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Abstract 

This thesis addresses the specification of a Memetic Algorithm, designed for coping 

with the timetabling problem. Timetabling problems are known to be NP-complete. 

The proposed algorithm consists of an adaptive local search algorithm and an 

adapted selection method. The local search algorithm starts out as a hill climbing 

algorithm for initial candidates and gradually gets more characteristics of a steepest 

ascent algorithm for better candidates. The selection occurs within the set of 

candidates of a crossover pair to ensure variation in the population.  Test results 

show that the algorithm performs well for the specified problem with a very low 

chance to converge into local optima.  

Another part of the thesis addresses the market determination of the courses on offer 

from the Knowledge Center from Info Support. In this part, the currently used 

sources and techniques for the market determination are described from the 

viewpoint of different stakeholders within the company.  The measurements Info 

Support is taking that improve the knowledge of the market for courses are 

elaborated. This information is accompanied by suggestions how the market 

determination could be further improved.    
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1   Introduction 

In the modern world there is a striking cliché called “time is money”. In order to use 

time efficiently it is necessary to make a schedule for one‟s activities. There are 

multiple advantages of constructing a timetable instead of just starting with an 

arbitrarily chosen activity. One advantage is that you can make appointments with 

other people on chosen times. Another advantage is that it is possible to manage your 

scarce time efficiently to be as productive as possible. 

Traditionally timetables are constructed by hand. A human scheduler typically 

adjusts a single timetable until all restrictions are satisfied. A typical restriction is 

that a person can be at only one place at a time. This process is a time consuming 

matter, which is why it is useful to automate it. Another reason for automation is 

that the complexity of some timetables is exceeding the limits of human capacity. 

Solving a scheduling problem is not trivial, even for a computer. If you want to 

determine the best timetable by brute force, it will take a tremendous amount of 

computation time. In order to get a timetable faster you can use Memetic Algorithms 

(MA) [Mitchell, 1994]. These work in a probabilistic fashion and make a tradeoff in 

quality versus time. If you want to make sure to have the best possible timetable, you 

need to validate all timetables. In this case, MA will not help in improving the 

performance. Most of the time you want a timetable which is sufficient to meet your 

requirements. In these cases, MA has a better performance. More information about 

the problem domain can be found in chapter 2. 

The main goal of this thesis is the determination what characteristics are 

contributing to an effective and efficient timetable solving MA. The entire MA is 

evaluated in Part I to create a definition of what characteristics the MA ought to 

contain. With this definition, a concrete implementation will be made in Part II. This 

implementation is evaluated on the quality of the generated timetable versus the 

computation time. 

Another goal of this thesis is to determine the market for courses for the Knowledge 

Center of Info Support. Info Support is further introduced in chapter 8.. The demand 

for courses is relevant, because an innovative and competitive curriculum provides 

internal and external advantages. The internal advantage is that the consultants 

from Info Support have access to the newest technologies available. The external 

advantage is that new technologies attract more customers than older technologies. 

This subject will be handled in part III 

In part IV, the future research recommendations are proposed.   
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2   Context 

2.1. NP-Complete problems 

A NP-Complete problem is a problem that cannot be solved in polynomial time. This 

means that the calculation time finding the best solution for such a problem rapidly 

increases when the scope increases. A well-known NP-Complete problem is the three-

dimensional matching problem. Three-dimensional matchings are important in 

scheduling problems.  

2.2. Scheduling problems 

Scheduling problems are optimization problems. This means that there are multiple 

possible answers to the problem, but the challenge is to find the best suitable 

solution. The amount of restrictions in a schedule is proportional with the difficulty 

of obtaining a solution that meets these restrictions. It can also occur that there is no 

solution, meeting all restrictions. It is desirable to know the one that fits best. 

For instance, solve a timetable creation problem involving the parameters: work 

periods, workers, tasks. The problem with scheduling is that the choices you make for 

each parameter influence other parameters as well. If workers have a day off this 

leads to a limitation concerning a combination of work periods and workers. Not all 

workers can perform all tasks, so not all worker-task combinations are valid either. 

The total scheduling problem becomes rather complex because of this. If you let a 

computer solve this problem the conventional way, you have to check all 

combinations of parameters in the worst case. This is because if you adjust one 

parameter, it can interfere with another parameter. Therefore, it is not possible to 

adjust each variable a single time to its best value. Every change of a parameter can 

make another parameter become sub-optimal. This behavior makes it a NP-Complete 

problem. For a formal determination of the complexity of timetable generation see 

[Even, 1975].  

2.3. Genetic Algorithms 

John Holland developed Genetic Algorithms (GA) [Holland, 1975]. Genetic 

algorithms are a search technique used in computing to find approximate solutions 

for problems that are NP-Complete.  
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2.3.1. The reason for Genetic Algorithms 

If you want to be 100% sure you have the best possible solution to your problem, you 

must pay the price for computation time needed for evaluating all solutions. Most of 

the time people are satisfied with solutions that are good enough, if it saves them a 

huge computation time. Genetic Algorithms are useful in this situation.  

2.3.2. The idea behind Genetic Algorithms 

A genetic algorithm mimics natural evolution. In nature, each creature consists of 

DNA. All life adjusts to its environment in order to become better at surviving. The 

most suitable species reproduce and occasionally mutate into other species. The least 

suitable species become extinct and disappear from the eco system. This is a 

continuous process, which keeps making creatures better suitable. 

 

Figure 1 – Genetic Algorithm 

The Genetic Algorithm proposed by Holland mimics this behavior, by using a bit 

string as DNA and translating ability of surviving into rate of meeting requirements 

(short: fitness value). Each bit string represents a possible solution to your problem.  

(initial) 
Population

Selection

Crossover

Mutation
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In the case of a timetable problem, a bit string represents a timetable. The fitness 

value of this timetable is determined by the rate of meeting the restrictions set by the 

user of the Genetic Algorithm. 

Like in nature there are multiple candidate solutions available at all times in a 

Genetic Algorithm. In nature reproduction only happens intra species, while in 

Genetic Algorithms the reproduction will be done inter species. 

In our case, all candidate timetables can reproduce with any other candidate. 

Mutation can happen to a child that has been formed with reproduction. The chance 

of mutation is rather limited. 

In general, the overall quality of the population tends to increase each iteration step. 

However, the algorithm proposed by Holland has the disadvantage that new 

candidate solutions are formed without using domain knowledge. The reason the 

algorithm works is that better candidate solutions have a bigger chance of surviving, 

the chance of making a suitable candidate when using characteristics of two more 

suitable candidates also tends to be higher than using characteristics of two inferior 

candidates. 

2.4. Memetic Algorithms 

Hybrid Genetic Algorithms or Memetic Algorithms (MAs) are Genetic Algorithms, 

which use local search techniques during the evolutionary cycle. In short, they 

reproduce and mutate using heuristics in order to enlarge the chance of getting 

better candidate solutions. The more heuristics one uses in a MA the more 

specialized the algorithm gets. So using heuristics limits the problem domain.  

Beside limiting the problem domain one should be aware that heuristics could be a 

source of slipping into local optima, which in turn can result in suboptimal results. 

Especially in MA it is very important to keep the population as diverse as possible, 

this limits the chance that the entire population ends up in local optima it cannot get 

out. More information about the performance of heuristic approaches and genetic 

algorithm approaches on different landscapes can be found in  [Mitchell, 1994]. 

2.4.1. From heuristics to Genetic Algorithms 

Since a Memetic Algorithm is a hybrid between heuristics and GAs, you can vary the 

balance of using heuristics in your algorithm. In the figure below, you can see how 

the rate of heuristic narrows the problem domain, but also increases the performance 

on problems within that domain.  
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Figure 2 – Heuristics vs. Genetic Algorithm vs. Memetic Algorithm 

A Genetic Algorithm is an all-round problem solver that does not have an area of 

expertise. Since we are going to use the algorithm for a specific domain (generating 

timetables), it is useful to use some heuristics within the algorithm. Note that the 

figure seems to imply that heuristics alone have the best possible performance. 

However, the problem with pure heuristics is that the domain is narrowed to 

problems without separate local optima. In general, it is plausible that the solution 

space of timetables contains local optima. Therefore, it is desirable to have at least a 

minimum amount of GA in your algorithm. 

2.5.  Multi Threading 

Multi threading is a way to calculate multiple tasks at the same time. Nowadays, it 

is quite common to have multi core processors in pc‟s. This makes it useful to make a 

program able to divide its tasks and execute them simultaneously. Since a genetic 

algorithm performs the same task independently on multiple candidate solutions, it 

is easy to split these into separate threads. This is easily realized, because the used 

candidate solutions do not need to be modified (which could make threads intervene 

with each other). Multi threading is not an objective in this research, but since it is 

not hard to implement, current multi core processors may just as well be used with 

their full power. 
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Part I: Memetic Algorithm 

The goal of this part is defining our Memetic Algorithm. This MA is going to be 

tailored to solving scheduling problems. The definition will be at a conceptual 

abstraction level: It serves the purpose of getting an overview of what design choices 

are made. The concrete design, implementation and testing will be addressed in Part 

II. 

This part consists of the determination of the timetable representation, the 

determination of the input formats, evolutionary operators, replacement strategy and 

the termination criteria of the Memetic Algorithm. 

The general Memetic Algorithm is based on the overview below. This part will define 

all the aspects mentioned in the overview. 

 

Figure 3 – Overview of the Memetic Algorithm. 

In order to keep the algorithm comprehensive for educated people without scientific 

knowledge of the artificial intelligence domain, the different parts of the algorithm 

are described in natural language rather than formal language. 
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3   Timetable representation 

The representation of the timetable is one of the most relevant choices to make when 

you want to use some kind of GA. This decision is important because it has effect on 

the expressiveness of timetables in general. It is important to maximize the 

expressiveness, because the algorithm should become able to cope with as many 

timetable problems as possible.  

Perhaps the most important practical property of the representation is the ease of 

fitness determination of a timetable in that representation. When there is a large 

population of timetables in a GA, it is relevant that the size of a timetable is within 

certain boundaries. A timetable is being used in the evolutionary operators, so it is 

useful that these operators can work efficiently on the chosen representation.  

3.1. Expressiveness 

In order to keep the algorithm as generally applicable as possible, it will be necessary 

to make a representation that can describe all relevant timetables. There are massive 

amounts of possible timetable representations, so it is necessary to set boundaries of 

what should be representable. 

The following definition of timetable will be used in the rest of the thesis. A timetable 

always has the following core attributes: when, where, what and who.  

 

Figure 4 – Overview of a timetable 
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3.1.1. When 

The primary problem with scheduling is when something is scheduled. The 

representation should allow a significant amount of periods. A period is defined as 

the scope of the timetable. It should be possible to set the period to your wishes, but 

with boundaries for the sake of efficiency and keeping it countable.  

The boundaries are based on human limitations; this is a reasonable thing to do 

because the timetables are about human resource planning. For a human it is not 

contributing to have a timetable that has a precision of less than minutes. Because of 

this limitation it is safe to say that the minimal time can and will be set at a minute. 

The largest human measure for time is years. There are some larger quantities, but 

they are easy to calculate based on years. Because of the large capacity for numbers 

in computers, it makes sense that years make a very large upper bound. Therefore, 

the maximal time will be set at years.  

To keep the algorithm as efficient as possible it makes sense to set the minimal time 

block for scheduled items. The advantage is that the larger the blocks of the 

algorithm are the fewer timetables can be generated. The possible disadvantage of 

making use of large blocks is that some solutions will never be generated, because 

this limits the amount of freedom for the scheduler. It is up to the user of the 

algorithm to make this decision. 

It is very common in scheduling that not all timeslots can be used.  For example, 

working during the evening or weekends is generally not allowed. It should be 

possible to set per block whether it is schedulable. These restrictions can also be set 

for individual persons, locations and courses.  

3.1.2. Who 

When thinking about scheduling it usually involves people, however it is also 

possible to make for instance a timetable for a production line involving a variety of 

products. In this case the products fall under the category „who‟ of the timetable. The 

problem with accepting this kind of scheduling problem is that a batch of products 

can be produced at multiple product lines. The problem is breaking the basic rule 

that a person cannot be at multiple places at the same time. This is the reason why 

the scheduling algorithm is restricted to persons. 

