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Chapter 1

Introduction

In this chapter, we will introduce the notion of a wireless sensor network, describe the problem
context and give the problem statement. Then, the relevance of solving this problem will be
explained. Last, we explain terminology used in the context of wireless sensor networks.

1.1 Wireless Sensor Networks

A Wireless Sensor Network (WSN) is a network of many small sensing and communicating devices
called sensor nodes (or motes). Each node has a CPU, a power supply and a radio transceiver for
communication. Interconnection between nodes is achieved via the transceiver. Typically, a WSN
contains one node, the base station, that connects the network to a more capable computer (Figure
1.1), and probably to a network of general purpose computers through it. Sensors attached to
these nodes allow them to sense various phenomena within the environment. The typical purpose
of a sensor network is to collect data via sensing interfaces and propagate those data to the central
computer, allowing easy monitoring of an environment.

Figure 1.1: Example of a Wireless Sensor Network.

Although a node is capable of dealing with a variety of jobs, it has many shortcomings as
well. The majority of the nodes currently available in the market are battery-operated, and hence
they have a limited life-time. Moreover, the memory capacity of a node is also limited. Life-time,
processing and storage restrictions directly affect the algorithms designed for sensor networks. As
an example, a routing algorithm for WSNs must be energy and memory efficient. Since radio
transmissions consume a significant amount of energy, researchers generally seek ways to reduce
radio communication as much as possible. However, when more information is stored and more
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computation is done as to reduce the communication costs, energy consumption of the processor
and memory components are becoming an important issue. Design choices have to be made, and
these also depend on the intended application.

1.2 Problem Context

Currently there is a prototype of a system available, developed within Logica’s Working Tomorrow
program1, which uses motion sensors to secure an area [34] based on the Smart Dust concept. The
idea of the system is to monitor an area or room by a network of sensors with the size of a
dust particle. To be more precise, the Smart Dust project is ‘exploring whether an autonomous
sensing, computing, and communication system can be packed into a cubic-millimeter mote (a
small particle or speck) to form the basis of integrated, massively distributed sensor networks’
[42]. In the prototype the size of a sensor is significantly bigger than a dust particle. The moment
a sensor detects movement in the area a message is sent to a central server. The server processes
the data and then uses Google Maps to produce a map which shows the detected movement. A
GPS receiver is used to determine an absolute position, while RSSI (Received Signal Strength
Indicator) is used to locate the sensors relative to the GPS receiver. RSSI uses the decrease in
energy of the radio signal as it propagates in space to estimate the distance [7]. Experimentation
with the prototype system shows this method becomes unreliable when the batteries of the sensors
are getting weaker [34]. Simply using GPS receivers for all sensors is not an option as GPS cannot
function in indoor and many outdoor applications, especially when there is no direct line of sight
from nodes to terrestrial satellites. Besides, the use of these devices on sensor nodes is still a
challenging issue due to their size, energy and price constraints [4]. As a result, there is a need for
reliable localization in WSNs without the use of GPS receivers.

1.3 Problem Statement

The question which follows from the problem context is: How can we do localization in WSNs
without GPS? We will focus our research on algorithms suitable for mobile indoor networks.
These algorithms will be compared with each other, based on a literature study. The goal is
to develop a prototype in which localization is reliable and which can be used in a convincing
demonstration. For the purpose of a demonstration it is preferred that the deployment is ad-
hoc and little configuration or calibration is required. The research questions reflect the twofold
approach:

• Which systems and algorithms exist for reliable localization in mobile indoor wireless sensor
networks that use a minimal number of beacon nodes and how do they compare?

• Can we develop a prototype by implementing such an algorithm or an improvement thereof
based on an evaluation of algorithms?

1.4 Motivation

Usually, a Wireless Sensor Network is deployed to monitor its environment and for disaster response
and recovery systems. Applications include health monitoring systems, monitoring of wildlife
habitats [27] and nature reserves such as the Great Barrier Reef [21], and forest fire detection
systems [11, 17, 24]. Examples of military applications are battlefield surveillance [5, 18] and the
previously mentioned securing of an area or room.

Our focus, however, lies on localization in mobile indoor WSNs. Localization can be used for
tracking objects or people. For example, our research may help people navigating indoors where

1Working Tomorrow is Logica’s graduate program that focuses on the feasibility and opportunities of innovative
ICT solutions.
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GPS is not available. Also, mobile devices such as laptops may be tracked within a building
in order to locate them easily. Location-dependent network services, with application examples
ranging from building automation to targeted advertising or augmented reality, also require reliable
localization techniques [23].

Localization in WSNs is also of use for context aware applications in Wireless Personal Networks
(WPNs) [1]. In a WPN the user and all his devices are constantly and securely connected and
the services/applications are adapted so that the sessions are transported seamlessly (without the
user’s intervention) depending on the context or situation. The context-aware solutions try to
exploit information regarding the geographical location, the time of the day, available equipment,
history of user’s interaction/usage, environmental changes and the presence of other people. They
provide the user with the service which is best suited to the person’s present situation.

A good example of such a context aware application is the Smart Signs system. Smart Signs are
a new type of electronic door- and way-signs based on wireless sensor networks [25]. The system
uses context information such as user’s mobility limitations, the weather, and possible emergency
situations to improve guidance and messaging. For example, it can adapt the route if it suddenly
starts raining. One of the important inputs for a context aware application is the knowledge of
the physical location of the person, where localization in WSNs comes in.

1.5 Terminology

The first part of this section introduces terminology related to algorithms used in the context
of localization in WSNs. The second part provides some background knowledge in the field of
wireless communication via electromagnetic waves.

1.5.1 Localization

Localization algorithms can be categorized according to a number of different aspects [4, 35, 43]:

• Input data: range-free vs. range-based
Range-free localization algorithms simply rely on connectivity information (whether nodes
can hear each other or not and radio-range information). Range-based methods extract
distance information from radio signals.

• Accuracy : fine-grained vs. coarse-grained
A location discovery algorithm should estimate sensor position accurately. Accuracy, or
grain size, can be expressed as percentage of sensor transmission range, or simply in meters.
The level of accuracy usually depends on range measurement errors. Range measurements
with less error will lead to more accurate position estimates. How often we can expect a
certain accuracy is the precision, which is expressed in a percentage. For example, some
inexpensive GPS receivers can locate positions to within 10 meters for approximately 95
percent of measurements. More expensive units usually do much better, reaching 1- to 3-
meter accuracies 99 percent of the time. The distances denote accuracy, the percentages
precision. If we can live with less accuracy, we may be able to trade it for increased precision
[19].

• Dynamics: mobile vs. fixed
In fixed networks, nodes can establish their location in the initialization phase. Thereafter,
their only task is to report events or relay information sent by other nodes. In mobile net-
works, however, nodes need to be aware of changes in their position and perhaps of position
changes of other nodes. In general, systems provide more accurate location information
when a node is at rest than when it is in motion: tracking a moving node is harder because
the inevitable errors that occur in the distance samples are easier to filter out if the node’s
position itself does not change during the averaging process [37].
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• Beacons: beacon-free vs. beacon-based
Nodes with known positions are called beacon or anchor nodes. Beacon-based algorithms
usually produce an absolute location system where absolute positions of nodes are known, for
example, latitude, longitude, and altitude. However, the accuracy of the estimated position
is highly affected by the number of anchor nodes and their distribution in the sensor field.
The ratio of beacon nodes to blind nodes (nodes with unknown positions) is generally quite
small. The location of a beacon node can be determined using an attached GPS device or
by manual deployment.

Beacon-free algorithms do not make any assumptions regarding node positions. In this
case, instead of computing absolute node positions, relative positioning is used in which the
coordinate system is established by a reference group of nodes. Each object can also have its
own frame of reference [19]. For example, a mountain rescue team searching for avalanche
victims can use handheld computers to locate victims’ avalanche transceivers. Each rescuer’s
device reports the victims’ positions relative to itself.

• Computational model : centralized vs. distributed
If an algorithm collects localization related data from the network and processes the data
collectively at a single station, then it is said to be centralized. If, on the other hand, each
node collects partial data relevant to it and executes an algorithm to locate itself, then
the localization algorithm is categorized as distributed. An intermediate form are so called
locally centralized algorithms, which are distributed algorithms that achieve a global goal by
communicating with nodes in some neighborhood only. For example, the sensor network can
be divided into local clusters, where each cluster has a head. All the range measurements in
a certain cluster are forwarded to the cluster head, where computation takes place.

