
Co-simulation of Distributed Embedded
Real-Time Control Systems�

Marcel Verhoef 1, Peter Visser 2, Jozef Hooman 3, and Jan Broenink 2

1 Chess, P.O. Box 5021, 2000 CA Haarlem and Radboud University Nijmegen,
Institute of Computing and Information Sciences, P.O. Box 9010,

6500 GL Nijmegen, The Netherlands
Marcel.Verhoef@chess.nl

2 University of Twente, Control Engineering, Department of Electrical Engineering,
Mathematics and Computer Science, P.O. Box 217, 7500 AE Enschede,

The Netherlands
P.M.Visser@utwente.nl, J.F.Broenink@utwente.nl

3 Embedded Systems Institute, P.O. Box 513, 5600 MB Eindhoven and
Radboud University Nijmegen, Institute of Computing and

Information Sciences
hooman@cs.ru.nl

Abstract. Development of computerized embedded control systems is
difficult because it brings together systems theory, electrical engineering
and computer science. The engineering and analysis approaches advo-
cated by these disciplines are fundamentally different which complicates
reasoning about e.g. performance at the system level. We propose a light-
weight approach that alleviates this problem to some extent. An existing
formal semantic framework for discrete event models is extended to al-
low for consistent co-simulation of continuous time models from within
this framework. It enables integrated models that can be checked by
simulation in addition to the verification and validation techniques al-
ready offered by each discipline individually. The level of confidence in
the design can now be raised in the very early stages of the system de-
sign life-cycle instead of postponing system-level design issues until the
integration and test phase is reached. We demonstrate the extended se-
mantic framework by co-simulation of VDM++ and bond-graph models
on a case study, the level control of a water tank.

Keywords: simulation, continuous time, discrete event, VDM++, bond
graphs.

1 Introduction

Computers that are intimately coupled to the environment which they monitor
and control are commonly referred to as embedded systems. We focus on the class
� This work has been carried out as part of the Boderc project under the responsibility

of the Embedded Systems Institute. This project was partially supported by the
Dutch Ministry of Economic Affairs under the Senter TS program.

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 639–658, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

640 M. Verhoef et al.

of embedded systems that control a physical process in the real world. We refer
to these systems as embedded control systems. Examples are the control unit
of a washing machine and the fuel injection system in a private car. Embedded
control systems execute an algorithm that ensures the correct behavior of the
system as a whole. The common element of all these systems is that timeliness is
of concern. Control actions have to be taken on time to keep the physical process
in the required state. I.e., embedded control systems are real-time systems.

This is in particular true for the class of high-tech systems such as for instance
wafer steppers and high-volume printers and copiers. The productivity of these
machines, which is often their most important selling point, depends on the
performance of the embedded control system. Typically, these complex machines
are composed of several subsystems that need to work together to get the job
done, which may require multi-layer and distributed control. For example, each
subsystem may have its own embedded control system to perform its specific
function while another, dedicated, subsystem coordinates the system as a whole
by telling the other subsystems what to do and when. It is not hard to imagine
that the design of the control strategy for these systems is challenging.

This is complicated by the fact that systems are often developed out-of-phase.
Typically, mechanical design precedes electronics design which precedes software
design. Although there is a trend towards concurrent engineering to reduce de-
velopment time, the lead times for mechanical design and engineering typically
still exceed those of electronics and software. System level design considerations
are validated during the test and integration phase, which may cause significant
delays in the project if an important issue was overlooked. Software is often
the only part of the system that can be changed at this late stage. These late
changes can cause a significant increase in the complexity of the software, espe-
cially when a carefully designed software architecture is violated to compensate
for some unforeseen problems in the hardware. Hence, it is important to get as
much feedback as possible in the earliest stages of the system design life-cycle,
to prevent this situation.

Model-based design addresses this challenge. Reasoning about system-level
properties is enabled by creating abstract, high-level and multidisciplinary mod-
els of the system under construction. Mono-disciplinary models typically allow
optimization of single aspects of the design, while multidisciplinary models allow
reasoning about fitness for purpose across multiple system aspects. Suppose, for
instance, that the position of a sheet of paper in the paper path of a printer is
measured with a sensor that generates an interrupt when the edge of the sheet
is observed. High interrupt loads can occur on the embedded control system if
these sensors are placed physically close together, because they are triggered
right after one another. A very powerful processor may be required in order to
deal with this sudden peak load, in particular when a short response time must
be guaranteed for each event. There is a clear trade-off between spatial layout
and performance in this example. Analysis of multidisciplinary models provides
valuable insight into the design such that these trade-offs can be made in a
structured way, earlier, and with more confidence.

Co-simulation of Distributed Embedded Real-Time Control Systems 641

This approach was studied in the Boderc project [1] in which the authors par-
ticipated. We observed that creating multidisciplinary models is far from trivial.
The notations and the engineering and analysis approaches that are advocated
by the involved disciplines are different and the resulting models are typically
not at the same level of abstraction. Henzinger and Sifakis [2] even claim that
these are fundamental problems and that a new mathematical foundation is re-
quired to reason about these integrated multidisciplinary models. The approach
taken in this paper is different. We would like to be able to combine the state
of the art in each discipline in a useful and consistent way. In other words, we
want to construct multidisciplinary models from mono-disciplinary models. We
are certainly not the first to propose this idea but we believe that our solution
to this problem is novel.

Contribution of this paper. We have reconciled the semantics of two existing
formal notations such that system models, which are composed of sub-models
written in either language, can be conveniently studied in combination. We also
demonstrate how this is achieved in practice by tool coupling. The result is a
light-weight modeling approach that enables construction of multidisciplinary
models that can be simulated, in addition to the analysis techniques already
available for each sub-model individually. Moreover, the reconciled semantics
ensures reliable simulation results which can be obtained with little effort.

