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Abstract

We propose a new approach to compute counterexamples for violated ω-regular properties
of discrete-time Markov chains. Whereas most approaches compute a set of system paths as
a counterexample, we determine a critical subsystem that already violates the given property.
In earlier work methods have been introduced to compute such subsystems for safety
properties, based on a search for shortest paths. In this paper we use mixed integer linear
programming to determine minimal critical subsystems for arbitrary ω-regular properties.

1. Introduction

Systems with uncertainties often act in safety-critical environments. In order to use the advantages
of formal verification, formal models are needed. A popular modeling formalism for such systems
are discrete-time Markov chains (DTMCs).
State-of-the-art model checking algorithms verify probabilistic safety properties like “The proba-
bility to reach a safety-critical state is at most 10−3” or, more generally, ω-regular properties [1],
efficiently by solving linear equation systems [2]. Thereby, if the property is violated, they do not
provide any information about the reasons why this is the case. However, this is not only strongly
needed for debugging purposes, but it is also exploited for abstraction refinement in CEGAR
frameworks [3, 4]. Therefore, in recent years much research effort has been made to develop
algorithms for counterexample generation for DTMCs (see, e. g., [5, 6, 7, 8, 9, 10, 11, 12, 13]).
With the exception of [12], which handles LTL specifications, all of these approaches are re-
stricted to reachability properties. Furthermore, the algorithms in [6, 7, 8, 9] yield path-based
counterexamples for violated safety properties, i. e., counterexamples in the form of a set of finite
paths that all lead from the initial state to a safety-critical state and whose joint probability mass
exceeds the allowed limit.
Unfortunately, the number of paths needed for a counterexample is often very large or even
infinite, in particular if the gap between the allowed probability and its actual value is small.
The size of the counterexample may be several orders of magnitude larger than the number
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of system states, rendering the counterexample practically unusable for debugging purposes.
Different proposals have been made to alleviate this problem: [6] represents the path set as a
regular expression, [7] detects loops on paths, and [8] shrinks paths through strongly connected
components into single transitions.
As an alternative to path-based counterexamples, the usage of small critical subsystems has been
proposed in [5, 10]. A critical subsystem is a part of the Markov chain such that the probability
to reach a safety-critical state (or, more generally, to satisfy an ω-regular property) inside this
part exceeds the bound. This induces a path-based counterexample by considering all paths
leading through this subsystem. Contrary to the path-based representation, the size of a critical
subsystem is bounded by the size of the model under consideration. Different heuristic methods
have been proposed for the computation of small critical subsystems: The authors of [5] apply
best first search to identify a critical subsystem, while [10] is based on a hierarchical abstraction
of DTMCs in combination with heuristics for the selection of the states to be contained in the
subsystem.
Both approaches use heuristic methods to select the states of a critical subsystem. However, we
are not aware of any algorithm that is suited to compute a minimal critical subsystem, neither
in terms of the number of states nor of the number of transitions. In this paper we fill this gap.
We provide a formulation as a mixed integer linear program (MILP) which yields state-minimal
critical subsystems of DTMCs. We also present some optimizations which significantly speed up
the computation times in many cases. Experimental results on some case studies are provided,
which show that our approach yields significantly more compact counterexamples than the
heuristic methods even if the MILPs cannot be solved to optimality due to time restrictions. We
present our algorithms first for probabilistic reachability properties and extend them afterwards
to general ω-regular properties.

Structure of the Paper. In Sec. 2 we introduce the foundations of DTMCs and critical subsys-
tems. In Sec. 3 we present our approach for the computation of state-minimal subsystems for
DTMCs. We discuss experimental results in Sec. 4 and finally draw a conclusion in Sec. 5.

2. Foundations

We first introduce discrete-time Markov chains, ω-regular properties, and critical subsystems.
Then we take a look at mixed integer linear programs, which we use for the computation of
minimal critical subsystems.

