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Abstract

We study finite-state controllers (FSCs) for par-
tially observable Markov decision processes
(POMDPs) that are provably correct with re-
spect to given specifications. The key in-
sight is that computing (randomised) FSCs
on POMDPs is equivalent to—and compu-
tationally as hard as—synthesis for paramet-
ric Markov chains (pMCs). This correspon-
dence allows to use tools for synthesis in pMCs
to compute correct-by-construction FSCs on
POMDPs for a variety of specifications. Our
experimental evaluation shows comparable per-
formance to well-known POMDP solvers.

1 INTRODUCTION

Partially Observable MDPs. We intend to provide guar-
antees for planning scenarios given by dynamical systems
with uncertainties. In particular, we want to synthesise
a strategy for an agent that ensures certain desired be-
haviour (Howard, 1960). A popular formal model for
planning subject to stochastic behaviour are Markov de-
cision processes (MDPs) (Puterman, 1994). An MDP
is a nondeterministic model in which the agent chooses
to perform an action under full knowledge of the envi-
ronment it is operating in. The outcome of the action is
a probability distribution over the system states. Many
applications, however, allow only partial observability
of the current system state (Kaelbling et al., 1998; Thrun
et al., 2005; Wongpiromsarn and Frazzoli, 2012; Russell
and Norvig, 2010). For such applications, MDPs are ex-
tended to partially observable Markov decision processes
(POMDPs). While the agent acts within the environment,
it encounters certain observations, according to which it
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can infer the likelihood of the system being in a certain
state. This likelihood is called the belief state. Executing
an action leads to an update of the belief state according
to new observations. The belief state together with an
update function form a (typically uncountably infinite)
MDP, referred to as the belief MDP (Shani et al., 2013).

The POMDP Synthesis Problem. For (PO)MDPs, a
randomised strategy is a function that resolves the non-
determinism by providing a probability distribution over
actions at each time step. In general, strategies depend on
the full history of the current evolution of the (PO)MDP. If
a strategy depends only on the current state of the system,
it is called memoryless. For MDPs, memoryless strategies
suffice to induce optimal values according to our mea-
sures of interest (Puterman, 1994). Contrarily, POMDPs
require strategies taking the full observation history into
account (Ross, 1983), e. g. in case of infinite-horizon ob-
jectives. Moreover, strategies inducing optimal values are
computed by assessing the entire belief MDP (Madani
et al., 1999; Braziunas, 2003; Szer and Charpillet, 2005;
Norman et al., 2017), rendering the problem undecid-
able (Chatterjee et al., 2016c).

POMDP strategies can be represented by infinite-state
controllers. For computational tractability, strategies are
often restricted to finite memory; this amounts to us-
ing randomised finite-state controllers (FSCs) (Meuleau
et al., 1999). We often refer to strategies as FSCs. Al-
ready the computation of a memoryless strategy adher-
ing to a specification is NP-hard, SQRT-SUM-hard, and
in PSPACE (Vlassis et al., 2012). While optimal val-
ues cannot be guaranteed, small memory in combination
with randomisation may superseed large memory in many
cases (Chatterjee et al., 2004; Amato et al., 2010).

Correct-by-Construction Strategy Computation. In
this paper, we synthesise FSCs for POMDPs. We re-
quire these FSCs to be provably correct for specifications
such as indefinite-horizon properties like expected reward
or reach-avoid probabilities. State-of-the-art POMDP



Table 1: Correspondence
POMDP under FSC pMC

states × memory states
same observation same parameter
strategy parameter instantiation

solvers mainly consider expected discounted reward mea-
sures (Walraven and Spaan, 2017), which are a subclass
of indefinite horizon properties (Kolobov et al., 2012).

Our key observation is that for a POMDP the set of all
FSCs with a fixed memory bound can be succinctly rep-
resented by a parametric Markov chain (pMC) (Daws,
2004). Transitions of pMCs are given by functions over
a finite set of parameters rather than constant probabil-
ities. The parameter synthesis problem for pMCs is to
determine parameter instantiations that satisfy (or refute)
a given specification. We show that the pMC parame-
ter synthesis problem and the POMDP strategy synthesis
problem are equally hard. This correspondence not only
yields complexity results (Hutschenreiter et al., 2017), but
particularly enables using a plethora of methods for pa-
rameter synthesis implemented in sophisticated and opti-
mised parameter synthesis tools like PARAM (Hahn et al.,
2010), PRISM (Kwiatkowska et al., 2011), and PROPh-
ESY (Dehnert et al., 2015). They turn out to be competi-
tive alternatives to dedicated POMDP solvers. Moreover,
as we are solving slightly different problems, our methods
are orthogonal to, e. g., PRISM-POMDP (Norman et al.,
2017) and solve-POMDP (Walraven and Spaan, 2017).

We detail our contributions and the structure of the paper,
which starts with necessary formalisms in Sect. 2. A
longer version of the paper (Junges et al., 2017) contains
some additional material.

Section 3: We establish the correspondence of POMDPs
and pMCs, see Tab. 1. The product of a POMDP and an
FSC yields a POMDP with state-memory pairs, which
we map to states in the pMC. If POMDP states share
observations, the corresponding pMC states share param-
eters at emanating transitions. A strategy of the POMDP
corresponds to a parameter instantiation in the pMC.
Section 4: We show the opposite direction, namely a
transformation from pMCs to POMDPs. This result es-
tablishes that the synthesis problems for POMDPs and
pMCs are equally hard. Technically, we identify the prac-
tically relevant class of simple pMCs, which coincides
with POMDPs under memoryless strategies.
Section 5: Typical restrictions on parameter instantia-
tions concern whether parameters may be assigned the
probability zero. We discuss effects of such restrictions
to the resulting POMDP strategies.
Section 6: We evaluate the computation of correct-by-

construction FSCs using pMC synthesis techniques. To
that end, we explain how particular parameter synthesis
approaches deliver optimal or near-optimal FSCs. Then,
we evaluate the approach on a range of typical POMDP
benchmarks. We observe that often a small amount of
memory suffices. Our approach is competitive to state-of-
the-art POMDP solvers and is able to synthesise small,
almost-optimal FSCs.

Related Work. In addition to the cited works, (Meuleau
et al., 1999) uses a branch-&-bound method to find opti-
mal FSCs for POMDPs. A SAT-based approach computes
FSCs for qualitative properties (Chatterjee et al., 2016a).
For a survey of decidability results and algorithms for
broader classes of properties refer to (Chatterjee et al.,
2016c,b). Work on parameter synthesis (Hutschenreiter
et al., 2017; Filieri et al., 2011) might contain additions
to the methods considered here.