Structure of this paper. An overview of the current state of practice is pre-
sented in Section 2. Modeling and analysis of embedded control systems is dis-
cussed by introducing a motivating case study in Section 3. The results of the
simulation using the tool coupling are shown in Section 4. The semantic inte-
gration is presented from a formal perspective in Section 5. Finally, we look at
related and future work and we draw conclusions in Section 6.

2 Current State of Practice in Academia and Industry

The importance of model-based design is widely recognized and we observe that
many contenders, typically originating from a specific discipline, are extending
their techniques to cater for this wider audience. Matlab/Simulink is an example
of this trend. In combination with their Stateflow and Real-time Workshop add-on
products, they provide a tool chain for embedded systems design and engineering.
It is particularly well-suited for fine grained controller design. This is not surpris-
ing because the roots of the tools are firmly based in systems theory. Stateflow
can be used to model the control software using finite state machines. However,
this technique is not very convenient for specifying complex algorithms. One has
to write so-called S-functions or provide a piece of C-code in order to execute the
Stateflow model. Timing is idealized by the assumption that all transitions take
a fixed amount of timer ticks. Scheduling and deployment of software on a dis-
tributed system cannot easily be described and analyzed. Henriksson [3] designed
and implemented the TrueTime toolkit on top of Simulink which provides a so-
lution for describing scheduling and deployment, but the software models remain

642 M. Verhoef et al.

at a low abstraction level. We believe that these tools are not acceptable to the
embedded software engineer at large, because insufficient support is provided for
modern software engineering approaches to design and implement complex real-
time software.

A similar situation arises from IBM Rational Technical Developer (formerly
known as Rational Rose Real-time) and I-Logix Rhapsody. These software de-
velopment environments are increasingly used in real-time embedded systems
development [4]. They provide modeling capabilities based on the Unified Mod-
eling Language (UML) and the System Modeling Language (SysML) and are
supported by mature development processes (RUP and Harmony respectively).
Both tools aim to develop executable models that are deployed on the target
system as soon as possible to close the design loop. This requires the model to
evolve to a low level of abstraction early in the design process in order to achieve
that goal. Actions are coded directly in the target (programming) language and
timing can be specified by using so-called timer objects provided by the modeling
framework. However, their resolution and accuracy is determined by the services
of the operating system running on the target platform, they are not part of
the modeling language. Moving code from one platform to another might lead
to completely different timing behavior. Similarly, task priorities and schedul-
ing are implementation specific. We believe that these tools are not acceptable
to the control engineer at large, because no support is provided to design and
analyze the control laws that the system should implement.

Is it possible to support control and software engineers using a single method
or tool? Several attempts have been made to unify both worlds. For example,
Hooman, Mulyar and Posta [5] have co-simulated Rose Real-time software mod-
els with control laws specified in Matlab/Simulink. They removed the platform
dependent notion of time in Rose Real-time by providing a platform neutral
notion of time instead. This is achieved by development of an interface that sits
in between Rose Real-time and Simulink, which exposes the software simulator
of Rose Real-time to the Simulink internal clock. While this is a step forward,
it also shows that Rose Real-time is not very suitable for the co-simulation of
control systems, because it lacks a suitable notion of simulation time and the
run-to-completion semantics does not allow interrupts due to relevant events of
the physical system under control. I-Logix has recently announced integration
of Rhapsody with Simulink but the technical details have not yet been unveiled.

Lee et al [6] propose a component based, actor oriented approach. They de-
fine a framework in which all components are concurrent and interact by sending
messages according to some communication protocol. The communication pro-
tocol and the concurrency policies together are called the model of computation.
Ptolemy-II [6] is a system-level design environment that supports heterogeneous
modeling and design using this approach. It supports several domains, each of
which is based on a particular model of computation, such as for example dis-
crete event, synchronous data flow, process networks, finite state machines and
communicating sequential processes. They can be combined at liberty to de-
scribe the system under investigation. This approach seems to be a major step

Co-simulation of Distributed Embedded Real-Time Control Systems 643

forward for model based design of real-time embedded systems, but paradoxi-
cally, it does not appeal to either control engineers or software engineers. Perhaps
the approach proposed by Ptolemy-II upsets the current way of working so much
that it is considered too high a risk to use in an industrial environment. Cur-
rently, only simulation is offered as a means of model validation and synthesis is
under development for some domains. Verification of Ptolemy-II models is not
yet possible because the semantics of actors has not been formally defined.

3 Modeling and Analysis of Embedded Control Systems

The complexity of embedded control design and analysis is probably best ex-
plained by means of a motivating example. We use the level control of a water
tank in this paper. This example is small and simple, but it contains all the basic
elements of an embedded control system. These elements are presented in detail
in this section. An overview of the case study is presented in Figure 1. The case
study concerns a water tank that is filled by a constant input flow fI and can be
emptied by opening a valve resulting in an output flow fO. The volume change
is described by equations (1) and (2), where A is the surface area of the tank
bottom, V is the volume, g is the gravitation constant, ρ is the density of liquid
and R is the resistance of the valve exit.

From the system theoretic point of view, we distinguish the plant and the
controller of an embedded control system, as shown in Fig. 2. The plant is the
physical entity in the real world that is observed and actuated by the controller.
More accurately, we study feedback control in this paper. Feedback controllers
compute and generate a control action that keeps the difference between the
observed plant state and its desired value, the so-called set-point, within a certain
allowed margin of error at all times. The plant is a dynamic system that is usually
described by differential equations if in the continuous time (ct) domain or by
difference equations if it is described in the discrete time (dt) domain.

The water tank case study is an example of a continuous time system, de-
scribed by differential equation (1). Controllers observe some property of the
plant and they change the state of the plant by performing a control action,
according to some control law. This control law keeps the system as a whole
in some desired state. In our case study, the water level is observed by three

dV
dt

= fI − fO (1)

fO =

{
ρ·g
A·R · V if valve = open
0 if valve = closed

(2)

Fig. 1. The water tank level control case study

644 M. Verhoef et al.

Fig. 2. System theoretic view of a control system

sensors: a pressure sensor at the bottom of the tank which measures the current
water level continuously and two discrete sensors that raise an alarm if a certain
situation occurs. The top sensor informs us when the water level exceeds the
high water mark and the bottom sensor fires if the water level drops below the
low water mark. The aim of the controller is to keep the water level between
the low and high watermark. The controller can influence the water level by
opening or closing a valve at the bottom of the tank. We assume that the valve
is either fully open or fully closed. Plant modeling and controller descriptions
are discussed in more detail in the following sections.