2.1. Discrete-Time Markov Chains and ω-Regular Properties

Definition 1 Let AP be a set of atomic propositions. A discrete-time Markov chain (DTMC)
is a tuple M = (S, sI , P, L) with S being a finite set of states, sI ∈ S the initial state, and
P : S × S → [0, 1] the matrix of transition probabilities such that

∑
s′∈S P (s, s′) ≤ 1 for all

s ∈ S.1 L : S → 2AP is a labeling function which assigns to each state s ∈ S the propositions
that are valid in s.

1Please note that we allow sub-stochastic distributions. Usually, the sum of probabilities is required to be exactly 1.
This can be obtained by defining M ′ = (S ∪ {s⊥}, sI , P ′, L′) with s⊥ a fresh sink state, P ′(s, s′) = P (s, s′)
and L′(s) = L(s) for all s, s′ ∈ S, L′(s⊥) = ∅, P ′(s⊥, s⊥) = 1, and finally P (s, s⊥) = 1 − P (s, S) and
P ′(s⊥, s) = 0 for all s ∈ S.



Let in the following M = (S, sI , P, L) be a DTMC over the set AP of atomic propositions.
We denote the set of transitions of M by EM =

{
(s, s′) ∈ S × S

∣∣P (s, s′) > 0
}

, the set of
successors of state s ∈ S by succM(s) =

{
s′ ∈ S

∣∣ (s, s′) ∈ EM
}

, and its predecessors by
predM(s) =

{
s′ ∈ S

∣∣ (s′, s) ∈ EM}. A finite (infinite) path in M is a finite (infinite) sequence
π = s0s1s2 . . . of states such that (si, si+1) ∈ EM for all i. We denote the set of finite (infinite)
paths starting in s by Pathsfin(s) (Pathsinf(s), resp.). The trace of π, trace(π), is the sequence
L(s0)L(s1)L(s2) . . .
A linear-time property over AP is a set L of infinite sequences α0α1α2 . . . with αi ⊆ AP for all
i. A path π satisfies a linear-time property L if trace(π) ∈ L.
In this paper we will deal with a certain subclass of linear-time properties, namely ω-regular
properties. In order to define them, we need the notion of Rabin automata2.

Definition 2 A deterministic Rabin automaton (DRA) is a tuple A = (Q, qI ,Σ, δ, F ) such that
Q is a finite, non-empty set of states, qI ∈ Q an initial state, Σ an input alphabet, δ : Q×Σ→ Q
a transition function, and F ⊆ 2Q × 2Q an acceptance condition.

Let w = σ0σ1σ2 . . . ∈ Σω be an infinite word over Σ. The run r of A on w is given by the
state sequence q0q1q2 . . . ∈ Qω with q0 = qI and qi+1 = δ(qi, σi) for all i. We denote the set
of states which occur infinitely often on a run r by inf(r). Given the acceptance condition
F = {(Li, Ki) | i = 1, . . . , n}, a run r is accepting if, for some i ∈ {1, . . . , n}, inf(r) ∩ Li = ∅
and inf(r) ∩Ki 6= ∅. The set of words with an accepting run is denoted by L(A).

Definition 3 A linear-time property L over AP is ω-regular if there is a deterministic Rabin
automaton A = (Q, qI , 2

AP , δ, F ) such that L = L(A).

For a state s of the DTMC M and an ω-regular property L, we denote the probability to
walk along a path which satisfies L when starting in state s ∈ S by PrsM(L) = PrsM({π ∈
Pathsinf(s) | trace(π) ∈ L}). We consider ω-regular properties where this probability may be
at most a given bound λ ∈ [0, 1]. Such properties are denoted by P≤λ(L). We assume that the
initial state of M violates this property. The goal is now to identify a smallest possible part of M
which already violates P≤λ(L).

Definition 4 A subsystem of a DTMC M = (S, sI , P, L) is a DTMC M ′ = (S ′, s′I , P
′, L′) such

that S ′ ⊆ S, s′I ∈ S ′, L′(s) = L(s) and P ′(s, s′) > 0 implies P ′(s, s′) = P (s, s′) for all
s, s′ ∈ S ′.
For a property P≤λ(L), we call M ′ critical if s′I = sI and Pr

s′I
M ′(L) > λ.

