program.

The program does not check on impossible timetables. For instance if all teachers are

not available for any courses the algorithm will create a timetable with a low fitness

value. The check on impossible timetables is a welcome addition to the program and

therefore is mentioned in the future research chapter.

 42

9.3.2. Interface

The program is going to be a windows Forms application. Some basic settings will be

adjustable inside the program, but the idea is that all settings are retrieved from the

input files. Changed settings can be saved back to the input files. The only settings

that can be adjusted inside the program are:

 Termination criteria (minimum time, minimum iterations, stagnation

boundary)

 Probabilities (crossover chance, tournament size % to be used)

 Population size

 Percentage of population to be used for crossover

 Choice to use a previous timetable for more nuanced scheduling. File is

selectable.

The program gives an indication during execution what the current worst fitness,

average fitness and best fitness is. In addition, time and iteration is displayed. This

can be disabled for performance increase. It is possible to stop the algorithm at any

time during the execution; the best-known solution can be exported to an xml file.

9.3.3. Quality Report

When a timetable is generated, a quality report is generated containing all violations

of the generated timetable. This document is a tree representation with different

levels of violation. The following hierarchy is represented in the quality report.

Figure 18 – Hierarchy of the tree represented in the Quality Report

This report is useful for the user to verify whether the violations are within an

acceptable level. This report gives a review to the user whether the weights of the

Overall Fitness
violations

Fitness violations by
Constraint

Fitness violations by
instances of Constraints

 43

violations are in proportion. It also gives hints about the impossibility of the

combination of teacher (availability) and courses.

9.3.4. Multi Threading

The program uses multi threading on a limited scale because the purpose of the

algorithm is making timetables and not making a perfect multithreaded program.

The purpose of multithreading is to make the algorithm able to use more of the

computers computation power. The limitation of computation power for a regular

single threaded algorithm comes from the fact that most computers are multi cored

nowadays. A single thread program can use only one core, so that limits the

maximum computation power available to the program. The amount of threads is

limited to the amount of crossover operations each iteration plus the main thread

and interface thread.

The only record that can be adjusted by multiple threads at the same time is the

variable containing the worst seen timetable by the algorithm. This rate of

independence between threads follows directly from the fact that all crossover

operators operate on different candidate solutions. This simplifies the

implementation of multithreading significant.

In the figure below, the part of the algorithm that is getting its own thread is marked

by the orange circle. Since multiple crossover operations are performed each iteration

they can all be executed at the same time.

Population

Crossover

Canditate Solution 1

Canditate Solution 2

Select

Mutate Select

Mutate

New

Candidate

Solution 1

Select

New

Candidate

Solution 2

Figure 19 – The Memetic Algorithm with the thread part highlighted

 44

10 Result Evaluation

Before the resulting algorithm can be tested, a test plan has to be designed. This plan

is needed for testing the algorithm on performance versus time. With this plan,

specific tests can be carried out to measure the quality of the algorithm and the

difference between different settings.

10.1. Test Plan

The main objective of the algorithm is delivering a sufficiently good timetable within

certain time limits. The quality of the timetable is generally measured versus the

best attainable timetable within the given boundaries. This is a real concern, since

one can only determine what the best timetable is when all possible timetables have

been generated. The limited duration of this experiment does not allow calculating

the best timetable brute force. That is why the decision is made to let the devised

algorithm for a significant longer time than it regularly has when it is in use.

10.1.1. Testing Quality

As mentioned it is necessary to know in what fitness range the best timetable is

located. Since the goal for Info Support is attaining a sufficiently good timetable, it is

not necessary to have the perfect timetable. However, it is needed that certain

quality is attained. The desired quality has a relation with the execution time of the

algorithm. Since the algorithm needs exponentially more time to improve the quality,

there is a boundary of time versus quality improvement. This boundary expresses the

moment that makes the user want to terminate the algorithm. The following test will

be used to measure quality improvement over a time way longer than regular use:

Time limit: None

Iteration limit: None

Stagnation boundary: With and without

Crossover chance: 10% per factor

Crossover amount 10 candidates

Population size 1000 candidates

Note that these are two tests. The first test tries to avoid local optima. The second

test does not avoid local optima by randomizing the population.

10.1.2. Testing Crossover chances

A standard issue with Genetic Algorithms is the uncertainty what chances are best

in the algorithm. The crossover operator is going to be tested with 10%, 20%, 30%

 45

and 40% crossover chance. Note that this chance is the chance for each factor to be

chosen from either the first parent or the second parent. That is why chances above

50% have the same effect as chances below 50% and do not need testing. Again, these

tests are done with and without stagnation boundary.

Time limit: None

Iteration limit: None

Stagnation boundary: With and without

Crossover chance: 10%, 20%, 30% and 40% per factor

Crossover amount 10 candidates

Population size 1000 candidates

These eight tests are compared to each other.

10.1.3. Population Size and Crossover Amount

Another relevant part in the algorithm is the population size and the amount of

candidates to be adjusted at a single time. The population size has a relation with the

capacity of avoiding local optima and the speed of improvement of the population.

The smaller the population is, the faster the algorithm will be. The larger the

population is, the smaller the chance of having a population with small divergence

will be. The crossover amount is a setting with minor impact. The smaller the

amount of candidates to be used by crossover is, the larger the overhead of shuffling

the population. However, this shuffling does not cost much computation power. The

advantage of not evolving the entire population at once is that the possibility arises

that candidates created at multiple iteration steps can evolve together. Note that the

duration of an iteration round is strongly dependent of the amount of candidates to

be used for crossover and the improvement per iteration is limited by this amount

because a part of the population stays the same.

The different tests to be executed are deliberately significantly different in amount.

This is chosen because there can be difference between one timetable and another, so

it is not relevant to determine the best population size exactly for this test set.

Time limit: None

Iteration limit: 320000, 160000, 80000, 40000, 20000, 10000,

5000, 2500 and 1250 iterations

Stagnation boundary: With

Crossover chance: 50% per factor

Crossover amount 100% of the population

Population size 2, 4, 8, 16, 32, 64, 128, 256 and 512 candidates

 46

10.2. Test Results

All developed tests have been executed. The results are evaluated in this paragraph.