3.1 Plant Modeling

For modeling the plant of the embedded control system, we use so-called bond
graphs [7,8] in this paper. Bond graphs are directed graphs, showing the rele-
vant dynamic behavior of the system. Vertices are the sub-models and the edges,
which are called bonds, denote the ideal (or idealized) exchange of energy. En-
try points of the sub-models are the so-called ports. The exchange of energy
through a port (p) is always described by two implicit variables, effort (p.e) and
flow (p.f). The product of these variables is the amount of energy that flows
through the port. For each physical domain, such a pair of variables can be
specified, for example: voltage and current, force and velocity. The half arrow on
the vertex at the bonds shows the positive direction of the flow of energy, and the
perpendicular stroke indicates the computational direction of the two variables
involved. They connect the energy flows to the two variables of the bond. The
equations that define the relationship between the variables are specified as real
equalities, not as assignments. Port variables obtain a computational direction
(one as input, the other as output) by means of computational causal analysis on
the graph. This efficient algorithm ensures that the underlying set of differential
equations can be solved deterministically by rewriting the equations as assign-
ment statements such that a consistent evaluation order is enforced whenever
a solution is calculated. Bond graphs are physical-domain independent, due to
analogies between the different domains on the level of physics. Mechanical, elec-
trical, hydraulic and other system parts can all be modeled with bond graphs.
Bond graphs may be mixed with block diagrams in a natural way to cover
the information domain. Control laws are usually specified with block diagrams
and the plant is specified with bond graphs to model a controlled mechatronic

Co-simulation of Distributed Embedded Real-Time Control Systems 645

1 = open

waterlevel

valve control

f
I

f
O

0 = close

Tank

Valve

Drain

Input

R

C 0

X0

Sf
01 variables
02 real volume, level;
03 parameters
04 real area = 1.0;
05 real gravity = 9.81;
06 real density = 1.0;
07 equations
08 // p.e = pressure, p.f = flow rate
09 // integrate flow to obtain volume
10 volume = int(p.f);
11 level = volume / area;
12 p.e = gravity * level * density;

Fig. 3. The bond graph plant model of the water tank case study

system. Figure 3 shows the bond graph plant model of the water tank case study.
The Sf element is the input flow fI. The C element describes the water tank,
the equations are next to the figure. The R element describes the drain. The X0
element is a so-called switching junction which describes the valve. When the
valve is opened, a flow fO will be drained from C. There is no flow from C when
the valve is closed.

Differential equations are the general format for representing dynamic systems
mathematically. For specifying a plant model many continuous-time representa-
tions exist, e.g., bond graph models, ideal physical models, block and flow dia-
grams and so on. A common property is that all these model types are directly
related to a set of differential equations. For the subset of linear time-invariant
plant models, alternative description techniques exist, such as the s-plane, fre-
quency response and state-space formats [9].

System theory has provided many analysis techniques for time-invariant linear
models and design techniques for their associated controllers, for which certain
properties can be proven to hold. However, real world systems often tend to be
nonlinear and time varying. The task of the control engineer is to find a suitable
linearization such that system theory can still be applied to design a controller.
Alternatively, simulation can be used if the dynamic system can be described
by a collection of so-called ordinary differential equations. This includes the
linear time-invariant models mentioned earlier, as well as non-linear and time
varying differential equations. Partial differential equations can be approximated
by lumped parameter models in ordinary differential equations and also non-
deterministic (or stochastic) models can be simulated. Although simulation can
never provide hard answers, it is often used because it can address a much larger
class of problems than linear analysis. For example, it can be used to determine
whether a linearized model is a good abstraction of the original non-linear model,
since both models can be simulated.

The basic method used in simulation is to solve a differential equation numer-
ically instead of analytically. Approximations of the solution are computed by
means of integration of the differential equations. These numerical integration

646 M. Verhoef et al.

techniques are commonly referred to as “solvers” and they exist in many flavors.
Examples of well-known solvers are Euler, Runge-Kutta and Adams-Bashforth
[10,11]. These solvers belong to the class of fixed step size integration algorithms.
Also many variable step size algorithms exist and selection of the right solver is
non-trivial and requires a good understanding of the model itself. For example,
variable step size solvers are typically required when the dynamic system is de-
scribed by (combined CT and) DT models. In addition, since an approximation
of the solution is computed, an integration error is introduced. This error might
lead to instability if the solver, and its parameters, are not carefully selected.

3.2 Controller Description

According to Cassandras and Lafortune [12], a system belongs to the class of
discrete event systems if the state can be described by a set of discrete values and
state transitions are observed at discrete points in time. We adopt this definition
here. Discrete event models can be used to describe the behavior of digital com-
puters, which implement certain control laws. Computers execute instructions
based on a discrete clock. The result of an instruction becomes available after
a certain number of clock ticks has elapsed. Sensor input samples and actuator
output values are seen as discrete events in this model of computation.