We want to compute a minimal critical subsystem (MCS) of M for P≤λ(L). Minimality can be
defined in terms of the number of states or the number of transitions. Though in this paper we
focus on state-minimality, our approach can be easily adapted to transition-minimality.

For a proposition a ∈ AP , the property to reach an a-state is specified byL = {α0α1α2 . . . | ∃i ≥
0 : a ∈ αi}. We denote this reachability property by the PCTL-Formula P≤λ(♦ a).
To check reachability properties, specialized algorithms have been developed, which are much
more efficient than the algorithms for arbitrary ω-regular properties. To be more precise, the

2It is more common to use nondeterministic Büchi automata to define ω-regular properties, which have the same
expressiveness as deterministic Rabin automata, but can be much more compact. However, we need to construct
a product automaton of a DTMC and an appropriate ω-automaton. In case of a deterministic Rabin automaton,
the result is again a DTMC, but not in case of a nondeterministic Büchi automaton.



probability to eventually reach an a-state from a state s is the unique solution of a linear equation
system [2, p. 760] containing for each state s ∈ S the equation ps = 1 if a ∈ L(s), ps = 0 if
there is no path from s to any a-state, and ps =

∑
s′∈S P (s, s′) · ps′ in all other cases.

Definition 5 Let M = (S, sI , P, L) be a DTMC and a ∈ AP . A state s ∈ S is relevant for a if
there is a path π = s0s1s2 . . . sn with s0 = sI , a 6∈

⋃n−1
i=0 L(si), a ∈ L(sn) and s = sj for some

j ∈ {0, . . . , n}. A transition (s, s′) ∈ EM is relevant if both s and s′ are relevant and a 6∈ L(s).

We write Srel
M for the set of relevant states of M and Erel

M for the set of relevant transitions.
States and transitions that are not relevant can be removed from a DTMC without changing
the probability to reach a target state. The following lemma shows that Srel

M and Erel
M can be

determined in linear time in the size of the DTMC by two simple graph analyses.

Lemma 1 Assume a DTMC M = (S, sI , P, L) and a proposition a ∈ AP , and let T = {s ∈
S|a ∈ L(s)}. Let furthermore E−M =

{
(s, s′) ∈ S × S

∣∣ (s′, s) ∈ EM} be the set of reversed
transitions of M . We consider the directed graphs G = (S,EM) and G− = (S,E−M).
A state s ∈ S is relevant for a iff s is reachable from sI in G and s is reachable from a state
t ∈ T in G−. A transition (s, s′) ∈ EM is relevant iff s is reachable from sI in G and s′ is
reachable from a state t ∈ T in G−, and s 6∈ T .

2.2. Mixed Integer Linear Programming

A mixed integer linear program optimizes an objective function under a condition specified by a
conjunction of linear inequalities. A subset of the variables in the inequalities are restricted to
take only integer values, which makes solving MILPs NP-hard.

Definition 6 Let A ∈ Qn×m, B ∈ Qk×m, b ∈ Qm, c ∈ Qn, and d ∈ Qk. A mixed integer
linear program (MILP) consists in computing min cTx + dTy such that Ax + By ≤ b and
x ∈ Rn, y ∈ Zk.

MILPs are typically solved by a combination of a branch-and-bound algorithm with the gener-
ation of so-called cutting planes. These algorithms heavily rely on the fact that relaxations of
MILPs which result from removing the integrality constraints, can be solved efficiently. MILPs
are widely used in operations research, hardware-software codesign and numerous other applica-
tions. Efficient open source as well as commercial implementations are available like SCIP or
CPLEX. We refer the reader to, e. g., [14] for more information on solving MILPs.

3. Computing Minimal Critical Subsystems for DTMCs

We give an MILP formulation3 of the problem to find state-minimal critical subsystems for
DTMCs and violated reachability properties in Sec. 3.1. We report on optimizations in Sec. 3.2
and extend our approach to general ω-regular properties in Sec. 3.3.