• Hops: single-hop vs. multi-hop
A direct link between two neighbor nodes is called a hop. When the distance between two
nodes is larger than the radio range but there are other nodes that create a continuous path
between them, the path is called a multi-hop path.

1.5.2 Wireless Communication

As sensor nodes use electromagnetic waves to communicate with each other we need to understand
the basics of how these waves propagate. Basic signal propagation and multipath propagation are
discussed.

Signal Propagation

A signal emitted by an antenna travels in the following three types of propagation modes: ground-
wave propagation, sky-wave propagation, and line-of-sight (LOS) propagation. MW and LW radio
is a kind of ground-wave propagation, where signals follow the contour of the Earth. Shortwave
radio is an example of sky-wave propagation, where radio signals are reflected by ionosphere
and the ground along the way. Beyond 30 MHz, line-of-sight propagation dominates, meaning
that signal waves propagate on a direct, straight path in the air. Radio signals of line-of-sight
propagation can also penetrate objects, especially signals with frequencies just above 30 MHz [44].

Sensor motes support tunable frequencies in the range of 300 to 1000 MHz and the 2.4-GHz
band. This means LOS propagation is dominant. The industrial, scientific and medical (ISM)
radio bands were originally reserved internationally for the use of RF electromagnetic fields for
industrial, scientific and medical purposes other than communications. They have become a part
of the radio spectrum that can be used by anybody without a license in most countries.

Multipath Propagation

For visible light we are well aware of the following effects: shadowing, reflection and refraction. In
general, electromagnetic waves (including light) are also subject to diffraction and scattering [44].
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Radio communication is affected by the physical properties of waves; the combined effects may
cause a transmitted radio signal to reach a receiver by two or more paths. This is called multipath
propagation and is illustrated in Figure 1.2.

• Shadowing and reflection occur when a signal encounters an object that is much larger than
its wavelength. Though the reflected signal and the shadowed signal are comparatively weak,
they in effect help to propagate the signal to spaces where line-of-sight is impossible [44].
Reflections occur from the surface of the earth and from buildings and walls.

• Refraction occurs when a wave passes across the boundary of two media [44]. Compare this
to how sunlight refracts when it enters water.

• Diffraction occurs at the edge of an impenetrable body that is large compared to the wave-
length of the radio wave. When a radio wave encounters such an edge, waves propagate
in different directions with the edge as the source [38]. Thus, signals can be received even
when there is no line-of-sight path between transmitter and receiver. For example, a wave
can ‘bend’ around a corner due to this effect.

• Scattering occurs when the medium through which the wave travels consists of objects with
dimensions that are small compared to the wavelength, and where the number of obstacles
per unit volume is large. Scattered waves are produced by rough surfaces, small objects, or
by other irregularities in the channel [36]. Typical objects that induce scattering are foliage,
street signs, and lamp posts.

If there is line-of-sight between receiver and transmitter, then diffraction and scattering are
generally minor effects, although reflection may have a significant impact. If there is no clear LOS,
such as in an urban area at street level, then diffraction and scattering are the primary means of
signal reception [38].

Figure 1.2: Multipath propagation: various effects give rise to additional radio propagation paths
beyond the direct optical line-of-sight path between the transmitter and receiver. Image courtesy
of Haas [16].

5



Chapter 2

Localization Methods

Triangulation, scene analysis, and proximity are the three principal techniques for automatic
location-sensing [19]. Location systems may employ them individually or in combination. The
triangulation location-sensing technique uses the geometric properties of triangles to compute
object locations. Triangulation is divisible into the subcategories of lateration, using distance
measurements, and angulation, using primarily angle or bearing measurements. Scene analysis
observes features of its surroundings in order to determine the location of an object. In localization
based on proximity, an object’s presence is sensed using a physical phenomenon with limited range,
for example infrared or direct contact. We will cover lateration, angulation, and scene analysis in
more detail.

2.1 Lateration

Lateration computes the position of an object by measuring its distance from multiple reference
positions [19]. Calculating an object’s position in two dimensions requires distance measurements
from 3 points that do not all lie on a single line (non-collinear points). In three dimensions, distance
measurements from 4 points not lying in the same plane (non-coplanar points) are required.
Domain-specific knowledge may reduce the number of required distance measurements (e.g., in
GPS, one computed position is in outer space).

The 2D lateration technique works well when the three circles intersect at a single point, but
this is rarely the case when estimates are used in ranging. When the range of anchor nodes is
sufficiently large, the object to be located falls into a geometric region that is the intersection of
three circles. This is called bounded intersection by Terwilliger [41] and is illustrated in Figure
2.1a. It is also possible that the region of intersection is empty. This will occur if at least one
ranging estimate is too small. Maximum likelihood methods overcome this problem by selecting
the point for localization that gives the minimum total error between measured estimates and
distances.

Lateration is quite expensive in the number of floating point operations that is required [22].
A similar, but computationally less expensive solution is to use a bounding box approach. The
main idea is to construct a bounding box for each anchor using its position and distance estimate,
and then to determine the intersection of these boxes. The position of the node is estimated to
be the center of the intersection box. Figure 2.1b illustrates the bounding box method for a node
with distance estimates to three anchors. Note that, in this example, the estimated position by
the bounding box is close to the true position computed through lateration.

We will discuss two general approaches to measuring the distances (called ranging) required
by the lateration technique, being attenuation and time-of-flight.
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(a) The location of ‘X’ is computed by taking the
center of the intersection of the three circles.

(b) Intersecting boxes requires less computation
than intersecting circles, but is somewhat less ac-
curate.

Figure 2.1: Bounding the location of a node

2.1.1 Attenuation

The intensity of an emitted signal decreases as the distance from the emission source increases.
The decrease relative to the original intensity is the attenuation [19]. The signal strength decays
polynomially with respect to distance. In the most ideal circumstances (in vacuum), signal power
attenuation is proportional to d2, where d denotes the distance between the transmitter and the
receiver. This effect is sometimes referred to as free space loss [44].

Using Received Signal Strength Indicator (RSSI) is one of the most commonly studied ap-
proaches for localization purposes because almost every node in the market has the ability to
analyze the strength of a received message [7]. Given a function correlating attenuation and dis-
tance for a type of emission and the original strength of the emission, it is possible to estimate
the distance from an object to some point P by measuring the strength of the emission when it
reaches P. The widely used radio propagation model, the log-distance path loss model, considers
the received power as a function of the transmitter-receiver distance raised to some power. Since
this model is a deterministic propagation model and gives only the average value, another prop-
agation model, the log-normal shadowing model, is introduced to describe the RSSI irregularity
[39]:

RSSI(d)[dBm] = RSSIref − 10n log10

(
d

dref

)
+Xσ (2.1)

In Equation 2.1, d is the transmitter-receiver distance, n the attenuation constant (rate at which
the signal decays), Xσ a zero-mean Gaussian (in dB) with standard deviation σ (multipath ef-
fects), and RSSIref the signal strength value at reference distance dref . Usually, n and σ are
obtained through curve fitting of empirical data. RSSI is measured in dBm, which is a logarithmic
measurement of signal strength. Note that the RSSI value does not only depend on the distance,
but also on the environment, antenna orientation, and the power supply [1].

A commonly used model for calculating the distance d is given in Equation 2.2, in which
RSSIref is measured at dref = 1 m. It is based on Equation 2.1, but multipath effects are
omitted (Xσ is assumed to be 0 with probability 1).

d(RSSI) = 10
RSSIref−RSSI

10n (2.2)
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In this scheme the attenuation constant is around 2 in an open-space environment, but its value
increases if the environment is more complex (walls, large metallic objects, etc.). In environments
with many obstructions such as an indoor office space, measuring distance using attenuation is
usually less accurate than time-of-flight [19]. An approximation of the attenuation constant for an
indoor environment is around 3.5 [36]. There is empirical evidence [12] that due to the unreliability
of measurements, at best, accuracy in the scale of meters can be achieved regardless of the used
algorithm or approach.