In order to bridge the gap between continuous time and discrete event sim-
ulation, we obviously need to introduce the notion of events in the continuous
time solver. Here, we distinguish two different event types: a) state events and
b) time events. State events occur when the solution of a differential equation
reaches some value p. Time events occur when the solver has reached some time
t. Consider a solver that produces a sequence of time steps time and a sequence
of solutions state for variable x then we can declare events as follows

ree (x, p) def= state (x, n − 1) − p < 0 ∧ state (x, n) − p ≥ 0 (3)

fee (x, p)
def
= state (x, n − 1) − p > 0 ∧ state (x, n) − p ≤ 0 (4)

te (t)
def
= time (n − 1) < t ∧ time (n) = t (5)

whereby n is the index used in both sequences. The event ree is the so-called
rising edge zero crossing and fee is the falling edge zero crossing. The zero
crossing functions of the solver ensure that time(n) is an accurate approximation
within user-defined bounds. The time event te is generated as soon as the solver
has exactly reached time t, whereby the solver ensures that the solution x in
state(x, n) at time(n) = t is an accurate approximation. For our case study, we
define two edge triggered events: ree (level, 3.0) and fee (level, 2.0), whereby
level is a shared continuous time variable that represents the height of the water
level in the tank. This variable is declared on line 2 of Fig. 3 and line 4 of Fig. 5.
An event is declared as a normal equation in 20-sim [13] as shown in Fig. 4. In
this example, we increment a simple event counter eue and inform the CT solver
that the DE model needs to be updated, by setting the variable fireDES.

We use VDM++ [14] in this paper to describe the controller. We extended
this notation in earlier work [15] such that the behavior of distributed embedded

Co-simulation of Distributed Embedded Real-Time Control Systems 647

// check for the upper water level limit
if (eventup(level - 3.0)) then

eue = eue + 1;
fireDES = true;

end;

Fig. 4. The ree (level, 3.0) event in 20-sim

real-time systems can be analyzed by means of discrete event simulation. Here
we assume a single processor system cpu1 that executes the controller presented
in Fig. 5. The shared continuous sensor and actuator variables level and valve are
declared on Line 4 and 5. Whenever level is read, it contains the actual value
of the corresponding continuous time variable on line 11 of Fig. 3. Similarly,
whenever valve is assigned a value, it changes the state of X0 in Fig. 3.

We demonstrate that two styles of control can be specified: event driven con-
trol and time triggered control. For event driven control, two asynchronous op-
erations, open and close are defined in lines 8 and 11 respectively. The former
will be the handler for the ree (level, 3.0) event and the latter is the handler
for the fee (level, 2.0) event. In other words, these asynchronous operations will
be called automatically whenever the corresponding event fires. This will cause
the creation of a new thread. This thread will die as soon as the operation is
completed. In VDM++, all statements have a default duration, which can be re-
defined using the duration and cycles statements. The duration statement on
line 9 states that opening the valve in this case takes 50 msec. The cycles state-
ment on line 12 denotes that closing the valve takes 1000 cycles. Assuming this

01 class Controller
02
03 instance variables
04 static public level : real;
05 static public valve : bool := false -- default is closed
06
07 operations
08 static public async open: () ==> ()
09 open () == duration(0.05) valve := true;
10
11 static public async close: () ==> ()
12 close () == cycles(1000) valve := false;
13
14 loop: () ==> ()
15 loop () ==
16 if level >= 3 then valve := true -- check high water mark
17 else if level <= 2 then valve := false; -- check low water mark
18
19 threads
20 periodic(1.0,0,0,1.0)(loop)
21
22 sync
23 mutex(open, close, loop)
24
25 end Controller

Fig. 5. The controller description in VDM++

648 M. Verhoef et al.

class is deployed on a processor with a capacity of 100000 cycles per second, then
executing valve := false will take 10 msec. Note that the result of the assign-
ment is available after this time has passed. Time triggered control is provided
by the loop operation in line 14-17. The periodic clause in line 20 states that
the operation loop is called periodically, once per second, starting at t = 1 sec.
Note that we use the default statement durations here. Finally, the mutex clause
on line 23 states that the three operations are declared mutually exclusive. This
implies that only one operation call can be active at any time and they cannot
be interrupted by each other. All threads that do not meet this requirement are
blocked until the currently executing operation call is completed.

4 Tool Support

We implemented a discrete event simulator to execute VDM++ models as de-
scribed in the previous section, as a proof of concept. We coupled this tool to
the 20-sim [13] continuous time simulator for dynamic systems. This tool has
the ability to make calls to user-defined libraries from within the simulation.
We implemented a simple DLL in C++ to exchange arbitrary sequences of dou-
ble precision reals over a TCP/IP connection. The same library is used in the
VDM++ simulator to set-up a connection. The progress of time in the simula-
tors on either end of the connection is synchronized by exchanging the current
time, time steps, actuator and sensor values and events, whereby the current
time is always strict monotone increasing. In this section we will focus on the
construction and use of the interface. In the next section we will look at the
semantics in more detail.

The behavior of the interface is shown in the UML sequence diagram in Fig. 7.
We use an XML configuration file to describe the information that is exchanged
over the link, the interface is completely model independent. For brevity, we
use an informal description as presented in Fig. 6. The keywords sensor and
actuator are defined as perceived from the perspective of the discrete event
simulator. Basically, we define a sensor[] array, an actuator[] array and an
event[] array. These arrays provide the bindings for all variables and events.
The abort keyword is used to stop the simulation, in addition to other tool
specific stop criteria that may be defined, and gives control back to the user, for
example to inspect the state of the model.

The XML configuration file is read by both simulations when the interface
is started, indicated by initialize in Fig. 7. When a message is sent from

sensor[1] = cpu1.Controller‘level
actuator[1] = cpu1.Controller‘valve
event[1] = REE(level,3.0) -> cpu1.Controller‘open
event[2] = FEE(level,2.0) -> cpu1.Controller‘close
event[3] = TE(15.0) -> abort

Fig. 6. The interface configuration file

Co-simulation of Distributed Embedded Real-Time Control Systems 649

VDM++ to 20-sim, indicated as updateCT in Fig. 7, the message contains the
current time T , the target time step ts, and the value of each defined actu-
ator variable at T from actuator[]. So, for our case study only three val-
ues are exchanged in this direction for every step. Upon arrival, the operation
updateCTmodel calls the continuous time solver and tries to perform the time
step ts. Either this time was reached or the solver stopped due to an event that
occurred at tr. When a message is sent from 20-sim to VDM++, indicated as
updateDE in Fig. 7, the message contains the current time T , the realized time
step tr ≤ ts, the value of each defined sensor variable at T+tr from sensor[], fol-
lowed by a monotone increasing counter for each declared event[]. This counter
is incremented when the event occurred at T + tr. This allows us to monitor the
integrity of the interface. Several events can be detected at the same time, but
an event can only occur once per iteration. Six values are offered when a mes-
sage is sent from 20-sim to VDM++ in this model. Upon arrival, the operation
updateDEmodel processes all events, updates the shared continuous variables and
performs a simulation step on the discrete event model, after which we iterate.