3.1. Minimal Critical Subsystems for Reachability Properties

Let M = (S, sI , P, L) be a DTMC, a ∈ AP a proposition, T = {s ∈ S | a ∈ L(s)} the set of
so-called target states, and P≤λ(♦ a) a reachability property which is violated by M . We want to

3We also worked out Sat-Modulo-Theories formulations, but they showed to be less efficient.



minimize
(
−1

2
psI +

∑
s∈Srel

M

xs

)
(1a)

such that psI > λ (1b)

∀s ∈ Srel
M ∩ T : ps = xs (1c)

∀s ∈ Srel
M \ T : ps ≤ xs (1d)

ps ≤
∑

s′∈succM (s)∩Srel
M

P (s, s′) · ps′ . (1e)

Figure 1: MILP formulation for state-minimal critical subsystems of DTMCs

identify a state-minimal critical subsystem of M such that the probability to walk from sI to a
state in T in the subsystem is larger than λ. This can be formulated by the MILP shown in Fig. 1.
We introduce a variable xs ∈ [0, 1] ⊆ Z for each s ∈ Srel

M , indicating if s belongs to the subsystem
(xs = 1) or not (xs = 0). A real-valued variable ps ∈ [0, 1] ⊆ R for each state s ∈ Srel

M contains
the probability of reaching a target state from s inside the MCS. Selected target states have
probability one, non-selected target states zero (line 1c). For non-target states s ∈ Srel

M \ T ,
either s is not selected and ps = 0, or s is selected and ps is the sum of the probabilities ps′ of
all relevant successor states s′, weighted by the according transition probabilities P (s, s′). For
non-selected states s, line 1d ensures that ps = 0. To keep our inequations linear, line 1e defines
the above-mentioned sum to be an upper bound on the probabilities, covering both selected and
unselected states. Line 1b assures that the subsystem is critical.
In order to obtain a state-minimal critical subsystem, we have to minimize the number of xs-
variables with value 1, or equivalently, the sum over all xs-variables. However, due to the
inequations in line 1e, minimizing this sum would give us only lower bounds on the exact
probabilities of reaching target states in the resulting MCS. We can achieve to compute the exact
probabilities by forcing the solver to additionally maximize psI (line 1a). This way the solver
even computes a minimal MCS with maximal probability. The factor 1/2 is needed because if
we only subtract the probability of the initial state, the solver may add an additional state if this
results in psI = 1.

3.2. Optimizations

In the following we describe optimizations by adding redundant constraints to the problem,
which may help the solver to detect unsatisfiable branches in the search space earlier.

3.2.1. Successor and Predecessor Constraints

We can guide the solver not to select states that are unreachable in the subsystem by adding the
following constraints to the MILP formulation in Fig. 1:

∀s ∈ Srel
M \ T : − xs +

∑
s′∈(succM (s)∩Srel

M )\{s}

xs′ ≥ 0 (2a)

∀s ∈ Srel
M \ {sI} : − xs +

∑
s′∈(predM (s)∩Srel

M )\{s}

xs′ ≥ 0 . (2b)



The first set of constraints (2a), which we call forward cuts, states that each non-target state in the
MCS must have a proper successor state in the MCS. Proper means that self-loops are ignored.
The second set of constraints (2b), called backward cuts, requires that each non-initial state in
the MCS has a proper predecessor in the MCS. Forward and backward cuts do not modify the
feasible solutions, but add cutting planes which tighten its LP-relaxation.

3.2.2. SCC Constraints

The forward respectively backward cuts do not encode that all states of the MCS are forwards
respectively backwards reachable, since they allow loops that are unreachable in the MCS.
To strengthen the effect of forward and backward cuts, we make use of strongly connected
components. Formally, a strongly-connected component (SCC) of a DTMC M = (S, sI , P, L)
is a maximal subset C ⊆ S such that each state s ∈ C is reachable from each state s′ ∈ C
visiting only states from C. The input states In(C) = {s ∈ C | ∃s′ ∈ S \C : P (s′, s) > 0} of an
SCC C have an in-coming transition from outside the SCC. The output states Out(C) = {s ∈
S \ C | ∃s′ ∈ C : P (s′, s) > 0} of C are those states outside C which can be reached from C
via a single transition.
A state of an SCC can be reached from the initial state only through one of the SCC’s input
states. Therefore we define an SCC input cut for each SCC C assuring that, if none of C’s input
states is included in the MCS, then the MCS does not contain any states from C:∑

s∈C\In(C)

xs ≤
∣∣C \ In(C)