10.2.1. Quality Test Results

The quality test showed a nice curve over time indicating the expected improvement

degeneration over time. As expected, the version without stagnation prevention

showed a more rapid improvement in early generation. This is explained by the

constant randomizing of the population, which limits the evolution by the replaced

candidates. However, it is possible that this shuffling brings new candidates with

more potential. Therefore, in the end it is useful to use some randomizing of the

population. However, this has to be used with regulation in order to keep the

algorithm fast.

In the figure below, the concrete test results are recorded. The red line is so thick

because the amount of iterations is very large and the population stagnated so many

times that the separate improvement curves are merged into one big line.

Figure 20 – Test results quality over time

-250000

-200000

-150000

-100000

-50000

0

With Stagnation FitnessOfBestSolution

With Stagnation FitnessOfAverageCurrentSolution

Without Stagnation FitnessOfBestSolution

Without Stagnation FitnessOfAverageCurrentSolution

 47

The concrete test values have been:

Time limit: Not relevant due to irregular load

balancing on test machines

Iteration limit: 32000

Stagnation boundary: With and without

Crossover chance: 10% per factor

Crossover amount 10 candidates

Population size 1000 candidates

The concrete test results have been:

Best candidate without stagnation prevention: -45416

Best candidate with stagnation prevention: -43271

Equal performance iteration step: 22432

Quality at that point: -45876

These results indicate that there is such a thing as a local optimum for the algorithm.

Otherwise, the best candidate generated without stagnation prevention cannot be

worse than the best candidate generated with stagnation prevention can. Note that

the best candidate found with stagnation prevention perhaps is not the optimal

candidate because the line is not flat for a long time compared to the time the

previous best candidate has been found.

10.2.2. Crossover Chance Test Results

Although the main reason for this test was to test what crossover chance performed

best it is relevant to note that the conclusion formed on the previous test about the

stagnation still holds with this test. The behavior is much alike the previous test.

Note that the tests with stagnation prevention have not recorded in the figure below.

This information made the figure crowded, which did not contribute to the

comprehension of the figure.

The main conclusion to be drawn from the figure is that the crossover chance does

not influence the progression that much. The differences between crossover chances

are so small that the deviation of the algorithm can be the cause of the differences

between the best candidates.

When you look at the average fitness values, you can see that the lower crossover

chances have an average higher fitness value. A higher average fitness value appears

to be better. However, the best-found candidate indicates minor difference between

the crossover rates. The cause of having higher average fitness values with lower

 48

crossover chances is explainable by the near duplication of the best parent in

crossover. Because of this, the better candidates will have nearly the same offspring

while other the other candidates disappear from the population. This near

duplication of better candidates brings a risk with them to steer the population to a

local optimum. When the individuals stay more differentiated this risk is smaller.

In the figure below, the concrete test results are recorded:

Figure 21 – Test results crossover chances

The concrete test values have been:

Time limit: Not relevant due to irregular load

balancing on test machines

Iteration limit: <>

Stagnation boundary: With and without

Crossover chance: 10%, 20%, 30% and 40% per factor

Crossover amount 10 candidates

Population size 1000 candidates

-250000

-200000

-150000

-100000

-50000

0

10% Crossover:
FitnessOfBestSolution

10% Crossover:
FitnessOfAverageCurrentS
olution

20% Crossover:
FitnessOfBestSolution

20% Crossover:
FitnessOfAverageCurrentS
olution

30% Crossover:
FitnessOfBestSolution

30% Crossover:
FitnessOfAverageCurrentS
olution

 49

10.2.3. Population Size Test Results

The population test results showed a remarkable preference for small populations. As

you can see in the figure, the smaller populations perform better than the larger

populations. In the first figure, the tests are displayed with results versus

computation time. They all have executed 320.000 crossover operations. Here the

relation between performance and population size is clearly visible. The smaller the

population size, the better the performance is. Note that a very small population has

a higher susceptibility for stagnation; the population of four found a better solution

than the population of two. This result supports the stated relation between the

population chance and the susceptibility for running into local optima.

The following results have been attained by the test:

Figure 22 – Test results population size with crossover limitation

-70000

-60000

-50000

-40000

-30000

-20000

-10000

0

512

256

128

64

32

16

8

4

2

 50

The concrete test values have been:

Time limit: Total 320.000 Crossover operations

Iteration limit: 320.000, 160.000, 80.000, 40.000,

20.000, 10.000, 5000, 2500 and

1250 iterations

Stagnation boundary: With and without

Crossover chance: 50% per factor

Crossover amount 100% of the population

Population size 2, 4, 8, 16, 32, 64, 128, 256 and 512

candidates

With the same test results, it is also possible to determine the performance per

iteration for each population size. This gives insight in the difference between the

population sizes. It is quite remarkable that larger populations with much more

diversity do not perform better than smaller populations. Note that the larger

populations use much more resources than the smaller populations to achieve the

same results.

The following results have been attained by the test:

Figure 23 – Test results population size with equal amount of iterations

-70000

-60000

-50000

-40000

-30000

-20000

-10000

0

512

256

128

64

32

16

8

4

2

 51

The concrete test values have been:

Time limit: Not relevant due to irregular load

balancing on test machines

Iteration limit: 2500 iterations

Stagnation boundary: With and without

Crossover chance: 50% per factor

Crossover amount 100% of the population

Population size 2, 4, 8, 16, 32, 64, 128, 256 and 512

candidates

10.3. Test Conclusions

The algorithm on itself is susceptible to running into local optima. However, it is easy

to eliminate this problem by using randomization when the population quality

stagnates. The chosen strategy is to randomize 2/3 of the population when the

average fitness value of the population is worse than 100 iterations ago. The best

candidate solution is always maintained. The reason not to randomize the entire

population (minus the best solution) is to keep a random set of candidates to keep

some of the effort of the previous iterations. The advantage is more performance; the

potential disadvantage is that the odds are higher that the algorithm does not escape

the local optimum.

The crossover chance showed a remarkable small impact on the algorithm, except

that the average population has a much higher quality with a lower crossover chance.

My advice is to use a higher crossover chance to improve the odds of having a diverse

population. You will lose a limited amount of performance but with more certainty of

not running into local optima.

The population size tests showed the most remarkable results. The population should

be very small in order to keep the algorithm fast. The chance of running into local

optima appears to be very slim. A population of two is not advisable because of the

increased chance of staying in local optima. It is reasonable to say that other small

population sizes suffer from the same problem. The test machine is a dual core

processor that performs best when running six crossover threads at the same time.