Figure 8 shows a simulation run for our case study, whereby we have disabled
all state events. In other words, we are studying the periodic control loop behav-
ior (lines 14-17 in Fig. 5). The top screen shows the evolution of the level sensor
variable. The middle screen shows the evolution of the valve actuator variable.
The bottom screen shows when the controller has been active, by means of a
counter which is increased whenever the VDM++ model makes a time step. It
resembles a staircase profile because the execution times of a single instruction
are small compared to the changes in the water level. However, if we zoom in,
we can actually see how much time is spent in the control loop. Notice that the

Fig. 7. Tool interface behavior as a UML sequence diagram

650 M. Verhoef et al.

Fig. 8. Visualization of a co-simulation run of the water tank case study

discrete controller is indeed invoked every second, but the control actions, for
example at t = 4 sec are slightly delayed, as expected. Moreover, observe that
the valve was not opened at t = 8 sec because level was 2.96 at that time. The
overshoot would have been substantially smaller if event based control was used
here. We can change many system parameters in the discrete event simulator
and observe their impact, such as the processor speed, task switch overheads,
and the scheduling policy, without modifying the model shown in Fig. 5. Simi-
larly, we can change parameters in 20-sim, such as the input flow rate, the liquid
density, the resistance of the valve exit, etc.

5 Reconciled Operational Semantics

There are many techniques available from computer science that can be used
to create discrete event models. Two-phase labeled transition systems are com-
monly used, whereby state and time transitions are explicitly distinguished. As-
suming some initial state, in the first phase, the successor state is computed
and then time elapses in the second phase after which the process is repeated.
We have presented an abstract operational semantics for distributed embed-
ded real-time systems in VDM++ in [15] which is also based on this approach.
In this paper, we extend this abstract formal semantics to allow for consistent
co-simulation with continuous time models. The tool support described in the
previous section conforms to the formal operational semantics presented here.
One of the key features of our work is that state modifications computed in
phase one are made visible after the time step in phase two has been completed,

Co-simulation of Distributed Embedded Real-Time Control Systems 651

in order to guarantee consistency in the presence of shared continuous variables
and arbitrary interleaving of multiple, concurrent, labeled transition systems.

The main aim of the operational semantics is to formalize the interaction
between the discrete event simulator, which executes a control program, and a
solver for a continuous time plant model. Hence we have omitted many details
of the VDM++ model such as the links between nodes, message transfer along
these links, the definition of classes, including explicit definitions of synchronous
and asynchronous operations, guards and a concept to define periodic threads.
The operational semantics of these concepts can be found in [15]. In contrast
with this previous work, we will focus in this section on communication by means
of global variables and events, since this is used to model the interaction between
continuous time and discrete event models. In Sect. 5.1 we define the syntax of a
simple imperative language which serves as an illustration of the basic concepts,
without trying to be complete. The operational semantics of this language is
defined in Sect. 5.2.

5.1 Syntax

The distributed architecture of an embedded control program can be represented
by so-called nodes. Let Node be the set of node identities. Nodes are used to
represent computation resources such as processors. On each node a number of
concurrent threads are executed in an interleaved way. In addition, execution is
interleaved with steps of a solver.

Threads can be created dynamically, e.g., to deal with events received from
the solver. Let Thread be the set of thread identities, including dormant threads
that can be made alive when a new thread is created. Function node : Thread →
Node denotes on which node each thread is executing. Each thread executes a
sequential program, that is, a statement expressed in the language of Table 1.

Let Value be a domain of values, such as the real numbers R. Assume given
a set of variables Var = InVar ∪ OutVar ∪ LVar where InVar is the set of in-
put/sensor variables, OutVar is the set of output/actuator variables, and LVar a
set of local variables. The input and output variables are global and shared be-
tween all threads and the continuous model. Hence, they can also be accessed by
the solver, which may read the actuator variables and write the sensor variables.
Let IOVar = InVar ∪ OutVar. Let Time = R be the time domain. The syntax
of our sequential programming language is given in Table 1, with c ∈ Value,
x ∈ Var, and d ∈ Time.

The execution of basic statements such as skip and assignment x := e takes
zero time, except for the duration(d) statement which represents a time step of
d time units. For each thread, any sequence of statements between two successive
duration statements is executed atomically in zero time. However, the execution
of such a sequence might be interleaved with statements of other threads or a
step of the solver. Concerning the shared IO-variables in IOVar this means that
we have to ensure atomicity explicitly. Hence, we introduce a kind of transaction
mechanism to guarantee consistency in the presence of arbitrary interleaving of
steps. Thread thr is only allowed to modify IO-variable x if there is no transaction

652 M. Verhoef et al.

Table 1. Syntax of Statements

Value Expression e ::= c | x | e1 + e2 | e1 − e2 | e1 × e2

Boolean Expression b ::= e1 = e2 | e1 < e2 | ¬b | b1 ∨ b2

Statement S ::= skip | x := e | duration(d) | S1 ; S2 |
if b then S1 else S2 fi | while b do S od

in progress by any other thread. The transaction is committed as soon as the
thread performs a time step. This will be explained in detail in Defs. 2 and 5.

Let SeqProg be the set of sequential programs of the form S ; E, where E is
an auxiliary statement which is used to denote termination of a thread.