∣∣ · ∑
s∈In(C)

xs . (3a)

Analogously, starting from a state inside an SCC, all paths to a target state lead through one of
the SCC’s output states. Therefore, the SCC output cut states that if no output state of an SCC C
is selected then we do not want to select any state from C:∑

s∈C

xs ≤
∣∣C∣∣ · ∑

s∈Out(C)

xs . (4a)

3.2.3. Complete Reachability Encoding

The SCC cuts still do not encode reachability exactly, since they allow the selection of unreach-
able loops in reachable SCCs. For a complete encoding of forward reachability, we introduce a
variable r→s ∈ [0, 1] ⊆ R for each state s ∈ Srel

M . The values of these variables define a partial
order on the states, which we use to encode that for each selected state s there is a path s0 . . . sn
in the MCS from the initial state s0 = sI to sn = s such that r→i < r→i+1 for all 0 ≤ i < n. For
each transition from a state s to s′ we additionally need an integer variable t→s,s′ ∈ [0, 1] ⊆ Z
representing the choice of the predecessor state in the above paths. Note that proper values
always exist, e.g., choosing for each state s the longest loop-free path from sI to s and setting
r→s = ns/|Srel

M | with ns the length of the path. Forward reachability is encoded as follows:



∀s∈Srel
M ∀s′ ∈ (succM(s)∩Srel

M ) : 2t→s,s′ ≤ xs + xs′ (5a)

r→s < r→s′ + (1− t→s,s′) (5b)

∀s ∈ Srel
M \ {sI} : (1− xs) +

∑
s′∈predM (s)∩Srel

M

t→s′,s ≥ 1 . (5c)

Lines 5a and 5b encode that each transition from s to s′ with t→s,s′ = 1 connects selected states
with r→s < r→s′ . Under this assumption, the constraints in line 5c imply by induction that for each
selected state there is a reachable selected predecessor state.
Backward reachability is encoded analogously using variables r←s and t←s,s′ , which we substitute
for the variables r→s and t→s,s′ in the above constraints.

∀s∈Srel
M ∀s′ ∈ (succM(s)∩Srel

M ) : 2t←s,s′ ≤ xs + xs′ (6a)

r←s < r←s′ + (1− t←s,s′) (6b)

∀s ∈ Srel
M \ T : (1− xs) +

∑
s′∈succM (s)∩Srel

M

t←s,s′ ≥ 1 . (6c)

These encodings come at the cost of new variables, but they exclude all subsystems with
unreachable states.

3.3. General ω-Regular Properties

We now show how the techniques described so far for reachability properties can be generalized
to arbitrary ω-regular properties L with an upper bound λ on the probability of satisfying L, i. e.,
properties of the form P≤λ(L). To do so we need the product automaton of the DTMC under
consideration with the DRA of L.

Definition 7 LetM = (S, sI , P, L) be a DTMC andA = (Q, qI , 2
AP , δ, F ) with F = {(Li, Ki)|

1 ≤ i ≤ n} a DRA for the ω-regular property L. The product automaton M ⊗ A is the
DTMC M ⊗A = (S×Q, (sI , δ(qI , L(sI)), P

′, L′) such that P ′((s, q), (s′, q′)) equals P (s, s′) if
q′ = δ(q, L(s′)) and 0 otherwise. We use the sets Li, Ki as new atomic propositions for labeling
the states, i. e., for H ∈ {Li, Ki | 1 ≤ i ≤ n}, H ∈ L′((s, q)) iff q ∈ H .

