
PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

Abstract—The aim of this work is to support the multi-
disciplinary development of real-time embedded systems
by combining tools of different disciplines. As a concrete
example, we have coupled a UML-based CASE tool (Rose
RealTime) and Simulink to allow simultaneous simulation.
Since Rose RealTime does not have a well-defined notion
of timed simulation, we have used the simulation time of
Simulink also for Rose RealTime. An intermediate
component has been implemented, which realizes time
synchronization and data exchange between the tools.

Keywords—Embedded systems; model-based development;
simulation; real-time; UML; Simulink

I. INTRODUCTION

This research has been carried out in the context of the
Boderc∗ project. The main aim of this project is to
improve multi-disciplinary system design, that is,
combining mechanics, electronics and informatics, such
that e.g. system-level decisions can be analyzed and
consequences of design decisions can be predicted as
early as possible. To achieve this goal, strong emphasis
is put on high-level models and the combination of
models from different disciplines.

There are several formal approaches that allow checking
properties of hybrid systems (modeling both discrete and
continuous aspects), such as HyTech [4] and Checkmate
[2]. Exhaustive checking, however, is limited to
relatively small models, and it often requires separate re-
modeling and abstraction, which are rather time-
consuming. Hence, there is a need for verification and
validation methods that can be applied to the models the
engineers are used to work with, such as
Matlab/Simulink models and, for instance, software

∗ This work has been carried out as part of the Boderc project
under the responsibility of the Embedded Systems Institute. This
project is partially supported by the Netherlands Ministry of
Economic Affairs under the Senter TS program.

models represented in the Unified Modeling Language
(UML) [1]. In this paper, we aim at the simultaneous
simulation of the (often quite large) domain models that
are used by each discipline, e.g. simulating a UML
model of a software engineer in combination with a
mechanical model.

Since tools are very important in the everyday practice
of engineers, we have investigated the possibilities for
coupling concrete modeling tools, namely Mathworks’
Matlab/Simulink (which is used heavily in many areas,
including transportation) and a UML-based CASE tool
for real-time systems. Because of pragmatic reasons
(industrial contacts, licenses), we have chosen the UML-
tool Rose RealTime (Rose-RT for short) of
IBM/Rational. This tool supports the ROOM
methodology [5] for the development of software for
real-time reactive systems. Note that Rose-RT allows
code generation for particular target platforms, so there
is a direct connection between a model and generated
code. However, we could have chosen other UML-tools
in the embedded domain, such as Telelogic Tau,
Rhapsody of I-Logix, or Real-Time Studio of Artisan.

Our aim is to establish a tool coupling, which allows the
combination of a model of a physical dynamical system
in Simulink, e.g. representing one or more motors, with
a discrete control algorithm in Rose-RT, as depicted in
Figure 1.

Rose-RT

Matlab/Simulink

Control
Software

Dynamics
Motors

Feedback signal

Control signal

Figure 1 Combined Models

Jozef Hooman¹, Nataliya Mulyar², Ladislau Posta²

¹Embedded Systems Institute, Eindhoven & University of Nijmegen, the Netherlands
²Eindhoven University of Technology, the Netherlands

Supporting Model-Based Simulation of
Embedded Systems by Coupling Tools

131

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

By establishing a proper notion of simultaneous
simulation of these models, one can quickly investigate
the effect of changes in the control strategy, software
execution times, or concerning the characteristics of the
motors. Also note that this allows a comparison with a
model where part of the control (e.g. low-level motor
control) is modeled in the Matlab environment (e.g.
using TrueTime [6]) and a supervisory control part in
Rose-RT.

Realizing the desired tool coupling is far from trivial.
The two main challenges are:
• Conceptual correctness. The coupling should be

such that the simultaneous simulation of models in
both tools should give meaningful results. In
particular, this means that there should be a common
notion of time in combination with a proper
exchange of data and messages.

• Technical implementation. Suitable ways should be
found to allow the tools to communicate and to run a
simulation mode simultaneously. Moreover, the
coupling software should be properly designed to
allow, for instance, a change to another UML tool.

Note that also TrueTime could have been used to
represent discrete real-time control, but we have chosen
a UML-based CASE tool, since UML is becoming an ad
hoc standard in software engineering and it allows a
coupling with large object-oriented software
architectures which includes not only control but also
other aspects such as error handling and diagnosis.
Moreover, such a tool enables code generation for
different platforms.