The solver may send events to the control program. Let Event be a set of
events. They may be defined by the primitives ree (x, p), fee (x, p), and te (t),
as proposed in Eqs. 3-5. Assume that an event handler has been defined for
each event, i.e., a sequential program, and a node on which this statement has
to be executed (as a new thread), denoted by the function evhdlr : Event →
SeqProg × Node.

5.2 Operational Semantics

To define the operational semantics, we first introduce a configuration C in
Def. 1 to capture the state of affairs at a certain point in the execution of our
model. Next, we define the so-called variant of a configuration in Def. 2. The
notion of a step, denoted by C −→ C′ for configurations C and C′, is defined
in Def. 3, using Defs. 4, 5, and 6. This finally leads to a set of runs of the
form C0 −→ C1 −→ C2 −→ · · · in Def. 7, which provides the abstract formal
operational semantics of simulating a control program in parallel with a solver
of a continuous time model.

Definition 1 (Configuration). A configuration C contains the following fields:

– instr : Thread → SeqProg
the remaining program to be executed by each thread.

– curthr : Node → Thread
yields for each node the currently executing thread.

– status : Thread → {dormant, alive}
thread status; a thread can be created by making a dormant thread alive.

– lval : LVar × Thread → Value
denotes the value of each local variable for each thread.

– ioval : IOVar → Value
denotes the committed value of each sensor and actuator variable.

– modif : IOVar × Thread → Value ∪ {⊥}
to denote the values of sensor and actuator variables that have been modi-
fied by a thread and for which the transaction has not yet been committed
(by executing a duration statement). The symbol ⊥ denotes that the value is

Co-simulation of Distributed Embedded Real-Time Control Systems 653

undefined, i.e., the thread did not modify the variable in a non-committed
transaction.

– now : Time to denote the current time. �

For a configuration C, we use the notation C(f) to obtain its field f , such as
C(instr). We define a few suitable abbreviations:

– cur(C, n) denotes the current thread on node n, i.e. C(curthr)(n)
– exec(C, thr) expresses that thr is executing, i.e., there exists an n ∈ Node

such that cur(C, n) = thr.

We define the notion of a variant to express configuration modifications.

Definition 2 (Variant). The variant of a configuration C with respect to a
field f and a value v, denoted by C [f 	→ v], is defined as

(C [f 	→ v])(f ′) =

{
v if f ′ = f

C (f ′) if f ′
= f
(6)

Similarly for field parts, such as variants of mapping ioval. �

We define the value of an expression e in a configuration C which is evaluated
in the current thread on a node n, denoted by [[e]](C, n). The main point is the
evaluation of a variable:

[[x]](C, n) =

⎧⎪⎨
⎪⎩

C(modif)(x, cur(C, n)) if x ∈ IOVar, C(modif)(x, cur(C, n))
= ⊥
C(ioval)(x) if x ∈ IOVar, C(modif)(x, cur(C, n)) = ⊥
C(lval)(x, cur(C, n)) if x ∈ LVar

The other cases are trivial, e.g., [[e1 × e2]](C, n) = [[e1]](C, n) × [[e2]](C, n) and
[[c]](C, n) = c. It is also straightforward to define when a Boolean expression
b holds in the current thread of a configuration C on a node n, denoted by
[[b]](C, n). For instance, [[e1 < e2]](C, n) iff [[e1]](C, n) < [[e2]](C, n), and
[[¬b]](C, n) iff not [[b]](C, n).

Definition 3 (Step). C −→ C′ is called a step if and only if it corresponds
to the execution of a statement (Def. 4), performing a time step (Def. 5), or a
context switch (Def. 6). �

Definition 4 (Execute Statement). A step C −→ C′ corresponds to the
execution of a statement if and only if there exists at least one executing thread
thr with exec(C, thr) such that C(instr)(thr) = S1 ; S2, allowing S2 = E, and
one of the following clauses holds:

– S1 = skip. The skip statement does not have any effect except that the
statement is removed from the instruction sequence
C′ = C[instr(thr) 	→ S2].

– S1 = x := e. We distinguish two cases, depending on the type of variable x.

654 M. Verhoef et al.

• If x ∈ IOVar we require that there is no transaction in progress by any
other thread: for all thr′ with thr′
= thr we have C(modif)(x, thr′) = ⊥.
Then the value of e is recorded in the modified field of thr:
C′ = C[instr(thr) 	→ S2,modif(x, thr) 	→ [[e]](C, n)]
As we will see later, all values belonging to thread thr in C(modif) are
removed and bound to the variables in C(ioval) as soon as thread thr
completes a time step (Def. 5). This corresponds to the intuition that
the result of a computation is available only at the end of the time step
that reflects the execution of a piece of code.

• If x ∈ LVar then we change the value of x in the current thread:
C′ = C[instr(thr) 	→ S2, lval(x, thr) 	→ [[e]](C, n)]

– S1 = if b then S11 else S12 fi. If [[b]](C, n) then we have
C′ = C[instr(thr) 	→ S11 ; S2], otherwise C′ = C[instr(thr) 	→ S12 ; S2].

– S1 = while b do S od. If [[b]](C, n) then we have
C′ = C[instr(thr) 	→ S ; while b do S od ; S2], otherwise we obtain
C′ = C[instr(thr) 	→ S2].

Observe that the execution of these statements does not affect now, that is,
C(now) = C′(now). �

Definition 5 (Time Step). A step C −→ C′ is called a time step only if
all current threads are ready to execute a duration instruction or have termi-
nated. More formally, for all thr with exec(C, thr), C(instr)(thr) is of the form
duration(d) ; S or equals E. Then the definition of a time step consists of three
parts: (1) the definition of the requested duration of the time step, (2) the exe-
cution of this time step by the solver, leading to intermediate configuration Cs

(3) updating all durations of all current threads, dealing with events generated
by the solver, and committing all variables of the current threads.

1. Time may progress with a number of time units which is smaller than or
equal to all durations of all current threads. Hence, the requested length of
the time step is defined by
ts = min{d | ∃ thr, S : exec(C, thr) ∧ C(instr)(thr) = duration(d) ; S}.