SCCs of M ⊗ A that cannot be left, the so-called bottom SCCs (BSCCs), play a crucial role
in the computation of PrsM(L). We call a BSCC T of M ⊗ A accepting iff there is an index
i ∈ {1, . . . , n} such that T ∩ (S × Li) = ∅ and T ∩ (S ×Ki) 6= ∅.

Lemma 2 (Theorem 10.56 of [2]) Let M be a DTMC, s a state of M , A a DRA for L, and let
T be the union of all accepting BSCCs in M ⊗ A. Then

PrsM(L) = Pr
(s,δ(qI ,L(s)))
M⊗A (♦T ).

This means, computing probabilities of ω-regular properties reduces to a reachability analysis in
the product automaton. The probability to finally reach a BSCC of a DTMC and to visit all of its
states infinitely often equals 1 [2, Theorem 10.27]. This implies, in order to obtain an MCS, we



minimize
(
−1

2
p(sI ,δ(qI ,L(sI))) +

∑
s∈Srel

M⊗A|M

xs

)
(7a)

such that p(sI ,δ(qI ,L(sI))) > λ (7b)

∀(s, q) ∈ T ∩ Srel
M⊗A : xs = ps (7c)

∀i ∈ {1, . . . , k}∀s ∈ Ti ∩ Srel
M⊗A : xTi = xs (7d)

∀(s, q) ∈ Srel
M⊗A \ T : p(s,q) ≤ xs (7e)

p(s,q) ≤
∑

(s′,q′)∈succM⊗A(s,q)∩Srel
M⊗A

P ′((s, q), (s′, q′)) · p(s′,q′). (7f)

Figure 2: Minimal critical subsystems for ω-regular properties

either have to take all states of an accepting BSCC of M ⊗ A or none of them. One can show
that the size of the resulting MCS is the same for all DRAs A with L(A) = L.
Let T1, . . . , Tk be the accepting BSCCs of M ⊗A, T =

⋃k
i=1 Ti, and Srel

M⊗A the relevant states of
M ⊗A (regarding the reachability of T ). For a set R ⊆ S ×Q we denote by R|M the projection
of R on S, i. e., R|M = {s ∈ S | ∃q ∈ Q : (s, q) ∈ R}. Since we want an MCS of M , but
compute the probabilities in M ⊗ A, we introduce one variable xs ∈ [0, 1] ⊆ Z for each state
s ∈ Srel

M⊗A|M and one variable p(s,q) ∈ [0, 1] ⊆ R for each pair (s, q) ∈ Srel
M⊗A. Furthermore

we use a variable xTi ∈ [0, 1] ⊆ Z for each accepting BSCC Ti which indicates if the BSCC is
relevant for the MCS.
The MILP formulation for MCSs is shown in Fig. 2. It follows the ideas of MCSs for reachability
(see Fig. 1), with the exception that we minimize the projection of the subsystem onto the original
DTMC. Constraint (7d) takes care of the fact that we either have to take all states of a BSCC or
none by requiring that for all s ∈ Ti|M the variables xs have the same value.
All optimizations like SCC cuts or reachability cuts can be applied to ω-regular properties in a
straightforward way.

4. Experimental Evaluation

We implemented our approach in a tool called SUBSYS in C++ and applied it to two se-
ries of test cases. For all benchmarks, we used PRISM [15] models available at http://
prismmodelchecker.org.
(1) The crowds protocol [16] provides a mechanism for anonymous web browsing by routing
messages through a network of N nodes. If a node wants to send a message, it has a probabilistic
choice whether to deliver the message directly to its destination or to forward it to a randomly
selected successor node. This procedure preserves anonymous sending of messages, as the
original sender of a message cannot be determined. One instance consists of R rounds of
message deliveries. We denote the different instances by crowdsN -R. The set T of target states
contains all those states where a bad group member could identify the sender of a message.
(2) The synchronous leader election protocol [17] models the selection of a distinguished leader
node in a ring of N identical network nodes. In each round, every node randomly selects an
integer number from {0, . . ., K}. The node with the highest number becomes the leader, if this
number is unique. Otherwise a new round starts. We denote the instances for different N and K
by leaderN -K.