There are groups of stakeholders involved in scheduling. A group has certain 

attributes like “must attend” and “can give”. Think for instance about students who 

must attend specific courses and teachers who can give specific courses. It should be 

possible to set restrictions like “A teacher must be attached to a course.” and “All 

students must be able to attend a course.”  
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Based on these prerequisites it should be enough to have entities that have the 

previously described attributes. These entities should be attachable to groups. The 

relevance of groups is that you can set restrictions like “Each course must have a 

person from the group teachers attached.” 

It must also be possible to make a single entity count as multiple persons. This is 

relevant when there is a group of persons with no relevant specific attributes (like 

students) and if there are capacity limitations on the locations.  

3.1.3. Where 

The location is on first sight a rather trivial part of the scheduling. However, there 

are multiple possible representations of locations. A typical high school has a set of 

classrooms that are all near each other, but it is possible to have a distance between 

locations. This makes it impossible to schedule two consecutive things on two distant 

places, as travel time must be administered in this case.  

There may also be restrictions in locations like “Not every course can be given in each 

location” and “There are capacity limitations on locations”.  

Finally, it is possible that multiple courses can be given at the same location at the 

same time. In this case, it must be checked whether the maximum number of courses 

is not exceeded. 

3.1.4. What 

Previously, the word course was already mentioned. A course is a possible „what‟ in a 

timetable. In general, it is an appointment between multiple stakeholders. The 

objective can be information sharing or working together; this does not matter in the 

scheduling context. 

It can occur that a course has to be given a certain amount of times within a period, 

but it can also be person driven. If there are persons who need to follow a specific 

course, you can derive from that that the course needs to be given too.  

3.2. Fitness Determination 

The chosen representation has influence on all operations concerning concrete 

timetables. The determination of fitness is one of the hardest operations during the 

evolution process. The reason for the complexity is that not all restrictions can be 

verified easily.  

Take for instance a representation in which courses form the basis with dates, 

teachers and students connected to them. Now try to determine whether the teacher 
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has to work more than two courses directly after each other. In this case, you must 

check for each course whether the specific teacher gives that course and if this is 

true, look at the time. After all times are gathered you can determine how many 

times the two courses rule is exceeded. 

The choice for a suitable representation is dependent of the restrictions you want to 

use in your algorithm. This problem is similar to the “No Free Lunch” theorem 

[Wolpert, 1997], which states that there is no single optimum algorithm for multiple 

problem areas. The resemblance is that no matter which representation you choose 

the average performance over all sets of restrictions does not increase (on average). 

Since the aim is to keep the MA as general as possible the choice of representation 

should also be an input parameter. The problem with this is that for each possible 

representation the access functions are different. The „two courses‟ problem described 

above is a nice example of usage of an access function. It should be possible to keep 

the representation generic. However, this very complex problem does not contribute 

to my main research. This problem is elaborated in more detail in the Future 

Research chapter. The next best thing is to choose a representation that suits the 

scheduling problem of Info Support, with the possibility to implement other 

representations without having to change anything not directly associated with 

access functions. In other words, the representation is a black box, only the access 

function names are known for the algorithm. 

3.3. Storage Space 

Storage space may form a serious problem when computing with GAs. A GA has the 

characteristic that all candidate solutions of an iteration step need to be stored in the 

memory. Depending on the chosen algorithm, the results of the evolutionary 

operators need to be stored for a minimal time too. Depending on the nature of the 

problem population, the memory typically contains no more than several hundreds or 

thousands of candidate solutions during execution time. 

Because of this significant amount of candidate solutions in memory, it is important 

to know how large a typical candidate solution is. In the case of a scheduling 

problem, the worst-case scenario would be that one would choose a representation 

with time blocks as a basis. Then every time block has a reference (can be null) to a 

course (or perhaps even a teacher). When the timetable period is large and the time 

blocks small, there are a huge amount of null-references which all need memory.  

Take for instance a timetable for a year with time blocks of 15 minutes. The 

references are 32 bit and for the ease of calculation ignore every other attribute in 

the timetable. There are 35 thousand time blocks within that year. Therefore, each 

empty schedule cost around 137 KB. When you take a large population pool of ten 
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thousand and keep the results of the evolutionary operators temporary in memory 

too, you will end up with roughly twenty thousand candidate solutions in memory. 

The total storage space needed will be around 2.6 GB. When you add other 

information like courses/teachers/students, you will quickly run out of memory. It is 

possible to use other memory than RAM, but you will suffer serious decrease in 

performance. 

Depending on the size of the timetable, it is wise to choose a representation that does 

not suffer from large amounts of null references. The memory usage only becomes an 

issue when the limit is approached. A representation that uses more memory can 

perform better than a more economical representation. 

3.4. Evolutionary Operators 

The evolutionary operators from a standard GA work content independent. With this 

method, the representation of the timetable does not matter at all. However, a MA is 

described in this paper. The evolutionary operators perform actions of which is likely 

that the fitness of the candidate will improve. In order to achieve this improvement it 

is necessary to know which restrictions are violated. It can be wise to change 

especially the characteristics that are source of the violation. 

Determining which characteristics are sources of restriction violations is used in both 

the determination of fitness and the determination which action is performed by the 

evolutionary operator. Like with the fitness determination it is relevant to know 

what the set of restrictions is. 
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4   Input Format Determination 

The determination of the input format is relevant because the format directly effects 

the restrictions that can be described. The goal is to make a format, which supports 

all restrictions used in timetables. The first part is to make a definition which inputs 

should be used in what way in the timetable. The second part is the determination of 

all restrictions and defining how they ought to be represented in the input. 

4.1. Definition of Input attributes 

Like described in the previous chapter there are four main attributes (when, who, 

where and what).  For each of these attributes the input format will be defined below 

based on the choices made in the previous chapter. 

4.1.1. When 

 The input format must meet the following standards concerning the time aspect: 

 Every date and duration is represented in a combination of minutes, 

hours, days, weeks, months and years. 

 Timetable period – Start date and stop date or start date and duration. 

 Block size – The size of a time unit, the smallest schedulable period. 

 Non-schedulable blocks – Start date and duration, can be followed by 

repetition time, which is calculated, from the start date. 

4.1.2. Who 

The purpose of this input format is not only specifying which persons and groups 

there are, but also the specific time restrictions each person has (in example 

holidays). A person has the following attributes: 

 Identifier – A string of characters that serves as an identifier of the 

person or persons. 

 Multiplier – The multiplier is a number equal to the amount of persons 

the identity represents.  

 List of “can give” what‟s – A list of courses the person is allowed to give 

and a priority number which indicates the relative preference that that 

teacher gives the specific course. 

 List of “must follow” what‟s – A list of courses the person should be able 

to follow. 
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 Non-schedulable blocks – Start date and duration, can be followed by 

repetition time that is calculated from the start date. For dates, a person 

cannot be scheduled like days off and holidays. 

 Schedulable time – In the case of “can give” tasks there is a limit possible 

for courses he can give, this can also be a minimal and maximal time. 

A group has the following attributes: 

 Identifier – A string of characters, which serves as an identifier of the 

group. 

 List of Persons – A list of all persons belonging to the specific group. 

4.1.3. Where 

The locations are specified in a direct manner, but they also belong to groups of 

locations. Groups are specified in order to make a separation between different 

locations and different rooms. A location has the following attributes: 

 Identifier – A string of characters, which serves as an identifier of the 

location. 

 Multiplier – The multiplier is a number equal to the amount of locations 

the identity represents (useful in cases they are exchangeable).  

 Facilities – All facilities, which are available in the location. This is 

relevant for course requirements. (for instance desks, a beamer) 

 Capacity – The amount of persons possible to be attached to the location. 

A group of locations has the following attributes: 

 Identifier – A string of characters, which serves as an identifier of the 

group. 

 List of Locations – A list of all locations belonging to the specific group. 

 Distance To – A list of all other location groups with a travel time 

specification. 

 Facilities – All facilities, which are available in the location. This is 

relevant for course requirements. 

4.1.4. What 

A course has the following attributes:  

 Identifier – A string of characters, which serves as an identifier of the 

course. 

 Location demands – A list of needed facilities on the location. 
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 Has Prerequisites – A list of needed courses before this course can be 

participated. 

4.2.  Definition of Restrictions 

Restrictions are very common in scheduling. In order to keep the input flexible 

restrictions can be made in the form of: 

 Identifier – A string of characters, which serves as an identifier of the 

restriction. 

 Argument 1 – One or more objects, optionally with a fact specified. 

o Object  – The object of which the fact has to be evaluated 

o Fact – The fact which has to be evaluated 

 Argument 2 – One or more objects, optionally with a fact specified. 

o Object  – The object of which the fact has to be evaluated 

o Fact – The fact which has to be evaluated 

 Argument 3 – Optional. A number, time, object or string 

 Comparison rule – The rule that has to be used on the two arguments. The 

rule can pass or fail which indicates the violation of a restriction. The third 

argument can be used for comparisons that are more elaborate. 

 Weight – The importance of the restriction. 

The explanation of the comparison rule is not elaborate enough. For instance, it 

would be great if the algorithm could comprehend a proposed comparison. In order to 

achieve this, the comparison rule must follow a certain syntax and semantics. The 

evaluation of this code must be done at runtime of the algorithm, so it is not feasible 

to make an elaborate input language. The proposed solution consists of a set of 

operations that can be used; the program checks what operation is selected and then 

executes the right operation. 

4.2.1. Restriction operators 

The following operators can be used in the restriction rules: 

 Equals – A check whether the two arguments are the same. 

 Smaller then – A check whether the first argument is smaller than the 

second argument. 

 Contains – A check whether the collection from argument 1 contains all 

elements from argument 2. 

 Is over scheduled – A check whether the argument 1 is scheduled too many 

times. Argument 2 points to the desired value. Argument 3 holds an optional 

threshold for over scheduling. 
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 Is under scheduled – A check whether the argument 1 is scheduled too few 

times. Argument 2 points to the desired value. Argument 3 holds an optional 

threshold for under scheduling. 

 Is Better Teacher – A check whether the preference number for teacher given 

in argument 1 is higher than the preference number for teacher given in 

argument 2 for the course given in argument 3.  

 Are scheduled before – A check whether the courses from argument 1 are 

scheduled before the course from argument 2. 

 Total persons is valid – A check whether the sum of the persons in argument 

1 is below the value in argument 2. 
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5   Evolutionary Operators Determination 

The evolutionary operators are responsible for the generation of new candidate 

solutions in a GA. This gives the evolutionary operators a vital role in the efficiency 

of the GA. The difference between GA and MA is that MA use heuristics to generate 

new candidate solutions. A standard GA makes new candidate solutions, which have 

in general an equal chance to improve or deteriorate. The reason why a standard GA 

works with these operators is that they work for all problem domains. The natural 

selection makes that poor results are discarded in evolution. The advantage of using 

heuristics is that the generated offspring will be better for a specific problem domain. 

In this chapter, the two evolutionary operators are modified to increase the efficiency 

for generation of timetables.    

5.1. Crossover operator 

The crossover operator is a function, which uses two or more candidate solutions to 

generate one or more new candidate solutions. The general idea with crossover is 

using characteristics of each parent candidate solution in order to generate new child 

candidate solutions. The main idea is recombination features from multiple 

candidate solutions to obtain new and hopefully better solutions. 

In standard GA, the crossover operator works on bit strings. New solutions are 

formed by using a selection of bits from one parent and the missing bits from the 

other parent (see picture below). This method is easy to implement since the 

crossover operator does not know or care for the implications of combinations of bits. 

The disadvantage of this method is that the fitness of the new candidates is 

completely random. The answer to this poor generation method is using heuristics. 

  

1 0 1 1 0 1 0 0 0 1 

1 1 0 1 1 0 0 1 1 1 

1 0 0 1 1 0 0 0 0 1 

1 1 1 1 0 1 0 1 1 1 

Parent 1 

Parent 2 

Child 1 

Child 2 

Figure 5 – Two Point Crossover Example on bit strings  
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5.1.1. Heuristic Determination 

The first step in heuristics is determining what all bits in the representation do. The 

best way to achieve this is completely release the bit string approach. Let the 

operators work on the representation as it is intended; use factors like 

dates/teachers/locations which can be adjusted to different instances of the same 

factor. In [Alkan, 2003] the writer proposes to do crossover with complete factors or 

within factors. Since all factors have a narrow scope of legal input it makes sense to 

do crossover with complete factors. The advantage of this method is that there is no 

chance of creating non-existing values for the factors.  