This makes the choice for a population of 12 candidates a practical choice, since this

is the smallest population utilizing six crossover threads at the same time. Note that

it is not possible to compute more threads at the same time than half of the

population. All results of the previous iteration have to be finished and the

population has to be shuffled before the next iteration can start.

 52

11 Overall Performance & Conclusions

There are multiple ways to generate a timetable automatically. The most trivial

method of scheduling is creating all timetables possible based on the available dates,

courses and teachers and evaluate them all. After that, pick the timetable that suits

the requirements of the user best. This method has the advantage that it is certain

that when the algorithm finishes the best solution is found. No other algorithm can

give this certainty with a problem of this rate of complexity.

The downside of simply trying all alternatives is that the computation cost is

astronomically large. The test set used with the tests of the developed algorithm

made 9.5 x 10310 timetables possible to generate. With a standard computer (Pentium

4 dual core 3.0 MHz), it is possible to evaluate about 30 timetables each second. This

is equal to 9.4 x 108 timetables a year. This is a clear indication of the sheer

impossibility to evaluate all timetables. The developed algorithm finds a decent

timetable in 24 hours. After that period, only minor optimizations are found.

There are more solutions made to cope with the complexity of timetable generation.

Some examples can be found in [Alkan, 2003], [Monfroglio, 1996] and [Őzcan, 2005].

However, the other proposed algorithms all work on slightly different timetable

problems. This difference makes it impossible to use test sets used by other genetic

algorithm designers and compare them directly.

 53

Part III: Market Determination

In the previous part, the algorithm for timetable generation has been evaluated. This

algorithm depends on concrete demands for courses in a specific period. Therefore,

the need for courses has to be determined prior to the timetable generation. This

determination is a market determination problem. In general, these kinds of

problems are about product development. In the case of the Knowledge Center, the

product is the course.

The courses to be scheduled are determined by the Sales Manager Learning

Solutions. Since the timetable is made before the actual demand is known, it is

necessary to have an indication what the actual demand will be like. The currently

used methods to determine this demand are defined in chapter 12. In this chapter,

the view of the Sales Manager Learning Solutions is elaborated. The currently used

method consists of different input factors with different effectiveness.

The factors that are identified are evaluated in chapter 13. In this chapter, the views

of other field experts are elaborated. Since not all relevant factors are present in the

current determination process, there is room to define these as well. These factors

are described in chapter 14. Here the views of other field experts are also elaborated,

now with an eye on missing factors. The overall advice to Info Support can be found

in chapter 15.

 54

12 Defining current determination process

In this chapter, the determination of the demand for courses is elaborated. This

information is obtained from the Sales Manager Learning Solutions. The Sales

Manager Learning Solutions is responsible for the market determination of the

courses on offer. In a later chapter, this vision is compared with perceptions of other

people at Info Support.

The customer demand for the courses at Info Support is currently determined in

three main areas: Technology Suppliers, Internal Demand and External Demand. In

the pie chart below, these sources are displayed. The three defined sources are

elaborated in the following paragraphs.

Figure 24 – Pie chart concerning the main sources for the determination of the courses on offer

12.1. Technology Suppliers

The technology suppliers are the companies who make the volume software used by

developers to make software products. The consultants at Info Support need to keep

their knowhow of these newest products and technologies up to date.

Info Support works tightly with volume software vendors to develop courses for new

products. The primary source of new volume software for Info Support is Microsoft.

Microsoft has a learning division, which has the task to develop course materials and

exams. This material is used by Info Support to give Microsoft certificated courses.

However, this division does not make courses for all Microsoft products. This leaves

Internal
Demand

Technology
Suppliers

External
Demand

 55

an opportunity for Info Support to take this role. The main reason Microsoft is not

making courses for all software is because of the limited communication between the

learning division and the product development divisions and the lack of resources of

the learning division. Another reason is that they are a profit/loss center, which

makes them focus on high volume products and not on niche products.

Since the learning division and the product development divisions of Microsoft are

separated from each other, the product development divisions do not really care who

provides courses for their programs. The reason for this is that they are rewarded for

making successful products and not for letting the learning division sell enough

courses. They want their products to be used. However, most products they sell need

training before they can be used. Therefore, products can be sold better when there is

a possibility to obtain information needed to be able to work with the products.

Because of this information need, the product development division desires courses

for their products. Their main concern is not helping the learning division, but

improving their own results. Therefore, if a partner wants to make a course for their

program, they will help with the creation of the course content. They will even buy

some lectures from the developed course because they want their staff to be up to

date too. This helps the partner with some certainty of regaining their investment.

Info Support takes this role as partner in making courses for new products.

There are two main advantages of working together with a volume software vendor

like Microsoft. The first advantage is that Microsoft is capable of generating demand.

Customers from the Knowledge Center ask for specific Microsoft Courses on a

regular basis. No other software vendors who can match this market penetration and

fame. The second advantage is that they have a large marketing department. This

department is able to make market predictions that are hard to make for a small

marketing department like the one from Info Support. One way of obtaining this

market information is by attending conferences and meetings organized by Microsoft.

By attending conferences, not only market information is obtained from Microsoft,

but also from competing firms. The advantage of this is that new technologies are

spotted early on. This makes it easier to adjust the strategy compared to later stages

of the technology cycle. The downside of the collaboration between competing firms is

that competing firms get to know your information too. It is important to keep this in

mind.

Microsoft defines numbers for specific courses that cover certain knowledge. The

advantage of these numbers is that customers can see that a course is covering

certain knowledge. A problem with these numbers is that competing firms give other

courses with the same course number causing that the customer sees the courses as

equal. The courses from Info Support tend to be of a higher quality but also with a

 56

higher price than the competition. It is hard to explain to the customers who compare

courses on price, location and date that these courses are implemented differently

causing a higher quality. However, this is not particularly relevant for the market

determination on itself.

12.2. Internal Demand

The core business of Info Support is professional tailored software development.

Therefore, the most important customer of the Knowledge Center is Info Support

itself. The internal demand for courses is determined via three channels: course

evaluation forms, via teacher interaction and via hierarchical feedback.

12.2.1. Course Evaluation Forms

After the courses are completed, the students are given the opportunity to give

feedback about the course they followed. In the appendices, the course evaluation

form is available. This is an analogue version of the course evaluation form, while the

course evaluation form given to the students is a digital version. However, the

questions are the same.