In the localization system Ferret, described by Terwilliger [41], two different ranging techniques
(potentiometer and RSSI) are used to help locate an object to within one meter. In the poten-
tiometer technique, the object to be located (a mobile node) begins by transmitting the beacon at
the lowest power level and listens for replies from the infrastructure nodes. Increasing the power
level with each transmission, once the mobile node gets three replies, it forwards its data to the
base station for position computation. A calibration tool needs to be run each time the system is
moved to a new environment in order to establish the communication ranges for given transmission
power levels. Terwilliger also presents a location discovery algorithm that provides, for every node
in the network, a position estimate, as well as an associated error bound and confidence level.

2.1.2 Time-of-Flight

Measuring distance from an object to some point P using time-of-flight means measuring the time
it takes to travel between the object and point P at a known velocity. The object itself may be
moving, such as an airplane traveling at a known velocity for a given time interval, or, as is far
more typical, the object is approximately stationary and we are instead observing the difference
in transmission and arrival time of an emitted signal [19]. GPS is a well-known system which uses
the time-of-flight technique.

There are two main issues in using time-of-flight. The first issue is to distinguish direct pulses
from reflected ones because they look identical. Reflected measurements may be pruned away by
aggregating multiple receivers’ measurements and observing the environment’s reflective proper-
ties. The second issue is agreement about the time. Since the propagation speed of radio signals is
very high (being equal to the speed of light), time measurements must be very accurate in order to
avoid large uncertainties. For example, a localization accuracy of 1 meter requires timing accuracy
on the level of 1

3∗108 ≈ 3.3 nanoseconds. This means a minimum clock rate of 300 MHz (3 ∗ 108

Hz) is required for hardware. As far as time synchronization goes, state-of-the-art protocols such
as FTSP [29] ‘only’ synchronize nodes in the order of microseconds. To avoid this issue, a node
could reflect the radio signal back, but this once again requires constant delay for reflecting the
signal.

One can also measure the time difference of arrival. Cricket [33, 37], a location-support system
for in-building, mobile, location-dependent applications, uses concurrent radio and ultrasound
signals and measures the difference between the received times of the two types of signals. As
sound waves travel at the speed of sound less precise timing than in the case of RF time-of-flight
is required. A difference with radio signals is that an ultrasound signal does not go through
walls; a similarity is that ultrasonic reception also suffers from severe multipath effects caused by
reflections from walls and other objects. Cricket allows applications running on mobile and static
nodes to learn their physical location by using listeners that hear and analyze information from
beacons spread throughout a building. A case distinction is made for various situations in order
to overcome multipath and interference effects. Practical beacon configuration and positioning
techniques are used to improve accuracy up to the centimeter level.

2.2 Angulation

Angulation is similar to lateration except, instead of distances, angles are used for determining the
position of an object. This technique is also called angle-of-arrival. In general, two-dimensional
angulation requires two angle measurements and one length measurement such as the distance
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between the reference points as shown in Figure 2.2. In three dimensions, one length measurement,
one azimuth measurement, and two angle measurements are needed to specify a precise position
[19]. Although the definition of azimuth depends on the coordinate system, in this case, the
azimuth is the horizontal component of an angle, measured around the horizon, from the north
toward the east. Angulation implementations sometimes choose to designate a constant reference
vector (e.g., magnetic north) as 0◦.

All of the proposed solutions require special hardware (and are thus costly solutions). In
general phased antenna arrays are used to measure the angle. Antenna arrays consist of multiple
antennas with known separation in which each antenna measures the time of arrival of a signal.
Given the differences in arrival times and the geometry of the receiving array, it is then possible to
compute the angle from which the emission originated. If there are enough elements in the array
and large enough separations, the angulation calculation can be performed [19]. Other approaches
described in literature (see Basaran [4]) are compass sensors, rotating antennas, and rotating light
emitters combined with optical sensors.

Figure 2.2: This example of 2D angulation illustrates
locating object ‘X’ using angles relative to a 0◦ ref-
erence vector and the distance between two reference
points. 2D angulation always requires at least two
angle and one distance measurement to unambigu-
ously locate an object [19].

Figure 2.3: Example of a probabilistic
radio map. Given this map and signal
strength measurements to fixed nodes,
the likeliest location of the user can be
predicted.

2.3 Scene Analysis

In general, the scene analysis location-sensing technique uses features of a scene observed from a
particular vantage point to draw conclusions about the location of the observer or of objects in
the scene [19]. In WSNs the measured feature of the scene is typically the signal strength value
at a particular position and orientation. Scene analysis consists of an offline learning phase and
an online localization phase. During the offline phase RSSI values to different anchor nodes are
recorded at various positions. The recorded RSSI values and the known locations of the anchor
nodes are used either to construct an RF-fingerprint database, or a probabilistic radio map (Figure
2.3). In the online phase, the node to be localized measures RSSI values to different anchor nodes.
With RF-fingerprinting, the location of the user is determined by finding the recorded reference
fingerprint values that are closest to the measured one. The unknown location is then estimated to
be the one paired with the closest reference fingerprint or in the (weighted) centroid of k-nearest
reference fingerprints. Location estimation using a probabilistic radio map includes finding the
point(s) in the map that maximize the location probability [20].

The Microsoft Research RADAR location system is an example of RF-fingerprinting. RADAR
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uses a dataset of signal strength measurements created by observing the radio transmissions of an
802.11 wireless networking device at many positions and orientations throughout a building. The
location of other 802.11 network devices can then be computed by performing table lookup on the
prebuilt dataset. The median resolution of RADAR is in the range of 2 to 3 meters [3].

MoteTrack [26] extends the approach and claims to be more robust than RADAR. Still, base
stations at fixed locations are used and a form of fingerprinting is used for determining the location
of mobile nodes. However, the approach can tolerate the failure of up to 60% of the beacon nodes
without severely degrading accuracy. Moreover, it is resilient to information loss, it can cope with
perturbations in RF signals (which may be caused by changes in the environment, e.g., collapsed
walls in a disaster scenario), and is decentralized to prevent single point of failure.

Although fingerprinting can give accurate results, it is not appropriate for scenarios where
offline calibration is infeasible (for example, if the area is hard to access). Furthermore, collecting
all the RSSI samples is quite time-consuming.
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Chapter 3

Related Work

This chapter is devoted to related work in mobile indoor localization. All the discussed approaches
are range-based, because the accuracy of range-free algorithms is often limited by requiring dense
deployments of sensor nodes [23].

3.1 Cricket

The tracking of moving devices has been studied by Smith et al. [37] under an active mobile
and a passive mobile infrastructure (Figure 3.1) using the Cricket location system (already briefly
described in section 2.1.2). Cricket uses the time difference in arrival of concurrent radio and
ultrasound signals to estimate distances. In the active mobile architecture, the mobile device
actively chirps, and the fixed infrastructure nodes then reply either over a radio channel or a
cabled infrastructure, reporting the measured distances to the mobile device or some central
processor. In the passive variant, the infrastructure has beacons that periodically transmit signals
to a passively listening mobile device, which in turn estimates distances to the beacons.

(a) In an active mobile architecture, an active trans-
mitter on each mobile device periodically broadcasts
a message on a wireless channel.

(b) In a passive mobile architecture, fixed nodes at
known positions periodically transmit their location
(or identity) on a wireless channel, and passive re-
ceivers on mobile devices listen to each beacon.

Figure 3.1: Infrastructure types for locating mobile devices.

Because in the active mobile architecture fixed nodes receive simultaneous distance estimates
from the mobile device, it performs better at tracking than the passive mobile system in which
the device obtains only one distance estimate at a time and may have moved between successive
estimates. However, a passive mobile system scales better with the number of mobile devices
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and puts users in control of whether their whereabouts are tracked. The authors devise a hybrid
approach that tries to preserve the benefits of both approaches. During normal operation the
passive mobile system is used due to its scalability and guaranteed user-privacy. At start-up time,
and when the system gets in a bad state and needs to be restarted, the listener transitions to active
mobile operation to obtain multiple simultaneous beacon distance samples. In an experimental
setup, a moving node was tracked in a single room. Six different speeds up to 1.43 m/s were
tested. The accuracy is high in general but decreases somewhat as the speed increases.

Priyantha et al. [32] note it is almost impossible to deploy nodes in a typical office or home to
achieve sufficient connectivity across all nearby nodes. For example, it is hard to obtain ranging
between nodes placed inside and outside a room in a standard building. Due to the directionality
of the ultrasonic transmitters used, the ultrasonic-based ranging system has a 12 m range when
the transmitter and the receiver are facing each other but less than 2 m mutual range when they
are on the same horizontal plane facing away from the plane (e.g., downwards from a ceiling).