5.1.2. Heuristic Implementation 

Since the format of the representation is defined in chapter 4, the only decision to be 

made is to choose between single point and multi point crossover. In order to keep the 

algorithm non-biased it is also possible to decide per factor whether to cross or not. 

This can be done by chance, the more the chance shifts to 50% the more 

diversification occurs. When the chance shifts to 0% or 100%, the child solutions will 

have a higher degree of resemblance with the parent solutions. The figure below 

shows the resemblance of the child solutions with their parents. On the vertical side, 

the resemblance level (0% ~ 100%) is indicated. On the horizontal side, the rate of 

mutation (0% ~ 100%) is expressed. It shows that on 50% the child will (on average) 

be mostly differed from their parents. The different curves represent different rates 

of resemblance between the two parents. If the parent solutions are the same, so will 

be the child solutions. Maximum differentiation occurs with maximum differentiation 

between parents. 

 

Figure 6 – The overlap between parent and child solutions 
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The differentiation between parent solution and child solution is proportionate to the 

chance on improvement and deterioration. It is up to the user to choose the rate of 

crossover. This rate is typically low, since the chance to adjust multiple factors with a 

positive effect is low. Note that the chance crossover happens over the entire 

candidate is much higher than on factor basis. For example the chance that crossover 

happens in a solution with 20 factors is with a 10% crossover rate 88% (1 – ((1 – 0.1) 

^ 20) = 0.88). It is wise to have a near certainty that crossover happens, since not 

doing crossover makes it possible to discard one parent because the other parent and 

child are identical. 

Another possibility is determining the crossover chance per factor depending on the 

combined violation rate of the factors of both parents. The advantage of this method 

is that the fitness of the child solution is likely to be better than the fitness of the 

parent solution. The downside is that the violations of all factors have to be 

determined separately, which will cost an enormous overhead to determine. This 

overhead per factor is of the same order as a normal fitness evaluation. Therefore, 

the advantage of better offspring is negated by the computation cost. 

5.1.3. Pseudo Code 

The following pseudo code is implementing the fixed rate crossover operator. 

Candidate Solution 3 = new Candidate Solution (); 

Candidate Solution 4 = new Candidate Solution (); 

 

For (int I = 0; I < Candidate Solution1. Length; I++) 

{ 

 If (Random Number (0% ~ 100%) < Crossover Rate) 

 { 

  Candidate Solution3 [I] = Candidate Solution2 [I]; 

  Candidate Solution4 [I] = Candidate Solution1 [I]; 

 } 

 Else 

 { 

  Candidate Solution3 [I] = Candidate Solution1 [I]; 

  Candidate Solution4 [I] = Candidate Solution2 [I]; 

 } 

} 

As you can see, two new solutions are being generated. The original solutions are 

needed for selection afterwards. The pseudo code lets the solution three to be similar 

to solution one, with the assumption that crossover rates are lower than 50%.  

The proportionate crossover operator calculates the factor violation level of the factor 

from both candidates. If the violation level is zero, the chance on crossover is 0%. If 

the violation level is equal to the maximum factor violation level, the chance on 

crossover is 100%. The following pseudo code is implementing the proportionate 

crossover operator. 
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For (int I = 0; I < Candidate Solution1. Length; I++) 

{ 

 If (Random Number (0.0 ~ 1.0) < (Factor Violation Level (Candidate Solution1 [I])  

                                                                     + Factor Violation Level (Candidate Solution2 [I])) 

                                                                      / (2 * Maximum Factor Violation Level)) 

 { 

  Candidate Solution3 [I] = Candidate Solution2 [I]; 

  Candidate Solution4 [I] = Candidate Solution1 [I]; 

 } 

 Else 

 { 

  Candidate Solution3 [I] = Candidate Solution1 [I]; 

  Candidate Solution4 [I] = Candidate Solution2 [I]; 

 } 

} 

This crossover method is impractical because for each factor the violation level has to 

be determined. This is a very costly operation, which negates the positive effect of 

stimulating better factors to survive.  

The crossover operator will be used on a percentage of the population of candidate 

solutions. The other candidate solutions are preserved in the population. More about 

this will be elaborated in chapter 6.4. 

5.2. Mutation operator 

The mutation operator is used after the crossover operator. The main purpose of this 

operator is introducing new values to the candidates. The crossover operator only 

recombines existing solutions without introducing new values. The mutation operator 

is, compared to the crossover operator, relatively easy to improve with heuristics. 

Like with the crossover operator it is desirable to work with factors instead of bit 

strings. Below both the bit string method and factor approach are visualized. 

 

 

 Figure 8 – Mutation Example on factors 

Figure 7 – Mutation Example on bit strings 

1 0 1 1 1 1 0 1 0 1 

1 0 0 1 1 1 0 1 0 1 

Before 

After 

Monday Tuesday Before 

After 

Sunday Friday 

Monday Saturday Sunday Friday 
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The advantage of this method is that there is no chance of creating non-existing 

values for the factors; the bit wise method can create in the example above a non-

existing day. 

5.2.1. Heuristic Determination 

The first step in adjusting the mutation operator is only adjusting the factors that 

cause restriction violations. Like with crossover it is useful to make the mutation 

chance proportionate with the rate of violations. Then the choice of substitute value 

has to be made. It is relevant to use values that are valid in the context.  

The decision has to be made whether the best substitute or a random substitute has 

to be chosen. The problem with choosing the best substitute is that the randomness 

decreases which could increase the chance of stranding in local optima. Another issue 

is that you have to evaluate all possibilities before you can make a choice, this can 

seriously decrease performance.  

A well-known selection method is tournament selection. The idea is that the 

algorithm selects a set of values from the entire set of values. The best of these 

contestants is selected. The advantage of tournament selection is that it is able to 

balance between quality, performance and randomness. More information about 

tournament selection can be found in [Eiben, 2007]. 

To continue with the same example as in figure the figure below an example of a 

tournament is displayed below. The tournament size is three in this example. This 

means that for the chosen factor three alternate values are tried, of which the best 

one is kept. The best individual in this example is Mutant 1. This individual will 

survive in the evolution. 

 
Figure 9 – Example of Mutation with Tournament Selection 

Monday Tuesday Before 

Mutant 1 

Sunday Friday 

Monday Saturday Sunday Friday 

100 

110 

Mutant 2 Monday Friday Sunday Friday 70 

Mutant 3 Monday Monday Sunday Friday 65 

Fitness 
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In the determination of fitness between different values, it is only necessary to check 

the relative difference between the values. It is not useful to check on other 

restriction violations, because they have the same violation level for each of the 

values. 

5.2.2. Heuristic Implementation 

In order to keep the algorithm fast tournament selection is an appropriate choice for 

factor selection. Pick a random set of factors and determine their violation rate. 

Mutate the factor with the highest violation rate. The replacement strategy can also 

be done with tournament selection, pick some random alternate values for the factor 

and determine their violation rate. Pick the one with the lowest violation rate. 

The size of the tournaments should be reversed proportionate with the violation rate 

of the candidate solution. The violation rate of the worst candidate solution evaluated 

by the algorithm is used as lower bound. The upper bound for violation is set to zero, 

with the assumption that the best solution possible should approximate to no 

violations. This relation is visualized below. 

 

Figure 10 – Relation between Tournament Size and Violation Rate 

The result is a hill climber algorithm for worse candidates changing into a steepest 

ascent algorithm when the optimum solution is approached. 

 The advantage of this method is that in early stages of evolution the selection 

pressure is low which decreases the change of early convergence. While in later 

stages of evolution the tournament size increases which increases the chance of 

convergence, but that is not a problem at later stages since only minor optimizations 

are needed at that point.  
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The maximum tournament size is set at 50% of the factors/values. The reason for 

choosing 50% is to prevent extreme convergence on fitter candidates. It also saves 

near 50% computation time compared to the evaluation of almost the entire set of 

factors/values. 

5.2.3. Pseudo Code 

The pseudo code of the tournament selection method for factor determination is 

displayed below. The pseudo code assumes a global variable called “Candidate 

Solution”. Another assumption is that “Factor List” is a list containing all possible 

values for a type, the only type. The “Tournament Size Factor Determination” is the 

amount of factors to be evaluated in order to choose the best factor for improvement. 

This size is between 1% and 50% of the total amount of factors, depending on the 

fitness of the candidate. 

Mutate Candidate Solution (Tournament Size Factor Determination) 

{ 

 Number List = Generate Numbers (Tournament Size Factor Determination),  

                                                                            0 ~ Candidate Solution. Length); 

 Worst Factor = -1; 

 Worst Factor Violation Level = 0; 

 For (int I = 0; I < Tournament Size Factor Determination); I++) 

 {  

  Temp = Factor Violation Level (Candidate Solution1 [Number List [I]]); 

  If (Temp > Worst Factor Violation Level) 

  { 

   Worst Factor = Number List [I]; 

   Worst Factor Violation Level = Temp; 

  } 

 } 

 //The size of the tournament for values is relative to the size of the tournament for factors 

 Tournament Size Value Determination = Tournament Size Factor Determination 

                                                                                   * Factor List. Length 

                                                                                    / Candidate Solution. Length; 

 Candidate Solution[Worst Factor] = Mutate Factor (Worst Factor,  

                                                                                                       Tournament Size Value Determination)); 

} 

The “Generate Numbers” function is a unique number generator with (for example) 

the following pseudo code. Note that this function can iterate endlessly when the 

boundaries permit less different numbers than the amount needed.  
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Number List Generate Numbers (Amount, Boundaries) 

{ 

 Number List = new Empty List; 

 While (Amount > 0) 

 { 

  Temp = Random Number (Boundaries); 

  If (Not Number List. Contains (Temp)) 

  { 

   Number List. Add Number (Temp); 

   Amount--; 

  } 

 } 

 Return Number List; 

} 

 

 

The pseudo code for the “Mutate Factor” function is: 

Factor Mutate Factor (Worst Factor, Tournament Size Value Determination) 

{ 

 Number List = Generate Numbers (Tournament Size Value Determination,  

                                                                            0 ~ Factor List. Length); 

 Best Factor = Factor List. Get Index (Candidate Solution [Worst Factor]); 

 Best Factor Violation Level = Factor Violation Level (Candidate Solution [Worst Factor]); 

 For (int I = 0; I < Tournament Size Value Determination; I++) 

 {  

  Temp = Factor Violation Level (Factor List [Number List [I]]); 

  If (Temp < Best Factor Violation Level) 

  { 

   Best Factor = Number List [I]; 

   Best Factor Violation Level = Temp; 

  } 

 } 

 

 Return Factor List [Best Factor]; 

} 

Note that the selection of the best factor happens inside this function while the 

functionality is defined separately for the algorithm. 
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6   Replacement Strategy Determination 

The key step in evolution is the selection of the surviving candidate solutions. The 

main objectives of the selection are keeping the population size limited, improving 

the average fitness of the population and maintaining diversity. Before the 

replacement strategy will be determined, all objectives will be defined. 

6.1. Population size 

Each time the evolutionary operators are used there are a number of new candidate 

solutions available. A direct result of this is that the population size exceeds the 

boundary set by the user. The only relevance for this objective is that the amount of 

candidate solutions is reduced to the level defined by the user.  

6.2. Improving fitness 

The core functionality of the evolutionary operators is generating new candidate 

solutions. Since these operators do not always generate better solutions then their 

parents, it is relevant that the replacement strategy selects candidates who have a 

higher average fitness than the previous population. A well-known algorithm for 

improving fitness value is Elitism. The use of Elitism by other researchers can be 

found in [Őzcan, 2005], [Monfroglio, 1996], [Burke, 2004]  and [Alkan, 2003]. 

6.3.  Maintaining diversity 

The problem with Elitism is that the population tends to lose diversity. This behavior 

comes from the fact that most candidates with a high fitness value come from other 

candidates with high fitness values. The problem with losing diversity is that the 

chance increases that the algorithm strands in local optima. Avoiding stranding in 

local optima is the main reason to use genetic algorithms in the first place. Since 

algorithms like hill climber and steepest ascent are faster than genetic algorithms 

but have (depending on the problem area) a significant chance run into local optima; 

these algorithms are not preferable for making timetables because of the significant 

amount of local optima in the search space. Research to the application of genetic 

algorithms has been done in [Mitchell, 1994]. 