This form asks questions about the quality of the course and it gives the participant

the opportunity to tell which information he would like to obtain via a course, which

was not part of the course he followed. This second part is relevant for the market

determination.

12.2.2. Teacher Interaction

During a course, the participants can ask questions and give remarks to the teacher

that can be relevant for determining the market for courses. Each teacher is part of a

team of teachers who operate in the same area of expertise. They have periodical

meetings in which they decide which courses are desirable to develop or enhance. In

these meetings, the comments they hear during their teaching are used in the

decision process. With this procedure, the comments given by the students are used

to improve the courses.

12.2.3. Hierarchical Feedback

The head of the Knowledge Center is responsible for the final curriculum. To obtain

information from within the company, he has meetings with the Business Unit

Managers to obtain the demand from the development divisions of Info Support. The

Business Unit Managers obtain their information from progress interviews with

their software developers.

 57

The developers, who want to develop their software development skills in an area in

which no courses are present at Info Support, are a source of internal demand.

Another source of information is feedback from software development teams who lack

knowledge needed for their projects. Their needs are also communicated with their

Business Unit Managers.

The Sales Manager Learning Solutions decides together with the head of the

Knowledge Center which new courses should be developed.

12.3. External Demand

The external demand is the desire of consultants from competing firms. These

consultants give feedback via the following channels: course evaluation forms, via

teacher interaction and via customer relations. Since the course evaluation forms and

the teacher interaction are equal to the ones described in the Internal Demand

paragraph, they are not elaborated in this paragraph.

12.3.1. Customer Relations

The Sales Manager Learning Solutions keeps contact with the most important

customers to obtain feedback about the courses on offer. Other customers are only

visited when there is a specific reason for the visit. The reason not to visit all

customers is the sheer amount of customers, which is much too large to be physically

possible to visit by one person in a regular basis.

It is not reasonable to expect from the customer that he put his own resources in the

course demand determination for Info Support when there is no direct benefit for

him. It is possible to give the customer benefit for helping determining the demand.

For example by giving rewards for useful ideas. However, another possibility is to

obtain the information directly from the developers. This is what the Sales Manager

Learning Solutions does. He gets his information by communicating with the team

leaders working at the customer. He determines what knowledge they are missing in

their software development projects.

It is also possible for him to get information from existing customers of Info Support,

but who are new to the Knowledge Center. These customers already bought products

or services from Info Support. These products can generate a need for courses, which

can be fulfilled by the Knowledge Center. The main reason will be to sell more

courses. However, new customers can also bring new demands for other courses. It is

always relevant to get more demand information from the customers.

 58

12.4. Overlap between internal and external demand

The internal and external demands have in common that they both have course

evaluation forms and teacher interaction. This is logical since the developers from

both groups go to the same courses and fill out the same course evaluation forms.

The teacher groups evaluate both direct teacher interaction and the course

evaluation forms. This makes the teacher groups a significant source of information

for the Sales Manager Learning Solutions. In the pie chart below the significance of

the teacher groups is visualized.

Figure 25 – Pie chart visualizing the impact of teacher groups on the internal and external
part

12.5. Market Domain

There are clear boundaries within which markets Info Support wants to give courses.

Their aim is to be the first to give courses on new products and on products

commonly used by internal developers. Large competitors typically dominate

products that exist longer and prove to have a descent market perspective. Info

Support does not aim for being active in mass markets. The reason for this is that

they lack the volume to make decent profit in those markets.

There is a shift in the market domain to courses in soft skills. Traditionally, this kind

of courses is not in the curriculum of Info Support. However, these courses are

needed for the improvement of the maturity of the software development process.

Since this evolution is recently formally initiated in the company, the desire to have

these courses within the company rises.

Internal
Demand

Technology
Suppliers

External
Demand

Teacher Groups

 59

13 Quality of the current determination process

In this chapter, the current method for market determination is evaluated. The aim

is to find weak spots in the used methods and solutions to make the determination

process better.

13.1. Internal Demand

The internal demand is determined via course evaluation forms, which in practice

provide little feedback for the need of new courses according to the head of the

Knowledge Center. Another method being used is the feedback via the business

units. However, the disadvantage of this method is that people do not feel encouraged

to give feedback with this mechanism.

In the current situation, three different persons handle the responsibility for the

entire curriculum from Info Support. The Human Resources department is

concerning the soft skills courses, the Professional Development Center is concerning

specific Endeavour courses and all other courses are part of the Knowledge Center‟s

curriculum. This responsibility is shifting to a centralized management in which the

Knowledge Center covers all areas of knowledge.

13.1.1. Course suggestions and consequences

With the right attitude, it is possible for a consultant from Info Support to come to an

improvement of the curriculum. For example, the Microsoft Technology Manager

from Info Support saw a knowledge gap in the curriculum, which made him develop

his own course. After he developed the course, he initially did the teaching himself.

When the course was mature, he taught the teachers how to give the course. Now the

course is part of the curriculum of the Knowledge Center. Although this method

proved successful for him, you cannot assume that every colleague with a great idea

is capable of setting up a course himself.

According to the Java Technology Manager, the need for new knowledge by

individuals in general does not lead to new Java courses. The main reasons are the

expected lack for a market for the courses and the lack of teachers creating the

courses. A Java teacher who also makes courses agrees with him that there is not

enough time for him to make all courses he desires. The reason for this is that the

courses are being made in the spare time between teachings. The colleagues in need

for the knowledge not available internally are trained externally when no courses are

going to be made internally.

 60

13.1.2. Competence Centers

The technology managers are chair of their Competence Center. A Competence

Center is a group of people who all have a shared competence. Info Support has the

following Competence Centers: Architecture, Infrastructural Software Services, Java,

Microsoft Application Development, Project Management, Requirements & Analysis,

Business Intelligence & Data Warehousing and a new Competence Center Testing.

These Competence Centers do not correspond to the Business Units. A Competence

center has members of all disciplines: managers, consultants, teachers, etcetera.

These people come from all Business Units. The figure below gives a visual

representation of how the competence centers are positioned within the company.