2 PRELIMINARIES

A probability distribution over a finite or countably in-
finite set 𝑋 is a function 𝜇 : 𝑋 → [0, 1] ⊆ R with∑︀

𝑥∈𝑋 𝜇(𝑥) = 𝜇(𝑋) = 1. The set of all distributions
on 𝑋 is Distr(𝑋). The support of a distribution 𝜇 is
supp(𝜇) = {𝑥 ∈ 𝑋 |𝜇(𝑥) > 0}. A distribution is Dirac
if |supp(𝜇)| = 1.

Let 𝑉 = {𝑝1, . . . , 𝑝𝑛} be a finite set of parameters over
the domain R and let Q[𝑉 ] be the set of multivariate
polynomials over 𝑉 . An instantiation for 𝑉 is a function
𝑢 : 𝑉 → R. Replacing each parameter 𝑝 in a polynomial
𝑓 ∈ Q[𝑉 ] by 𝑢(𝑝) yields 𝑓 [𝑢] ∈ R.

Decision problems can be considered as languages de-
scribing all positive instances. A language 𝐿1 ⊆ {0, 1}*
is polynomial (many-one or Karp) reducible to 𝐿2 ⊆
{0, 1}*, written 𝐿1 6𝑃 𝐿2, if there exists a polynomial-
time computable function 𝑓 : {0, 1}* → {0, 1}* such that
for all 𝑤 ∈ {0, 1}*, 𝑤 ∈ 𝐿1 ⇐⇒ 𝑓(𝑤) ∈ 𝐿2. Polyno-
mial reductions are essential to define complexity classes,
cf. (Papadimitriou, 1994).

2.1 PARAMETRIC MARKOV MODELS

Definition 1 (pMDP) A parametric Markov decision pro-
cess (pMDP) 𝑀 is a tuple 𝑀 = (𝑆, 𝑠I,Act , 𝑉,𝒫) with
a finite (or countably infinite) set 𝑆 of states, initial state
𝑠I ∈ 𝑆, a finite set Act of actions, a finite set 𝑉 of param-
eters, and a transition function 𝒫 : 𝑆×Act ×𝑆 → Q[𝑉 ].

The available actions in 𝑠 ∈ 𝑆 are A(𝑠) = {𝑎 ∈ Act |
∃𝑠′ ∈ 𝑆 : 𝒫(𝑠, 𝑎, 𝑠′) ̸= 0}. W. l. o. g. we assume ∀𝑠, 𝑠′ ∈



𝑆. ∀𝑎 ∈ Act . 𝑃 (𝑠, 𝑎, 𝑠′) ̸= 0∧𝑃 (𝑠, 𝑎, 𝑠′) ̸= 1 ⇒ ∃𝑠′′ ̸=
𝑠′. 𝑃 (𝑠, 𝑎, 𝑠′′) ̸= 0. We assume that pMDP 𝑀 contains
no deadlock states, i. e. A(𝑠) ̸= ∅ for all 𝑠 ∈ 𝑆. A path
of a pMDP 𝑀 is an (in)finite sequence 𝜋 = 𝑠0

𝑎0−→
𝑠1

𝑎1−→ · · · , where 𝑠0 = 𝑠I, 𝑠𝑖 ∈ 𝑆, 𝑎𝑖 ∈ A(𝑠𝑖), and
𝒫(𝑠𝑖, 𝑎𝑖, 𝑠𝑖+1) ̸= 0 for all 𝑖 ∈ N. For finite 𝜋, last(𝜋)
denotes the last state of 𝜋. The set of (in)finite paths of
𝑀 is Paths𝑀fin (Paths𝑀 ).

Definition 2 (MDP) A Markov decision process (MDP)
is a pMDP where 𝒫 : 𝑆 ×Act × 𝑆 → [0, 1] ⊆ R and for
all 𝑠 ∈ 𝑆 and 𝑎 ∈ A(𝑠),

∑︀
𝑠′∈𝑆 𝒫(𝑠, 𝑎, 𝑠′) = 1.

A (parametric) discrete-time Markov chain ((p)MC) is
a (p)MDP with |A(𝑠)| = 1 for all 𝑠 ∈ 𝑆. For a
(p)MC 𝐷, we may omit the actions and use the nota-
tion 𝐷 = (𝑆, 𝑠I, 𝑉, 𝑃 ) with a transition function 𝑃 of the
form 𝑃 : 𝑆 × 𝑆 → Q[𝑉 ].

Applying an instantiation 𝑢 : 𝑉 → R to a pMDP or pMC
𝑀 , denoted 𝑀 [𝑢], replaces each polynomial 𝑓 in 𝑀 by
𝑓 [𝑢]. 𝑀 [𝑢] is also called the instantiation of 𝑀 at 𝑢.
Instantiation 𝑢 is well-defined for 𝑀 if the replacement
yields probability distributions, i. e. if 𝑀 [𝑢] is an MDP or
an MC, respectively.

Strategies. To resolve the nondeterministic action
choices in MDPs, so-called strategies determine at each
state a distribution over actions to take. This decision may
be based on the history of the current path.

Definition 3 (Strategy) A strategy 𝜎 for (p)MDP 𝑀 is a
function 𝜎 : Paths𝑀fin → Distr(Act) s. t. supp

(︀
𝜎(𝜋)

)︀
⊆

Act
(︀
last(𝜋)

)︀
for all 𝜋 ∈ Paths𝑀fin . The set of all strate-

gies of 𝑀 is Σ𝑀 .

A strategy 𝜎 is memoryless if last(𝜋) = last(𝜋′) implies
𝜎(𝜋) = 𝜎(𝜋′) for all 𝜋, 𝜋′ ∈ Paths𝑀fin . It is deterministic
if 𝜎(𝜋) is a Dirac distribution for all 𝜋 ∈ Paths𝑀fin . A
strategy that is not deterministic is randomised.

A strategy 𝜎 for an MDP 𝑀 resolves all nondeterministic
choices, yielding an induced Markov chain 𝑀𝜎 , for which
a probability measure over infinite paths is defined by the
cylinder set construction (Baier and Katoen, 2008).