It is hard for a computer to determine the similarity between different candidate 

solutions. By selecting between the child solutions and parent solutions, the 

advantage is that you know these solutions are alike. One can choose to keep the best 

of them that takes reasonable good care of similar solutions. The tradeoff between 

computation time and convergence is quite acceptable. 
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6.4. Final Determination 

The replacement strategy needs to implement the following properties: 

 Respect the population size 

 Keep the best known solution 

 Improve average fitness 

 Maintain diversity 

In order to keep the algorithm fast and effective a variant of tournament selection is 

a valid choice. The following algorithm manages to comply with previously defined 

properties. 

Take for each crossover operation all parent solutions and all child solutions (which 

are mutated at this point). Keep the best solutions of this group. The amount of 

solutions kept must be the same as the amount of parent solutions. This process is 

visualized below. It also includes the random operator, which makes different 

variants of the selected candidate solutions. The random operator also passes the 

unmodified solution to the selection operator. Note that this process happens for all 

crossover operations. 

Population

Crossover

Canditate Solution 1

Canditate Solution 2

Select

Mutate Select

Mutate

New

Candidate

Solution 1

Select

New

Candidate

Solution 2

 

Figure 11 – Integration of the Selection Operators between the Evolutionary Operators 

Since the part of the population that gets „crossovered‟ generates the same amount of 

candidates as it removes from the population, the population size stays the same; the 

parents are exchanged by the best of their offspring (or themselves if they have 

better fitness). The part of the population that is not used for crossover is preserved 

for the next iteration. 
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This algorithm keeps the best-known solution because it is the best one of the 

crossover operation group. If a child replaced it, the child should be better than the 

previous best solution. If it was not used in crossover, it is per definition preserved. 

Note that the best solution is not always on the same spot; if you want to determine 

the best candidate you have to search the entire population. 

This algorithm improves the average fitness because only the best ones of each 

crossover group are maintained in the population. 

The mutation operator determines the parameter to adjust by random, and then it 

determines by tournament selection the replacement value. The tournament size is 

determined by the fitness value of the candidate before it is mutated. The reason to 

choose the factor by random is the increased computation cost of tournament 

selection which makes that option too expensive. The selection after the mutation is 

incorporated in the mutation operator. See chapter 5.2.2 for a more detailed 

description.  

The diversity is reasonably guaranteed because the algorithm prefers to release 

lesser variants of a „bloodline‟; in most cases the parent or the child is being 

discarded, leaving the case that the crossover chance was very small which could lead 

to discarding of one parent and his most alike child.  

6.4.1. Local Optimum Problem 

A potential problem with all selection methods (except for random selection) is the 

chance of running into local optima. The advantage of this algorithm is that a certain 

amount of diversity is preserved. The practical implementation will show whether 

this measure is sufficient. 

A solution for this problem is to randomize a part of the population while keeping the 

best possibilities when an optimum is detected. However, it is not possible to check 

whether it is a local optimum or a global optimum, so the user must choose the 

maximum computation time or iteration amount. Otherwise, this process will never 

end. This problem will be handled in the next chapter. 

6.4.2. Population Trace Example 

To give an impression of how the algorithm can operate on a population a trace is 

displayed below. Each box is a candidate solution.  

The numbers inside each candidate have the following meaning: 

<Identifier>: <Fitness Value> 

(<Inherited From List>) 
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Each row is a population on a certain time. The arrows indicate the impact they have 

on their offspring. 

 The green arrow indicates a copy of the original into the new population 

 The blue arrow indicates a mayor influence in the child 

 The black arrow indicates a minor influence in the child 

 The red arrow indicates no  influence in the child 

Note that all candidates, which are selected to be maintained, can be mutated. 

However, mutation is visible in this figure. 

The combinations of incoming arrows have the following meaning: 

 Green – The green candidate is copied into the new population 

 Green, Red – The green candidate is copied into the new population 

 Blue, Black – The new candidate has mayor influence of the blue candidate 

and minor influence of the black candidate 

 Blue, Red – The new candidate is a mutated version of the blue candidate 

The identifier expresses the name of his predecessor plus a letter making it unique. 

This way you can see from the identifier who his most relevant parent is. The 

inherited from list indicates which parents had minor influence in the candidate. 

The Fitness value is the violation rate subtracted from zero. 

1 : -76 2 : -43 3 : -234 4 : -83 5 : -121 6 : -40 7 : -172

1a : -40
(2)

2a : -29
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4 : -83 4a: -73 6 : -40 7 : -1725 : -121
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After 2 Iterations

After 3 Iterations

After 4 Iterations

 

Figure 12 – Example of a Population Trace through evolution 
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7   Termination Criteria 

Every Genetic Algorithm has the property that it is a continuous process. The process 

will end naturally when the global optimum has been found. In the timetable case, 

this optimum is a timetable that has the lowest violation rate of all timetables. The 

ideal case would be that no restrictions are violated. However, this is not always 

feasible due to too high expectations with too few resources. When the amount of 

restrictions increases, the chance of a violation free timetable decreases. Therefore, it 

is not feasible to set only the restraint to halt on obtaining a violation free timetable. 

There are three options to end the process artificially: time constraints, iteration 

constraints and the relative improvement stagnation constraints. 

The user can decide which constraints to use, however it is not advisable to use only 

the stagnation constraint and enable the local optimum fix. 

7.1. Time Contraint 

The user can set the maximum amount of time the algorithm is allowed to calculate 

before it needs to give a timetable. The advantage of this method is that the user will 

know how long it is going to take before he will get his timetable. A minor 

disadvantage is that it is not determined what to do when the algorithm is halfway 

an iteration. Another minor disadvantage is that when the algorithm gets little 

computation power during the execution time the resulting timetable will be less fit 

than a timetable being generated with much computation power during generation.   

The disadvantage is that the algorithm could be on a point on which the fitness 

improvement per iteration is very high. So the algorithm would be forced to stop 

functioning while much progress can be retrieved by adding a small amount of time. 

The problem is however that the algorithm cannot be sure to have a high fitness 

improvement the next few steps.  

7.2. Iteration Constraint 

The user can set the maximum amount of evolutionary iterations to be calculated 

before the algorithm needs to give a timetable. The advantage over time constraints 

is that it is a bit easier to make the algorithm stop after a certain amount of 

iterations than after a certain amount of time. For instance what should the 

algorithm do when it is halfway an iteration when the time elapses? 

Another advantage is that it is guaranteed that the algorithm gets a certain amount 

of computation time. 
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7.3. Relative Improvement Stagnation Constraint 

It is desirable to give a result when an optimum is reached. When the algorithm is 

not improving the average solution any more, the algorithm can stop. Since the 

chance of gaining better alternatives is low. The advantage is that the algorithm will 

stop on a time relative fitness improvement is low. The disadvantage is that it is not 

known in advance, what the calculation time will be. 

However, it is possible to have run into a local optimum, which can be a very 

undesirable timetable. In this case, you want to gain variation in the population 

again without losing the good candidates that are already calculated. A solution is to 

replace a part of the population with new random candidates. 

7.4. Mixed Termination Constraint 

Due to the various advantages and disadvantages of the different constraints, it is 

useful to combine them into a single constraint with less influence of the 

disadvantages. 

Let the algorithm work for the duration given by the user, except if the minimum 

amount of iterations has not been met (useful for computation on computers on which 

the computation power available to the algorithm is not guaranteed).  

The algorithm has the following routine: 

1. Make an initial population of candidate solutions. 

2. Start the algorithm to evolve the candidates. 

3. Continue until the relative improvement is stagnated.  

4. If the time (and iteration minimum) has been met, stop the algorithm and 

output the best-calculated timetable. The routine stops here. 

5. Replace a part of the population with new random candidates while keeping 

the best candidates. 

6. Continue with step 2. 

The advantage of this algorithm is that all disadvantages of the separate constraints 

are eliminated. The disadvantage is that the time constraint is likely to be exceeded 

with this mixed termination constraint. However, it is not desirable to halt the 

algorithm when much improvement is expected, so taking more time should be in the 

interest of the user. It is up to the user to make an estimation how complex the 

scheduling problem is when determining the expected computation time. 
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The algorithm is expected to have a reduction of restriction violations during the 

execution of the algorithm.  The expected estimated graph of the minimum, average 

and maximum restriction violation is displayed in the figure below. 

 

Figure 13 – Fitness Improvement during execution using the Mixed Termination Constraint 

The larger the population size, the higher the chance that the randomization process 

will pull the population entirely out of the local optimum. The reason for this is that 

the only way to achieve fitness devaluation is with the crossover operator.  

The crossover function makes it possible to generate a less fit child who is still better 

than the other parent is and other child. This is the only way to escape a tight local 

optimum. The more fitness decreases are necessary to escape the local optimum, the 

tighter the local optimum is. 

The larger the population is the more often an individual from the local optimum can 

crossover so that a less fit child is maintained. The result is that a larger population 

can slip out of tighter local optima than smaller populations.  

The higher the fitness of the candidates in the local optimum is, the smaller the 

chance that they will slip out the local optimum. This is a direct result from the 100% 

chance of mutation in the algorithm. When the fitness is high, a lot of effort is done to 

mutate with high fitness improvement. The result of this is that the chance of 

undoing the effect of the previously performed crossover action. 

7.4.1. Dynamic interface 

Since the algorithm has at any point in the evolution process a best-known solution, 

it is possible to stop the algorithm and output the current best timetable. This way 

the user can even put no termination criteria in the algorithm and stop at the time 

he desires his timetable. This way the user is free to run the algorithm according to 

his termination criteria.  
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Part II: Practical Evaluation 

In this part, the Memetic Algorithm designed in the previous part is put to the test 

by a practical evaluation.  

First, an introduction to the concrete problem at Info Support is given in chapter 8. 

Then a concrete solution to the scheduling problem is designed in chapter 9, followed 

by an evaluation of the implementation in chapter 10. 

In chapter 11, the general algorithm is evaluated on the overall performance of the 

algorithm on scheduling problems. 
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8   Introduction Concrete Problem 

Info Support is a medium sized IT company with its own Knowledge Center. The 

position of the Knowledge Center within the organization is visualized in the figure 

below.  

 

Figure 14 – Overview of Info Supports hierarchy 

This center provides training for IT professionals from other companies and for their 

own consultants to enable them to keep their technological knowhow up to date. Now 

the timetables for the courses are scheduled by hand. However, Info Support would 

like to see this process automated with a timetable generator.  
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8.1. Timetable Usage 

A customer can register for training on a specific place and date. The available dates 

are present in a training calendar, which gives an overview for all training courses. 

An example is presented in the table below.  

 

Figure 15 – Example of a partial training calendar 

For the non-Dutch readers a short translation of the columns present in the table 

above. From left to right the names are training name, training code, number of days, 

cost and starting date. After the date pops up a „V‟ or a „U‟, this represents the 

location (Veenendaal/Utrecht) 

The courses are scheduled, and then the customers can sign in the desired scheduled 

courses. An employee of the knowledge center does the scheduling by hand. This is a 

time consuming task, which can be done by a computer. What you see in the figure is 

only a part of the planning. There is also a schedule for teachers. Therefore, a 

timetable does not only contain trainings and dates, but also a teacher per training. 

8.2. Concrete Assignment 

Info Support would like the creation of the entire timetable to be automated, because 

it takes a lot of time making each schedule. Besides that, it can very well occur that a 

computer finds better schedules than the manual scheduler makes. 

Because the courses are scheduled before they know the customer‟s demand, it is 

valuable to know how to determine which courses should be scheduled. This problem 

is not going to be solved by an algorithm; this is a management problem concerning 

market prediction. This problem is going to be address in the next part of this thesis. 
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9   Concrete Design 

9.1. Functional Requirements 

The main functionality of the program is that it gives a suitable timetable based on 

requirements from the user.  

A timetable consists of courses, teachers, locations and times. The attributes of these 

parts are a subset of the general set described in Part I. This subset is the relevant 

part for Info Support. 

Another relevant functional requirement is the weight of the restrictions. 

9.1.1. Courses 

For each course the course identifier (IS. Code), the duration, the prerequisite 

courses and the times to be scheduled are relevant attributes.  

 The identifier is used in other input requirements provided by the user.  

 The duration of the course is relevant in the scheduling because a location 

(and teacher) is busy for the duration of the course. A course must be planned 

within a workweek. 

 The prerequisite courses are a collection of identifiers of courses that are to 

be scheduled before the current course.  

 For the timetable period, each course has an amount of times to be scheduled. 

The courses should be planned as widely spread in time as possible. 

 The desired location must be set. If there is no preference for location, the 

course must be evenly divided between locations. 