Directie

Human Resources

Financiële Zaken

Office

Sales Support &

Marketing

ICT Services

PDC

UnitsBusiness Units

CC Microsoft

CC Java

CC Architectuur

CC Infrastructural Software Services

CC Testing

CC Requirements

CC Project Management

Business Unit

Zorg &

Verzekeringen

Business Unit

Handel & Industrie

Business Unit

Finance

Business Unit

Overheid

Unit

MITS

Unit

Kenniscentrum

Unit

BI/DWH

Figure 26 – Overview Competence Centers at Info Support

The advantage of using Competence Centers is that all people within that center

have roughly the same area of expertise and come from different parts of the

company. The advantage of making the Competence Center responsible for the

courses on offer is that the developers are more committed to improve the

curriculum. This view corresponds with [Mohr, 2005], which states that combining

the knowledge of different people working at different function, technology,

hierarchy, business, and geography is one of the key strategy points to become better

at innovation.

 61

A solution to the distance between the divisions and the Knowledge Center proposed

by the Microsoft Technology Manager is to use the different Competence Centers to

keep the accompanying curricula complete and up-to-date. Each Competence Center

has its own area of expertise and should use the knowledge they possess to keep the

accompanying courses up-to-date and make all needed knowledge available. A

teacher who is responsible for new courses of the Java department is also part of the

Competence Center Java. He states that this Competence Center is already having

this policy of working together to keep informed of new technologies.

According to the Java Technology Manager, the Competence Center determines

which part of the total supply of technology is used within the company. The

curriculum should be matched with this selection, because the selected technology

creates a high need for courses that supply the selected technologies. There are also

different knowledge profiles defined which comply with functions within the

company. The knowledge profiles are then evaluated on whether all courses are given

by the Knowledge Center. The chosen technologies that are going to be part of every

standard software development project are also being put into their software factory

Endeavour.

The Competence Center Requirements Analysis is also involved in the education

according to a Functional Designer from that Competence Center. Consultants from

this competence center give all requirements analyses courses. In general, these

consultants work in the field, except when they give courses. Most of the courses they

give are the courses for the Professional Development Center to help users of the

Endeavour software factory with the requirements analysis parts. They develop

these courses themselves under the supervision of the Professional Development

Center and the Knowledge Center. The rest of the courses they give use externally

made material.

According to [Mohr, 2005], it is relevant to look around to see new trends appear. The

Competence Center can help with this by making the participants aware of new

problems at competing firms. The advantage of using the Competence Center for this

is that a significant part of the participators is consultant. Consultants often work

together with competitors in the same development teams. This way the external

need is directly observable by the internal consultants, which enables proven

techniques like empathic design to be used. Even though empathic design is

originally meant for product design [Mohr, 2005], it is still applicable on the

development of courses.

 62

13.1.3. Empathic Design

According to [Mohr, 2005], empathic design is a good method to determine the real

customer needs. Like a product, a course needs to fulfill certain demand from the

consumer. By asking the consumer what he desires you often do not get the product

the consumer is going to buy. That is why empathic design is used to observe

behavior rather than asking directly. This is also the case with courses; people do not

know what they miss, whether it is a tangible product or a course.

The courses from the Professional Development Center are gradually being

integrated in software projects. The basic courses Endeavour are still presented in

standard courses. Info Support is the developer of a software factory called

Endeavour. This software factory is sold to other software developers to help them to

bring structure in their software development process.

The more advanced Endeavour courses are shifting to just-in-time courses. These

courses are supplying the needed information just before needed in the Endeavour

projects. An advantage of this method is the direct feedback possible from the

students and the direct link between theory and practice. This way the teacher can

see how the students are using the knowledge provided by the course. This can lead

to adjustment of the course or even the birth of new courses.

This trend within the Endeavour courses could be applied in the entire curriculum.

However, the problem with this method is that it is not feasible to implement this

system for small groups of students. It is not wise to put a teacher on small groups

because the teacher needs the same amount of time for smaller and for larger groups.

The groups will be smaller because external students often follow courses in small

groups. An extra downside is that the teacher needs to travel to the external software

development teams, which has its own down sides.

As mentioned before the Requirements Analysis Competence Center gives all courses

by consultants who work in the field most of the time. The advantage of this is that

they can keep track of new technologies they come across. The technological feedback

is of the same order of magnitude in the teachers from the field and the just-in-time

courses.

13.2. Resource Problems

At the Java Department, according to the Java Technology Manager, the problem is

not the determination which technologies are available. The most important

constraint they experience is the profitability of courses for new technologies.

Although Info Support has five different price ranges for courses, the cost for a course

cannot be raised infinitely. The reason for this is that the clients do not want to pay

 63

any price for the course even if the course has relevant specialized knowledge.

Because the amount of Java programmers within Info Support is not very large, the

internal market for courses is not that large either. Because of this lack of market,

most technologies are not used for new course material.

The Microsoft Department is larger in both internal and external clients. Because of

the larger market, the Microsoft courses are more likely to become profitable than

the Java courses. This advantage combined with the advantage that Microsoft is

more cooperative than the Java technology suppliers are gives the Microsoft courses

an edge on being implemented.

13.2.1. Causes for low sales

According to the Java Technology Manager, there are four main causes for the lack of

attendees. The first cause is that the reputation of Info Support is not good enough

with their Java curriculum. If Info Support builds up a better reputation they can

sell courses based on their reputation. Now they are one of the many suppliers,

without having a unique selling point. To solve this anonymity, the quality of the

Java courses needs to be communicated better to the external market.

Another cause is that the technology suppliers (like Sun) offer their own courses on

some of the new technologies they develop. People tend to go to the supplier of the

technology, because they perceive the supplier as being supplier of quality courses.

The reason for this perception is that the supplier should know the technology best

and was brilliant enough to develop the technology in the first place. It is hard to

compete with a supplier who has this advantage. This cause exists because the Java

department does not have the reputation of providing more value than the technology

supplier provides.

There are more autodidact developers in the Java community than in the Microsoft

community, which makes the target audience smaller. This limits the amount of

courses they can sell. It is hard to tackle this problem. The only way to get autodidact

developers to courses is to offer courses in which they can obtain valuable knowhow

they cannot obtain from the internet.

The marketing is quite small for the Java courses they offer. The sales department

focuses on Microsoft material since the offer of Java courses is not very large.

However, in order to make the Java curriculum bigger the amount of attendees must

increase too. Therefore, the departments are waiting on each other in order to grow.

This situation can only be solved by intervention from the company itself.

