
Runtime Verification of Compound
Components with ComMA

Ivan Kurtev1,2(B) and Jozef Hooman3

1 Capgemini Engineering, Eindhoven, The Netherlands
ivan.kurtev@capgemini.com

2 Eindhoven University of Technology, Eindhoven, The Netherlands
3 ESI (TNO), Eindhoven, The Netherlands

jozef.hooman@tno.nl

Abstract. The ComMA language has been developed to specify inter-
faces of software components, including protocol state machines, time
and data constraints, and constraints on relations between events of mul-
tiple interfaces. The language has been devised in close collaboration with
an industrial partner where it has been used to model a large number of
interfaces. Based on a ComMA model, a number of artefacts can be gen-
erated such as documentation and test cases. Important is the generation
of a monitor which is used to check if an implementation conforms to
the specified model. This paper describes the ComMA monitoring algo-
rithms. They are based on runtime verification techniques which have
been extended to deal with the expressive ComMA language.

Keywords: Interface modeling · Runtime Verification ·
Component-based development

1 Introduction

Modern high-tech systems are complex entities consisting of multiple interact-
ing components, typically supplied by different vendors. The lack of precise and
explicit specifications of component interfaces often leads to problems during
the integration of components. Component updates in already deployed systems
may also lead to issues caused, for example, by unexpected changes in the inter-
action protocol and the time behavior. To address these issues, the ComMA
(Component Modeling and Analysis) method and tool have been developed to
support precise modeling of components and their interfaces.

ComMA provides a number of domain-specific languages for specifying client-
server interfaces and component models in which multiple interfaces are used
together. The interface language allows definitions of custom types, interface
signatures in terms of messages exchanged between a client and server, behavior
that specifies the allowed order of messages, and constraints on timing and data
parameters. The component language allows modeling of simple and compound
components (containing multiple parts) that use several interfaces together.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 382–402, 2022.
https://doi.org/10.1007/978-3-031-15629-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_21&domain=pdf
https://doi.org/10.1007/978-3-031-15629-8_21

Runtime Verification of Compound Components with ComMA 383

Figure 1 shows a simple Control component that provides interface IControl to
its clients via the provided iControlPort3 port and uses the interfaces ITempera-
ture, IVacuum and ISource via its required ports shown as dashed squares. Fur-
thermore, component models support definition of constraints on the input/out-
put relation of a component in the view of its interfaces and their interactions.

Fig. 1. Example simple ComMA component

The ComMA tool facilitates a number of engineering tasks by automatically
generating artefacts from models. Figure 2 shows the main generators. Using
models as a single source, the generators create UML diagrams of models, docu-
mentation based on a predefined MS Word template, monitoring infrastructure
and test cases among others. The ability to monitor interfaces and components is
a powerful feature of ComMA. It is used to check if an implementation conforms
to an interface and/or component model. The automatically generated monitor
checks if an execution trace that contains messages observed during component
executions adheres to the behavior model and the time and data constraints. The
output of the monitor is conveniently shown in a dashboard that summarizes the
discovered issues along with other useful diagnostic information.

Fig. 2. Overview of ComMA generators

384 I. Kurtev and J. Hooman

One of the main goals of ComMA is to allow easy application by indus-
trial users. The modeling languages use familiar engineering notations such as
state-based specification of the behavioral aspects, commonly found patterns for
timing properties, and software architecture description concepts for component
models. The languages have been developed iteratively respecting the requests
and the feedback from the industrial users.

A number of previous publications [6,7] focused on ComMA interface speci-
fications giving the syntax and semantics of the language, and elaborated on the
interface monitoring algorithm and the check of time and data constraints. This
paper builds upon these results and explains in details the component modeling
language and monitoring algorithm.

The main contribution of our work is the integration of various theoretical
results from the runtime verification body of knowledge into a framework that
bridges the gap between the formal specification languages and the notations
used by engineers, supports automation and integration of engineering tasks. The
proposed specification language constructs do not introduce new logic, they focus
on specifying constraints at the level of abstraction of the engineering models,
handling components with multiple clients, and achieving compact specifications
by refering to interface states. We are currently not aware of other component
monitoring frameworks that utilize commonly used modeling notations to the
degree that ComMA does.

The ComMA tooling is available via the open source Eclipse CommaSuite
project1. The example used in the paper is included in the distribution.

Section 2 is an overview of ComMA interface models and monitoring, high-
lighting the features that are later used for the purpose of component modeling.
Section 3 introduces the component modeling language on the basis of an exam-
ple of a simple component. Section 4 follows with the presentation of compound
components. Section 5 discusses the purpose, challenges and implementation of
component monitoring. Sections 6 and 7 discuss related work and present the
concluding remarks.

2 Interface Modeling and Monitoring

In this section we briefly describe the modeling of interfaces in ComMA
(Sect. 2.1) and the monitoring of interfaces (Sect. 2.2).