Other course information is not relevant for the generation of the timetable. This 

information will be entirely excluded from the algorithm. 

9.1.2. Teachers 

A teacher consists of an identifier, contract hours, deployment rate, course 

competences, days off, location preference, tolerance period for teaching activity and 

variation between courses desire. 

 The identifier is not used in other attributes; however, it is needed for 

identification in the timetable representation. 

 Contract hours are the amount of hours a teacher is available at work. 

 The deployment rate is the percentage of the contract hours the teacher 

ought to be scheduled for teaching. 



 

 

 39 

 

 The course competences are represented as a list of courses the teacher can 

give. Each course has numerical indication of how experienced the teacher is 

with the course. In addition, an override check can be made to ensure the 

teacher is scheduled for a certain course. In this case, a specified period (in 

days) before the actual course is to be kept free from teaching. 

 The days off are registered with the teacher. Each start and end of days off is 

inserted in a list. 

 Preference for location. A teacher can give a preference for Veenendaal or 

Utrecht. 

 Tolerance period for teaching activity. A teacher can give the size of the 

timeframe in which he wants his hours to be evenly spread out. A small 

timeframe ensures not to be scheduled for days in a row, while a large 

timeframe allows it. The smaller the timeframe is, the harder the scheduling 

process is. 

 Variation between courses desire. This is a numerical value giving the 

divergence of courses in the scheduling period. The higher the number is, the 

larger the penalty of scheduling few sorts of courses for the teacher will be. 

Note that a teacher who can give only one course will more easily violate this 

rule, so by giving a large value it will by definition give a low fitness value to 

the timetable. 

Other teacher information is not relevant for the generation of the timetable. The 

only attribute which can be useful when finalizing the timetable is the entire teacher 

name. This name is excluded from the algorithm. 

9.1.3. Locations 

Info Support has two locations where courses can be given (Veenendaal and Utrecht). 

On these locations, multiple rooms are available for giving courses. The 

determination in which room the courses are given is postponed until the actual 

course registrations are known. Based on these requirements the following attributes 

are determined: 

 Location ID (V for Veenendaal, U for Utrecht) 

 Room capacity on location – The overscheduling of a location on a specific 

time may not exceed certain limits. 

9.1.4. Time 

The courses are scheduled with an amount of days; the size of a time block is 1 day. 

The timetable period is set on a quart year. A day is represented in DD/MM/YYYY. 

The algorithm gets the start date and end date as parameters. 
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9.1.5. Weight of restrictions 

The previously mentioned restrictions must be weighted in order to control the 

output of the algorithm better. Some requirements are less important than other 

requirements to be achieved in the final timetable. 

It is also necessary to be able to give a violation level based penalty for a 

requirement. For example, a certain teacher should be scheduled for three days a 

week. Whether the teacher is scheduled for four days or for zero days, it is both a 

violation of the restriction. However, the four days scheduled can be better than zero 

days. 

It must be possible to give hard upper and lower bounds and soft upper and soft 

lower bounds for a restriction. With these bounds, it is possible to determine the 

violation level of restrictions gradually. 

 

Figure 16 – Visualization of restriction penalties by bounds 

9.2. Technical Requirements 

The main reason for this research is to make a scheduling program using Memetic 

Algorithms in order to validate how a MA performs on generating timetables; the 

incorporation of MA in the program is the main requirement.  

9.3. Functional Design 

The program will consist of all required input files and the executing program. When 

the calculation is done, a timetable is saved to an xml file. Besides the timetable, a 

quality report is also saved. 
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Figure 17 – Black box representation of the program 

9.3.1. Input files 

The input files will consist of objects in xml version 1.0 with the utf-8 encoding. This 

is the standard representation used by the XML-Serializer available in C# .NET 

framework 2.0 ~ 3.5. These files contain all the information needed to generate a 

timetable. The following information is available in separate input files: 

 Course information 

 Teacher information 

 Location information 

 Time information 

 Weight of Restrictions 

 Algorithm and interface settings 

 Previous timetable (optional) 

A basic editor for the input files will be provided with the program. The main purpose 

of this editor is to avoid the manual generation of the xml input. Making the input 

files is not the goal of this assignment, but they are needed in order to test the 

functionality of the program. 

The program does not check on impossible timetables. For instance if all teachers are 

not available for any courses the algorithm will create a timetable with a low fitness 

value. The check on impossible timetables is a welcome addition to the program and 

therefore is mentioned in the future research chapter. 
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9.3.2. Interface 

The program is going to be a windows Forms application. Some basic settings will be 

adjustable inside the program, but the idea is that all settings are retrieved from the 

input files. Changed settings can be saved back to the input files. The only settings 

that can be adjusted inside the program are: 

 Termination criteria (minimum time, minimum iterations, stagnation 

boundary) 

 Probabilities (crossover chance, tournament size % to be used) 

 Population size 

 Percentage of population to be used for crossover 

 Choice to use a previous timetable for more nuanced scheduling. File is 

selectable. 

The program gives an indication during execution what the current worst fitness, 

average fitness and best fitness is. In addition, time and iteration is displayed. This 

can be disabled for performance increase. It is possible to stop the algorithm at any 

time during the execution; the best-known solution can be exported to an xml file. 

9.3.3. Quality Report 

When a timetable is generated, a quality report is generated containing all violations 

of the generated timetable. This document is a tree representation with different 

levels of violation. The following hierarchy is represented in the quality report. 

 

Figure 18 – Hierarchy of the tree represented in the Quality Report 

This report is useful for the user to verify whether the violations are within an 

acceptable level. This report gives a review to the user whether the weights of the 
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violations are in proportion. It also gives hints about the impossibility of the 

combination of teacher (availability) and courses. 

9.3.4. Multi Threading 

The program uses multi threading on a limited scale because the purpose of the 

algorithm is making timetables and not making a perfect multithreaded program. 

The purpose of multithreading is to make the algorithm able to use more of the 

computers computation power. The limitation of computation power for a regular 

single threaded algorithm comes from the fact that most computers are multi cored 

nowadays. A single thread program can use only one core, so that limits the 

maximum computation power available to the program. The amount of threads is 

limited to the amount of crossover operations each iteration plus the main thread 

and interface thread.  

The only record that can be adjusted by multiple threads at the same time is the 

variable containing the worst seen timetable by the algorithm. This rate of 

independence between threads follows directly from the fact that all crossover 

operators operate on different candidate solutions. This simplifies the 

implementation of multithreading significant. 

In the figure below, the part of the algorithm that is getting its own thread is marked 

by the orange circle. Since multiple crossover operations are performed each iteration 

they can all be executed at the same time. 
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Figure 19 – The Memetic Algorithm with the thread part highlighted 
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10   Result Evaluation 

Before the resulting algorithm can be tested, a test plan has to be designed. This plan 

is needed for testing the algorithm on performance versus time. With this plan, 

specific tests can be carried out to measure the quality of the algorithm and the 

difference between different settings. 

10.1. Test Plan 

The main objective of the algorithm is delivering a sufficiently good timetable within 

certain time limits. The quality of the timetable is generally measured versus the 

best attainable timetable within the given boundaries. This is a real concern, since 

one can only determine what the best timetable is when all possible timetables have 

been generated. The limited duration of this experiment does not allow calculating 

the best timetable brute force.  That is why the decision is made to let the devised 

algorithm for a significant longer time than it regularly has when it is in use. 

10.1.1. Testing Quality 

As mentioned it is necessary to know in what fitness range the best timetable is 

located. Since the goal for Info Support is attaining a sufficiently good timetable, it is 

not necessary to have the perfect timetable. However, it is needed that certain 

quality is attained. The desired quality has a relation with the execution time of the 

algorithm. Since the algorithm needs exponentially more time to improve the quality, 

there is a boundary of time versus quality improvement. This boundary expresses the 

moment that makes the user want to terminate the algorithm. The following test will 

be used to measure quality improvement over a time way longer than regular use: 

Time limit: None 

Iteration limit: None 

Stagnation boundary: With and without  

Crossover chance: 10% per factor 

Crossover amount 10 candidates 

Population size 1000 candidates 

 

Note that these are two tests. The first test tries to avoid local optima. The second 

test does not avoid local optima by randomizing the population. 

10.1.2. Testing Crossover chances 

A standard issue with Genetic Algorithms is the uncertainty what chances are best 

in the algorithm. The crossover operator is going to be tested with 10%, 20%, 30% 
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and 40% crossover chance. Note that this chance is the chance for each factor to be 

chosen from either the first parent or the second parent. That is why chances above 

50% have the same effect as chances below 50% and do not need testing. Again, these 

tests are done with and without stagnation boundary. 

Time limit: None 

Iteration limit: None 

Stagnation boundary: With and without  

Crossover chance: 10%, 20%, 30% and 40% per factor 

Crossover amount 10 candidates 

Population size 1000 candidates 

 

These eight tests are compared to each other. 

10.1.3. Population Size and Crossover Amount 

Another relevant part in the algorithm is the population size and the amount of 

candidates to be adjusted at a single time. The population size has a relation with the 

capacity of avoiding local optima and the speed of improvement of the population. 

The smaller the population is, the faster the algorithm will be. The larger the 

population is, the smaller the chance of having a population with small divergence 

will be. The crossover amount is a setting with minor impact. The smaller the 

amount of candidates to be used by crossover is, the larger the overhead of shuffling 

the population. However, this shuffling does not cost much computation power. The 

advantage of not evolving the entire population at once is that the possibility arises 

that candidates created at multiple iteration steps can evolve together. Note that the 

duration of an iteration round is strongly dependent of the amount of candidates to 

be used for crossover and the improvement per iteration is limited by this amount 

because a part of the population stays the same. 

The different tests to be executed are deliberately significantly different in amount. 

This is chosen because there can be difference between one timetable and another, so 

it is not relevant to determine the best population size exactly for this test set. 

Time limit: None 

Iteration limit: 320000, 160000, 80000, 40000, 20000, 10000, 

5000, 2500 and 1250 iterations 

Stagnation boundary: With 

Crossover chance: 50% per factor 

Crossover amount 100% of the population 

Population size 2, 4, 8, 16, 32, 64, 128, 256 and 512 candidates 
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10.2. Test Results 

All developed tests have been executed. The results are evaluated in this paragraph. 

10.2.1. Quality Test Results 

The quality test showed a nice curve over time indicating the expected improvement 

degeneration over time. As expected, the version without stagnation prevention 

showed a more rapid improvement in early generation. This is explained by the 

constant randomizing of the population, which limits the evolution by the replaced 

candidates. However, it is possible that this shuffling brings new candidates with 

more potential. Therefore, in the end it is useful to use some randomizing of the 

population. However, this has to be used with regulation in order to keep the 

algorithm fast.  

In the figure below, the concrete test results are recorded. The red line is so thick 

because the amount of iterations is very large and the population stagnated so many 

times that the separate improvement curves are merged into one big line. 

 

Figure 20 – Test results quality over time 
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The concrete test values have been: 

Time limit: Not relevant due to irregular load 

balancing on test machines 

Iteration limit: 32000 

Stagnation boundary: With and without  

Crossover chance: 10% per factor 

Crossover amount 10 candidates 

Population size 1000 candidates 

 

The concrete test results have been: 

Best candidate without stagnation prevention: -45416 

Best candidate with stagnation prevention: -43271 

Equal performance iteration step: 22432 

Quality at that point: -45876 

 

These results indicate that there is such a thing as a local optimum for the algorithm. 

Otherwise, the best candidate generated without stagnation prevention cannot be 

worse than the best candidate generated with stagnation prevention can. Note that 

the best candidate found with stagnation prevention perhaps is not the optimal 

candidate because the line is not flat for a long time compared to the time the 

previous best candidate has been found. 

10.2.2. Crossover Chance Test Results 

Although the main reason for this test was to test what crossover chance performed 

best it is relevant to note that the conclusion formed on the previous test about the 

stagnation still holds with this test. The behavior is much alike the previous test. 

Note that the tests with stagnation prevention have not recorded in the figure below. 

This information made the figure crowded, which did not contribute to the 

comprehension of the figure. 

The main conclusion to be drawn from the figure is that the crossover chance does 

not influence the progression that much. The differences between crossover chances 

are so small that the deviation of the algorithm can be the cause of the differences 

between the best candidates.  