Definition 4 (Induced Markov Chain) For an MDP
𝑀 = (𝑆, 𝑠I,Act ,𝒫) and a strategy 𝜎 ∈ Σ𝑀 , the MC
induced by 𝑀 and 𝜎 is given by 𝑀𝜎 = (Paths𝑀fin , 𝑠I, 𝑃

𝜎)
where:

𝑃𝜎(𝜋, 𝜋′) =

{︃
𝒫(last(𝜋), 𝑎, 𝑠′) · 𝜎(𝜋)(𝑎) if 𝜋′ = 𝜋𝑎𝑠′,
0 otherwise.

2.2 PARTIAL OBSERVABILITY

Definition 5 (POMDP) A partially observable MDP
(POMDP) is a tuple ℳ = (𝑀,𝑍,𝑂), with 𝑀 =
(𝑆, 𝑠I,Act ,𝒫) the underlying MDP of ℳ, 𝑍 a finite set
of observations and 𝑂 : 𝑆 → 𝑍 the observation function.

We require that states with the same observations have the
same set of enabled actions, i. e. 𝑂(𝑠) = 𝑂(𝑠′) implies
A(𝑠) = A(𝑠′) for all 𝑠, 𝑠′ ∈ 𝑆. We define A(𝑧) = A(𝑠)
if 𝑂(𝑠) = 𝑧. More general observation functions (Roy
et al., 2005; Shani et al., 2013) take the last action into
account and provide a distribution over 𝑍. There is a
transformation of the general case to the POMDP defi-
nition used here that blows up the state space polynomi-
ally (Chatterjee et al., 2016b). In Fig. 1(a), a fragment
of the underlying MDP of a POMDP has two different
observations, indicated by the state colouring.

We lift the observation function to paths: For 𝜋 = 𝑠0
𝑎0−→

𝑠1
𝑎1−→ · · · 𝑠𝑛 ∈ Paths𝑀fin , the associated observation

sequence is 𝑂(𝜋) = 𝑂(𝑠0)
𝑎0−→ 𝑂(𝑠1)

𝑎1−→ · · ·𝑂(𝑠𝑛).
Several paths in the underlying MDP may yield the same
observation sequence. Strategies have to take this re-
stricted observability into account.

Definition 6 An observation-based strategy 𝜎 for a
POMDP ℳ is a strategy for the underlying MDP 𝑀
such that 𝜎(𝜋) = 𝜎(𝜋′) for all 𝜋, 𝜋′ ∈ Paths𝑀fin with
𝑂(𝜋) = 𝑂(𝜋′). Σℳ is the set of observation-based
strategies for ℳ.

An observation-based strategy selects actions based on ob-
servations along a path and the past actions. Applying the
strategy to a POMDP yields an induced MC as in Def. 4,
resolving all nondeterminism and partial observability. To
represent observation-based strategies with finite memory,
we define finite-state controllers (FSCs). A randomised
observation-based strategy for a POMDP ℳ with (finite)
𝑘 memory is represented by an FSC 𝒜 with 𝑘 memory
nodes. If 𝑘 = 1, the FSC describes a memoryless strategy.
We often refer to observation-based strategies as FSCs.

Definition 7 (FSC) A finite-state controller (FSC) for a
POMDP ℳ is a tuple 𝒜 = (𝑁,𝑛I, 𝛾, 𝛿), where 𝑁 is a
finite set of memory nodes, 𝑛I ∈ 𝑁 is the initial memory
node, 𝛾 is the action mapping 𝛾 : 𝑁 × 𝑍 → Distr(Act),
and 𝛿 is the memory update 𝛿 : 𝑁×𝑍×Act → Distr(𝑁).
The set FSCℳ

𝑘 denotes the set of FSCs with 𝑘 mem-
ory nodes, called 𝑘-FSCs. Let 𝜎𝒜 ∈ Σℳ denote the
observation-based strategy represented by 𝒜.

From a node 𝑛 and the observation 𝑧 in the current state
of the POMDP, the next action 𝑎 is chosen from A(𝑧)



𝑠1

𝑠2

𝑠3𝑠4

𝑠5
𝑎1

0.6

0.4

𝑎2

0.7

0.3

(a) POMDP ℳ

⟨𝑛1⟩

⟨𝑛2⟩

𝑎1 𝑎2 𝑎1 𝑎2

𝑧0? 𝑧1?

(b) FSC 𝒜

⟨𝑠1, 𝑛1⟩

⟨𝑠2, 𝑛1⟩

⟨𝑠2, 𝑛2⟩

⟨𝑠3, 𝑛1⟩

⟨𝑠3, 𝑛2⟩

⟨𝑠5, 𝑛1⟩

⟨𝑠5, 𝑛2⟩

⟨𝑠4, 𝑛1⟩

⟨𝑠4, 𝑛2⟩

0.15

0.15

0.1

0.1

0.075

0.075

0.175

0.175

(c) Induced MC ℳ𝜎𝒜

Figure 1: (a) The POMDP ℳ with observations 𝑂(𝑠1) =
𝑂(𝑠3) = 𝑧0 (white) and 𝑂(𝑠2) = 𝑂(𝑠4) = 𝑂(𝑠5) = 𝑧1
(red). (b) The associated (partial) FSC 𝒜 has two memory
nodes. (c) A part of MC ℳ𝜎𝒜 induced by ℳ and 𝒜.

randomly as given by 𝛾(𝑛, 𝑧). Then, the successor node
of the FSC is determined randomly via 𝛿(𝑛, 𝑧, 𝑎).

Example 1 Fig. 1(b) shows an excerpt of an FSC 𝒜 with
two memory nodes. From node 𝑛1, the action mapping
distinguishes observations 𝑧0 and 𝑧1. The solid dots in-
dicate a probability distribution from Distr(Act). For
readability, all distributions are uniform and we omit the
action mapping for node 𝑛2.

Now recall the POMDP ℳ from Fig. 1(a). The in-
duced MC ℳ𝜎𝒜 is shown in Fig. 1(c). Assume ℳ is
in state 𝑠1 and 𝒜 in node 𝑛1. Based on the observa-
tion 𝑧0 := 𝑂(𝑠1), 𝜎𝒜 chooses action 𝑎1 with probability
𝛿(𝑛1, 𝑧0)(𝑎1) = 0.5 leading to the probabilistic branch-
ing in the POMDP. With probability 0.6, ℳ evolves to
state 𝑠2. Next, the FSC 𝒜 updates its memory node;
with probability 𝛿(𝑛1, 𝑧0, 𝑎1)(𝑛1) = 0.5, 𝒜 stays in 𝑛1.
The corresponding transition from ⟨𝑠1, 𝑛1⟩ to ⟨𝑠2, 𝑛1⟩ in
ℳ𝜎𝒜 has probability 0.5 · 0.6 · 0.5 = 0.15.