2.1 ComMA Interface Modeling

An interface has a signature that defines synchronous and asynchronous calls
from client to server (named commands and signals respectively) and notifica-
tions which are asynchronous messages from server to client. These three together
with replies to commands are the messages that can be exchanged between a
client and server and will be referred to as interface events or messages. The

1 https://www.eclipse.org/comma/.

https://www.eclipse.org/comma/

Runtime Verification of Compound Components with ComMA 385

events may carry parameters. The signature of a simple interface called IVac-
uum, for managing vacuum in a system is shown in the next listing.

signature IVacuum
commands

void VacuumOn
void VacuumOff

noti f ications
VacuumOK

In ComMA, the allowed order of interface events is captured in an interface
behavior model which is defined as a protocol state machine. In addition, an
interface defines time and data constraints. Time constraints specify allowed
time intervals between events. Time and data constraints have been reported
in [6] and are out of scope of this paper. As an example, the state machine of
interface IVacuum is listed.

interface IVacuum
machine VacuumMachine {

i n i t i a l state NoVacuum {
transition trigger : VacuumOn

do : reply
next state : Evacuating

}
state Evacuating {

transition
do : VacuumOK
next state : Vacuum

}
state Vacuum {

transition trigger : VacuumOff
do : reply
next state : NoVacuum }

}
The state machine describes a client-server interface from the viewpoint of a
server, that is, transitions are triggered by client calls of a command or a signal.
The do part of a transition contains a sequence of actions of the server, which
may include assignments to variables, a reply to a command, if-then-else state-
ments, and notification patterns. A notification pattern specifies the occurrence
of notifications; a special case is the any order construct to specify that events
may happen in any order. Moreover, the language allows non-determinism, e.g.,
after a client call there may be multiple possible transitions by the server, pos-
sibly leading to different responses and states.

2.2 Interface Monitoring

Interface monitoring is the process of checking if a trace of observed events
between client and server conforms to the interface definition. The following is

386 I. Kurtev and J. Hooman

an example of the ComMA trace format (apart from this, JSON format is also
supported):

components
Control c t r l
Vacuum vacuum

events

command 0 .0 c t r l iVacuumPort vacuum iVacuumPort
IVacuum VacuumOn

End

reply 0 .11 vacuum iVacuumPort c t r l iVacuumPort
IVacuum VacuumOn

End

notif ication 1 .2 vacuum iVacuumPort c t r l iVacuumPort
IVacuum VacuumOK

End

A trace starts with declarations of component instances (elaborated later
when the component language is explained). They interact by sending messages
to each other. Each message has a timestamp, a source instance and port (ports
are explained in Sect. 3), a target instance and port, and contains the event and
the interface it belongs to. The first message in the example is the command Vac-
uumOn with timestamp 0.0 sent from component ctrl and its port iVacuumPort
to component vacuum.

In ComMA, an interface monitor is a Java program that is automatically
generated from the interface model. The ComMA monitor starts from the initial
state of the state machine and consumes the events from the trace one by one.
As soon as the monitor detects that an event in the trace does not conform
to the state machine, it reports an error with some diagnostic info and stops
monitoring.

Interface Events Augmented with State Information. As will be
described in Sect. 3, component constraints may refer to states of interface
descriptions. To allow checking of such constraints, the interface monitor aug-
ments interface events with the current state of the interface model. If an event
is accepted by the monitor, it is annotated with the state in which it has been
observed (known as observation state) and with the state that will be the current
state when the next event is observed (known as post-observation state).

Since interface models allow non-determinism, multiple transitions for an
event may be possible leading to potentially different observation and post-
observations states. Consider Fig. 3: after observing notification n1, two tran-
sitions can be taken leading to different post-observations states: S1 and S3

Runtime Verification of Compound Components with ComMA 387

respectively. The interface monitor explores all possible traversal paths. If for
a given path, the observed event is not allowed in the current state, the path
is discarded. If all traversal paths are discarded then an interface monitoring
error is detected. If in our example, signal s is observed after n1 then the path
which contains the transition to S2 will be discarded since there notification n2
is expected.

Fig. 3. Example state machine with non-determinism

The interface monitor maintains a list with traversal path descriptions. A
description contains an identifier of the path, observation and post-observation
states. At the start of monitoring only one path exists, assume its identifier is p.
If a path leads to branching due to multiple possible transitions, each branch is
uniquely numbered. The identifiers of the new paths are formed by concatenating
the identifier of the parent path with the branch number. For example, if path
with identifier p122 leads to two new branches their identifiers will be p1221 and
p1222. A path p is a branch of q if the identifier of q is a prefix of the identifier
of p.

After checking an event, the interface monitor provides a list of descriptions
of all active traversal paths. In Sect. 5, we show how these path descriptions are
used in the component monitoring process.

3 Component Models

We present the language constructs to specify components with constraints in
Sect. 3.1 and to capture the identity of communication partners in Sect. 3.2.

3.1 Components with Functional Constraints

Interface specifications define the allowed order of events when a client uses
an interface. Multiple interfaces are usually used together in the context of a
single software unit that interacts with its environment. ComMA uses component
models to define the allowed order of events from multiple interfaces and from
multiple clients of the same interface.

388 I. Kurtev and J. Hooman

As an example, we consider the Control component in Fig. 1 that provides
interface IControl to its clients and uses services from other components via three
interfaces. The textual syntax of component models in ComMA is as follows:

component Control

provided port IContro l iContro lPort3
required port ITemperature iTemperaturePort
required port IVacuum iVacuumPort
required port ISource iSourcePort

Ports are connection points used in the communication between component
instances and are always associated to an interface. We distinguish between
provided and required ports. A provided port is used by the clients of the com-
ponent to connect to and interact with it according to the port’s interface. Mul-
tiple clients are allowed to connect to a provided port. Required ports are used
by the component to connect to its environment (consisting of other component
instances).