As far as we know, such a coupling between Rose-RT
(or similar real-time UML tools) and Simulink models
has not been realized before. Related is the work on the
High Level Architecture (HLA) [3], a general-purpose
architecture for the coupling of simulation tools.
However, HLA could not be used for our purpose,
because UML-case tools, such as Rational Rose
RealTime do not fit into this framework; they do not
have the required simulation mode with a well-defined
notion of simulation time.

In the rest of this paper, we very briefly present the tools
used (Rose-RT and Simulink), in Sections II and III
respectively, describing them only as far as needed to
understand the coupling. The main concepts of the
coupling are described in Section IV. Concluding
remarks can be found in Section V.

II. ROSE REALTIME

Rose-RT is a tool for the object-oriented development of
complex reactive software. It uses the visual modeling
language UML to express software designs and supports
model-driven development by allowing executable code
generation from the UML models for a particular target
platform on which the model is intended to run. In
general, a Rose-RT model is automatically linked with a
services library specific to this particular target
platform. For instance, a model may use timers to
express real-time behavior and the precision of the
timers depends on the granularity of the timing service
provided by the underlying platform.

Typically, a UML model in Rose-RT consists of a
number of concurrent active objects (also called
capsules), which communicate by sending and receiving
messages via ports. The behavior of a capsule is
modeled by means of a state diagram, a hierarchical
state machine. Transitions in a state diagram are
triggered by the receipt of messages or time-outs.
Actions on a transition may change local variables, send
messages, or set timers.

For each capsule, the incoming messages are queued and
processed (according to their priority) in a run-to-
completion manner, that is, the response to a message is
computed completely, without interruption, before the
next message is considered.

The Rose-RT tool can generate code for a particular
target platform and then the model can be executed on
this platform. Alternatively, it allows a user-controlled
step-by-step execution, but then correct timing is not
guaranteed and only the reactive response to messages
can be tested.

III. MATLAB/SIMULINK

Simulink of MathWorks is a widely used tool for
modeling and simulating dynamical systems. A
Simulink model is represented graphically by means of a
number of interconnected blocks. A block may produce
output continuously or only at specific points in time,
lines between blocks connect block outputs to block
inputs. Blocks may have states, which may consist of a
discrete and a continuous part.

The output of a block is computed by a function, based
on its input and its current state and time. Similarly, an
update function calculates the next discrete state. A
derivative function relates the derivatives of the

132

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

continuous part of the state to time and the current
values of the inputs and the state.

Running a simulation of a Simulink model means that
outputs, inputs and states are computed at certain
intervals, from the simulation start time to the
simulation end time. All time-related tasks are
performed by a so-called solver, a Simulink-specific
program. In fact, there are several types of solvers,
depending on, e.g., whether the step size is fixed or
variable, and the integration method used.

IV. MAIN CONCEPTS OF THE COUPLING

In this section we describe the main decisions taken to
establish a correct coupling and the conceptual
architecture, which realizes this coupling.

The most important decision concerns the notion of time
to be used for the simulation. First we observed that the
timing of Rose-RT is strongly coupled to the timing
service of the operating system of the target system on
which the model is running. Moreover, timing is not
respected in the step-by-step simulation. Hence, we
concluded that the timing of Rose-RT is not suitable for
our purpose and decided to use the notion of simulated
time of Simulink instead. The alternative is to use a
separate, independent, notion of time, but this would
also require new implementations of solvers, redoing a
lot of things already available in Simulink.
To be able to establish a proper global notion of time,
which faithfully reflects the execution of both models,
somehow the execution time of the transitions in the
Rose-RT model has to be taken into account. We assume
that this information is available, representing an
assumption on the underlying platform.

Another decision to be taken is the global architecture of
the coupling. A possible approach, depicted in Figure 2,
is to extend each tool with a specific component, which
communicates directly with the other tool.

 MATLAB/
SIMULINK

ROSE-RT

Figure 2 Tightly Coupled Tools

Instead of such a tight coupling, we decided to use a
more loosely coupled architecture by introducing a third
component called Multidisciplinary Coupling Tool

(MCT), as shown in Figure 3. Observe that each tool
contains an add-in, which is responsible for the
communication with the MCT component.

MATLAB/

SIMULINK

ROSE-RT

MCT
add-in

MCT
add-in

 MCT

Figure 3 Loosely Coupled Architecture

By introducing such an MCT interface the modeling
tools do not need to know about each other and it
becomes much easier to change, for instance, switching
to another UML-based CASE tool.