3.2 Self-Positioning Algorithm

Čapkun et al. introduce the Self-Positioning Algorithm (SPA) [6]. SPA defines and computes
relative positions of nodes in a mobile ad-hoc network without using GPS. It is a distributed
algorithm that does not use nodes with fixed or known positions. It assumes some method to
estimate the distances between nodes and builds a relative coordinate system.

As a first step, each node builds a local coordinate system which has the node as its center.
Node i defines its local coordinate system by choosing nodes p and q such that the distance
between p and q (dpq) is known and larger than zero and such that nodes i, p, and q do not lie
on the same line. The system is defined to have p lying on the positive x axis and q having a
positive y coordinate (Figure 3.2). The real-world directions of p and q are not needed because
a relative coordinate system is constructed; this system would have to be rotated and maybe
reflected afterwards to correspond with physical node locations. The authors do not specify how
non-collinear nodes are picked, but one could ensure a triangle is formed by choosing p and q such
that, given distances dpq, diq, and dip, the maximum distance is not equal to the sum of the two
remaining distances. Furthermore, the choice of p and q should maximize the number of the nodes
for which the position can be computed. Geometric properties of triangles are used to determine
positions of other nodes.

In the second step, the directions of the local coordinate systems are adjusted to obtain the
same direction for all the nodes in the network. Two coordinate systems are said to have the same
direction if the direction of their x and y axes are the same. The direction of a local coordinate
system can be adjusted to a second system by rotating and possibly mirroring the system. One
network coordinate system – say, the system of node i – is chosen (see below how) which acts as
a reference for other systems to adjust to. Nodes can then compute their positions in the referent
system. Imagine we observe node l, a neighbor of k and a two-hop neighbor of node i. Node
k knows its position in the coordinate system of node i, and knows the position of node l in its
own coordinate system. As the coordinate systems of nodes k and i have the same directions, the
position of the node l in the coordinate system of the node i is simply obtained as a sum of two
vectors. This is illustrated in Figure 3.3.

A problem arises once node i moves as this causes a large inconsistency between the real and
computed positions of the nodes, requiring all the nodes to recompute their positions. To overcome
this, the authors define a set of nodes called the Location Reference Group (LRG) chosen to be
stable and less likely to disappear from the network (Figure 3.4). The LRG is composed of n
neighbor nodes having the highest density in the network, where n is set by the user (n ∈ {2, 3} in
simulations, see below). The LRG center is the mean of the LRG nodes’ positions and is the origin
of the network coordinate system. The direction of the network coordinate system is defined as
the average value of the directions of the local coordinates systems of the LRG nodes. The average
speed of the LRG center is expected to be much smaller than the average speed of the nodes. In
this way, the position inconsistency introduced by motion can be reduced.
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Figure 3.2: The local coordinate
system of node i is defined by
choosing nodes p and q.

Figure 3.3: Position computing
when the local coordinate sys-
tems have the same direction.

Figure 3.4: The location
reference group.

A simulation with 400 nodes was performed by the authors. The nodes follow a random
movement pattern: they move using a random velocity, wait for a fixed time, and then move again.
It is shown that if a larger (three-hop) neighborhood is used instead of a two-hop neighborhood, the
mobility of the center of the network decreases (thus increasing stability). No accuracy information
is provided; reducing the position error is being mentioned as subject of future work (but has not
been published). Furthermore, as the algorithm is focused on providing location information
to support basic network functions (such as forwarding packets in the right direction) accuracy
requirements should not be high. Communication costs are relatively high in multi-hop networks
as the algorithm requires a broadcast to all the nodes in the network.

3.3 Online Person Tracking

An Online Person Tracking (OPT) system for an indoor environment is presented by An et al.
[1]. OPT employs a passive mobile architecture such as displayed in Figure 3.1b. RSSI is used
for ranging; an empirical relation was established between RSSI and distance up to 16 meters
(Figure 3.5). The average RSSI of 200 measurements was used to estimate the location. An et al.
only used the three strongest received signal strengths (in general the three closest anchor motes)
because they claim using more does not guarantee a higher accuracy. Experiments with a static
sender and receiver were performed to measure the influence of the antenna orientation on the
strength of the received signal. The RSSI value varied up to 15 dBm depending on the antenna’s
orientation. This leads to bigger error on distance estimation when two motes are farther apart,
because the variation in RSSI becomes smaller as the distance becomes larger.

The authors applied a bounding box algorithm (Figure 2.1b) to select an area in which the
optimal position was sought. If there was no overlapping area of circles, the estimation area
was expanded to make sure that the potential target position was included in the search area
(Figure 3.6). The Minimum Mean Square Error (MMSE) algorithm was employed for target
location estimation within the selected area. This method is commonly used in statistics and
signal processing.

In the conventional MMSE method (dubbed C-MMSE) all range estimates were given the
same importance in minimizing the position error. In the faster, modified version (M-MMSE)
only the first two highest RSSI values were involved in the MMSE estimation process. This
gives two possible positions and the third mote was used to choose between the two. A weighted
version (W-MMSE) is also proposed by the authors. The higher the slope of the empirical curve
between distance and RSSI, the higher the assigned weight. In other words, higher RSSI values
are considered to be more reliable than low ones.

In the controlled experiments W-MMSE outperformed all the algorithms and C-MMSE pro-
vided the least performance. In real-world experiments the W-MMSE algorithm was tested to
track the real-time position of a slowly ‘moving’ person. The person moved from position to po-
sition, but had to halt in order for the system to get an approximate position. Ten motes were
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Figure 3.5: Empirical relation curve. Figure 3.6: Boundary selection
without overlapping area.

placed at fixed positions with a distance of 4 m between them. The dimension of the floor is 70 m
× 12 m with a narrow corridor of 60 m × 2 m in the middle. Offices are located on each side of
the corridor. The attenuation of walls was taken into account if the target mote was estimated
to be in an office. Of 36 positions considered in the corridor, 50% of the estimated locations were
within 2 m of the real location, and 90% within 4.5 m. When the person was in an office room,
16 experimental positions were used. The median accuracy was approximately 3.8 m and 90% of
the time the accuracy was 6.0 m.

3.4 Trajectory Matching

Lee et al. [23] present an algorithm enabling localization of moving wireless devices in an indoor
setting. An active mobile infrastructure (Figure 3.1a) is employed; a burst of 5 packets in 50 ms
is sent by the mobile node every 0.6 seconds. Ten nodes were deployed at fixed locations and one
mobile node was being localized.

The mobility of the users is modeled by learning a function which maps a short history of
signal strength values to a 2D position. During the training phase, ground truth locations of the
mobile user are required; however, locations of infrastructure nodes are not needed. The authors
used radial basis function fitting to learn a reliable estimate of a mobile node’s position given its
past signal strength measurements. RSSI measurements were prefiltered by a box (mean) filter
and then fed into the learned function to obtain the position of the mobile node.

Nine different trajectories were evaluated: five for training and four for testing. An area of
approximately 30 m × 25 m was used for experimentation. Experimental data shows that the
variance due to reflections is particularly severe when either transmitter or receiver was moving,
even at low speeds. Several parameters of the algorithm were optimized. The number of past
measurements determines how much historical information about the trajectories is available.
Using four past values was found to be optimal. In 50% and 97.5% of the cases the accuracy
is 1.0 m and 4.1 m, respectively. Besides RSSI, PRR (Packet Reception Ratio) and LQI (Link
Quality Indicator) were also used to learn the mapping function. PRR is computed by counting
the number of received packets in each burst, LQI values remain high whenever there is radio
coverage and drop sharply as soon as connectivity is about to be lost. Unsurprisingly, PRR and
LQI were found to perform worse than RSSI.

Since they use past measurements at fixed time intervals, the authors implicitly assume that the
speed of the mobile user at a given position is similar during training and localization. Explicitly
handling speed differences is subject of future work.
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3.5 Comparison

In Table 3.1 the localization systems which we have seen so far are compared with respect to
accuracy, node density and technique. The table is partially based on a comparison by Kaseva
et al. [20], but some values have been corrected after having carefully reviewed the cited papers.
The Self-Positioning Algorithm is not included in the overview because it has only been tested
in simulations and no accuracy measurements were provided. Although trajectory matching uses
RSSI measurements it is considered to perform scene analysis as it requires training for a specific
environment.