The main purpose of a component model is to define constraints on the
order of events observable in the context of the model (sent to or from the
component ports). The construct used to specify this order is called functional
constraint. A functional constraint captures an aspect of the complete behavior
of the component and is usually restricted to a small subset of the observable
events. Component models are not intended to define the complete component
behavior in terms of reactions to all possible events in different states. In other
words, component models are not design specifications that are used to derive
a complete component implementation. An implementation is expected to sat-
isfy all the functional constraints defined in a component model. In addition,
a component model may define time and data constraints (not covered in this
paper).

Functional constraints have two forms: state-based specification (known as
state-based functional constraint) and an expression that has to evaluate to true
for every observed event in the component context (called predicate functional
constraint). The information about the current state of the interface associated
to a port can be used in functional constraints.

As an example, the Control component handles requests for image acquisition
and controls the vacuum and temperature in the system. A requirement for the
control logic is that image acquisition is only possible if vacuum is present,
and a certain temperature is reached. In terms of allowed message sequences,
the command AcquireImage must be observed after the notifications about the
correct state of vacuum and temperature, and only then the acquisition can be
started. The following (simplified) constraint captures this requirement.

use events
command iContro lPort3 : : AcquireImage
command iSourcePort : : S t a r tAcqu i s i t i on

Runtime Verification of Compound Components with ComMA 389

i n i t i a l state Ready {
// i f vacuum and temperature OK s t a r t a c q u i s i t i o n
command iContro lPort3 : : AcquireImage

where iVacuumPort in Vacuum and
iTemperaturePort in TemperatureSet

command iSourcePort : : S t a r tAcqu i s i t i on
next state : Ready

}
The constraint uses only two events listed in the section use events. The use
events sections can also specify event patterns that denote more than one event
such as all commands observed at a given port, all messages at a given port
and so on. The allowed order of the specified events is given in a state machine
similarly to the interface protocol state machines. Events that do not belong to
the set defined in use events are not restricted.

In the example, the machine is very simple, consisting of one state and a single
transition. The transition is triggered when command AcquireImage is observed
at port iControlPort3. The pattern command iControlPort3::AcquireImage is
a subject of a condition: a Boolean expression after the where keyword. iVacu-
umPort in Vacuum evaluates to true if the sequence of messages at iVacuumPort
until the observation of AcquireImage has led to state Vacuum. Here Vacuum is
a state in the IVacuum interface as shown in Sect. 2.1.

The pattern match is successful only if the condition is true. In terms of our
example: AcquireImage is allowed to occur only if the vacuum and temperature
ports are in the right state. This access to interface state information of ports
is extremely handy. Without it, the functional constraint needs to replicate the
sequence of the messages on the two ports that lead to the indicated interface
states, information that is already present in the interface specifications. This
way, code duplication is avoided and the size of the constraint is reduced.

In general, transitions in functional constraints are sequences of actions where
the first action is a message pattern: an indication that a message of a given
kind is expected to be observed. The other supported actions are assignment
and if-then-else. Informally, a state-based functional constraint determines a set
of message traces that conform to it. A trace in this set is such that (i) for
every port, the projection of the trace on this port (i.e. the trace obtained by
keeping only the messages on this port) conforms to the port interface; (ii) the
trace obtained by keeping all the used events conforms to the constraint state
machine. Here ’conforms’ means that starting from the initial state and the first
event in the trace, there is at least one transition traversal path that accepts the
trace.

3.2 Using the Identity of Communication Partners

In a trace, every message has a source and a target, which are identifiers of
component instances, and source and target ports. The component language
provides a construct to capture the identity of the communication party for

390 I. Kurtev and J. Hooman

a message observed at a component port. For example, when a command is
received at a provided port, the identifier of the client can be obtained. Similarly,
when a command is sent from a required port of a component, the identifier of
the component can be obtained. This is illustrated by an example of a shared
resource with multiple clients.

Fig. 4. Example interface and component models for managing shared resource

Assume that a component is providing access to a shared resource via a
single provided port named resPort associated to interface IResource (see Fig. 4).
Multiple clients can request control over this resource and the component is
responsible for the policy of sharing it. The requirement is that at most one
client is allowed to control the resource at a given moment. The following is a
snippet from the corresponding functional constraint.

use events
r e sPort : : reply to command getContro l
notif ication r e sPor t : : c on t ro lLo s t

variables
id c
id c1

i n i t i a l state ResourceFree {
<c> r e sPort : : reply (t rue) to command getContro l
next state : ResourceTaken

resPort : : reply (f a l s e) to command getContro l
next state : ResourceFree

}

state ResourceTaken {
notif ication <c1>r e sPor t : : c on t ro lLo s t where c = = c1

Runtime Verification of Compound Components with ComMA 391

next state : ResourceFree

re sPort : : reply (f a l s e) to command getContro l
next state : ResourceTaken

}
If in the initial state, called ResourceFree, a reply to command getControl

with argument true is observed then the identifier of the client who receives the
reply is bound to the variable c. Note that the type of the variable is id. This is
a predefined primitive type that allows only identity comparison operations. If a
client receives a positive reply to getControl, the state ResourceTaken becomes
the current state. In ResourceTaken no more positive replies to control requests
are allowed. The control over the resource can be released only if the component
decides to send notification controlLost to the client which currently has the
control. Observe the usage of the variable c1 that takes as value the identifier of
the receiver of the notification. It is used in the condition that ensures the client
which is currently in control receives the notification.