To obtain proper timing of the UML models, we have
redefined the timing service of Rose-RT such that it gets
the current notion of time from the MCT component.
Moreover, the UML model has to be extended by
specifying the assumptions on the execution times of all
transitions. The Simulink model is extended with blocks
that obtain data and timing info from the Rose-RT
model via the MCT and ensure that the data is used at
the appropriate moment of time. Also the setting of a
timer in the UML model is communicated to these
added Simulink blocks, which then generate the time-
out.

To run a simulation, we have to initialize the simulation
environment as follows:
1. Start Rose-RT and open a UML model which has

been prepared for coupling
2. Start Matlab/Simulink and open a Simulink model

which has been prepared for coupling
3. Start the simulation in the Simulink model, which:

a. Starts the Simulink timer
b. Sets the time of MCT to the current

Simulink simulation time
c. Starts the Rose-RT Target Run-Time

System; the Rose-RT environment then
requests the system clock, which by our
modifications means that it gets the time of
the MCT, next the Rose-RT model waits for
external triggers

133

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

Next we describe an example of typical steps performed
during a part of the simulation, depicted in the sequence
diagram of Figure 4.

Simulink
MCT add-in

Simulink
model

MCT

Rose-RT
MCT add-in

Rose-RT
model

1 2
3

4 5
6

7 8
9

Figure 4 Interactions During Simulation

The numbered interactions represent the following
actions:
1. The Simulink MCT add-in sets the time of the MCT

to the current Simulink time. The Simulink model is
frozen from this moment.

2. The Simulink MCT add-in sends an external event to
the Rose-RT model; there this message is put to the
queue.

3. The Simulink MCT add-in gives a command to
perform one step in Rose-RT.

4. Rose-RT updates its clock with the value taken from
the MCT.

5. Rose-RT processes a message from the queue; and
executes a transition triggered by this message (if
any).

6. Rose-RT sends the calculated data together with the
transition duration to the MCT.

7. The Simulink MCT add-in reads the data and the
execution delay set by Rose-RT in the MCT

8. Simulink ensures that Simulink simulation time
advances with the value of the received delay. The
Simulink model is resumed from this moment.

9. The Simulink MCT add-in passes the data to the
Simulink model and the simulation loop continues.

Figure 5 show a more detailed architectural view of the
implementation, showing for instance in more detail
how the timing of a UML model is obtained from the
MCT.

Rose - RT

Simulated Target
Operating System

Memory Files Timers

IPC Threads

Services Library

Rose - RT Model
Original
Rose-RT
model

MCT to
Rose-RT
add-in

Frame Log Timing

Comm State machine

Matlab

TrueTime Library

Kernel Network

 Simulink Library

Solvers

Simulink Model

MCT to
Simulink
add-in

MCT

 Remote
control
i nterface

 Data
i nterface

 Timing

interface

1

2

3 6
7

9

4

5 8

7
10

11

12

Original
Simulink
model

Figure 5 Module Architecture View

V. CONCLUDING REMARKS

The current version of the coupling has been applied to
a few small examples, showing the feasibility and
usefulness of such a simultaneous simulation on a small
scale. Clearly, much more experiments with larger
industrial examples are needed to investigate the
performance for complex systems. Future work also
includes the removal of a few simplifications that have
been made to obtain a first prototype quickly. For
instance, at the moment only one timer is allowed in the
UML model. Currently, the models are simulated on a
single PC, but we also intend to investigate a distributed
implementation, which couples models on different PCs.

REFERENCES

[1] G. Booch, J. Rumbaugh, I. Jacobson The Unified
Modeling Language User Guide, Addison-Wesley,
1999.

[2] E.M. Clarke, A Fehnker, Zhi Han, B. Krogh, J.
Ouaknine, O. Stursberg, M. Theobald. Abstraction
and Counterexample-guided Refinement of Hybrid
Systems. International Journal of Foundations of
Computer Science, Vol 14, Number 3, 2003.

[3] J. Dahmann, R. Fujimoto, and R. Weatherly. The
Department of Defense High Level Architecture In
Proceedings of the 1997 Winter Simulation
Conference, pp.142-149, ACM, 1997.

[4] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi.
HyTech: A Model Checker for Hybrid Systems.
Software Tools for Technology Transfer 1:110-122,
1997.

[5] B. Selic, G., Gullekson, P. Ward. Real-Time Object-
Oriented Modeling. John Wiley & Sons, 1994.

[6] TrueTime source code and documentation
http://www.control.lth.se/~dan/truetime/

134