Table 1: Sizes of the benchmark models and comparison with the heuristic local search method of [10]
Model |S| |EM | |T | λ |SMCS| |EMCS| |Sheur| |Eheur|
crowds2-3 183 243 26 0.09 22 27 23 27
crowds2-4 356 476 85 0.09 22 27 23 27
crowds2-5 612 822 196 0.09 22 27 23 27
crowds3-3 396 576 37 0.09 37 51 40 56
crowds3-4 901 1321 153 0.09 37 51 40 56
crowds3-5 1772 2612 425 0.09 37 51 40 56
crowds5-4 3515 6035 346 0.09 72 123 94 156
crowds5-6 18817 32677 3710 0.09 72 123 145 253
crowds5-8 68740 120220 19488 0.09 72 123 198 356
leader3-2 22 29 1 0.5 15 18 17 20
leader3-3 61 87 1 0.5 33 45 40 54
leader3-4 135 198 1 0.5 70 101 76 108
leader4-2 55 70 1 0.5 34 41 44 54
leader4-3 256 336 1 0.5 132 171 170 220
leader4-4 782 1037 1 0.5 395 522 459 605
leader4-5 1889 2513 1 0.5 946 1257 1050 1393
leader4-6 3902 5197 1 0.5 1953 2600 2103 2797

All experiments were performed on a computer with four 2.3 GHz AMD Opteron Quad-Core
CPUs and 64 GB memory, running Ubuntu 10.04 Linux in 64-bit mode. We aborted any
experiment which did not finish within 7200 s (denoted by “– TL –”) or needed more than 4 GB
of memory (“– ML –”).
For solving the MILPs we used a number of state-of-the-art solvers, from which we selected,
after a series of preliminary experiments, the most efficient ones, namely the publicly available
SCIP 2.0.2 solver (http://scip.zib.de) and the commercial CPLEX 12.3 solver (http:
//www-01.ibm.com/software/integration/optimization/cplex-optimizer).
Table 1 contains statistics on our benchmarks. The columns contain (from left to right) the model
name, the number of states, the number of transitions, the number of target states, the probability
bound, the number of states in the MCS, and finally the number of transitions in the MCS. The
last two columns contain the sizes of heuristically computed critical subsystems using the local
search approach of [10]. For all instances the heuristic tool terminated within 6 min.
In Table 2 we give the running times of SCIP and CPLEX in seconds. CPLEX supports a parallel
mode, in which we started 16 parallel threads. Therefore we give for CPLEX the accumulated
times of all threads and, in parentheses, the actual time from start to termination of the tool.
The block of columns entitled “w/o redundant constraints” contains the running times of the
solvers without any optimizations. The block “optimal conf.” lists the optimal times, i. e., the
times achieved by adding the combination of optional constraints that leads to the smallest
computation time. These running times can be obtained in general by using a portfolio approach
which runs the different combinations of redundant constraints in parallel. The optimal running
times were in some cases by orders of magnitude smaller, especially for the large benchmarks
were the standard formulation could not be solved within the time limit.
To illustrate the effects of the different optimizations, we give more detailed results for crowds5-6
and leader4-5 in Table 3. The left column block lists running times without SCC cuts. The
column “–” contains the values without forward and backward cuts, “→” with forward cuts, “←”
the with backward cuts and “↔” with both. The values for the four different combinations of



Table 2: Running times SCIP and CPLEX for computing MCSs
w/o redundant constraints optimal conf.