This example can be formulated more compactly as a predicate functional
constraint. A predicate constraint is an expression preceded with the keyword
always:

always [0−1] connections at portRes in InContro l

The constraint states that at most one client connected to portRes is in inter-
face state InControl. The expression uses a quantifier over the port connections
(zero or one connection satisfies a condition). Note that for every client/con-
nection of a provided port, a separate instance of the interface state machine is
created, each with its own current state. This example shows how component
functional constraints can restrict the order of events over the connections of a
single port. In contrast, the first example (about control, vacuum and tempera-
ture) involves multiple ports and interfaces.

The interface state of the client at the moment of observing a message may
be different from the state assumed after the observation (recall the difference
between observation and post-observation states explained in Sect. 2.2). As an
illustration, consider two consecutive actions in a functional constraint in the
context of our current example:

<c> r e sPort : : reply (t rue) to command getContro l
where c at r e sPort in I d l e

b := (c at r e sPort in I d l e)

The first action is a pattern that matches replies to getControl with param-
eter true. If it matches the currently observed message, variable c takes a value
(the identifier of the receiver of the reply) and then the where clause is evaluated.
Assume that its value is true (indeed, such a reply can only be observed in state
Idle).

In the second action, however, the same expression evaluates to false since
after observing the reply, the transition to InControl is taken and the interface

392 I. Kurtev and J. Hooman

changes its state (see Fig. 4). Variable b will be assigned with false. This subtlety
affects how the expressions that use the current interface state of a connection
are evaluated. If they are used in the context of a message pattern, the state
at the moment of observing the message is used for the corresponding connec-
tion, otherwise the post-observation state for the last observed message for this
connection is used.

4 Compound Components

Component models may also define the internal component structure: its sub-
components (parts) and their interactions.

Fig. 5. Example compound component model

Figure 5 shows an example of a non-trivial component model called Imag-
ing. It represents a system that captures images of some specimen. The model
has four parts that are instances of other component models: ui, imageAcquisi-
ton, imageProcessing and display. These component models may have their own
internal structure as can be seen from the figure. The process of image acquisi-
tion requires vacuum in the system and a certain temperature level. The image
is produced by a beam, generated by a source, going through the material and
captured by a detector. The detector sends the data for further processing, stor-
age and possibly visualization at a display. The imageAcquisition.control part
is responsible for orchestrating the process: first ensuring vacuum and correct

Runtime Verification of Compound Components with ComMA 393

temperature and then starting the acquisition process. The type of imageAcqui-
sition.control is the Control component introduced in the previous section.

Components are connected via their ports; in Fig. 5 provided ports are shown
as a solid square and required ports as a dashed square. Messages originating
from the required port ui.iControlPort1 are transmitted via a connection to
the provided port imageAcquisition.iControlPort2. The connection between the
latter and control.iControlPort3 means that the messages will be further trans-
mitted to the part control. In this way, a chain of connections defines a full
path for message transmission. A more complex path can be observed between
detector.iProcessingPort and imageProcessing.iProcessingPort.

As an example of the textual syntax of compound components, the next
listing shows the specification of the ImageAcquisition component.

component ImageAcquis i t ion

provided port IContro l iContro lPort2
required port IProc e s s i ng iProc e s s i ngPor t

parts
Control c on t r o l
Temperature temperature
Vacuum vacuum
Acqu i s i t i on a c qu i s i t i o n

connections
iContro lPort2 <−> c on t r o l : : iContro lPort3
con t r o l : : iTemperaturePort <−> temperature : : iTemperaturePort
c on t r o l : : iVacuumPort <−> vacuum : : iVacuumPort
c on t r o l : : iSourcePort <−> a c qu i s i t i o n : : iSourcePort
a c q u i s i t i o n : : iP roc e s s i ngPor t <−> iP roc e s s i ngPor t

Note that a compound component contains parts which are named instances of
component models. The parts have all the ports defined in their model. We will
call such ports part ports and will refer to the ports defined by the component
model as boundary ports. Within a component model, parts can interact with
other parts by using connections between their ports. A connection of this kind
is defined between a pair of provided and required ports of the same interface.
Furthermore, a boundary port may be connected to a part port with the same
kind (provided or required) and of the same interface. A connection indicates a
channel for transmitting messages between the ports. For example, a message
observed at a boundary port is redirected to the connected port of one of its parts.
The ports do not perform any computation. A connection between a boundary
port and a part port is just an indication of a path to the message’s destination.
The boundary port does not create a new message that is forwarded over the
connection.

For a compound component, functional constraints can be used to relate
events of interfaces of different components. For instance, such a constraint may
express that an AcquireImage event on port iControlPort1 of component ui

394 I. Kurtev and J. Hooman

alternates with event DisplayImage on port iDisplayPort of component display.
Moreover, also end-to-end time constraints can be expressed, e.g. to express that
the DisplayImage event should happen within a certain amount of time after the
AcquireImage event.

5 Component Monitoring

Component monitoring is performed for a given trace and component model.
It checks if the trace satisfies: (i) the functional constraints in the model; (ii)
the interface models associated to the component ports. Furthermore, if the
component model has parts, the trace is checked against their models too.

The monitor for a trace has the following logical structure: trace processor
that reads the trace, identifies the component instances to be monitored, and
invokes component and interface monitors. A component monitor contains func-
tional constraint monitors.

We first briefly explain how component instances are specified in the traces,
an elaboration of the information previously given in Sect. 2.2.

5.1 Traces with Messages Between Component Instances

A trace starts with a declaration of all component instances and their models.
The part-whole relation between the instances is encoded in their identifiers.

Imaging imaging
Use r In t e r f a c e imaging . u i
ImageAcquis i t ion imaging . imageAcqui s i t ion

In this declaration, there is one instance of the Imaging model, called imaging,
and two parts of imaging which are named with a compound name where the
prefix is the name of the containing instance and the last segment is the simple
name given in the component model.