 64

13.3. Technology Suppliers

Because of the intense collaboration with Microsoft, it is possible to miss

opportunities to give courses for products made by other software vendors. That is

why it is relevant to keep an eye on other software vendors, who also generate a need

for courses for specific products. It is not only relevant to get more opportunities, but

also to have a larger spread in course material. When the spread is better, the

dependence on Microsoft will be smaller and there will be more potential customers

when the courses on offer have more variety. Note that Info Support also has a Java

department, but the Sales Manager Learning Solutions has the tendency to think

mainly about Microsoft products. It is vital that he considers the Java part of the

curriculum more with customer visits, in order to increase the market share of Info

Supports Java courses.

13.3.1. The open Java market

According to a Java teacher and initiator of new courses, the Java department has

multiple suppliers to obtain new technology. The Java community is much more

distributed than the Microsoft community is. There are conferences all over the world

for Java technologies. These conferences are open to all who have new Java

technology to share. This helps to let smaller suppliers show their products and

technologies. This openness is a characteristic of the Java community.

It is an advantage that smaller suppliers get their share of attention, because the

innovative products usually come from smaller companies. The disadvantage of the

large spread in technology is that the users can use multiple technologies, which can

lead to the necessity to know different technologies as a developer. In general, Info

Support chooses a limited subset of the comparable technologies available.

The Java Technology Manager from Info Support is also chair of the Dutch Java

group. Most Dutch Java developers are a member of this group. This group organizes

every year two conferences in the Netherlands. Therefore, Info Support is one of the

first companies to see the new Java technologies. Another advantage Info Support

has is that the Java Technology Manager is also one of the few certified Java

Champions. Java Champion is a title Sun gives to a limited amount of people. There

are about a hundred people worldwide and only two in the Netherlands. The

advantage of being a Java Champion is that new technologies from Sun are first

announced to the Java Champions and later to the rest of the Java market.

 65

13.4. Course Evaluation Forms

The current course evaluation form can be found in the appendices. This is the

written version of the evaluation; the students fill out a digital version with the same

questions.

13.4.1. Learned material utilization

The overall course evaluation form is not focusing on concrete relevant information.

It only questions quality and not what the arguments are which contribute to the

quality. The only information you can get from this is whether the quality is ok. You

will not know what causes the quality to be suboptimal.

Take question one for example. The students are asked what the reason is for them

to follow the course. However, they only ask which category the reason is in (solving

a problem, preparation, developing new skills and knowledge, etc…). It is useful to

know what problems they like to solve as specific as possible. If you have this

information, you can see whether the student got the information he needed and

whether his choice for that course was the right choice. You can also find out whether

his desired knowledge is available at all at the knowledge center.

At question five, the satisfaction level is asked. This is important information.

However, it is more important what did not meet the expectations and contributed to

the satisfaction level. This is information relevant in determining better courses. It is

also possible that the current students can be divided into separate groups who

desire different courses. This way the coverage of the course material can be

enlarged.

The downside of these questions is that people tend to give short answers to open

questions in evaluation forms. It is useful to let the teachers ask the students directly

what they expect to retrieve from a course. By asking the students directly what they

expect, the answer will be more elaborate than the same question in an evaluation

form.

13.4.2. Delayed Evaluation

The relevance of a course cannot be fully determined right after the end of the course;

the relevance will not be clear until the learned material has been put to the test.

That is why it is useful to ask the student what the relevance of the course was when

he used the material in his job. At this point, the student knows better whether he

missed information in the course. The current form asks for this information in

question three. This question should be asked on a later moment. Besides, it misses

the arguments responsible for the grade.

 66

Since it is impossible to obtain this directly after the course, it is necessary to obtain

this information on a later moment. Since it is not very likely they are filling out

another evaluation form some time after attaining the course, it is more useful to

obtain this information in a different way.

In the case of external students, it is possible to obtain this information when the

Sales Manager Learning Solutions is visiting the customers. He can see what the

former students are doing with the information they obtained by attending the

course and determine whether the course was right for the student. Note that there

is a difference between a satisfied customer and a best served customer. The second

one got the information that contributed most to his targets. Of course, this is within

the boundaries of the knowledge available within Info Support.

In the case of internal students, it is possible to give direct feedback to the knowledge

center or by attaining it via the hierarchy of the company. It is much easier to obtain

information from internal students because they work for the same team.

13.4.3. Suggestions

Ask the student for what specific task he uses the obtained knowledge. By getting a

concrete answer from the student what the usage will be, it is possible to determine

whether the course is supplying the right information for his goal.

Ask the student what knowledge he desired to obtain but did not get in the course he

followed. This way it becomes clear what the student expects and does not get. This

missing knowledge indicates that the information should be in the course, or there

should be another more suitable course, which supplies this knowledge.

Ask the student after he has used the obtained knowledge again whether the

knowledge helped to fulfill the described task. This way it becomes clear whether

certain goals can indeed be achieved by the courses.

At that same time, ask the student whether the missing knowledge mentioned in the

course evaluation form was indeed needed for his task and whether other knowledge

was missing which he did not notice when he filled out the evaluation form.

 67

14 Completeness of current determination process

In the first chapter of this part, the current methods are described to obtain demand

from the market. In this chapter, the missing information in the current market

determination is determined.

14.1. Creativity Techniques

Info Support is going the right way by using Empathic Design style approaches

within the Competence Centers. A useful addition to this method is to use creativity

techniques. These techniques are used to improve the idea generation. They all have

in common that they encourage original and divergent thinking. A consultant from

Info Support proposed a creativity technique he saw at another successful software

development company.

Their solution to lower the threshold for ideas for new courses is to make a forum on

which new ideas can be posted. Everybody from the company can post an idea and

everybody can give comments on given ideas to improve the concept. Colleagues can

also support these ideas to enlarge the chance the idea is used to improve the

curriculum. This way there is a centralized brainstorm session in which every

colleague can join. To make sure good ideas are executed, there must be a budget

available for good ideas. With this method, good ideas will be noticed and executed.

[Mohr, 2005] supports this view in multiple ways. First, it is a way to reduce the

threshold colleagues need to overcome to get their suggestion in the open. Second, it

is also another way to express passion for discovery and novelty. By putting

resources to this, the vision is more convincing than just stating it in the policy.

Third, it is a method to increase the level of experimentation within the company.

14.2. External Cooperation

As elaborated before, the problem with the Java courses is that courses tend to sell

mediocre. This makes it hard for the Java department to make a complete Java

curriculum.