2. If ts > 0 the solver tries to execute a time step of length ts in configuration
C. Concerning the variables, the solver will only use the ioval field, ignoring
the lval and modif fields. It will only read the actuator variables in OutVar
and it may write the sensor variables in InVar in field ioval. As soon as the
solver generates one or more events, its execution is stopped. This leads to
a new configuration Cs and a set of generated events EventSet. Since the
solver takes a positive time step, C(now) < Cs(now) ≤ C(now) + ts, and
if Cs(now) < C(now) + ts then EventSet
= ø. Moreover, Cs(f) = C(f) for
f ∈ {instr, curthr, status, lval,modif}.

If ts = 0 then the solver is not executed and Cs = C, EventSet = ø. This
case is possible because we allow duration(0) to commit variable changes,

Co-simulation of Distributed Embedded Real-Time Control Systems 655

as shown in the next point.

3. Starting from configuration Cs and EventSet, next the durations are de-
creased with the actual time step performed, new threads are created for the
event handlers, and finally for threads with zero durations the transactions
are committed.

Let tr = Cs(now) − C(now) be the time step realized by the solver. For
each event e ∈ EventSet with evhdlr(e) = (Se, ne), let thre be a fresh - not
yet used - thread identity with status dormant and node(thre) = ne.

We define an auxiliary function NewInstr(C, tr) : Thread → SeqProg which
decreases durations, removes zero durations, and installs event handlers:
NewInstr(C, tr)(thr) =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

duration(d − tr) ; S if exec(C, thr), C(instr)(thr) = duration(d) ; S,

and d > tr

S if exec(C, thr) and C(instr)(thr) = duration(tr) ; S

Se if thr = thre for some e ∈ EventSet

C(instr)(thr) otherwise
Next define a function to awake the new threads for event handlers:

NewStatus(C)(thr) =

{
alive if thr = thre for some e ∈ EventSet

C(status)(thr) otherwise

Let ActDurZero = {thr | exec(C, thr) and C(instr)(thr) = duration(tr) ; S}
be the set of threads which will have a zero duration after this time step. For
these threads the transactions are committed and the values of the modified
variables are finalized. This is defined by two auxiliary functions:
NewIoval(C)(x) ={

v if ∃ thr ∈ ActDurZero and C(modif)(x, thr) = v
= ⊥
C(ioval)(x) otherwise

Note that at any point in time at most one thread may modify the same
global variable in a transaction. Hence, there exists at most one thread sat-
isfying the first condition of the definition above, for a given variable x.
The next function resets the modified field.

NewModif(C)(x, thr) =

{
⊥ if thr ∈ ActDurZero
C(modif)(x, thr) otherwise

Then C′ = Cs[instr 	→ NewInstr(Cs, tr), status 	→ NewStatus(Cs),
ioval 	→ NewIoval(Cs), modif 	→ NewModif(Cs)]

Observe that C′(now) = Cs(now) = C(now) + tr with tr ≤ ts. �
Definition 6 (Context Switch). A step C −→ C′ corresponds to a context
switch iff there exists a thread thr which is alive and not running, and which
has a non-empty program, that is, ¬exec(C, thr), C(status)(thr) = alive , and
C(instr)(thr) = S
= E. Then thr becomes the current thread and a duration of
δcs time units is added to represent the context switching time:
C′ = C[instr(thr) 	→ duration(δcs) ; S, curthr(node(thr)) 	→ thr] �

656 M. Verhoef et al.

Note that more than one thread may be eligible as the current thread on a node
at a certain point in time. In that case, a thread is chosen nondeterministically
in our operational semantics. Fairness constraints or a scheduling strategy may
be added to enforce a particular type of node behavior, such as for example rate
monotonic scheduling.

Definition 7 (Operational Semantics). The operational semantics of our
model is the set of execution sequences of the form C0 −→ C1 −→ C2 −→ · · · ,
where each pair Ci −→ Ci+1 is a step (Def. 3) and the initial configuration
C0 all current threads are alive and the modif field is ⊥ everywhere. Finally,
to avoid Zeno behaviour, we require that for any point of time t there exists a
configuration Ci in the sequence with Ci(now) > t. �

6 Concluding Remarks

A multidisciplinary modeling approach shall provide sufficient means of abstrac-
tion to support all mono-disciplinary views in order to be industrially applicable.
A solid semantic foundation of the combination of these views is required to sup-
port meaningful and reliable analysis of the heterogenous model. We believe that
this can be achieved by taking a “best of both worlds” approach whereby the
software discipline uses a formal specification technique. Firstly because it pro-
vides abstraction mechanisms that allow high-level specification and secondly
because its well-defined semantics provides a platform independent description
of the model behavior that can be analyzed properly. Software models as advo-
cated by IBM Rational Technical Developer and I-Logix Rhapsody are, in our
opinion, not suited for this purpose in particular because they lack a suitable
notion of abstraction, time and deployment. We showed how tool integration
can be achieved based on the formal semantics proposed in this paper, which
we applied to a case study. Note however that the approach taken here is not
specific to any tool in particular. Our approach has been applied to a larger case
study: the distributed controller of a paper path of a printer [16].

Nicolescu et al [17] propose a software architecture for the design of contin-
uous time / discrete event co-simulation tools for which they provide an opera-
tional semantics in [18]. Our work is in fact an instantiation of that architecture,
however, with a difference. Their approach is aimed at connecting multiple sim-
ulators on a so-called simulation bus, whereas we connect two simulators using
a point-to-point connection. They use Simulink and SystemC whereas we use
20-sim and VDM++ to demonstrate the concept. The type of information ex-
changed over the interfaces is identical (the state of continuous variables and
events). They have used formal techniques to model properties of the interface,
whereas we have integrated the continuous time interface into the operational
semantics of a discrete event system. We believe that our approach is stronger
because a weak semantics for the discrete event model may still yield unexpected

Co-simulation of Distributed Embedded Real-Time Control Systems 657

simulation results even though the interface is proven to work consistently. An
in-depth comparison of both approaches is subject for further study.