Messages cannot cross the boundaries of the containing components for
its source and target. For example, a message from imaging.ui can only
be sent to the parts at the same level of nesting, that is, to imag-
ing.imageAcquisition. Observe that imageAcquisition.iControlPort2 is connected
to control.iControlPort3 (Fig. 5) so the messages received at the former will
be further directed to the latter port. Regardless of the connection, it is
not allowed to specify a message from imaging.ui.iControlPort1 to imag-
ing.imageAcquisition.control.iControlPort3 because it crosses the boundary of
the enclosing imageAcquisition component.

5.2 Algorithm for Monitoring a Trace

For a given trace and a component model, all instances of the component model
are monitored. Note that a trace may have instances of different models. Only
the instances of the given model are considered. An instance behaves according

Runtime Verification of Compound Components with ComMA 395

to its model if the sequence of the messages relevant to this instance satisfies
the constraints in the model and in the models of its direct or indirect parts. A
direct part is contained immediately in the instance, an indirect part is contained
further down in the containment tree induced by the part-whole relation among
components. A message is relevant for a component instance if it is observed at
one of its boundary ports or is exchanged between two of its direct or indirect
parts. When a component instance is monitored all its direct and indirect parts
are monitored too.

Due to the possibility of connections between ports, a given message can be
checked against more than one component model. One of the tasks of the moni-
toring algorithm is for a given message to determine a sequence of checks against
the relevant component models. Assume that we monitor the instance imaging
(see the example in previous section) and imaging.imageAcquisition receives a
message at iControlPort2 from imaging.ui. Let’s denote this message as (ui,
iControlPort1, imageAcquisition, iControlPort2) abstracting away the message
kind and possible parameters. This is a message between parts of the component
being monitored, it is visible in the context of component model Imaging and
therefore it has to be checked against the Imaging constraints. Furthermore, the
message is observed at the boundary ports of two parts thus posing the need to
check it against their models (UserInterface and ImageAcquisition).

When the message is received at imageAcquisition.iControlPort2, the connec-
tion to control.iControlPort3 is followed and the message is ultimately received
by the control part. The message needs to be checked against the Control model
as well. In summary, the considered message will be checked against the following
component models: Imaging, UserInterface, ImageAcquisition, and Control.

The constraints in Control model will refer to messages observed at Control
instances and their boundary ports. Because of this, before checking the message
against the constraints defined in Control, the destination of the message is
changed to (ui, iControlPort1, imageAcquisition.control, iControlPort3).

In summary, for every message relevant to the monitored instance, a list
of (component instance, port) pairs is determined, where the presence of port
is optional. For every element in the list, the message will be checked by the
component monitor for the instance. Both the instance and the port will be used
if one of the message ends needs renaming. In our example the list of pairs is
(imaging,), (userInterface,), (imageAcquisition,), (control, iControlPort3).

Generally, the list is formed in the following way: (i) for a message at compo-
nent boundary port, the instances are the ones reachable following the chain of
port connections towards the component parts; (ii) for a message between parts,
the instances are the ones reachable following the connections from the source
and target message ports plus the immediate parent of the parts. Our example
falls under the second case.

Before the check of functional constraints, interface monitoring is per-
formed. Every relevant message is exchanged in a pair of client and server
components and an interface monitor will be created for this pair. In our
example, an interface monitor will be created for the connection between

396 I. Kurtev and J. Hooman

ui.iControlPort1 and imageAcquisition.iControlPort2. It will provide interface
state information shared among three ports: the two mentioned above and con-
trol.iControlPort3 (note the connection between imageAcquisition.iControlPort2
and control.iControlPort3).

A sketch of the algorithm that processes and monitors a trace is given in
procedure MonitorComponentInstances that takes as input a component model
cModel and a trace. Recall that the trace contains information about the com-
ponent instances and the messages among them. Monitoring is performed on
all messages from the trace that are relevant for the instances of cModel. All
instances of cModel can be obtained from the component declarations part in
trace (line 2). As explained before, a relevant message is observed at a boundary
port or between two (direct or indirect) parts of some instance (lines 9–11). If
a relevant message is found, it is first checked by its interface monitor (created
for the connection between the message’s sender and receiver). The interface
monitor is treated as an object: it can be created, stored and it has behavior
and internal state (line 18). Interface monitoring of a relevant message is always
performed as long as no interface error has been detected for this connection.
If at least one interface error is found for a given component instance on some
of its ports, the check against the component model is not performed anymore.
The map interfaceErrorStatus (line 6) keeps track if an interface error has been
observed for an instance (see lines 24 and 42 where the map is used and updated).
If the interface monitor accepts the message the next step is to perform the check
against the relevant component models (which further leads to checking of their
functional constraints). Traversal path descriptions that will be used in func-
tional constraint checks are obtained from the interface monitor (line 27). The
pairs of component instance and port (as explained previously) are determined
and then iterated (lines 31–40). For every component instance in the pairs, a
component monitor is obtained (line 36, created once on demand, then stored
and used later when the same instance is monitored for another message).
1 MonitorComponentInstances (cModel , t r a c e)
2 i n s t an c e s <− i n s t an c e s o f cModel from t ra c e
3
4 // i n d i c a t e s i f i n t e r f a c e monitoring error occurred
5 // f o r an ins tance ; i n i t i a l i z e d wi th f a l s e
6 i n t e r f a c eE r r o r S t a t u s <− map from in s t an c e s to Boolean
7 While t r a c e has unprocessed messages Do
8 msg <− read next message from t ra c e
9 I f (msg at boundary port o f some i in i n s t an c e s)