2.3 SPECIFICATIONS

For a POMDP ℳ, a set 𝐺 ⊆ 𝑆 of goal states, a set
𝐵 ⊆ 𝑆 of bad states, and a threshold 𝜆 ∈ [0, 1), we
consider quantitative reach-avoid specifications 𝜙 =
P>𝜆(¬𝐵 U 𝐺). The specification 𝜙 is satisfied for a
strategy 𝜎 ∈ Σℳ if the probability Prℳ

𝜎

(¬𝐵 U 𝐺) of
reaching a goal state in ℳ𝜎 without entering a bad state
in between exceeds 𝜆, denoted by ℳ𝜎 |= 𝜙. The task is
to compute such a strategy provided that one exists. For
an MDP 𝑀 , there is a memoryless deterministic strategy
inducing the maximal probability Pr𝑀max(¬𝐵 U 𝐺) (Con-
don, 1992). For a POMDP ℳ, however, observation-
based strategies with infinite memory as in Def. 6 are
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𝑝

0.6

0.4
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(a) Induced pMC

Act 𝒫 Node Result

𝑎1 : 𝑝
0.6 𝑛1 : 𝑞1 0.6 · 𝑝 · 𝑞1

𝑛2 : 1 − 𝑞1 0.6 · 𝑝 · (1 − 𝑞1)

0.4 𝑛1 : 𝑞1 0.4 · 𝑝 · 𝑞1
𝑛2 : 1 − 𝑞1 0.4 · 𝑝 · (1 − 𝑞1)

𝑎2 : 1 − 𝑝
0.7 𝑛1 : 𝑞2 0.7 · (1 − 𝑝) · 𝑞2

𝑛2 : 1 − 𝑞2 0.7 · (1 − 𝑝) · (1 − 𝑞2)

0.3 𝑛1 : 𝑞2 0.3 · (1 − 𝑝) · 𝑞2
𝑛2 : 1 − 𝑞2 0.3 · (1 − 𝑝) · (1 − 𝑞2)

(b) Parameterised transition probabilities

Figure 2: Induced parametric Markov chain for FSCs.

necessary (Ross, 1983) to attain Prℳmax(¬𝐵 U 𝐺). The
problem of proving the satisfaction of 𝜙 is therefore un-
decidable (Chatterjee et al., 2016c). In our experiments,
we also use undiscounted expected reachability reward
properties (Baier and Katoen, 2008).

3 FROM POMDPS TO PMCS

Our goal is to make pMC synthesis methods available
for POMDPs. In this section we provide a transforma-
tion from a POMDP ℳ to a pMC 𝐷. We consider the
following decision problems.

Problem 1 (∃k-FSC ) Given a POMDP ℳ, a specifica-
tion 𝜙, and a (unary encoded) memory bound 𝑘 > 0, is
there a 𝑘-FSC 𝒜 with ℳ𝜎𝒜 |= 𝜙?

Problem 2 (∃INST ) For a pMC 𝐷 and a specification 𝜙,
does a well-defined instantiation 𝑢 exist s.t. 𝐷[𝑢] |= 𝜙?

Theorem 1 ∃𝑘-FSC 6𝑃 ∃INST.

The remainder of the section outlines the proof, the
converse direction is addressed in Sect. 4. Consider a
POMDP ℳ, a specification 𝜙, and a memory bound
𝑘 > 0 for which ∃𝑘-FSC is to be solved. The degrees
of freedom to select a 𝑘-FSC are given by the possible
choices for 𝛾 and 𝛿. For each 𝛾 and 𝛿, we get a different
induced MC, but these MCs are structurally similar and
can be represented by a single pMC.

Example 2 Recall Fig. 1 and Ex. 1. The action map-
ping 𝛾 and the memory update 𝛿 have arbitrary but fixed



probability distributions. For 𝑎1, we represent the prob-
ability 𝛾(𝑛1, 𝑧0)(𝑎1) =: 𝑝 by 𝑝 ∈ [0, 1]. The mem-
ory update yields 𝛿(𝑛1, 𝑧0, 𝑎1)(𝑛1) =: 𝑞1 ∈ [0, 1] and
𝛿(𝑛1, 𝑧0, 𝑎1)(𝑛2) =: 1−𝑞1, respectively. Fig. 2(a) shows
the induced pMC for action choice 𝑎1. For instance, the
transition from ⟨𝑠1, 𝑛1⟩ to ⟨𝑠2, 𝑛1⟩ is labelled with poly-
nomial 𝑝 · 0.6 · 𝑞1.
We collect all polynomials for observation 𝑧0 in Fig. 2(b).
The result column describes a parameterised distribution
over tuples of states and memory nodes. Thus, instantia-
tions for these polynomials need to sum up to one.

As the next step, we define the pMC that results from
combining a 𝑘-FSC with a POMDP. The idea is to assign
parameters as arbitrary probabilities to action choices.
Each observation has one remaining action given by a
mapping Remain : 𝑍 → Act . Remain(𝑧) ∈ A(𝑧) is the
action to which, after choosing probabilities for all other
actions in A(𝑧), the remaining probability is assigned. A
similar principle holds for the remaining memory node.

Definition 8 (Induced pMC for a 𝑘-FSC on POMDPs)
Let ℳ = (𝑀,𝑍,𝑂) be a POMDP with
𝑀 = (𝑆, 𝑠I,Act ,𝒫) and let 𝑘 > 0 be a memory bound.
The induced pMC 𝐷ℳ,𝑘 = (𝑆ℳ,𝑘, 𝑠I,ℳ,𝑘, 𝑉ℳ,𝑘, 𝑃ℳ,𝑘)
is defined by:

∙ 𝑆ℳ,𝑘 = 𝑆 × {0, . . . , 𝑘 − 1}, 𝑠I,ℳ,𝑘 = ⟨𝑠I, 0⟩,
∙ 𝑉ℳ,𝑘 =

{︀
𝑝𝑧,𝑛𝑎

⃒⃒
𝑧 ∈ 𝑍, 𝑛 ∈ {0, . . . , 𝑘 − 1},

𝑎 ∈ A(𝑧), 𝑎 ̸= Remain(𝑧)
}︀

∪
{︀
𝑞𝑧,𝑛𝑎,𝑛′

⃒⃒
𝑧 ∈ 𝑍, 𝑛, 𝑛′ ∈ {0, . . . , 𝑘 − 1},

𝑛′ ̸= 𝑘 − 1, 𝑎 ∈ A(𝑧)
}︀

,
∙ 𝑃ℳ,𝑘(𝑠, 𝑠′) =

∑︀
𝑎∈A(𝑠) 𝐻(𝑠, 𝑠′, 𝑎) for all 𝑠, 𝑠′ ∈

𝑆′,

where 𝐻 : 𝑆ℳ,𝑘 × 𝑆ℳ,𝑘 × Act → R is for 𝑧 = 𝑂(𝑠)
defined by 𝐻

(︀
⟨𝑠, 𝑛⟩, ⟨𝑠′, 𝑛′⟩, 𝑎

)︀
=

𝒫(𝑠, 𝑎, 𝑠′) ·

{︃
𝑝𝑧,𝑛𝑎 , if 𝑎 ̸= Remain

(︀
𝑧
)︀

1 −
∑︀
𝑏 ̸=𝑎

𝑝𝑧,𝑛𝑏 , if 𝑎 = Remain
(︀
𝑧
)︀ }︃

·

{︃
𝑞𝑧,𝑛𝑎,𝑛′ , if 𝑛′ ̸= 𝑘−1

1 −
∑︀

�̄� ̸=𝑛′
𝑞𝑧,𝑛𝑎,�̄�, if 𝑛′ = 𝑘−1

}︃
.

Intuitively, 𝐻(𝑠, 𝑠′, 𝑎) describes the probability mass
from 𝑠 to 𝑠′ in the induced pMC that is contributed by
action 𝑎. The three terms correspond to the terms as seen
in the first three columns of Tab. 2(b).

Example 3 Consider the POMDP in Fig. 3(a) and let
𝑘 = 1. The induced pMC is given in Fig. 3(b). The three
actions from 𝑠0 have probability 𝑝1, 𝑝2, and 1−𝑝1−𝑝2 for
the remaining action 𝑎3. From the indistinguishable states
𝑠1, 𝑠3, actions have probability 𝑞 and 1−𝑞, respectively.
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(a) POMDP ℳ

𝑠0 𝑠2

𝑠1
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(1 − 𝑝1 − 𝑝2) · 1
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1

(b) Induced pMC 𝐷ℳ,1

Figure 3: From POMDPs to pMCs (𝑘 = 1)

By construction, the induced pMC describes the set of all
induced MCs:

Theorem 2 (Correspondence Theorem) For POMDP
ℳ, memory bound 𝑘, and the induced pMC 𝐷ℳ,𝑘:{︀
𝐷ℳ,𝑘[𝑢]

⃒⃒
𝑢 well-defined

}︀
=

{︀
ℳ𝜎𝒜

⃒⃒
𝒜 ∈ FSCℳ

𝑘

}︀
.

In particular, every well-defined instantiation 𝑢 describes
an FSC 𝒜𝑢 ∈ FSCℳ

𝑘 .

By the correspondence, we can thus evaluate an instan-
tiation of the induced pMC to assess whether the corre-
sponding 𝑘-FSC satisfies a given specification.

Corollary 1 Given an induced pMC 𝐷ℳ,𝑘 and a specifi-
cation 𝜙: For every well-defined instantiation 𝑢 of 𝐷ℳ,𝑘

and the corresponding 𝑘-FSC 𝒜𝑢 we have:
ℳ𝜎𝒜𝑢 |= 𝜙 ⇐⇒ 𝐷ℳ,𝑘[𝑢] |= 𝜙.

The number of parameters in the induced pMC 𝐷ℳ,𝑘 is
given by 𝒪

(︀
|𝑍| · 𝑘2 · max𝑧∈𝑍 |A(𝑧)|

)︀
.

4 FROM PMCS TO POMDPS
(AND BACK AGAIN)

In the previous section we have shown that ∃k-FSC is
at least as hard as ∃INST. We now discuss whether both
problems are equally hard: The open question is whether
we can reduce ∃INST to ∃k-FSC.

A straightforward reduction maintains the states of the
pMC in the POMDP, or even yields a POMDP with the
same graph structure (the topology) as the pMC. The next
example shows that this naive reduction is impossible.

Example 4 In the pMC in Fig. 4 the parameter 𝑝 occurs
in two different distributions (at 𝑠0 and 𝑠2). For defining
a reduction where the resulting POMDP has the same
set of states, there are two options for the observation
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1 − 𝑝− 𝑞

𝑝 1 − 𝑝
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Figure 4: Non-simple pMC

function at the states 𝑠0 and 𝑠2: Either 𝑂(𝑠0) = 𝑂(𝑠2) or
𝑂(𝑠0) ̸= 𝑂(𝑠2). The intuition is that every (parametric)
transition in the pMC corresponds to an action choice
in a POMDP. Then 𝑂(𝑠0) = 𝑂(𝑠2) is impossible as 𝑠0
and 𝑠2 have a different number of outgoing transitions
(outdegree). Adding a self-loop to 𝑠2 does not alleviate
the problem. Moreover, 𝑂(𝑠0) ̸= 𝑂(𝑠2) is impossible, as
a strategy could distinguish 𝑠0 and 𝑠2 and assign different
probabilities to 𝑝.

The pMC in the example is problematic as the parameters
occur at the outgoing transitions of states in different com-
binations. We restrict ourselves to an important subclass1

of pMCs which we call simple pMCs. A pMC is simple
if for all states 𝑠, 𝑠′, 𝑃 (𝑠, 𝑠′) ∈ Q ∪ {𝑝, 1 − 𝑝 | 𝑝 ∈ 𝑉 }.
Consequently, we can map states to parameters, and use
this map to define the observations. Then, the transfor-
mation from a POMDP to a pMC is the reverse of the
transformation from Def. 8. In the remainder, we detail
this correspondence. The correspondence also establishes
a construction to compute 𝑘-FSCs via parameter synthesis
on simple pMCs. Current tool-support (cf. Sect. 6) for
simple pMCs is more mature than for the more general
pMCs obtained via Def. 8.

Let simple-∃INST be the restriction of ∃INST to simple
pMCs. Similarly, let simple-∃1-FSC be a variant of ∃1-
FSC that only considers simple POMDPs.