An idea from a Java teacher overcome this problem is to sell self-made courses to

other companies who give courses or sell course material. There are two types of

partnerships according to [Mohr, 2005], the horizontal and vertical partnerships. The

vertical partnerships relevant for Info Support are partnerships with the suppliers

and customers.

 68

14.2.1. Vertical Partnerships

In the case of Info Support, the suppliers are the companies in charge of making new

technology and the customers are the people who buy the courses. The customers are

already involved by input via courses (evaluation and remarks during the courses)

and by visits by the Sales Manager Learning Solutions.

The large suppliers of Java Technology have been approached for the realization of

partnerships in the creation of course material. However, these proved to be no

profitable partner in course material. The reason for this is the unrealistic financial

demands they make. Therefore, besides the fact that it is not often possible to make

courses for technologies published by the larger suppliers because they make their

own courses. They also do not really want to work together. This is an important plus

for the Microsoft market, since Microsoft is collaborating with other companies who

want to make courses for their products.

14.2.2. Horizontal Partnerships

The horizontal partnership type is another viable option for partnerships. These are

competing companies, who can save production cost when cooperating. [Mohr, 2005]

uses the names competitive collaboration and co-opetition for this type of

partnership.

Contrary to Java technology suppliers, there are suppliers of courses who are willing

to cooperate in the creation of course material. This can lead to a better return on

investment of the course generation, because the investment of the course generation

can be split over the two companies. This makes it possible for Info Support to make

the curriculum cover more technology without an increase of investment. The

advantage is that internal developers can obtain the technologies easier and cheaper.

At the Microsoft department there is already a knowledge sharing with competing

firms according to a teacher at Info Support. These companies get special courses for

trainers to make them able to learn the material to their students. Microsoft is even

directing competing firms to Info Support to learn how to give the courses.

There are also courses available to buy from those other suppliers. The advantage is

that the course material is obtained relatively cheap. However, the courses they offer

are limited and should therefore not be the sole source of new courses. These courses

are a fundamental part of the total curriculum of Info Support.

 69

14.3. Priority problem with Customer Relations

The Sales Manager Learning Solutions is working at the Knowledge Center, which

makes him focus on the curriculum of the Knowledge Center. The knowledge center

takes responsibility for only the courses that are of the knowledge center. However,

other departments like Professional Development Center also provide courses and

teachers to give them. These departments do not have their own managers for

customer relations. Therefore, the improvement of the curriculum of the other

departments does not have the same priority as the improvement of the curriculum

from the Knowledge Center. More courses can be sold/enhanced/developed when the

awareness of other departments is higher within all different departments.

Another advantage when the awareness of other departments is higher is that the

knowledge center can gather more customer information. This information can be

used to improve the courses given by the other departments.

It is good to see that Info Support is moving the responsibility for all courses to the

Knowledge Center. This solves the problem that the courses belong to different

departments.

14.3.1. Endeavour product deployment

The Endeavour software factory is currently sold to customers with only courses that

supply technological knowhow. However, it is also useful to complement these

courses with courses that help them organize the change in structure of their

software development process. It is useful to teach the customer how to redesign

their software development process so they can use the software factory in its full

potential. This lack of knowledge at the customer‟s side is common because they use

the Endeavour software factory to formalize their product development methods.

This addition of knowhow makes Endeavour more valuable for the customer as a

product.

14.4. Specialising general courses

As earlier explained the courses not given by Info Support because they are too large

scaled are a potential source of more specialized course material. If you can identify

relevant groups within the main target group, the course can be tailored to these

groups to make the course more relevant for them. This way the courses that are

under heavy competition can be offered with benefits for the specified target (sub-)

group. Existing channels like student feedback can achieve this during courses or by

feedback in the just-in-time courses mentioned as an improvement for the course

integration.

 70

14.5. Tapping into new markets

The current method for determining the demand is focusing on volume software,

which creates a demand for courses. However, by focusing on volume software other

important markets can be overlooked. The market for specific tailored software

products can also be large when there is a large group of users. This is only the case

when either the customer has many employees who use the product or when multiple

organizations buy software together.

One of the largest organizations in the Netherlands is the government. The

government has enough employees to make specific courses for them. There are large

groups of users of the same specific software. Because of the size of these groups, this

can be a profitable customer for the Knowledge Center to have. The disadvantage of

this method is that the consultants from Info Support do not need this specialized

information, while the policy of Info Support is that courses must have a benefit for

internal consultants. This policy makes it unlikely that Info Support will enter this

market.

An idea from a Functional Designer is to set up collaboration with a Scandinavian

company. This company provides training in Software Process Improvement. They

are large in some countries but have not been introduced in the Netherlands yet.

They have very much knowledge of best practices in software development. The

courses would be a nice addition to the curriculum of Info Support.

 71

15 Conclusions

As we have seen in chapter 12, Info Support utilizes the standard known methods for

demand determination. Traditionally, Info Support is working tightly together with

Microsoft to find new market demands. The partnership with Microsoft proves to be a

stable source to keep the curriculum adequate for the demands from the market.

Info Support is aware of the danger of relying too much on a single partner and

therefore does Java development and supply Java courses. To increase the size of the

java department, it is important that the Java department of the Knowledge Center

is showing to the market that they offer interesting high quality courses. This can be

achieved by better promotion by the Sales Manager Learning Solutions. A good

method to improve the perceived quality is to give courses about new technologies

before the competition can.

Besides working together with Microsoft, it is relevant to work together with other

firms who give courses or create courses. This enables Info Support to make more

courses profitable to include in the curriculum. In the end, internal consultants will

have more knowledge available to learn internally.

Info Support is aware that the feedback via business units is not the best way to

communicate internal needs and is therefore shifting to more communication via the

competence centers. These competence centers are all about technology and therefore

the right place to determine needed courses. In addition to the competence centers

role in technology management it is wise to invest creative techniques like a forum to

post ideas on to lower the threshold for the consultants to give their input for a better

market determination.

The different departments who are supplying courses are going to be centralized in

terms of responsibility, which improves the market research concerning other

departments than the Knowledge Center. The market for soft skills is getting more

important for Info Support. Therefore, the desire to make these trainings themselves

arises.

The Professional Development Center is working on the integration of their courses

within software projects. It is relevant to determine whether more courses in the

entire curriculum are beneficial to give in this style.