10 Or
11 (msg between par t s o f some i in i n s t an c e s)
12 Then
13 i <− the in s t ance that s a t i s f i e s the
14 cond i t i on in l i n e s 9−11
15 // i n t e r f a c e monitor i s i n s t a n t i a t e d once on
16 //demand fo r each pa i r (c l i e n t , s e r v e r) ,
17 // s t o r ed and used when needed

Runtime Verification of Compound Components with ComMA 397

18 in t e r f a c eMon i t o r <− obta in i n t e r f a c e monitor
19 f o r msg
20 I f i n t e r f a c eMon i t o r a l r eady gave e r r o r Then
21 Continue
22 End I f
23 I f msg i s accepted by in t e r f a c eMon i t o r Then
24 I f i n t e r f a c eE r r o r S t a t u s at i i s t rue Then
25 Continue
26 End I f
27 pathDesc r ip t i ons <− obta in t r a v e r s a l path
28 d e s c r i p t i o n s from in t e r f a c eMon i t o r
29 pa i r s In s t ancePor t <− l i s t o f (ins tance , port)
30 f o r cModel and i
31 For Each pa i r in pa i r s In s t ancePor t Do
32 change the r e l e van t message end f o r pa i r
33
34 //component monitor i n s t a n t i a t e d on
35 //demand and s t o r ed
36 componentMonitor <− obta in component
37 monitor f o r pa i r . i n s t ance
38 MonitorComponentInstance (componentMonitor ,
39 msg , pathDesc r ip t i ons)
40 End For
41 Else
42 s e t i n t e r f a c eE r r o r S t a t u s at i to t rue
43 End I f
44 End I f
45 End While
46 c o l l e c t and pr in t r e s u l t s from a l l i n t e r f a c e and
47 component monitors
48 End

The monitoring of a component instance is sketched in procedure Moni-
torComponentInstance. A component monitor contains a list of functional con-
straint monitors (line 4, componentMonitor.fcMonitors). The input message is
checked by every functional constraint monitor for which no error has previously
been detected.

1 MonitorComponentInstance (componentMonitor ,
2 msg ,
3 pathDesc r ip t i ons)
4 For Each fcMonitor in componentMonitor . f cMonitors Do
5 I f fcMonitor has not p r ev i ou s l y detec ted e r r o r
6 Then
7 MonitorFunct iona lConstra int (fcMonitor , msg ,
8 pathDesc r ip t i ons)
9 End I f

10 End For
11 End

398 I. Kurtev and J. Hooman

The implementation of functional constraint monitors and the usage of the
traversal path descriptions is explained in the next section.

5.3 Checking Functional Constraints

We will first discuss how expressions that use interface states at ports are eval-
uated using the information in the traversal path descriptions, and then will
outline the implementation of functional constraint monitors.

Different traversal paths in an interface state machine may lead to different
states. In functional constraints, the expressions that refer to port states may
produce different results for different paths ultimately causing a constraint to
fail for some paths and succeed for others. Furthermore, multiple ports with
multiple interface monitors can exist in the context of a component instance,
each monitor possibly having multiple traversal paths. This means that for a
given component instance, all combinations of traversal paths from all monitors
on all ports need to be formed and functional constraints have to be evaluated
for every combination. When forming the combinations we take into account
that connected ports share an interface monitor and therefore share traversal
paths in a single combination.

In the following explanation we assume that for each functional constraint
there is an implementation in some programming language. Such an implemen-
tation may be based on some of the well known ways to implement state machine
specifications in a general purpose programming language. We also assume that
the implementation is parameterized with a constraint execution context. The
context contains the current state of the machine, the values of the variables,
and the states of the interface monitors associated to the component ports (as
explained previously). The implementation can be configured with a given con-
text and provides a function called consume that receives a message as input.
This function, based on the current machine state, searches for transitions that
match the message. For such a transition, all actions are executed thus lead-
ing to new execution context. If more than one transition exists, all are explored
leading to multiple new execution contexts. The function returns the list of these
new execution contexts. If the list is empty, then the functional constraint fails
for the observed message in the given execution context.

At conceptual level, a functional constraint monitor is a data structure that
contains the implementation of the constraint, a set of tuples with the traversal
path descriptions per interface monitor on the ports (referred to as portsStates),
and for every such tuple a set of constraint execution contexts.

The next procedure sketches the check of a functional constraint on a given
message. The idea here is to check the functional constraint for every tuple with
ports states. The functional constraint monitor is responsible for initializing
and updating the set with these tuples. Since a functional constraint may have
multiple execution contexts, a given tuple with ports states is associated to a
set of execution contexts.