Definition 9 (Binary/Simple POMDP) A POMDP is
binary, if |A(𝑠)| ≤ 2 for all 𝑠 ∈ 𝑆. A binary POMDP is
simple, if for all 𝑠 ∈ 𝑆

|A(𝑠)| = 2 =⇒ ∀𝑎 ∈ A(𝑠) ∃𝑠′ ∈ 𝑆 : 𝑃 (𝑠, 𝑎, 𝑠′) = 1.

We establish the following relation between the POMDP
and pMC synthesis problems, which asserts that the prob-
lems are equivalently hard.

Theorem 3 For any 𝐿1, 𝐿2 ∈ { ∃k-FSC, ∃1-FSC,
simple-∃1-FSC, simple-∃INST }, 𝐿1 6𝑃 𝐿2.

The proof is a direct consequence of the Lemmas 1-4
below, as well as the facts that every 1-FSC is a 𝑘-FSC,
and every simple POMDP is a POMDP.

1All pMC benchmarks from the PARAM webpage (PARAM
Website, 2015) are simple pMCs.
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Figure 5: POMDP ↔ simple pMC

The induced pMC 𝐷ℳ,1 of a simple POMDP ℳ is also
simple. Consequently, Sect. 3 yields:

Lemma 1 simple-∃1-FSC 6𝑃 simple-∃INST.

4.1 FROM SIMPLE PMCS TO POMDPS

Theorem 4 Every simple pMC 𝐷 with 𝑛 states and 𝑚 pa-
rameters is isomorphic to 𝐷ℳ,1 for some simple POMDP
ℳ with 𝑛 states and 𝑚 observations.

We refrain from a formal proof: The construction is the
reverse of Def. 8, with observations {𝑧𝑝 | 𝑝 ∈ 𝑉𝐷}. In a
simple pMC, the outgoing transitions are either all param-
eter free, or of the form 𝑝, 1−𝑝. The parameter-free case
is transformed into a POMDP state with a single action
(and any observation). The parametric case is transformed
into a state with two actions with Dirac-distributions at-
tached. As observation we use 𝑧𝑝.

Lemma 2 simple-∃INST 6𝑃 simple-∃1-FSC.

4.2 MAKING POMDPS SIMPLE

We present a reduction from ∃1-FSC to simple-∃1-FSC
by translating a (possibly not simple) POMDP into a
binary POMDP and subsequently into a simple POMDP.
Examples are given in Fig. 5(a–e). We emphasise that our
construction only preserves the expressiveness of 1-FSCs.
Details are given in (Junges et al., 2017).

Lemma 3 ∃1-FSC 6𝑃 simple-∃1-FSC.
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Figure 6: Unfolding a POMDP for two memory states

4.3 FROM 𝐾-FSCS TO 1-FSCS

For a POMDP ℳ and memory bound 𝑘>1, we construct
a POMDP ℳ𝑘 such that ℳ satisfies a specification 𝜙
under some 𝑘-FSC iff ℳ𝑘 satisfies 𝜙 under some 1-FSC.

Definition 10 (𝑘-Unfolding) Let ℳ = (𝑀,𝑍,𝑂) be a
POMDP with 𝑀 = (𝑆, 𝑠I,Act ,𝒫), and 𝑘 > 1. The
𝑘-unfolding of ℳ is the POMDP ℳ𝑘 = (𝑀𝑘, 𝑍𝑘, 𝑂𝑘)
with 𝑀𝑘 = (𝑆𝑘, 𝑠I,𝑘,Act𝑘,𝒫𝑘) defined by:

∙ 𝑆𝑘 = 𝑆 × {0, . . . 𝑘−1}, 𝑠I,𝑘 = ⟨𝑠I, 0⟩,
∙ Act𝑘 = Act × {0, . . . , 𝑘−1}

∙ 𝒫𝑘

(︀
⟨𝑠, 𝑛⟩, ⟨𝑎, �̄�⟩, ⟨𝑠′, 𝑛′⟩

)︀
=

{︃
𝒫(𝑠, 𝑎, 𝑠′) 𝑛′ = �̄�,

0 else.

and 𝑍𝑘 = 𝑍 × {0, . . . , 𝑘−1}, 𝑂𝑘

(︀
⟨𝑠, 𝑛⟩

)︀
=

⟨︀
𝑂(𝑠), 𝑛

⟩︀
.

Intuitively, ℳ𝑘 stores the current memory node into its
state space. At state ⟨𝑠, 𝑛⟩ of ℳ𝑘, a 1-FSC can not only
choose between the available actions A(𝑠) in ℳ but also
between different successor memory nodes.

Fig. 6 shows this process for 𝑘 = 2. All states of the
POMDP are copied once. Different observations allow to
determine in which copy of a state – and therefore, which
memory cell – we currently are. Additionally, all actions
are duplicated to model the option for a strategy to switch
the memory cell.

The induced pMC 𝐷ℳ𝑘,1 of the 𝑘-unfolding of ℳ has
the same topology as the induced pMC 𝐷ℳ,𝑘 of ℳ with
memory bound 𝑘. In fact, both pMCs have the same
instantiations.

Proposition 1 For POMDP ℳ and memory bound 𝑘:

{𝐷ℳ𝑘,1[𝑢] | 𝑢 well-def.} = {𝐷ℳ,𝑘[𝑢] | 𝑢 well-def.}.

The intuition is that in both pMCs the parameter instanti-
ations reflect arbitrary probability distributions over the
same set of successor states. In the transition probability
function of the induced pMC 𝐷ℳ,𝑘 of ℳ we can also
substitute the multiplications of parameters 𝑝𝑧,𝑛𝑎 and 𝑞𝑧,𝑛𝑎,𝑛′

𝑠0 𝑠1
𝑎1

𝑎2

Figure 7: MDP ℳ

by single parameters. This transformation yields a substi-
tuted induced pMC which is isomorphic to the induced
pMC 𝐷ℳ𝑘,1 of the 𝑘-unfolding of ℳ. Details are given
in (Junges et al., 2017).

Proposition 1 and Thm. 2 imply that induced MCs of ℳ
under 𝑘-FSCs coincide with induced MCs of ℳ𝑘 under 1-
FSCs: {ℳ𝜎𝒜 | 𝒜 ∈ FSCℳ

𝑘 } = {ℳ𝜎𝒜
𝑘 | 𝒜 ∈ FSCℳ

1 }.

Lemma 4 ∃k-FSC 6𝑃 ∃1-FSC.