The interface between the continuous time and discrete event models seems
to be convenient when resilience of a system is studied. Early experiments per-
formed in collaboration with Zoe Andrews at the Centre for Software Reliability
at Newcastle University have shown that it is possible to use this interface for
fault injection. Values and events exchanged over this interface can be dropped,
inserted, modified, delayed and so on to represent the failure mode of a sensor
or actuator, such as for example “stuck at x”. The advantage of this approach
is that the failure model can remain orthogonal to the continuous time and the
discrete event models. These system models need no longer be obscured by ex-
plicit failure mode modeling in either plant or controller, which usually clobbers
the specification. We certainly plan to explore this further.

In summary, the approach is to bring realistic time-aware models of software,
executed on a possibly distributed hardware architecture, into the realm of con-
trol engineering without enforcing a certain model of computation a priori. We
propose to use formal specification techniques to provide suitable software mod-
els required for this approach, mainly in order to manage complexity such that
small, abstract and high-level models can be created. This is essential in the
early phases of the system design life-cycle, where changes are likely to occur
while working under severe time pressure. We provide a system level approach
for modeling computation, communication and control with support and flexi-
bility for the decision making during the early phases of the system-design life
cycle, whereby the trade-offs can be investigated by co-simulation.

Acknowledgments. The authors wish to thank Job van Amerongen, Zoe An-
drews, Peter van den Bosch, Erik Gaal, Peter Gorm Larsen, Frits Vaandrager
and the anonymous reviewers for their valuable comments to this paper and
support for this work.

References

1. Boderc: Model-based design of high-tech systems. Final report. Embedded Sys-
tems Institute, P.O. Box 513, 5600 MB Eindhoven, NL (2006) Available on-line at
http://www.esi.nl/boderc

2. Henzinger, T.A., Sifakis, J.: The embedded systems design challenge. In: Misra, J.,
Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 1–15. Springer,
Heidelberg (2006)

3. Henriksson, D.: Flexible Scheduling Methods and Tools for Real-Time Control Sys-
tems. PhD thesis, Lund Institute of Technology, Department of Automatic Control
(2003) http://www.control.lth.se/truetime/

4. Douglas, B.P.: Real-Time UML Workshop for Embedded Systems. Embedded
Technology. Newnes. Elsevier, Amsterdam (2007)

5. Hooman, J., Mulyar, N., Posta, L.: Coupling Simulink and UML models. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS,
vol. 3253, pp. 304–311. Springer, Heidelberg (2004)

http://www.esi.nl/boderc
http://www.control.lth.se/truetime/

658 M. Verhoef et al.

6. Davis, J., Galicia, R., Goel, M., Hylands, C., Lee, E., Liu, J., Liu, X., Muliadi, L.,
Neuendorffer, S., Reekie, J., Smyth, N., Tsay, J., Xiong, Y.: Ptolemy-II: Heteroge-
neous concurrent modeling and design in Java. Technical Memorandum UCB/ERL
No. M99/40, University of California at Berkeley (1999)

7. Karnopp, D.C., Margolis, D.L., Rosenberg, R.C.: System Dynamics: Modeling and
Simulation of Mechatronic Systems, 3rd edn. Wiley-Interscience, Chichester (2000)

8. Breedveld, P.: Multibond-graph elements in physical systems theory. Journal of
the Franklin Institute 319, 1–36 (1985)

9. Ledin, J.: Simulation Engineering - Build Better Embedded Systems Faster. Em-
bedded Systems Programming. CMP Books (2001)

10. Hairer, E., Nørsett, S.P., Gerhard., W.: Solving ordinary differential equations I:
Nonstiff problems, 2nd edn. Springer, Heidelberg (1993)

11. Hairer, E., Wanner, G.: Solving ordinary differential equations II: Stiff and
differential-algebraic problems, 2nd edn. Springer, Heidelberg (1996)

12. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Kluwer
Academic Publishers, Dordrecht (1999)

13. ControlLab Products: 20-sim (2006) http://www.20sim.com
14. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated

Designs for Object-oriented Systems. Springer, Heidelberg (2005) http://www.
vdmbook.com

15. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and validating distributed em-
bedded real-time systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski,
E. (eds.) FM 2006. LNCS, vol. 4085, pp. 147–162. Springer, Heidelberg (2006),
http://dx.doi.org/10.1007/11813040 11

16. Visser, P., Verhoef, M., Broenink, J., Hooman, J.: Co-simulation of continuous-
time/discrete-event systems as vehicle for embedded system design trade-off’s
(Submitted, 2007)

17. Nicolescu, G., Boucheneb, H., Gheorghe, L., Bouchhima, F.: Methodology for ef-
ficient design of continuous/discrete-events co-simulation tools. In: Anderson, J.,
Huntsinger, R. (eds.) High Level Simulation Languages and Applications - HLSLA.
SCS, San Diego, CA, pp. 172–179 (2007)

18. Gheorghe, L., Bouchhima, F., Nicolescu, G., Boucheneb, H.: Formal defini-
tions of simulation interfaces in a continuous/discrete co-simulation tool. In:
Proc. IEEE Workshop on Rapid System Prototyping, pp. 186–192. IEEE Com-
puter Society Press, Los Alamitos (2006) http://doi.ieeecomputersociety.
org/10.1109/RSP.2006.18

http://www.20sim.com
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.vdmbook.com
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.vdmbook.com
http://dx.doi.org/10.1007/11813040_11
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/5 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/5 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/5 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/5 size@update enc@update http://doi.ieeecomputersociety.org/10.1109/RSP.2006.18
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://doi.ieeecomputersociety.org/10.1109/RSP.2006.18

	Introduction
	Current State of Practice in Academia and Industry
	Modeling and Analysis of Embedded Control Systems
	Plant Modeling
	Controller Description

	Tool Support
	Reconciled Operational Semantics
	Syntax
	Operational Semantics

	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