Localization system Accuracy (m) Anchor node den-
sity (m2 per node)

Technique

Ferret [40] 0.6–1.0 (A) 2–4 RSSI/potentiometer
Cricket [37] 0.02–0.2 (M) 2 Ultrasound time-of-flight
MoteTrack [26] 2 (M) 87 Scene analysis
RADAR [3] 2.9 (M) 326 Scene analysis
Online Person Tracking [1] 2/3.8 (M) 8/48 RSSI
Trajectory Matching [23] 1.0 (M) 52 Scene analysis

Table 3.1: Characteristics of different indoor localization systems. Accuracy is either a median
(M) or an average (A) value.

A number of comments should be made to put the accuracy of the different systems into
perspective. The anchor node density is defined as the number of square meters one anchor node
has to cover (on average). It is important for making a comparison because the lower the value,
the easier it is to obtain a relatively high accuracy. RADAR is an exception in the sense that
it uses WLAN technology for anchor nodes as opposed to sensor nodes. In Ferret between 5
and 11 nodes are used, which explains the variation in accuracy and node density. The accuracy
level of Cricket depends on the mobile node’s speed. OPT has been evaluated in a corridor and
office rooms; as the corridor covers a smaller area and has no interfering walls, a higher accuracy
is obtained. Cricket and the Trajectory Matching algorithm are the only systems having tested
accuracy of moving nodes; MoteTrack, RADAR, and OPT track devices which may change their
location but need to be stationary for localization. Ferret and Cricket were tested in only one
room, while other systems were evaluated in office environments having multiple obstructions and
realistic error sources.

Which system is best depends on the application. In the next chapter we will discuss the
requirements for the application. Based on this, the most appropriate hardware and software
setup is chosen.
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Chapter 4

System Setup

The system setup depends on the intended application. Therefore, the requirements of the appli-
cation are given first. Then, the considerations for the hardware choice are discussed, followed by
the hardware and software setup.

4.1 Requirements

The purpose of the application is to give a demonstration at a stand when Logica presents itself
at events (“Bedrijvenbeursdagen”). The primary goal is to show the relative positions of deployed
sensor nodes on a map, which is displayed on a PDA. The secondary goal is to develop a device
which points the user to Logica’s stand and shows how far away it is located; for example, a
display attached to a sensor node indicates the direction by an arrow and shows the distance in
meters.

The environment in which the WSN will operate and requirements with respect to accuracy,
mobility, and deployment are described below. I have established these requirements in consulta-
tion with my supervisor at Logica, Martijn Vlietstra, and verified them after writing them down.

Environment The events take place at various indoor locations which tend to be the same
every year, although the location of the stand may change. The event floor is spacious and
usually features pillars, but walls may also be present. Other obstructions include stands
and (moving) people. Typically, the floor covers approximately 2500 m2 (50 m × 50 m). All
stands are located on the same level.

Accuracy The mean accuracy must be 5 meters or less. The maximum error allowed is 10 meters.

Mobility At least one node is mobile and its position needs to be updated as often as is needed to
achieve the required accuracy. The maximum speed of the node is walking speed (1.4 m/s).

Deployment A number of static nodes will be deployed to help locate the mobile device(s).
Deployment is done manually and must take no longer than 10 minutes. Preferably, static
nodes are to be placed at Logica’s stand, but other deployment locations are also possible.
If the secondary goal is achieved, a second location can be used for handing out devices.

Availability The hardware should be commercially available; it will not be custom-built. A
range of RF motes and one ultrasound solution is currently available.

Cost A limited number of nodes can be bought.
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4.2 Hardware

4.2.1 Considerations

The principal choice for a hardware solution is between an ultrasound (Cricket) and an RF-based
approach, because this determines which localization methods are feasible. I will compare both
approaches based on the requirements of the intended application. Per the availability requirement,
we only consider off-the-shelf hardware.

Environment Both ultrasound and RF suffer from multipath effects caused by obstructions.
Ultrasound is more limited, however, as the receiver and transmitter require line-of-sight.
Furthermore, the range is fairly short: 12 meters in the most favorable case in the Cricket
system. RF signals can be received up to at least 50 meters indoor [9], but this depends on
the hardware and environment. Because of their larger range, we decided that radio signals
are more suitable for the depicted environment.

Accuracy As far as accuracy is concerned, the use of either technique is plausible. Using ultra-
sound can give accurate positions up to the centimeter level, but the requirements are not
that stringent. Radio-based approaches can also deliver the required accuracy (see section
3.5), but this depends on the used algorithms and test setup. For example, if 10 nodes
are used, the anchor node density will be 250 m2 per node, which leads to a much sparser
network (negatively influencing the accuracy) than is used in most of the discussed systems.

Mobility Both approaches can be used for tracking a mobile node. There are no specific advan-
tages of either technique.

Deployment Limited time for deployment is available, so the system setup and calibration must
be efficient. In Cricket careful orientation of the directional receiver is required, because
the angle at which a signal is received is important for both accuracy and connectivity. RF
motes are less susceptible to erroneous placement as they have omnidirectional antennas in
general.

Interference The ultrasonic transmitter in Cricket operates at 40 kHz; it is found that some
fluorescent lamps also generate 40 kHz ultrasonic waves which cause interference [30]. Other
than this no interference is expected.

RF motes operate in the 868-MHz band or 2.4-GHz band. Not many devices operate in the
first band, but in the second band WLAN is also present. Laptops and other devices at an
event are likely to use WLAN technology, and cannot be shut down.

Cost To cover the described area a dense network of Cricket motes would be required, which
would lead to relatively high costs. The average RF mote costs two-thirds of one Cricket
mote.

Based on this comparison, an RF-based approach is considered to be the most appropriate,
mainly because the available ultrasound-based mote has limited range, requires careful deployment,
and is an expensive solution. The various available RF motes are evaluated on the basis of the
above requirements. Mobility and deployment do not influence the decision as the choice for a
mote has no impact on these requirements. For the environment a decent indoor range is useful.
Because RSSI will be used for ranging and influences accuracy, good RSSI support is a must.
Interference should be absent or measures should be taken to minimize it. Table 4.1 gives an
overview of considered RF motes. All motes use TinyOS as their operating system (see section
4.3.1 for a description).

I have chosen the IRIS mote [9], which is produced by Crossbow, because it has a relatively
large indoor range of 50 m and a wide RSSI dynamic range. It is compliant with the IEEE 802.15.4
standard which means it supports techniques such as direct sequence spread spectrum to make
sure the mote is resistant to RF interference. When properly configured, RF interference and lost
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RSSI

RF mote Frequency
(MHz)

Maximum indoor
range (m)

dynamic
range (dBm)

accuracy
(dB)

Cost (euro)

BTnode 868 ±30 −105 to −50 ±6 165
IRIS 2405 ±50 −91 to −10 ±5 120
Mica2 868 ±30 −105 to −50 ±6 120
MicaZ 2405 ±30 −100 to 0 ±6 105
TinyNode 184 868 ±50 −100 to −30 ±3 73
TinyNode 584 868 ±100 −110 to −85 – 91

Table 4.1: Transceiver-related specifications and cost of considered RF motes.

data can be reduced through channel selection [8]. TinyNode 184 is also a good option, but is not
chosen because driver support in TinyOS is limited for its transceiver at the time of writing.

The complete hardware setup is presented in the next section.

4.2.2 Setup

In Figure 4.2 the hardware setup is shown. Dashed and solid lines represent wireless and wired
connections, respectively. One IRIS mote is attached to an interface board and acts as a base
station. This mote and seven other motes form the IRIS mote network. The base station collects
information from the network and relays this to the PC. In turn, the PC processes network events
and then updates the information on the server. The server computes the positions of nodes. The
PDA asks the server for an update of the nodes’ coordinates with a certain interval.