Model SCIP CPLEX SCIP CPLEX

crowds2-3 0.16 1.33 (0.28) 0.12 0.06 (0.11)
crowds2-4 0.47 0.30 (0.24) 0.30 0.30 (0.24)
crowds2-5 0.90 0.56 (0.45) 0.60 0.56 (0.24)
crowds3-3 0.64 0.49 (0.33) 0.35 0.38 (0.30)
crowds3-4 4.29 5.53 (2.07) 1.45 0.89 (0.58)
crowds3-5 23.49 6.66 (2.77) 5.58 1.51 (0.87)
crowds5-4 743.84 14.23 (5.07) 13.28 12.51 (4.89)
crowds5-6 – TL – 302.03 (38.39) 1947.46 100.26 (23.52)
crowds5-8 – TL – – TL – – TL – 1000.79 (145.84)
leader3-2 0.07 0.62 (0.22) 0.01 0.21 (0.13)
leader3-3 91.89 0.43 (0.22) 0.06 0.02 (0.06)
leader3-4 2346.59 0.70 (0.36) 0.40 0.07 (0.09)
leader4-2 0.23 0.45 (0.21) 0.07 0.24 (0.17)
leader4-3 1390.79 22.33 (3.38) 0.21 0.49 (0.37)
leader4-4 – TL – – TL – 1.49 1.88 (1.21)
leader4-5 – TL – – TL – 1.15 4.06 (2.80)
leader4-6 – TL – – ML – – TL – 8.70 (5.92)

reachability cuts (none, only forward, only backward, and both) are listed in the according rows
of the table.
Comparing the values for the reachability cuts, we can observe that they have a negative effect
for crowds5-6. However, they speed up the solution of leader4-5 by a factor of 103. The same
tendency can be observed for the other crowds and leader instances.
The addition of backward cuts to crowds5-6 reduces the running time to about one third, and they
typically decrease the times for most of the instances. Since the SCC cuts are even less effective,
we only give the minimal value of the three cases (with SCC input, SCC output, and both).
Fig. 3 shows the size of the MCS of crowds5-6 for different values of λ (red solid lines),
comparing it with the size of heuristically computed critical subsystems using the local search of
[10] (blue dotted lines). For λ ≥ 0.23, we could only compute an upper bound (within 8 % from
the optimal value) on the size of the MCS with a timeout of 2 hours. Also the local search tool
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Figure 3: Size of the MCS and heuristically determined critical subsystems for crowds5-6 and different
values of λ



Table 3: Runtimes for crowds5-6 and leader4-5 with and without redundant constraints using CPLEX as
solver

no SCC cuts with SCC cuts
Reach – → ← ↔ – → ← ↔

cr
ow

ds
5-

6

none
302.03 367.49 103.20 149.73 301.87 342.07 100.26 138.36
(38.39) (44.70) (23.52) (26.07) (38.64) (42.76) (23.52) (25.20)

fwd
656.13 1292.59 651.47 966.57 634.40 833.37 646.64 925.95

(120.04) (148.82) (112.47) (127.94) (118.22) (108.13) (111.18) (125.52)

bwd
4043.93 3613.96 770.90 1070.50 3911.81 3603.49 756.28 1074.36
(384.74) (358.49) (121.02) (130.45) (375.48) (358.25) (119.90) (130.72)

both
2107.84 1403.44 5972.98 2191.83 1986.37 1379.78 5925.31 2210.68
(251.41) (185.34) (546.83) (281.07) (238.58) (183.38) (542.18) (284.51)

le
ad

er
4-

5

none – TL – – TL – – TL – – TL – – TL – – TL – – TL – – TL –

fwd
284.04 254.56 286.83 261.53 294.71 259.98 285.33 251.69
(40.02) (35.97) (40.85) (36.46) (41.15) (36.21) (40.57) (35.80)

bwd
6.30 6.29 6.27 6.10 5.89 5.73 5.78 5.95

(3.73) (3.69) (3.72) (3.71) (3.65) (3.66) (3.67) (3.69)

both
4.46 4.06 4.34 4.56 4.17 4.41 4.10 4.39

(2.77) (2.80) (2.83) (2.91) (2.77) (2.83) (2.84) (2.90)

ran into a timeout for λ ≥ 0.35, however, without yielding a critical subsystem.

5. Conclusion

In this paper we used MILP solver to compute state-minimal critical subsystems for DTMCs.
By adding redundant constraints, which tighten the LP-relaxation of the MILP, the solution
process can be speeded up significantly. A topic for future research is to analyze the theoretical
complexity of computing MCSs for DTMCs. We conjecture that this problem is NP-complete.
We also plan to integrate the MILP approach into the hierarchical counterexample generation
tool described in [10].
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