 72

Part IV

 73

16 Future Research

16.1. Generic Timetable Representation

The best internal representation of a timetable is dependant of the type of scheduling

problem and the dominant kind of restrictions within that timetable. In order to

make a true generic scheduling algorithm it is necessary to give the user the choice

what representation he wishes to use. In order to achieve this it is necessary to make

the representation at runtime. When the representation is build, it is necessary to

adapt the access functions to the chosen representation. The behavior of the access

functions need to be determined at runtime too, this is makes the problem

challenging.

I have chosen not to research this problem in this thesis because it does not

contribute to my core research. This is due to the fact I will evaluate only one type of

timetable. It will be possible to insert this extra functionality in the algorithm

without much effort.

16.2. Concrete Program Additions

The following issues are no pure research problems. They are non-trivial problems

nonetheless.

16.2.1. Restriction Checker

The current implementation of the MA is trying to make a timetable based on the

given requirements. It does not check on mutual exclusive requirements however. A

trivial example is that a teacher is given who should be giving courses but there is no

course given he is allowed to give. This will always give a timetable that violates the

restrictions. The delivered timetable will have a balance between low scheduled time

and scheduling on courses he is not allowed to give.

16.2.2. Calculation Time Estimator

Due to the probabilistic nature of genetic algorithms, it is a challenge to give an

expected calculation time for an acceptable timetable. This problem can be viewed

from a mathematical point of view and from an empirical point of view. The

calculation time is dependent on the size of the timetable and the tightness of the

restrictions given. Take for example a timetable consisting of two courses versus a

timetable consisting of twenty courses. The first one has only a few values to

optimize; the second one has lots of them. The tightness of restrictions is expressing

the ratio of acceptable timetables compared to the entire set of timetables.

 74

17 Table of Figures

FIGURE 1 – GENETIC ALGORITHM .. 7

FIGURE 2 – HEURISTICS VS. GENETIC ALGORITHM VS. MEMETIC ALGORITHM ... 9

FIGURE 3 – OVERVIEW OF THE MEMETIC ALGORITHM. ... 10

FIGURE 4 – OVERVIEW OF A TIMETABLE .. 11

FIGURE 5 – TWO POINT CROSSOVER EXAMPLE ON BIT STRINGS ... 20

FIGURE 6 – THE OVERLAP BETWEEN PARENT AND CHILD SOLUTIONS ... 21

FIGURE 7 – MUTATION EXAMPLE ON BIT STRINGS ... 23

FIGURE 8 – MUTATION EXAMPLE ON FACTORS ... 23

FIGURE 9 – EXAMPLE OF MUTATION WITH TOURNAMENT SELECTION... 24

FIGURE 10 – RELATION BETWEEN TOURNAMENT SIZE AND VIOLATION RATE .. 25

FIGURE 11 – INTEGRATION OF THE SELECTION OPERATORS BETWEEN THE EVOLUTIONARY OPERATORS 29

FIGURE 12 – EXAMPLE OF A POPULATION TRACE THROUGH EVOLUTION .. 31

FIGURE 13 – FITNESS IMPROVEMENT DURING EXECUTION USING THE MIXED TERMINATION CONSTRAINT 34

FIGURE 14 – OVERVIEW OF INFO SUPPORTS HIERARCHY ... 36

FIGURE 15 – EXAMPLE OF A PARTIAL TRAINING CALENDAR ... 37

FIGURE 16 – VISUALIZATION OF RESTRICTION PENALTIES BY BOUNDS .. 40

FIGURE 17 – BLACK BOX REPRESENTATION OF THE PROGRAM ... 41

FIGURE 18 – HIERARCHY OF THE TREE REPRESENTED IN THE QUALITY REPORT .. 42

FIGURE 19 – THE MEMETIC ALGORITHM WITH THE THREAD PART HIGHLIGHTED .. 43

FIGURE 20 – TEST RESULTS QUALITY OVER TIME .. 46

FIGURE 21 – TEST RESULTS CROSSOVER CHANCES .. 48

FIGURE 22 – TEST RESULTS POPULATION SIZE WITH CROSSOVER LIMITATION... 49

FIGURE 23 – TEST RESULTS POPULATION SIZE WITH EQUAL AMOUNT OF ITERATIONS 50

FIGURE 24 – PIE CHART CONCERNING THE MAIN SOURCES FOR THE DETERMINATION OF THE COURSES ON OFFER ... 54

FIGURE 25 – PIE CHART VISUALIZING THE IMPACT OF TEACHER GROUPS ON THE INTERNAL AND EXTERNAL PART 58

FIGURE 26 – OVERVIEW COMPETENCE CENTERS AT INFO SUPPORT ... 60

 75

18 References

Alkan, A., Őzcan, E. (2003). Memetic Algorithms for Timetabling. The 2003 Congress

on Evolutionary Computation, 3, pp. 1796-1802.

Burke, E.K., Landa Silva, J.D. (2004). The Design of Memetic Algorithms for

Scheduling and Timetabling Problems. Recent Advances in Memetic Algorithms,

Studies in Fuzziness and Soft Computing, , pp. 289-312.

Eiben, A.E., Smith, J.E. (2007). Introduction to Evolutionary Computing. : Springer.

Even, S., Itai, A., Shamir, A. (1975). On the complexity of time table and

multicommodity flow problems. 16th Annual Symposium on Foundations of

Computer Science, , pp. 183-193.

Holland, J. (1975). Genetic algorithms in search, optimization, and machine

learning.. : Michigan Press.

Mitchell, M., Holland, J.H., Forrest, S. (1994). When Will a Genetic Algorithm

Outperform Hill-Climbing. In , Advances in Neural Information Processing Systems

6. : Morgan Kaufman. pp. 51-58.

Mohr, J., Sengupta S., Slater, S. (2005). Marketing of High-Technology Products and

Innovations. : Pearson Prentice Hall.

Monfroglio, A. (1996). Timetabling through Constrained Heuristic Search and

Genetic Algorithms. Software - Practice and Experience, 26, pp. 251-279.

Wolpert, D.H., Macready, W.G. (1997). No free lunch theorems for optimization.

Evolutionary Computation, IEEE Transactions on, 1, issue 1, pp. 67-82.

Őzcan, E. (2005). Memetic Algorithms for Nurse Rostering. Computer and

Information Sciences - ISCIS 2005, 3733, pp. 482-492.

 76

Appendice A. Course Evaluation form

 77

 78

 79