When you look at the average fitness values, you can see that the lower crossover 

chances have an average higher fitness value. A higher average fitness value appears 

to be better. However, the best-found candidate indicates minor difference between 

the crossover rates. The cause of having higher average fitness values with lower 
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crossover chances is explainable by the near duplication of the best parent in 

crossover. Because of this, the better candidates will have nearly the same offspring 

while other the other candidates disappear from the population. This near 

duplication of better candidates brings a risk with them to steer the population to a 

local optimum. When the individuals stay more differentiated this risk is smaller.  

In the figure below, the concrete test results are recorded: 

 

Figure 21 – Test results crossover chances 
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Time limit: Not relevant due to irregular load 

balancing on test machines 
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Stagnation boundary: With and without  
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10.2.3. Population Size Test Results 

The population test results showed a remarkable preference for small populations. As 

you can see in the figure, the smaller populations perform better than the larger 

populations.  In the first figure, the tests are displayed with results versus 

computation time. They all have executed 320.000 crossover operations. Here the 

relation between performance and population size is clearly visible. The smaller the 

population size, the better the performance is. Note that a very small population has 

a higher susceptibility for stagnation; the population of four found a better solution 

than the population of two. This result supports the stated relation between the 

population chance and the susceptibility for running into local optima. 

The following results have been attained by the test: 

 

Figure 22 – Test results population size with crossover limitation 
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The concrete test values have been: 

Time limit: Total 320.000 Crossover operations 

Iteration limit: 320.000, 160.000, 80.000, 40.000, 

20.000, 10.000, 5000, 2500 and 

1250 iterations 

Stagnation boundary: With and without  

Crossover chance: 50% per factor 

Crossover amount 100% of the population 

Population size 2, 4, 8, 16, 32, 64, 128, 256 and 512 

candidates 

 

With the same test results, it is also possible to determine the performance per 

iteration for each population size. This gives insight in the difference between the 

population sizes. It is quite remarkable that larger populations with much more 

diversity do not perform better than smaller populations. Note that the larger 

populations use much more resources than the smaller populations to achieve the 

same results. 

The following results have been attained by the test: 

 

Figure 23 – Test results population size with equal amount of iterations 
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The concrete test values have been: 

Time limit: Not relevant due to irregular load 

balancing on test machines 

Iteration limit: 2500 iterations 

Stagnation boundary: With and without  

Crossover chance: 50% per factor 

Crossover amount 100% of the population 

Population size 2, 4, 8, 16, 32, 64, 128, 256 and 512 

candidates 

 

10.3. Test Conclusions 

The algorithm on itself is susceptible to running into local optima. However, it is easy 

to eliminate this problem by using randomization when the population quality 

stagnates. The chosen strategy is to randomize 2/3 of the population when the 

average fitness value of the population is worse than 100 iterations ago. The best 

candidate solution is always maintained. The reason not to randomize the entire 

population (minus the best solution) is to keep a random set of candidates to keep 

some of the effort of the previous iterations. The advantage is more performance; the 

potential disadvantage is that the odds are higher that the algorithm does not escape 

the local optimum. 

The crossover chance showed a remarkable small impact on the algorithm, except 

that the average population has a much higher quality with a lower crossover chance. 

My advice is to use a higher crossover chance to improve the odds of having a diverse 

population. You will lose a limited amount of performance but with more certainty of 

not running into local optima.  

The population size tests showed the most remarkable results. The population should 

be very small in order to keep the algorithm fast. The chance of running into local 

optima appears to be very slim. A population of two is not advisable because of the 

increased chance of staying in local optima. It is reasonable to say that other small 

population sizes suffer from the same problem. The test machine is a dual core 

processor that performs best when running six crossover threads at the same time. 

This makes the choice for a population of 12 candidates a practical choice, since this 

is the smallest population utilizing six crossover threads at the same time. Note that 

it is not possible to compute more threads at the same time than half of the 

population. All results of the previous iteration have to be finished and the 

population has to be shuffled before the next iteration can start.  



 

 

 52 

 

11   Overall Performance & Conclusions 

There are multiple ways to generate a timetable automatically. The most trivial 

method of scheduling is creating all timetables possible based on the available dates, 

courses and teachers and evaluate them all. After that, pick the timetable that suits 

the requirements of the user best. This method has the advantage that it is certain 

that when the algorithm finishes the best solution is found. No other algorithm can 

give this certainty with a problem of this rate of complexity.  

The downside of simply trying all alternatives is that the computation cost is 

astronomically large. The test set used with the tests of the developed algorithm 

made 9.5 x 10310 timetables possible to generate. With a standard computer (Pentium 

4 dual core 3.0 MHz), it is possible to evaluate about 30 timetables each second. This 

is equal to 9.4 x 108 timetables a year. This is a clear indication of the sheer 

impossibility to evaluate all timetables.  The developed algorithm finds a decent 

timetable in 24 hours. After that period, only minor optimizations are found. 

There are more solutions made to cope with the complexity of timetable generation. 

Some examples can be found in [Alkan, 2003], [Monfroglio, 1996] and [Őzcan, 2005]. 

However, the other proposed algorithms all work on slightly different timetable 

problems. This difference makes it impossible to use test sets used by other genetic 

algorithm designers and compare them directly. 
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Part III: Market Determination 

In the previous part, the algorithm for timetable generation has been evaluated. This 

algorithm depends on concrete demands for courses in a specific period. Therefore, 

the need for courses has to be determined prior to the timetable generation. This 

determination is a market determination problem. In general, these kinds of 

problems are about product development. In the case of the Knowledge Center, the 

product is the course.  

The courses to be scheduled are determined by the Sales Manager Learning 

Solutions. Since the timetable is made before the actual demand is known, it is 

necessary to have an indication what the actual demand will be like. The currently 

used methods to determine this demand are defined in chapter 12. In this chapter, 

the view of the Sales Manager Learning Solutions is elaborated. The currently used 

method consists of different input factors with different effectiveness. 

The factors that are identified are evaluated in chapter 13. In this chapter, the views 

of other field experts are elaborated. Since not all relevant factors are present in the 

current determination process, there is room to define these as well. These factors 

are described in chapter 14. Here the views of other field experts are also elaborated, 

now with an eye on missing factors. The overall advice to Info Support can be found 

in chapter 15. 
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12   Defining current determination process 

In this chapter, the determination of the demand for courses is elaborated. This 

information is obtained from the Sales Manager Learning Solutions. The Sales 

Manager Learning Solutions is responsible for the market determination of the 

courses on offer. In a later chapter, this vision is compared with perceptions of other 

people at Info Support.  

The customer demand for the courses at Info Support is currently determined in 

three main areas: Technology Suppliers, Internal Demand and External Demand. In 

the pie chart below, these sources are displayed. The three defined sources are 

elaborated in the following paragraphs.  

 

Figure 24 – Pie chart concerning the main sources for the determination of the courses on offer 

12.1. Technology Suppliers 

The technology suppliers are the companies who make the volume software used by 

developers to make software products. The consultants at Info Support need to keep 

their knowhow of these newest products and technologies up to date.  

Info Support works tightly with volume software vendors to develop courses for new 

products. The primary source of new volume software for Info Support is Microsoft. 

Microsoft has a learning division, which has the task to develop course materials and 

exams. This material is used by Info Support to give Microsoft certificated courses. 
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an opportunity for Info Support to take this role. The main reason Microsoft is not 

making courses for all software is because of the limited communication between the 

learning division and the product development divisions and the lack of resources of 

the learning division. Another reason is that they are a profit/loss center, which 

makes them focus on high volume products and not on niche products. 

Since the learning division and the product development divisions of Microsoft are 

separated from each other, the product development divisions do not really care who 

provides courses for their programs. The reason for this is that they are rewarded for 

making successful products and not for letting the learning division sell enough 

courses. They want their products to be used. However, most products they sell need 

training before they can be used. Therefore, products can be sold better when there is 

a possibility to obtain information needed to be able to work with the products. 

Because of this information need, the product development division desires courses 

for their products. Their main concern is not helping the learning division, but 

improving their own results. Therefore, if a partner wants to make a course for their 

program, they will help with the creation of the course content. They will even buy 

some lectures from the developed course because they want their staff to be up to 

date too. This helps the partner with some certainty of regaining their investment. 

Info Support takes this role as partner in making courses for new products. 

There are two main advantages of working together with a volume software vendor 

like Microsoft. The first advantage is that Microsoft is capable of generating demand. 

Customers from the Knowledge Center ask for specific Microsoft Courses on a 

regular basis. No other software vendors who can match this market penetration and 

fame. The second advantage is that they have a large marketing department. This 

department is able to make market predictions that are hard to make for a small 

marketing department like the one from Info Support. One way of obtaining this 

market information is by attending conferences and meetings organized by Microsoft.  

By attending conferences, not only market information is obtained from Microsoft, 

but also from competing firms. The advantage of this is that new technologies are 

spotted early on. This makes it easier to adjust the strategy compared to later stages 

of the technology cycle. The downside of the collaboration between competing firms is 

that competing firms get to know your information too. It is important to keep this in 

mind.  

Microsoft defines numbers for specific courses that cover certain knowledge. The 

advantage of these numbers is that customers can see that a course is covering 

certain knowledge. A problem with these numbers is that competing firms give other 

courses with the same course number causing that the customer sees the courses as 

equal. The courses from Info Support tend to be of a higher quality but also with a 
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higher price than the competition. It is hard to explain to the customers who compare 

courses on price, location and date that these courses are implemented differently 

causing a higher quality. However, this is not particularly relevant for the market 

determination on itself.  

12.2. Internal Demand 

The core business of Info Support is professional tailored software development. 

Therefore, the most important customer of the Knowledge Center is Info Support 

itself. The internal demand for courses is determined via three channels: course 

evaluation forms, via teacher interaction and via hierarchical feedback. 

12.2.1. Course Evaluation Forms 

After the courses are completed, the students are given the opportunity to give 

feedback about the course they followed. In the appendices, the course evaluation 

form is available. This is an analogue version of the course evaluation form, while the 

course evaluation form given to the students is a digital version. However, the 

questions are the same. 

This form asks questions about the quality of the course and it gives the participant 

the opportunity to tell which information he would like to obtain via a course, which 

was not part of the course he followed. This second part is relevant for the market 

determination. 

12.2.2. Teacher Interaction 

During a course, the participants can ask questions and give remarks to the teacher 

that can be relevant for determining the market for courses. Each teacher is part of a 

team of teachers who operate in the same area of expertise. They have periodical 

meetings in which they decide which courses are desirable to develop or enhance. In 

these meetings, the comments they hear during their teaching are used in the 

decision process. With this procedure, the comments given by the students are used 

to improve the courses.  

12.2.3. Hierarchical Feedback 

The head of the Knowledge Center is responsible for the final curriculum. To obtain 

information from within the company, he has meetings with the Business Unit 

Managers to obtain the demand from the development divisions of Info Support. The 

Business Unit Managers obtain their information from progress interviews with 

their software developers.  
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The developers, who want to develop their software development skills in an area in 

which no courses are present at Info Support, are a source of internal demand. 

Another source of information is feedback from software development teams who lack 

knowledge needed for their projects. Their needs are also communicated with their 

Business Unit Managers. 

The Sales Manager Learning Solutions decides together with the head of the 

Knowledge Center which new courses should be developed.  

12.3. External Demand 

The external demand is the desire of consultants from competing firms. These 

consultants give feedback via the following channels: course evaluation forms, via 

teacher interaction and via customer relations. Since the course evaluation forms and 

the teacher interaction are equal to the ones described in the Internal Demand 

paragraph, they are not elaborated in this paragraph. 

12.3.1. Customer Relations 

The Sales Manager Learning Solutions keeps contact with the most important 

customers to obtain feedback about the courses on offer. Other customers are only 

visited when there is a specific reason for the visit. The reason not to visit all 

customers is the sheer amount of customers, which is much too large to be physically 

possible to visit by one person in a regular basis. 

It is not reasonable to expect from the customer that he put his own resources in the 

course demand determination for Info Support when there is no direct benefit for 

him. It is possible to give the customer benefit for helping determining the demand. 

For example by giving rewards for useful ideas. However, another possibility is to 

obtain the information directly from the developers. This is what the Sales Manager 

Learning Solutions does. He gets his information by communicating with the team 

leaders working at the customer. He determines what knowledge they are missing in 

their software development projects.  