5 STRATEGY RESTRICTIONS

Two simplifying restrictions on the parameters are usually
made in parameter synthesis for pMCs:

∙ Each transition is assigned a strictly positive proba-
bility (graph-preserving).

∙ Each transition is assigned at least probability 𝜀 > 0
(𝜀-preserving).

For simple pMCs, the restrictions correspond to parame-
ters instantiations over (0, 1) or [𝜀, 1 − 𝜀], respectively.

Accordingly, we define restrictions to POMDP strategies
that correspond to such restricted parameter instantiations.

Definition 11 (Non-zero Strategies) A strategy 𝜎 is
non-zero if 𝜎(𝜋)(𝑎) > 0 for all 𝜋 ∈ Paths𝑀fin , 𝑎 ∈
A(last(𝜋)), and min-𝜀 if additionally 𝜎(𝜋)(𝑎) ≥ 𝜀 > 0.

Non-zero strategies enforce supp(𝜎(𝑠)) = A(𝑠). Exam-
ple 5 shows the impact on reachability probabilities.

Example 5 The MDP 𝑀 in Fig. 7 has a choice between
actions 𝑎1 and 𝑎2 at state 𝑠0. If action 𝑎1 is chosen
with probability zero, the probability to reach 𝑠1 from 𝑠0
becomes zero, and the corresponding parameter instanti-
ation is not graph-preserving. Contrarily, if 𝑎1 is chosen
with any positive probability, as would be enforced by a
non-zero strategy, the probability to reach 𝑠1 is one.

Proposition 2 Let ℳ be a POMDP. An instantiation 𝑢
on 𝐷ℳ,1 is graph-preserving (𝜀-preserving), iff 𝜎𝒜𝑢

is
non-zero (min-𝜀).

Still, for the considered specifications, we can, w. l. o. g.,
restrict ourselves to FSCs that induce non-zero strategies.



Theorem 5 Let ℳ be a POMDP, 𝑘 a memory bound and
𝜙 = P>𝜆(¬𝐵 U 𝐺). Either ∀𝒜 ∈ 𝑘-FSC : ℳ𝜎𝒜 ̸|= 𝜙
or ∃𝒜′ ∈ 𝑘-FSC : ℳ𝜎𝒜′ |= 𝜙 with 𝜎𝒜′ non-zero.

The statement is shown in (Junges et al., 2017) by consid-
ering the corresponding pMC.

6 EMPIRICAL EVALUATION

We established the correspondence between the synthesis
problems for POMDPs and pMCs. Now, we discuss the
available methods for pMC parameter synthesis, and how
they may be exploited or adapted to synthesise FSCs. We
distinguish three key problems:

1. Find a correct-by-construction strategy for a
POMDP and a specification. To construct such a strategy,
one needs to find a parameter valuation for the pMC that
provably satisfies the specification. Most solution tech-
niques focused on pMCs with a few parameters, rendering
the problem at hand infeasible. Recently, efficient ap-
proaches emerged that are either based on particle swarm
optimisation (PSO) (Chen et al., 2013) or on convex opti-
misation (Amato et al., 2010; Cubuktepe et al., 2017), in
particular using quadratically-constrained quadratic pro-
gramming (QCQP) (Cubuktepe et al., 2018). We employ
PSO and QCQP for our evaluation.

2. Prove that no FSC exists for a POMDP and a spec-
ification. Proving the absence of an FSC with the given
memory bound allows us to show 𝜀-optimality of a pre-
viously synthesised strategy. Two approaches exist: An
approximative technique called parameter lifting (Quat-
mann et al., 2016) and a method based on SAT-modulo-
theories (SMT) solving (de Moura and Bjørner, 2008).

3. Provide a closed-form solution for the underlying
measure of a specification in form of a function over the
induced parameters of an FSC. The function may be used
for further analysis, e. g. of the sensitivity of decisions or
parameter values, respectively. To compute this function,
all of the parameter synthesis tools PARAM (Hahn et al.,
2010), PRISM (Kwiatkowska et al., 2011), Storm (Dehn-
ert et al., 2017), and PROPhESY (Dehnert et al., 2015)
employ a technique called state elimination (Daws, 2004).

Implementation and Setup. We extended the tool
Storm (Dehnert et al., 2017) to parse and store POMDPs,
and implemented several transformation options to pMCs.
Most notably, Storm supports 𝑘-unfolding, the product
with several restricted FSCs such as counters that can be
incremented at will, and several types of transformation
to (simple) pMCs.

We evaluate on a HP BL685C G7 with 48 2 GHz
cores, a 16 GB memory limit, and 1800 seconds time

Table 2: Benchmarks
POMDP ℳ PRISM-POMDP SolvePOMDP MDP

Id Name Tp. States Bran. Obs. Result Time Result Time Res
1 NRP (8) P 125 161 41 [.125, .24] 20 TO 1.0
2 Grid (4) E 17 62 3 [3.97, 4.13] 1038 4.13 0.4 3.2
3 Netw (3,4,8) E 2729 4937 361 TO TO 0.83
4 Crypt (5) P 4885 11733 890 MO TO 1.0
5 Maze (2) E 16 58 8 [5.11, 5.23] 3.9 5.23 16 4.0
6 Load (8) E 16 28 5 [10.5, 10.5] 1356 10.5 7.6 10.5
7 Slippery (4) P 17 59 4 TO 0.93 95 1.0

limit. The compared methods are single-threaded.
We took the POMDPs from PRISM-POMDP (Norman
et al., 2017), and additional maze, load/unload examples
from (Meuleau et al., 1999), and a slippery gridworld
with traps inspired by (Russell and Norvig, 2010). Ta-
ble 2 gives details. The specifications (Tp.) are either the
minimisation of expected costs from an initial state until
reaching a specified target set (E), or the maximisation
the probability of reaching from an initial state a target set
without hitting a bad state before (P). We list the number
of states, branches (

∑︀
|𝐴(𝑠)|), and observations in each

POMDP. As a baseline, we provide the results and run
time of the model-checking tool PRISM-POMDP, and the
point-based solver SolvePOMDP (Walraven and Spaan,
2017), obtained with default settings. Both tools compute
optimal memory-unbounded strategies and are prototypes.
The last column contains the result on the underlying,
fully observable MDP. The experiments contain minimal
expected rewards, which are analysed by a straightfor-
ward extension of maximal reachability probabilities. All
pMCs computed are simple pMCs, as PROPhESY typi-
cally benefits from the simpler structure. PROPhESY has
been invoked with the default set-up.