IRIS

The IRIS mote [9] uses a 2.4 GHz Atmel radio transceiver which has programmable output power
from -17 dBm up to 3 dBm and receiver sensitivity of -101 dBm. A data transfer rate of up to
250 kbps is supported. The processor board is based on ATmega1281, a low-power microcontroller
which has access to 8 kB RAM and 128 kB flash memory. An expansion connector allows a
connection to a variety of external peripherals (e.g., a sensor board connected to sensors). As a
power supply, two AA batteries are typically used, but a mote is powered through USB bus if
connected to an interface board. The mote fits in the palm of one’s hand with its size of 58 × 32
× 7 mm (Figure 4.1).

Interface Board

The USB interface board (MIB520) provides connectivity to one IRIS mote at a time. Two serial
ports are emulated over USB, one for communication with a mote and one for programming. A
mote can also be reprogrammed over-the-air to receive an update of a program, but has to be
programmed through the interface board first with the specific program.

PC

The PC communicates with the base station over the USB connection and with the server over
an Internet connection. In effect, it allows for communication between the base station and the
server.

Server

The external server is a dedicated server running Microsoft Windows Server 2003, Web Edition.
It is used as an application server to which clients, such as the PDA, can connect. The reason a
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server is used is because the PDA must be able to obtain the data from the PC over a wireless
connection, which can be done relatively easy using this setup. Running the server application on
the PC would be possible, but connecting to it from outside the network the PC is in may prove
difficult if the network is protected with a firewall.

PDA

The PDA is a HTC Advantage X7500 running Windows Mobile 5 at 624 MHz. It uses GPRS to
connect to the server. It is used to register the location of nodes in the deployment and learning
phase (see section 5.2 for a description of the phases). This saves deployment time compared to
using a PC to connect to the server because the user does not have to keep walking back and forth
to the PC between node registrations. In the localization phase, a mobile node and the PDA can
be used together to show the position of the PDA on the map, or the PDA can be used to track
another person holding the mobile node. Note that the PDA is not connected to any sensor node.

Figure 4.1: IRIS mote Figure 4.2: Hardware setup

4.3 Software Setup

4.3.1 Motes

The way motes are programmed depends on their function. There are three types: base, static, and
mobile. The base mote is connected to the interface board and has to handle the communication
between the PC and the mote network. All the non-mobile nodes listen for messages sent by mobile
nodes. Each message contains the sender identification, packet number and sequence number. The
mobile node sends a packet burst with a regular interval and increases the packet number by one
each time this is done. The sequence number is used to identify a packet within a burst. RSSI
and LQI information is requested for each packet by the receiver. All the data of one packet burst
is aggregated into one message and then sent to the base station. The sending is done using a
multi-hop routing protocol, because not every mote may be in range of the base station. I have
written the software for the nodes, except the routing protocol. The motes use TinyOS.

TinyOS is an open-source, event-driven operating system designed for wireless embedded sensor
networks. It is written in nesC, which is an extension to the C programming language designed
to embody the structuring concepts and execution model of TinyOS. Programs are built out of
components, which are assembled to form whole programs. TinyOS’s component library includes
network protocols, distributed services, sensor drivers, and data acquisition tools.

There are two multi-hop routing protocols in TinyOS available: TYMO and the Collection
Tree Protocol. TYMO is the implementation on TinyOS of the DYMO protocol, a point-to-point
routing protocol for mobile ad-hoc networks. The current TYMO version is not stable, however.
Therefore we have chosen to use the Collection Tree Protocol (CTP) [13, 14].
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CTP is a tree-based collection protocol. Messages are collected at the roots of trees. Nodes
form a set of routing trees to the tree roots. In our case, the only root is the base station. CTP
is a best effort protocol: it does not promise 100% reliable delivery and there are no ordering
guarantees. CTP assumes that it has link quality estimates of some number of nearby neighbors.
As a link estimator we use an implementation of the four-bit wireless link estimation, which can
maintain a 99% delivery ratio with a transmission power of 0 dBm over large, multi-hop testbeds
[15].

CTP works as follows. Nodes generate routes to roots using a routing gradient (information
used to decide how to route). The protocol uses the expected number of transmissions (ETX)
as its routing gradient (the lower the value, the better the link). CTP represents ETX values as
16-bit fixed-point real numbers with a precision of hundredths. A root has an ETX of 0. The
ETX of a node is the ETX of its parent plus the ETX of its link to its parent. In general, CTP
chooses the node with the lowest ETX value, unless it has reasons to do otherwise (e.g., after
losing connectivity with a candidate parent). CTP data frames also have a time has lived (THL)
field, which the routing layer increments on each hop. CTP uses the ETX and THL fields to deal
with routing loops and packet duplication.

4.3.2 PC

The PC connects to the server as a client and forwards messages it has received from the base
station. TinyOS provides classes to read and interpret data sent over the USB port. I have written
a Java program which sets up the connection to the server. Furthermore, it drops duplicate packets
and then sends the unique ones to the server.

Figure 4.3: Schematic illustration of the map displayed on
the PDA. B, S, and M represent the base station, a static
node, and a mobile node, respectively.

4.3.3 Server

A Java web application is deployed on the server. The used application server is Apache Tomcat.
Tomcat is a Servlet container and provides an environment for Java code to run. The Java
application is based on the previous WSN project. The user authentication, authorization, and
administration parts have been reused. Users can be granted permission to access certain pages
by giving them one or more roles. A user with role ‘user’ can only view a loaded environment
map and register node locations, while an ‘admin’ has access to all functionality. I have added the
following functions:

1. Environment Map
One can add, edit, delete, and load a map of the environment. When adding or editing
a map, the (physical) location that the map represents and a general description may be
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specified. The name and image file location must be specified. The width and height that
the map represents in the physical world are also required. When a map is loaded the image
is displayed. A schematic example of what could be displayed is shown in Figure 4.3. The
position of the mobile node is updated regularly.

2. Node Registration
If a map has been loaded, the user can enter the location of a static node on the map by
clicking on it and entering the node number. These locations are saved and displayed. When
the map is reloaded or another map is loaded, the nodes and their positions are deleted.

4.3.4 PDA

The PDA uses Opera Mobile 9.5 as a browser to view the Java web application. This browser is
used because of its good support of web standards on a mobile device.
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Chapter 5

Results

5.1 Experimental Results

To determine the relation between signal strength and distance we need to perform measurements.
I used two motes: a sending mote and a base station for receiving the messages and transferring
them to a laptop. The base station collects three values: RSSI, LQI, and PRR. RSSI is explained
in section 2.1.1 and is a value between −91 and −10 dBm. LQI stands for Link Quality Indication.
The IEEE 802.15.4 standard defines the LQI measurement as a characterization of the strength
and/or quality of a received packet. LQI values are integers ranging from 0 to 255 (the higher
the value, the better the link) [2]. PRR is the Packet Reception Rate and is the ratio of received
packets to the total number of packets. RSSI and LQI are provided by the mote’s transceiver;
PRR is computed. No WiFi networks were present which could interfere.

A series of parameters influence the RSSI measurements. We describe the ones identified by
Stoyanova et al. [39]:

RF frequency A center frequency of 2.405 GHz (channel 11) is used. Note that channels 11,
25, and 26 are suited to avoid interference with WiFi [8]. Channel 11 has been found to be
the most reliable channel for the IRIS mote’s transceiver by TinyOS developers. The center
frequency FCH is defined as follows: FCH = 2405 + 5× (channel − 11)[MHz] [2].

Antenna orientation Both motes were in a horizontal position. The sending mote was always
in front of the person holding it. This means the person was an obstruction in case of the
sender moving away from the receiver.

Variation of transceivers The same motes were used each time for the sender and base station.

Transmission power The transmission power is set to the maximum output power of the IRIS
mote, being 3.0 dBm, unless noted otherwise.

Environment We conducted the first set of experiments in an empty room of 50 m × 16 m,
measuring 2.7 m in height. The second set was measured in an open workspace environment
of the same size (illustrated in Figure 5.1 and 5.2), the only difference being five extra office
rooms located farthest away from the base station.

Height from the ground The base station was placed on a chair at a height of 0.58 m. The
sending mote was held 1.0–1.1 m above the ground.

5.1.1 Empty Room

I performed two experiments in the empty room. The sending mote was static in the first experi-
ment and moving in the second. The transmitter sends a packet burst of five messages as fast as
possible (in general within 50 ms). PRR is computed per packet burst.
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Figure 5.1: The office in which tests were performed. Measurements were done along the dashed
line. The base station was located at the round dot at the start of this line.