Runtime Verification of Compound Components with ComMA 399

1 MonitorFunct iona lConstra int (fcMonitor ,
2 msg ,
3 pathDesc r ip t i ons)
4 update fcMonitor . po r t sS t a t e s f o r the g iven msg
5 with i n f o from pathDesc r ip t i ons
6 I f fcMonitor . po r t sS t a t e s i s empty Then
7 r e g i s t e r f un c t i o na l c on s t r a i n t e r r o r
8 Return
9 End I f

10 I f msg not used by the f un c t i o na l c on s t r a i n t Then
11 Return
12 End I f
13 newPortsStates <− empty l i s t
14 For Each portsStateTuple in fcMonitor . po r t sS t a t e s Do
15 s e t cur r ent por t s s t a t e s in fcMonitor
16 to portsStateTuple
17 newFCExecutionContexts <− empty l i s t
18 For Each fcContext in portsStateTuple . f cContexts
19 Do
20 s e t cur r ent context in fcMonitor to fcContext
21 newContexts <− fcMonitor . consume (msg)
22 add newContexts to newFCExecutionContexts
23 End For
24 I f newFCExecutionContexts i s not empty Then
25 portsStateTuple . f cContexts <−
26 newFCExecutionContexts
27 add portsStateTuple to newPortsStates
28 End I f
29 End For
30 I f newPortsStates i s empty Then
31 r e g i s t e r f un c t i o na l c on s t r a i n t e r r o r
32 Return
33 Else
34 fcMonitor . po r t sS t a t e s <− newPortsStates
35 End I f
36 End

The first operation in the procedure updates the tuples of ports states with
the info from the path descriptions provided by the interface monitor (line 4). If
in a given tuple the path identifier at the port on which the message is observed
is not a prefix for any path in pathDescriptions this means that the path has
been discarded by the interface monitor after the check of the message. The tuple
is discarded as well. If the path identifier is a prefix of some paths in pathDe-
scriptions, the tuple is replicated for every such path and state information is
updated. It is possible that after this update, all tuples are discarded. This is
treated as functional constraint violation: there are no traversal paths in the
interface monitor that satisfy the functional constraint (lines 6–9). Observe also
that this update is done for every message even if it is not used by the functional
constraint (not listed in use events section).

400 I. Kurtev and J. Hooman

After the update of the ports states, and the check if the message is used by
the constraint (lines 10–12), the logic is straightforward: the outer loop (starting
in line 14) iterates over each tuple of ports states, the inner loop (line 18–
23) iterates over the functional constraint execution contexts for this tuple. The
functional constraint instance is configured with a pair of ports states and context
and then function consume is called. The result is a list of new execution contexts
(line 21). If for a given tuple and all its contexts no transition in the functional
constraint is found for the message (manifested by empty list of new contexts)
the tuple is discarded. If all tuples are discarded, a functional constraint error is
registered (lines 30–32).

The set of tuples with port states may become very large. In practice this
hardly happens: multiple traversal paths in an interface are usually reduced to
one after observing a few events.

The monitoring algorithms presented here serve as a base for the implemen-
tation of the component monitoring tool (done in Java and available in the
Eclipse CommaSuite project). The trace processor, component and functional
constraint monitors, and the functional constraints are completely generated
from component and interface models.

6 Related Work

The component modeling approach presented in this paper uses the concepts of
component, interface, port and connector. They are known from software archi-
tecture and system modeling languages such as UML, SysML, AADL among
others. This is a conscious choice based on the observation that these concepts
are familiar to the practitioners. Monitoring of systems with complex compo-
nent architecture has been addressed in [4,13]. Falcone et al. [4] propose a run-
time verification framework for component-based systems modeled with similar
constructs where behavior is modeled with finite state machines. The ports in
this approach accept simple values whereas in ComMA, ports are associated to
interfaces with signatures that may use complex structures. Stockmann et al.
[13] execute monitoring on traces obtained from simulating a software architec-
ture specified in an executable modeling language. In our approach, traces are
observations on the implementation.

There is a large variety of languages for specifying properties to be moni-
tored. Their theoretical underpinnings are usually in formal logics. Dwyer et al.
[3] identify patterns for properties observed in practice. These patterns have been
used in property specification languages to achieve more compact and intuitive
syntax. ParTraP [2] is a recent work based on this idea. Time and data con-
straints in ComMA are derived from common patterns observed in industrial
practice, like periodicity, response time and others. We have considered using
the patterns identified in [3] for functional constraints but opted for state-based
specifications, already used in the interface definition language.

RML [1] is a domain-specific language for runtime verification. ComMA con-
structs like any order and event patterns have their counterparts in this language.

Runtime Verification of Compound Components with ComMA 401

An interesting possibility is to treat ComMA specifications as syntactic sugar
and investigate how they can be translated to RML primitives.

There exist approaches that weave the monitor’s code into the system under
monitoring (e.g. the language LIME and its monitoring infrastructure [5]). In
our work the monitor is executed separately from the monitored system, often
in offline mode after collecting the observations. This is beneficial in cases where
the system implementation cannot be altered and instrumented.

ComMA compound components may represent distributed systems. This
opens the possibility for distributed monitoring. Currently, the component mon-
itor is monolithic, executed on a single node and working with traces that unite
all (possibly distributed) observations. Performing distributed monitoring is a
possible future direction, whose importance is recognized in a recent survey [10].

7 Conclusions

We presented the ComMA language that allows modeling component-based sys-
tems and specifying properties that are monitored during system execution.
Monitors are automatically generated from component specifications. This work
extends our previous work on specification and monitoring of component inter-
faces in industrial context. It brings a new application scope by allowing multiple
interfaces to be used together in a single component and specifying interacting
components at system level.

As mentioned in earlier publications [6,7,11], ComMA has been developed
driven by user needs in close collaboration with Philips, following the industry-
as-laboratory approach [8]. Hence, the languages use concepts and notations
that are familiar to engineers and aim at rapid industrial adoption. Currently,
the ComMA tooling is actively used at Philips to model and monitor of a num-
ber of industrial components, see for instance [9,12]. Future work will focus on
applications in more complex cases where monitoring the order and timing of
component interaction is a primary focus.