6.1 FINDING STRATEGIES

We evaluate how quickly a strategy that satisfies the spec-
ification is synthesised. We vary the threshold used in the
specification, as well as the structure of the FSC.

Results. We summarise the obtained results in Tab. 3.
For each instance (Id), we define three thresholds (Ts), or-
dered from challenging (i. e. close to the optimum) to less
challenging. For different types of FSCs (FSC, F=full,
C=counter) and memory bounds (𝑘), we obtain pMCs
with the given number of states, transitions and param-
eters. Full-FSCs are fully connected, in counter-FSCs
memory state 𝑚 is succeeded by either 𝑚 or 𝑚 + 1. For
each threshold (T1, T2, T3), we report the run time of the
two methods PSO and QCQP, respectively. T1 is chosen
to be nearly optimal for all benchmarks. A dash indicates
a combination of memory and threshold that is not realis-
able according to the results in Sect. 6.2. TO/MO denote
violations of the time/memory limit, respectively.



Table 3: Synthesing strategies
Id Ts FSC/𝑘 States Trans Pars T1 T2 T3

pso qcqp pso qcqp pso qcqp

1 .124/.11/.09

F/1 75 118 8 <1 <1 <1 <1 <1 <1
F/2 205 420 47 2 <1 2 <1 2 <1
F/4 921 1864 215 9 2 9 2 10 2
F/8 3889 7824 911 43 15 42 14 42 14

2 4.15/4.5/5.5

F/1 47 106 3 – – – – Err <1
F/2 183 390 15 7.4 11 4 9 2 <1
F/4 719 1486 63 TO 64 39 91 14 8
F/8 2845 5788 255 TO 700 TO 946 254 69

3 9/10/15

F/1 3268 13094 276 TO TO TO 43 22 4
F/2 16004 46153 1783 TO TO TO 877 152 28
C/2 11270 36171 1168 TO TO TO 358 100 62
C/4 27183 82145 2940 TO MO TO MO 476 MO

4 .249/.2/.15 F/1 3366 6534 364 18 25 18 15 18 12
F/2 25713 51608 3907 330 MO 350 MO 326 MO

5 5.2/15/25

F/1 30 64 8 – – TO TO <1 TO
F/2 137 294 49 TO TO 14 TO 2 TO
F/4 587 1214 219 93 TO TO TO 26 TO
F/8 2421 4924 919 TO TO 1034 TO 115 TO
C/2 99 212 33 TO TO 3.7 TO <1 TO
C/4 231 476 81 7 TO 6 TO 3 TO

6 10.6/10.9/82.5
F/1 16 33 1 – – – – <1 TO
F/2 77 160 11 9 TO 6 TO <1 TO
F/4 354 721 63 20 TO 21 63 3 TO

7 .929/.928/.927

F/1 87 184 3 TO TO <1 1 <1 <1
F/2 285 592 15 4 TO 4 20 3 22
F/4 1017 2080 63 76 767 71 205 67 187
F/8 3825 7744 255 TO TO TO TO TO TO

Evaluation. Strategies for thresholds which are subopti-
mal (T3) are synthesised faster. If the memory bound is
increased, the number of parameters quickly grows and
the performance of the methods degrades. Additional
experiments showed that the number of states has only a
minor effect on the performance. The simpler FSC topol-
ogy for a counter alleviates the blow-up of the pMC and is
successfully utilised to find strategies for larger instances.

Trivially, a 𝑘-FSC is also a valid (𝑘+𝑖)-FSC for some
𝑖 ∈ N. Yet, the larger number of parameters make search-
ing for (𝑘+𝑖)-FSCs significantly more difficult. We fur-
thermore observe that the performance of PSO and QCQP
is incomparable, and both methods have their merits.

Summarising, many of the POMDPs in the benchmarks
allow good performance via FSCs with small memory.
We find nearly-optimal, and small, FSCs for POMDP
benchmarks with thousands of states within seconds.

6.2 PROVING 𝜀-OPTIMALITY

We now focus on evaluating how fast pMC techniques
prove the absence of a strategy satisfying the specifica-
tion. In particular, we consider proving that for a specific
threshold, no strategy induces a better value. Such a proof
allows us to draw conclusions about the (𝜀-)optimality of
a strategy synthesised in Sect. 6.1.

Results. Table 4(a) shows the run times to prove that for
the POMDP in column Id, there exists no strategy of type
FSC with 𝑘 memory that performs better than threshold
𝑇 . The row indicated by * was obtained with SMT. All

Table 4: 𝜀-optimality and closed-form computation
(a) Proving absence
Id FSC/k T time
2 F/1 5 <1
3 F/1 5 8
3 F/4 5 183
4 F/1 0.25 2*

5 F/1 10 3
5 F/2 5 TO
6 F/1 82 <1
6 F/8 10.5 1
7 F/1 0.94 5

(b) Closed-form sol.
Id FSC/k time
1 F/1 <1
1 F/2 97
2 F/1 155
3 F/1 464
4 F/1 <1
5 F/1 116
6 F/1 <1
7 F/1 TO

other results were obtained with parameter lifting.

Evaluation. The methods generally prove tight bounds
for 𝑘=1. For 𝑘>1, the high number of parameters yields
a mixed impression, the performance depends on the
benchmark. We find proofs for non-trivial bounds up
to 𝑘=8, even if the pMC has hundreds of parameters.

6.3 CLOSED-FORM SOLUTIONS

Results. Table 4(b) indicates running times to compute
a closed-form solution, i. e. a rational function that maps
𝑘-FSCs to the induced probability.

Evaluation. Closed form computation is limited to small
memory bounds. The rational functions obtained vary
wildly in their structure. For (4), the result is a constant
function which is trivial to analyse, while for (3), we ob-
tained rational functions with roughly one million terms,
rendering further evaluation expensive.

7 CONCLUSION

This paper connects two active research areas, namely ver-
ification and synthesis for POMDPs and parameter syn-
thesis for Markov models. We see benefits for both areas.
On the one hand, the rich application area for POMDPs
in, e. g. robotics, yields new challenging benchmarks for
parameter synthesis and can drive the development of
more efficient methods. On the other hand, parameter
synthesis tools and techniques extend the state-of-the-art
approaches for POMDP analysis. Future work will also
concern a thorough investigation of permissive schedulers,
that correspond to regions of parameter instantiations, in
concrete motion planning scenarios.
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