In the first experiment, the sending mote was kept in a fixed position during sending. The
closest measurement was done at 0.5 m. We then took measurements every meter in the range
1–10 m and every three meters from 10–46 m. RSSI values were averaged over four packet bursts.
The LQI value was a consistent 255, indicating the link quality was good at all times. Furthermore,
all packets were received. Therefore, we concentrate on the RSSI values.

Figure 5.2: The experimental
setup at the base station.

The RSSI values are shown in Figure 5.3, together with
two theoretical models. Fitting the log-normal shadowing
model (see section 2.1.1) to the experimental data using the
least squares method results in an attenuation constant of
1.64. This means the signal decays at a lower rate than a sig-
nal in free space. This is caused by the reflection of the signal
off of walls, the ground, and the ceiling. Reflection also causes
the variation in the RSSI value as it strengthens or weakens
the signal. We can model this variation to some extent using
the two-ray ground reflection model described by Stoyanova
et al. [39]. This model takes the reflection of the signal via
the ground into account. By considering the height of the
transmitter and the receiver one can compute the length dif-
ference between the reflected and the direct (line-of-sight) sig-
nal. This difference determines if the electric fields of the two
signals reinforce each other or cancel each other out. Assum-
ing the ground reflection is perfect, the resulting combined
electric field is used to calculate the received power. As we
can see in Figure 5.3, the two-ray model matches the varia-
tion of the measured data to a certain degree. However, least
squares fitting shows the log-normal shadowing model better
fits the measured data than the two-ray model.

In the second experiment in the empty room, the transmitter was moving and sending a packet
burst every second. The time it took to walk 46 m was measured to compute the average speed.
The distance was covered ten times: five times back and forth. The LQI value dropped incidentally
below 255 and only a few packets were missed. Figure 5.4 and 5.5 show the results of the RSSI
measurements.

We differentiate between moving away from the base station and moving towards it, because
in the latter case the measured values are higher in general. Still, beyond 10 meters it is very
hard to make a reliable distance estimate based on a given RSSI value. And although the graphs
seem to follow the same pattern at certain points (e.g., the dip at 40 m followed by a slight rise
in Figure 5.5), they are not consistent with each other in general.
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Figure 5.3: The relation between RSSI and distance according to measurements. Two theoretical
models are fitted to the experimental data.

Figure 5.4: The sender moves away from the
base station.

Figure 5.5: The sender moves towards the base
station.

5.1.2 Office

Because the application will operate in an environment with many obstructions, we have also
conducted experiments in an open workspace to test in a more realistic environment. Furthermore,
if one is given a signal strength measurement it is hard to derive a unique distance between the
sender and receiver from Figure 5.3. Therefore we want to experiment with various transmission
powers to obtain more diverse data and use this information to narrow down the number of possible
distances.

The transmitting node sends a burst of ten packets with an interval of 25 ms between packets.
Every two packets a different transmission power is set. Results were averaged over ten packet
bursts, that is twenty messages per level of transmission power. The closest measurement was
done at 0.2 m. We then took measurements at 0.5 m, every meter in the range 1–3 m and every
three meters from 3–43 m.

The average LQI and PRR dropped below 255 and 1, respectively, when connectivity was
about to be lost. In these cases the RSSI value was −91 dBm (the minimum value) most of the
times. LQI and PRR may be of use to differentiate between messages having the minimum RSSI
value.

The minimum, average, and maximum RSSI values for the different transmission powers are
shown in Figure 5.7. In case (d), no packets are received beyond 31 m. The log-normal shadowing
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model is fitted to the data using the least squares method (Figure 5.6), giving an attenuation
constant of 1.84. The form of the graphs is very similar for all transmission power levels. Un-
fortunately, this has the consequence of not giving us much extra information. For example, it
does not help with determining whether a packet has been sent from a distance of 10 or 20 meter,
because none of the graphs can make this distinction properly.

Figure 5.6: Static sender in an office environment using maximum transmission power of 3.0 dBm.

(a) (b)

(c) (d)

Figure 5.7: Static sender in an office environment using various levels of transmission power.
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5.2 System Operation

There are three phases in the system’s operation: deployment, learning, and localization.

5.2.1 Deployment

First, the user loads a map of the current environment through the server’s web interface. He or she
then deploys nodes manually and registers their approximate positions (except for mobile nodes).
To save deployment time it would be better if node positions are determined automatically, but
to do this the WSN has to have two properties: global rigidity and a rather high node degree.

Global rigidity To make sure there is a unique solution for the mobile node’s position we need
a uniquely localizable sensor network. However, this is a fundamental problem in distance-
based sensor network localization [28]. We can make a distinction between non-rigid, rigid,
and globally rigid graphs. In Figure 5.8 we can see examples of such graphs. Non-rigid graphs
can be continuously deformed to produce an infinite number of different realizations (such as
in the rectangle case), while rigid graphs cannot [31]. However, in rigid graphs, there are two
types of discontinuous deformations that can prevent a realization from being unique. The
first is flip ambiguity, illustrated in the middle graph of Figure 5.8. Flip ambiguities occur
for a graph in a d-dimensional space when the positions of all neighbors of some vertex span
a (d − 1)-dimensional subspace. In the example, the neighbors n1 and n2 create a mirror
through which the vertex v can be reflected. The second deformation is discontinuous flex
ambiguity: the temporary removal of an edge or, in some cases, a set of edges allows the
remaining part of the graph to be flexed to a different realization (Figure 5.9) [28]. A graph
is globally rigid if it is rigid and has a unique realization.

Figure 5.8: Rigidity of graphs Figure 5.9: Discontinuous flex am-
biguity

Node degree Theoretically a globally rigid graph can be found in a two-dimensional network if
we have the absolute positions of at least three non-collinear sensors and the exact distances
between nodes. However, noisy distance measurements complicate this. Moore et al. present
a localization algorithm which is robust against such errors [31]. A general result of their
simulations is that as noise goes to zero, nodes in large networks must have degree 10 or
more on average to achieve 100% localization. We have 8 nodes at our disposal, which is
not enough to reach a reasonable localization percentage using this algorithm. For example,
when the mean-square error of the distance measurements is 10 cm (2.9% of the maximum
ranging distance) and the average node degree is 10, then the localization rate of nodes is
only 5%. Therefore, we have chosen to let the user register the location of the nodes. This
has the advantage that if batteries of a node run out it can still be found later on.

5.2.2 Learning

In the learning phase the user helps the system to learn about the environment. The received
signal strength depends for a good deal on the environment as we have seen in the experiments.
Because the system will have to function in different locations it has to adapt to the location.
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This is accomplished by letting the user perform measurements at various positions such that
the relation between signal strength and distance can be learned for that specific location. Before
each measurement the user registers the mobile node’s position so that the distance between it
and other nodes can be computed. The mean is computed for every set of measurements from a
specific distance. Once all measurements are taken, non-linear regression is performed on each data
set, creating a RSSI-distance relation for every sender-receiver combination. Two measurements
per combination are demanded; otherwise, no graph can be fitted with some confidence. The
data is fitted to the log-normal model using least sum of squares to find an optimal value for the
attenuation constant. The reference signal strength value is a fixed value, obtained from 0.5 m
distance. We assume that the user can place the node in such a location that there are no objects
within that distance which have a considerable impact on this RSSI value. Moreover, not having
to perform this reference measurement saves deployment time.

An advantage of the learning approach is that the system not only adapts itself to its sur-
roundings, but also to the other parameters mentioned in section 5.1. Only antenna orientation
may not be compensated for. The IRIS mote has an omnidirectional antenna, but we do not know
if the user is between the sender and a receiver. We can only advise the user during learning to
stand in the same direction as he would expect a visitor to do in order to obtain a good estimate.

Figure 5.10: Automatic fitting of measured data to the log-normal shadowing
model.