It is also possible for him to get information from existing customers of Info Support, 

but who are new to the Knowledge Center. These customers already bought products 

or services from Info Support.  These products can generate a need for courses, which 

can be fulfilled by the Knowledge Center. The main reason will be to sell more 

courses. However, new customers can also bring new demands for other courses. It is 

always relevant to get more demand information from the customers.  
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12.4. Overlap between internal and external demand 

The internal and external demands have in common that they both have course 

evaluation forms and teacher interaction. This is logical since the developers from 

both groups go to the same courses and fill out the same course evaluation forms.  

The teacher groups evaluate both direct teacher interaction and the course 

evaluation forms. This makes the teacher groups a significant source of information 

for the Sales Manager Learning Solutions. In the pie chart below the significance of 

the teacher groups is visualized. 

 

Figure 25 – Pie chart visualizing the impact of teacher groups on the internal and external 
part 

12.5. Market Domain 

There are clear boundaries within which markets Info Support wants to give courses. 

Their aim is to be the first to give courses on new products and on products 

commonly used by internal developers. Large competitors typically dominate 

products that exist longer and prove to have a descent market perspective. Info 

Support does not aim for being active in mass markets. The reason for this is that 

they lack the volume to make decent profit in those markets. 

There is a shift in the market domain to courses in soft skills. Traditionally, this kind 

of courses is not in the curriculum of Info Support. However, these courses are 

needed for the improvement of the maturity of the software development process. 

Since this evolution is recently formally initiated in the company, the desire to have 

these courses within the company rises.  
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13   Quality of the current determination process 

In this chapter, the current method for market determination is evaluated. The aim 

is to find weak spots in the used methods and solutions to make the determination 

process better. 

13.1. Internal Demand 

The internal demand is determined via course evaluation forms, which in practice 

provide little feedback for the need of new courses according to the head of the 

Knowledge Center. Another method being used is the feedback via the business 

units. However, the disadvantage of this method is that people do not feel encouraged 

to give feedback with this mechanism.  

In the current situation, three different persons handle the responsibility for the 

entire curriculum from Info Support. The Human Resources department is 

concerning the soft skills courses, the Professional Development Center is concerning 

specific Endeavour courses and all other courses are part of the Knowledge Center‟s 

curriculum. This responsibility is shifting to a centralized management in which the 

Knowledge Center covers all areas of knowledge.  

13.1.1. Course suggestions and consequences 

With the right attitude, it is possible for a consultant from Info Support to come to an 

improvement of the curriculum. For example, the Microsoft Technology Manager 

from Info Support saw a knowledge gap in the curriculum, which made him develop 

his own course. After he developed the course, he initially did the teaching himself. 

When the course was mature, he taught the teachers how to give the course. Now the 

course is part of the curriculum of the Knowledge Center. Although this method 

proved successful for him, you cannot assume that every colleague with a great idea 

is capable of setting up a course himself.  

According to the Java Technology Manager, the need for new knowledge by 

individuals in general does not lead to new Java courses. The main reasons are the 

expected lack for a market for the courses and the lack of teachers creating the 

courses. A Java teacher who also makes courses agrees with him that there is not 

enough time for him to make all courses he desires. The reason for this is that the 

courses are being made in the spare time between teachings. The colleagues in need 

for the knowledge not available internally are trained externally when no courses are 

going to be made internally. 
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13.1.2. Competence Centers 

The technology managers are chair of their Competence Center. A Competence 

Center is a group of people who all have a shared competence. Info Support has the 

following Competence Centers: Architecture, Infrastructural Software Services, Java, 

Microsoft Application Development, Project Management, Requirements & Analysis, 

Business Intelligence & Data Warehousing and a new Competence Center Testing.  

These Competence Centers do not correspond to the Business Units. A Competence 

center has members of all disciplines: managers, consultants, teachers, etcetera. 

These people come from all Business Units. The figure below gives a visual 

representation of how the competence centers are positioned within the company. 
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Figure 26 – Overview Competence Centers at Info Support 

The advantage of using Competence Centers is that all people within that center 

have roughly the same area of expertise and come from different parts of the 

company. The advantage of making the Competence Center responsible for the 

courses on offer is that the developers are more committed to improve the 

curriculum. This view  corresponds with [Mohr, 2005], which states that combining 

the knowledge of different people working at different function, technology, 

hierarchy, business, and geography is one of the key strategy points to become better 

at innovation. 
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A solution to the distance between the divisions and the Knowledge Center proposed 

by the Microsoft Technology Manager is to use the different Competence Centers to 

keep the accompanying curricula complete and up-to-date. Each Competence Center 

has its own area of expertise and should use the knowledge they possess to keep the 

accompanying courses up-to-date and make all needed knowledge available. A 

teacher who is responsible for new courses of the Java department is also part of the 

Competence Center Java. He states that this Competence Center is already having 

this policy of working together to keep informed of new technologies. 

According to the Java Technology Manager, the Competence Center determines 

which part of the total supply of technology is used within the company. The 

curriculum should be matched with this selection, because the selected technology 

creates a high need for courses that supply the selected technologies. There are also 

different knowledge profiles defined which comply with functions within the 

company. The knowledge profiles are then evaluated on whether all courses are given 

by the Knowledge Center. The chosen technologies that are going to be part of every 

standard software development project are also being put into their software factory 

Endeavour.  

The Competence Center Requirements Analysis is also involved in the education 

according to a Functional Designer from that Competence Center. Consultants from 

this competence center give all requirements analyses courses. In general, these 

consultants work in the field, except when they give courses. Most of the courses they 

give are the courses for the Professional Development Center to help users of the 

Endeavour software factory with the requirements analysis parts. They develop 

these courses themselves under the supervision of the Professional Development 

Center and the Knowledge Center. The rest of the courses they give use externally 

made material. 

According to [Mohr, 2005], it is relevant to look around to see new trends appear. The 

Competence Center can help with this by making the participants aware of new 

problems at competing firms. The advantage of using the Competence Center for this 

is that a significant part of the participators is consultant. Consultants often work 

together with competitors in the same development teams. This way the external 

need is directly observable by the internal consultants, which enables proven 

techniques like empathic design to be used. Even though empathic design is 

originally meant for product design [Mohr, 2005], it is still applicable on the 

development of courses. 



 

 

 62 

 

13.1.3. Empathic Design 

According to [Mohr, 2005], empathic design is a good method to determine the real 

customer needs. Like a product, a course needs to fulfill certain demand from the 

consumer. By asking the consumer what he desires you often do not get the product 

the consumer is going to buy. That is why empathic design is used to observe 

behavior rather than asking directly. This is also the case with courses; people do not 

know what they miss, whether it is a tangible product or a course. 

The courses from the Professional Development Center are gradually being 

integrated in software projects. The basic courses Endeavour are still presented in 

standard courses. Info Support is the developer of a software factory called 

Endeavour. This software factory is sold to other software developers to help them to 

bring structure in their software development process.  

The more advanced Endeavour courses are shifting to just-in-time courses. These 

courses are supplying the needed information just before needed in the Endeavour 

projects. An advantage of this method is the direct feedback possible from the 

students and the direct link between theory and practice. This way the teacher can 

see how the students are using the knowledge provided by the course. This can lead 

to adjustment of the course or even the birth of new courses. 

This trend within the Endeavour courses could be applied in the entire curriculum. 

However, the problem with this method is that it is not feasible to implement this 

system for small groups of students. It is not wise to put a teacher on small groups 

because the teacher needs the same amount of time for smaller and for larger groups. 

The groups will be smaller because external students often follow courses in small 

groups. An extra downside is that the teacher needs to travel to the external software 

development teams, which has its own down sides. 

As mentioned before the Requirements Analysis Competence Center gives all courses 

by consultants who work in the field most of the time. The advantage of this is that 

they can keep track of new technologies they come across. The technological feedback 

is of the same order of magnitude in the teachers from the field and the just-in-time 

courses. 

13.2. Resource Problems 

At the Java Department, according to the Java Technology Manager, the problem is 

not the determination which technologies are available. The most important 

constraint they experience is the profitability of courses for new technologies. 

Although Info Support has five different price ranges for courses, the cost for a course 

cannot be raised infinitely. The reason for this is that the clients do not want to pay 
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any price for the course even if the course has relevant specialized knowledge.  

Because the amount of Java programmers within Info Support is not very large, the 

internal market for courses is not that large either. Because of this lack of market, 

most technologies are not used for new course material. 

The Microsoft Department is larger in both internal and external clients. Because of 

the larger market, the Microsoft courses are more likely to become profitable than 

the Java courses. This advantage combined with the advantage that Microsoft is 

more cooperative than the Java technology suppliers are gives the Microsoft courses 

an edge on being implemented. 

13.2.1. Causes for low sales 

According to the Java Technology Manager, there are four main causes for the lack of 

attendees. The first cause is that the reputation of Info Support is not good enough 

with their Java curriculum. If Info Support builds up a better reputation they can 

sell courses based on their reputation. Now they are one of the many suppliers, 

without having a unique selling point. To solve this anonymity, the quality of the 

Java courses needs to be communicated better to the external market. 

Another cause is that the technology suppliers (like Sun) offer their own courses on 

some of the new technologies they develop. People tend to go to the supplier of the 

technology, because they perceive the supplier as being supplier of quality courses. 

The reason for this perception is that the supplier should know the technology best 

and was brilliant enough to develop the technology in the first place. It is hard to 

compete with a supplier who has this advantage. This cause exists because the Java 

department does not have the reputation of providing more value than the technology 

supplier provides. 

There are more autodidact developers in the Java community than in the Microsoft 

community, which makes the target audience smaller. This limits the amount of 

courses they can sell. It is hard to tackle this problem. The only way to get autodidact 

developers to courses is to offer courses in which they can obtain valuable knowhow 

they cannot obtain from the internet. 

The marketing is quite small for the Java courses they offer. The sales department 

focuses on Microsoft material since the offer of Java courses is not very large. 

However, in order to make the Java curriculum bigger the amount of attendees must 

increase too. Therefore, the departments are waiting on each other in order to grow. 

This situation can only be solved by intervention from the company itself. 
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13.3. Technology Suppliers 

Because of the intense collaboration with Microsoft, it is possible to miss 

opportunities to give courses for products made by other software vendors. That is 

why it is relevant to keep an eye on other software vendors, who also generate a need 

for courses for specific products. It is not only relevant to get more opportunities, but 

also to have a larger spread in course material. When the spread is better, the 

dependence on Microsoft will be smaller and there will be more potential customers 

when the courses on offer have more variety. Note that Info Support also has a Java 

department, but the Sales Manager Learning Solutions has the tendency to think 

mainly about Microsoft products. It is vital that he considers the Java part of the 

curriculum more with customer visits, in order to increase the market share of Info 

Supports Java courses.  

13.3.1. The open Java market  

According to a Java teacher and initiator of new courses, the Java department has 

multiple suppliers to obtain new technology. The Java community is much more 

distributed than the Microsoft community is. There are conferences all over the world 

for Java technologies. These conferences are open to all who have new Java 

technology to share. This helps to let smaller suppliers show their products and 

technologies. This openness is a characteristic of the Java community.  

It is an advantage that smaller suppliers get their share of attention, because the 

innovative products usually come from smaller companies.  The disadvantage of the 

large spread in technology is that the users can use multiple technologies, which can 

lead to the necessity to know different technologies as a developer. In general, Info 

Support chooses a limited subset of the comparable technologies available.  

The Java Technology Manager from Info Support is also chair of the Dutch Java 

group. Most Dutch Java developers are a member of this group. This group organizes 

every year two conferences in the Netherlands. Therefore, Info Support is one of the 

first companies to see the new Java technologies. Another advantage Info Support 

has is that the Java Technology Manager is also one of the few certified Java 

Champions. Java Champion is a title Sun gives to a limited amount of people. There 

are about a hundred people worldwide and only two in the Netherlands. The 

advantage of being a Java Champion is that new technologies from Sun are first 

announced to the Java Champions and later to the rest of the Java market. 
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13.4. Course Evaluation Forms 

The current course evaluation form can be found in the appendices. This is the 

written version of the evaluation; the students fill out a digital version with the same 

questions.  

13.4.1. Learned material utilization 

The overall course evaluation form is not focusing on concrete relevant information. 

It only questions quality and not what the arguments are which contribute to the 

quality. The only information you can get from this is whether the quality is ok. You 

will not know what causes the quality to be suboptimal.  

Take question one for example. The students are asked what the reason is for them 

to follow the course. However, they only ask which category the reason is in (solving 

a problem, preparation, developing new skills and knowledge, etc…). It is useful to 

know what problems they like to solve as specific as possible. If you have this 

information, you can see whether the student got the information he needed and 

whether his choice for that course was the right choice. You can also find out whether 

his desired knowledge is available at all at the knowledge center. 