Acknowledgements. We would like to thanks our colleague Dennis Dams and the
anonymous reviewers for many useful suggestions for improvements.

References

1. Ancona, D., Franceschini, L., Ferrando, A., Mascardi, V.: RML: theory and practice
of a domain specific language for runtime verification. Sci. Comput. Program. 205,
102610 (2021). https://doi.org/10.1016/j.scico.2021.102610

2. Blein, Y.: ParTraP: a language for the specification and runtime verification of
parametric properties. (ParTraP: Un langage pour la spécification et vérification à
l’exécution de propriétés paramétriques). Ph.D. thesis, Grenoble Alpes University,
France (2019). https://tel.archives-ouvertes.fr/tel-02269062

3. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Boehm, B.W., Garlan, D., Kramer, J. (eds.) Proceed-
ings of the 1999 International Conference on Software Engineering, ICSE 1999, Los

https://doi.org/10.1016/j.scico.2021.102610
https://tel.archives-ouvertes.fr/tel-02269062

402 I. Kurtev and J. Hooman

Angeles, CA, USA, 16–22 May 1999, pp. 411–420. ACM (1999). https://doi.org/
10.1145/302405.302672

4. Falcone, Y., Jaber, M., Nguyen, T.-H., Bozga, M., Bensalem, S.: Runtime veri-
fication of component-based systems in the BIP framework with formally-proved
sound and complete instrumentation. Softw. Syst. Model. 14(1), 173–199 (2013).
https://doi.org/10.1007/s10270-013-0323-y

5. Kähkönen, K., Lampinen, J., Heljanko, K., Niemelä, I.: The LIME interface speci-
fication language and runtime monitoring tool. In: Bensalem, S., Peled, D.A. (eds.)
RV 2009. LNCS, vol. 5779, pp. 93–100. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-04694-0 7

6. Kurtev, I., Hooman, J., Schuts, M.: Runtime monitoring based on interface spec-
ifications. In: Katoen, J.-P., Langerak, R., Rensink, A. (eds.) ModelEd, TestEd,
TrustEd. LNCS, vol. 10500, pp. 335–356. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-68270-9 17

7. Kurtev, I., Schuts, M., Hooman, J., Swagerman, D.J.: Integrating interface mod-
eling and analysis in an industrial setting. In: Proceedings of 5th International
Conference on Model-Driven Engineering and Software Development (MODEL-
SWARD 2017), pp. 345–352 (2017)

8. Potts, C.: Software-engineering research revisited. IEEE Softw. 19(9), 19–28 (1993)
9. Roos, N.: ComMA interfaces open the door to reliable high-tech systems. Bits

& Chips, 8 September 2020. https://bits-chips.nl/artikel/comma-interfaces-open-
the-door-to-reliable-high-tech-systems/

10. Sánchez, C., et al.: A survey of challenges for runtime verification from advanced
application domains (beyond software). Formal Methods Syst. Des. 54(3), 279–335
(2019). https://doi.org/10.1007/s10703-019-00337-w

11. Schuts, M., Hooman, J., Kurtev, I., Swagerman, D.J.: Reverse engineering of legacy
software interfaces to a model-based approach. In: Proceedings of the 2018 Feder-
ated Conference on Computer Science and Information Systems (FedCSIS 2018).
Annals of Computer Science and Information Systems (ACSIS), vol. 15, pp. 867–
876 (2018)

12. Schuts, M., Swagerman, D.J., Kurtev, I., Hooman, J.: Improving interface speci-
fications with ComMA. Bits & Chips, 14 September 2017. https://bits-chips.nl/
artikel/improving-interface-specifications-with-comma/

13. Stockmann, L., Laux, S., Bodden, E.: Architectural runtime verification. In: IEEE
International Conference on Software Architecture Companion, ICSA Companion
2019, Hamburg, Germany, 25–26 March 2019, pp. 77–84. IEEE (2019). https://
doi.org/10.1109/ICSA-C.2019.00021

https://doi.org/10.1145/302405.302672
https://doi.org/10.1145/302405.302672
https://doi.org/10.1007/s10270-013-0323-y
https://doi.org/10.1007/978-3-642-04694-0_7
https://doi.org/10.1007/978-3-642-04694-0_7
https://doi.org/10.1007/978-3-319-68270-9_17
https://doi.org/10.1007/978-3-319-68270-9_17
https://bits-chips.nl/artikel/comma-interfaces-open-the-door-to-reliable-high-tech-systems/
https://bits-chips.nl/artikel/comma-interfaces-open-the-door-to-reliable-high-tech-systems/
https://doi.org/10.1007/s10703-019-00337-w
https://bits-chips.nl/artikel/improving-interface-specifications-with-comma/
https://bits-chips.nl/artikel/improving-interface-specifications-with-comma/
https://doi.org/10.1109/ICSA-C.2019.00021
https://doi.org/10.1109/ICSA-C.2019.00021

	Runtime Verification of Compound Components with ComMA
	1 Introduction
	2 Interface Modeling and Monitoring
	2.1 ComMA Interface Modeling
	2.2 Interface Monitoring

	3 Component Models
	3.1 Components with Functional Constraints
	3.2 Using the Identity of Communication Partners

	4 Compound Components
	5 Component Monitoring
	5.1 Traces with Messages Between Component Instances
	5.2 Algorithm for Monitoring a Trace
	5.3 Checking Functional Constraints

	6 Related Work
	7 Conclusions
	References