5.2.3 Localization

An active mobile architecture is employed (Figure 3.1a). This setup has the advantage of being
more accurate than the passive mobile architecture because a transmitted signal by the mobile
node will be received simultaneously by the static nodes. We collect the RSSI values at the server
and select the three motes which have the highest ones because these are considered to be the
most reliable. Then we compute the distances between the motes and the mobile node. We adapt
Equation 2.2 (multiplying it by 0.5) because the reference distance is 0.5 m instead of 1 m. Next,
we estimate the position of the sending mote by selecting the point for localization that gives the
minimum total error between the estimated position and distances estimated from measurements.
We take the same approach as An et al. [1] by using the Weighted Minimum Mean Square Error
(W-MMSE) to minimize this error. Assume that there are N static nodes taken into account
and di is the estimated distance between the mobile node and a static node i (i ∈ {1, 2, . . . , N})
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located at (xi, yi), then we can define the error estimation function as:

MMSE =

√√√√ n∑
i=1

wi · error2i (5.1)

where wi = 1
di

, errori = |di −
√

(xi − xe)2 + (yi − ye)2| and (xe, ye) is the estimated position in
two-dimensional coordinates of the mobile node.

5.3 System Validation

This section validates whether the built system meets explicit and implicit requirements. The
explicit requirements are described in section 4.1, while the implicit ones were, as by definition,
not written down.

5.3.1 Explicit Requirements

The primary goal, showing the positions of deployed sensor nodes on a map, has been achieved.
The secondary goal has not been reached due to time constraints. To point the user to Logica’s
stand an LCD display could be connected to a sensor board (e.g., the MDA300 board [10]), which
in turn is attached to a sensor node. The sensor node should be programmed to interface with
the display. Moreover, the server should inform the mobile node about the distance and direction
to the stand.

Environment The system was evaluated in two environments: the open workspace environment
of Figure 5.1 (wing 4B) and a similar environment with a size of 31 m × 14 m (wing 4C).
The environments are similar to the intended environment as they are quite spacious and
feature metal bookcases, pillars, and walls. During evaluation people were sitting at their
desks or walking around. In wing 4B, five static nodes were deployed in the area, while one
static node and the base station were deployed outside the area to send the results to the
server. In wing 4C, five static nodes and the base station were set up.

Accuracy Whether the accuracy requirements are met depends on the environment. I determined
the difference between the estimated and the real location for wing 4B and 4C at 20 and
12 different positions, respectively. In both environments eight positions were used in the
learning phase. The mobile node was turned on approximately six seconds during each
position estimation. Both C-MMSE and W-MMSE were evaluated. C-MMSE is obtained
from Equation 5.1 by setting all weights to 1. W-MMSE was found to perform better than
C-MMSE as was also found by An et al. [1] (see section 3.3); the following results assume
W-MMSE is used.

The mean and maximum error for wing 4B were 6.4 m and 19.5 m, respectively, and 4.1 m
and 9.0 m for wing 4C. The accuracy requirement is not met in the former case, but is
in the latter. The mean error is somewhat misleading, however, because large position
errors influence this measure rather heavily. The cumulative distribution function (CDF)
of the position error, illustrated in Figure 5.11, gives a better insight into how accuracy
and precision are related. For example, 50% of the position estimates are accurate up to
3.7 meters on wing 4B. If the position error is small it is hard to identify the cause. We
therefore look at large errors to determine why signal strength values are much larger or
smaller than expected. Analysis of position errors larger than 6 meters on wing 4B shows
there are a number of causes: the signal can be either strengthened or weakened due to
multipath effects, or walls or pillars lower the measured signal strength value significantly.
The expectation is that these error sources are also the cause of position estimation errors
smaller than 6 meters, so dealing with these error sources will most likely improve the overall
accuracy. Suggestions for improving the accuracy are given in chapter 6.
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The obtained accuracy may seem low compared to other systems if we look at Table 3.1, but
this is partially because in other systems much time is invested in optimizing the results for
the specific environment. However, we are constrained in deployment time. To make a fair
comparison we estimate how much training data can be gathered in the ten minutes available.
In our setup eight measurements can be performed. For MoteTrack and RADAR there is
also accuracy data available assuming eight measurements can be collected. Such data is
not available for OPT; fourteen measurements were used to obtain the relation between
distance and RSSI. For Trajectory Matching we assume the user can walk on every path
in the environment twice. Ferret and Cricket are not considered in this overview as a large
number of nodes were used in a relatively small area to evaluate these systems. Table 5.1
compares the systems’ accuracies. It shows our system performs well compared to most
other systems while using less nodes per square meter than most systems.

Mobility As we have seen in section 5.1.1, the signal strength fluctuates unpredictably in case
the node is moving. Therefore, the node needs to be stationary in order to obtain a position
estimate. This estimate is typically updated within 6-10 seconds in the user interface. The
update speed depends on the number of hops between the node located farthest away from
the base station, and the connection speed of the client which is connected to the server.

Deployment Deployment takes between 8-10 minutes, depending on the number of nodes to be
deployed. If for some reason the link quality between nodes is bad, typically 5 more minutes
are needed to place the nodes in such a position that the link quality is good to ensure
messages can be sent quickly to the base station.

Availability The commercially available IRIS mote has been bought.

Cost Eight nodes were bought and the available budget was not exceeded.

Localization system Accuracy (m) Anchor node density (m2 per node)

25% 50% 80%

Our system 2.9 3.7 7.2 109
MoteTrack [26] 4.3 7.2 14.9 87
RADAR [3] 3.1 6.3 — 326
Online Person Tracking [1] 3.3 3.9 5.4 48
Trajectory Matching [23] 0.7 1.5 2.0 52

Table 5.1: Given that limited deployment time is available, our system performs similar
to or better than most other approaches.

5.3.2 Implicit Requirements

The most important implicit requirement is that the demonstration is stable. Stable can be defined
as the ability of the system to cope with errors or deal with unexpected situations. Efforts have
been taken to establish this, such as:

1. Reporting of error messages to the user in case there is a failure. For example, if too few
measurements are done during learning, this is shown in the user interface.

2. Establishing reliable communication links. Messages between mote network and server are
buffered and retransmitted if needed, aggregated if possible, and dropped if unnecessary.

3. Showing the status of the sensor nodes. Static nodes send a “heart beat” at a certain interval
to indicate that they are still up and running. The user interface shows each node colored
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Figure 5.11: The cumulative distribution function (CDF) shows the probability of achieving
a given accuracy. For example for wing 4B, the position estimate is within 7.2 meters of the
real position 80% of the time.

green, orange or red, depending on how long ago the last heart beat was received. This
is useful because sometimes a random node stops sending messages for unknown reasons;
restarting the node fixes this problem (temporarily). The heart beat has also proven handy
in case other people turn off sensor nodes (“It did not seem to be working.”). Even security
personnel was alerted once because a sensor node looked quite suspicious!
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Chapter 6

Conclusion

We have discussed the most relevant techniques for indoor localization in Wireless Sensor Networks,
being lateration, angulation, and scene analysis. Furthermore, a comparison was made between
several localization systems. We can conclude that the choice for a certain system or technique
depends on the intended application. The application requirements therefore determine for a great
deal which hardware and software setup is feasible.

A prototype of a system for determining the position of a moving device has been developed.
With some help of the user, the system can adapt itself to its environment within limited time by
learning the relation between distance and signal strength. The primary goal, showing the relative
positions of deployed sensor nodes on a map which is to be displayed on a PDA, has been achieved.
The system’s main advantage over most other existing systems is its short deployment time in a
new environment while still achieving a reasonable accuracy. Furthermore, the developed system is
not limited to indoor environments. It can be adapted easily to other environments by performing
automatic function fitting on a radio propagation model suited for the specific environment (e.g.,
outdoor).

The requirements of the application were validated. Improvements can be made with respect
to accuracy and mobility. The accuracy requirements were met in a small open workspace envi-
ronment. Multipath effects and obstructions such as walls and pillars were found to be causes of
position errors. To be able to reach the desired accuracy in a large space, a relatively simple solu-
tion would be to increase the number of anchor nodes. However, this would also increase the cost
of the system. Another way to improve accuracy would be to use a wall attenuation model, which
systems such as RADAR and OPT employ. Such a model compensates for walls between sender
and receiver. Our model could be extended with a wall model by adapting the fitting function.
Measurements made during learning and localization should then be corrected for the number of
walls between sender and receiver. Furthermore, adding wall information to maps should be made
possible in the user interface, or this information should be inferred from a map by the system to
save deployment time. This extension has not been built into the system due to time limitations.

To better support a moving user, the mobile node could be attached to an accelerometer to
detect if it is moving. If it is, an approach similar to the Trajectory Matching (TM) system can be
used to locate the mobile user. In case the node is stationary, our system is used for positioning
because TM can only localize a moving sensor node.
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