At question five, the satisfaction level is asked. This is important information. 

However, it is more important what did not meet the expectations and contributed to 

the satisfaction level. This is information relevant in determining better courses. It is 

also possible that the current students can be divided into separate groups who 

desire different courses. This way the coverage of the course material can be 

enlarged.  

The downside of these questions is that people tend to give short answers to open 

questions in evaluation forms. It is useful to let the teachers ask the students directly 

what they expect to retrieve from a course. By asking the students directly what they 

expect, the answer will be more elaborate than the same question in an evaluation 

form. 

13.4.2. Delayed Evaluation 

The relevance of a course cannot be fully determined right after the end of the course; 

the relevance will not be clear until the learned material has been put to the test. 

That is why it is useful to ask the student what the relevance of the course was when 

he used the material in his job. At this point, the student knows better whether he 

missed information in the course. The current form asks for this information in 

question three. This question should be asked on a later moment. Besides, it misses 

the arguments responsible for the grade. 
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Since it is impossible to obtain this directly after the course, it is necessary to obtain 

this information on a later moment. Since it is not very likely they are filling out 

another evaluation form some time after attaining the course, it is more useful to 

obtain this information in a different way. 

In the case of external students, it is possible to obtain this information when the 

Sales Manager Learning Solutions is visiting the customers. He can see what the 

former students are doing with the information they obtained by attending the 

course and determine whether the course was right for the student. Note that there 

is a difference between a satisfied customer and a best served customer. The second 

one got the information that contributed most to his targets. Of course, this is within 

the boundaries of the knowledge available within Info Support.  

In the case of internal students, it is possible to give direct feedback to the knowledge 

center or by attaining it via the hierarchy of the company. It is much easier to obtain 

information from internal students because they work for the same team.  

13.4.3. Suggestions 

Ask the student for what specific task he uses the obtained knowledge. By getting a 

concrete answer from the student what the usage will be, it is possible to determine 

whether the course is supplying the right information for his goal.  

Ask the student what knowledge he desired to obtain but did not get in the course he 

followed. This way it becomes clear what the student expects and does not get.  This 

missing knowledge indicates that the information should be in the course, or there 

should be another more suitable course, which supplies this knowledge. 

Ask the student after he has used the obtained knowledge again whether the 

knowledge helped to fulfill the described task. This way it becomes clear whether 

certain goals can indeed be achieved by the courses.  

At that same time, ask the student whether the missing knowledge mentioned in the 

course evaluation form was indeed needed for his task and whether other knowledge 

was missing which he did not notice when he filled out the evaluation form. 
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14   Completeness of current determination process 

In the first chapter of this part, the current methods are described to obtain demand 

from the market. In this chapter, the missing information in the current market 

determination is determined.  

14.1. Creativity Techniques 

Info Support is going the right way by using Empathic Design style approaches 

within the Competence Centers. A useful addition to this method is to use creativity 

techniques. These techniques are used to improve the idea generation. They all have 

in common that they encourage original and divergent thinking. A consultant from 

Info Support proposed a creativity technique he saw at another successful software 

development company.  

Their solution to lower the threshold for ideas for new courses is to make a forum on 

which new ideas can be posted. Everybody from the company can post an idea and 

everybody can give comments on given ideas to improve the concept. Colleagues can 

also support these ideas to enlarge the chance the idea is used to improve the 

curriculum. This way there is a centralized brainstorm session in which every 

colleague can join. To make sure good ideas are executed, there must be a budget 

available for good ideas. With this method, good ideas will be noticed and executed. 

[Mohr, 2005] supports this view in multiple ways. First, it is a way to reduce the 

threshold colleagues need to overcome to get their suggestion in the open. Second, it 

is also another way to express passion for discovery and novelty. By putting 

resources to this, the vision is more convincing than just stating it in the policy. 

Third, it is a method to increase the level of experimentation within the company. 

14.2. External Cooperation 

As elaborated before, the problem with the Java courses is that courses tend to sell 

mediocre. This makes it hard for the Java department to make a complete Java 

curriculum. 

An idea from a Java teacher overcome this problem is to sell self-made courses to 

other companies who give courses or sell course material. There are two types of 

partnerships according to [Mohr, 2005], the horizontal and vertical partnerships. The 

vertical partnerships relevant for Info Support are partnerships with the suppliers 

and customers.   
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14.2.1. Vertical Partnerships 

In the case of Info Support, the suppliers are the companies in charge of making new 

technology and the customers are the people who buy the courses. The customers are 

already involved by input via courses (evaluation and remarks during the courses) 

and by visits by the Sales Manager Learning Solutions. 

The large suppliers of Java Technology have been approached for the realization of 

partnerships in the creation of course material. However, these proved to be no 

profitable partner in course material. The reason for this is the unrealistic financial 

demands they make. Therefore, besides the fact that it is not often possible to make 

courses for technologies published by the larger suppliers because they make their 

own courses. They also do not really want to work together. This is an important plus 

for the Microsoft market, since Microsoft is collaborating with other companies who 

want to make courses for their products. 

14.2.2. Horizontal Partnerships 

The horizontal partnership type is another viable option for partnerships. These are 

competing companies, who can save production cost when cooperating. [Mohr, 2005] 

uses the names competitive collaboration and co-opetition for this type of 

partnership.  

Contrary to Java technology suppliers, there are suppliers of courses who are willing 

to cooperate in the creation of course material. This can lead to a better return on 

investment of the course generation, because the investment of the course generation 

can be split over the two companies. This makes it possible for Info Support to make 

the curriculum cover more technology without an increase of investment. The 

advantage is that internal developers can obtain the technologies easier and cheaper. 

At the Microsoft department there is already a knowledge sharing with competing 

firms according to a teacher at Info Support. These companies get special courses for 

trainers to make them able to learn the material to their students. Microsoft is even 

directing competing firms to Info Support to learn how to give the courses. 

There are also courses available to buy from those other suppliers. The advantage is 

that the course material is obtained relatively cheap. However, the courses they offer 

are limited and should therefore not be the sole source of new courses. These courses 

are a fundamental part of the total curriculum of Info Support. 
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14.3. Priority problem with Customer Relations 

The Sales Manager Learning Solutions is working at the Knowledge Center, which 

makes him focus on the curriculum of the Knowledge Center. The knowledge center 

takes responsibility for only the courses that are of the knowledge center. However, 

other departments like Professional Development Center also provide courses and 

teachers to give them. These departments do not have their own managers for 

customer relations. Therefore, the improvement of the curriculum of the other 

departments does not have the same priority as the improvement of the curriculum 

from the Knowledge Center. More courses can be sold/enhanced/developed when the 

awareness of other departments is higher within all different departments. 

Another advantage when the awareness of other departments is higher is that the 

knowledge center can gather more customer information. This information can be 

used to improve the courses given by the other departments.  

It is good to see that Info Support is moving the responsibility for all courses to the 

Knowledge Center. This solves the problem that the courses belong to different 

departments. 

14.3.1. Endeavour product deployment 

The Endeavour software factory is currently sold to customers with only courses that 

supply technological knowhow. However, it is also useful to complement these 

courses with courses that help them organize the change in structure of their 

software development process. It is useful to teach the customer how to redesign 

their software development process so they can use the software factory in its full 

potential. This lack of knowledge at the customer‟s side is common because they use 

the Endeavour software factory to formalize their product development methods. 

This addition of knowhow makes Endeavour more valuable for the customer as a 

product. 

14.4. Specialising general courses 

As earlier explained the courses not given by Info Support because they are too large 

scaled are a potential source of more specialized course material. If you can identify 

relevant groups within the main target group, the course can be tailored to these 

groups to make the course more relevant for them. This way the courses that are 

under heavy competition can be offered with benefits for the specified target (sub-) 

group. Existing channels like student feedback can achieve this during courses or by 

feedback in the just-in-time courses mentioned as an improvement for the course 

integration. 
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14.5. Tapping into new markets 

The current method for determining the demand is focusing on volume software, 

which creates a demand for courses. However, by focusing on volume software other 

important markets can be overlooked. The market for specific tailored software 

products can also be large when there is a large group of users. This is only the case 

when either the customer has many employees who use the product or when multiple 

organizations buy software together.  

One of the largest organizations in the Netherlands is the government. The 

government has enough employees to make specific courses for them. There are large 

groups of users of the same specific software. Because of the size of these groups, this 

can be a profitable customer for the Knowledge Center to have. The disadvantage of 

this method is that the consultants from Info Support do not need this specialized 

information, while the policy of Info Support is that courses must have a benefit for 

internal consultants. This policy makes it unlikely that Info Support will enter this 

market. 

An idea from a Functional Designer is to set up collaboration with a Scandinavian 

company. This company provides training in Software Process Improvement. They 

are large in some countries but have not been introduced in the Netherlands yet. 

They have very much knowledge of best practices in software development. The 

courses would be a nice addition to the curriculum of Info Support. 
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15   Conclusions 

As we have seen in chapter 12, Info Support utilizes the standard known methods for 

demand determination. Traditionally, Info Support is working tightly together with 

Microsoft to find new market demands. The partnership with Microsoft proves to be a 

stable source to keep the curriculum adequate for the demands from the market.  

Info Support is aware of the danger of relying too much on a single partner and 

therefore does Java development and supply Java courses. To increase the size of the 

java department, it is important that the Java department of the Knowledge Center 

is showing to the market that they offer interesting high quality courses. This can be 

achieved by better promotion by the Sales Manager Learning Solutions. A good 

method to improve the perceived quality is to give courses about new technologies 

before the competition can. 

Besides working together with Microsoft, it is relevant to work together with other 

firms who give courses or create courses. This enables Info Support to make more 

courses profitable to include in the curriculum. In the end, internal consultants will 

have more knowledge available to learn internally.  

Info Support is aware that the feedback via business units is not the best way to 

communicate internal needs and is therefore shifting to more communication via the 

competence centers. These competence centers are all about technology and therefore 

the right place to determine needed courses. In addition to the competence centers 

role in technology management it is wise to invest creative techniques like a forum to 

post ideas on to lower the threshold for the consultants to give their input for a better 

market determination. 

The different departments who are supplying courses are going to be centralized in 

terms of responsibility, which improves the market research concerning other 

departments than the Knowledge Center. The market for soft skills is getting more 

important for Info Support. Therefore, the desire to make these trainings themselves 

arises. 

The Professional Development Center is working on the integration of their courses 

within software projects. It is relevant to determine whether more courses in the 

entire curriculum are beneficial to give in this style. 
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Part IV 
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16   Future Research 

16.1. Generic Timetable Representation 

The best internal representation of a timetable is dependant of the type of scheduling 

problem and the dominant kind of restrictions within that timetable. In order to 

make a true generic scheduling algorithm it is necessary to give the user the choice 

what representation he wishes to use. In order to achieve this it is necessary to make 

the representation at runtime. When the representation is build, it is necessary to 

adapt the access functions to the chosen representation. The behavior of the access 

functions need to be determined at runtime too, this is makes the problem 

challenging.  

I have chosen not to research this problem in this thesis because it does not 

contribute to my core research. This is due to the fact I will evaluate only one type of 

timetable. It will be possible to insert this extra functionality in the algorithm 

without much effort.  

16.2. Concrete Program Additions 

The following issues are no pure research problems. They are non-trivial problems 

nonetheless. 

16.2.1. Restriction Checker 

The current implementation of the MA is trying to make a timetable based on the 

given requirements. It does not check on mutual exclusive requirements however. A 

trivial example is that a teacher is given who should be giving courses but there is no 

course given he is allowed to give. This will always give a timetable that violates the 

restrictions. The delivered timetable will have a balance between low scheduled time 

and scheduling on courses he is not allowed to give. 

16.2.2. Calculation Time Estimator 

Due to the probabilistic nature of genetic algorithms, it is a challenge to give an 

expected calculation time for an acceptable timetable. This problem can be viewed 

from a mathematical point of view and from an empirical point of view. The 

calculation time is dependent on the size of the timetable and the tightness of the 

restrictions given. Take for example a timetable consisting of two courses versus a 

timetable consisting of twenty courses. The first one has only a few values to 

optimize; the second one has lots of them. The tightness of restrictions is expressing 

the ratio of acceptable timetables compared to the entire set of timetables. 
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