### Hammering towards Qed

Cezary Kaliszyk Josef Urban

University of Innsbruck Radboud University

July 18, 2014

#### Outline

#### Automation for Interactive Proof

Translations Evaluation Machine Learning Reconstruction

Towards Qed Strength Logics Knowledge

## Interactive proofs

- ▶ Formal proof skeleton + filling in the gaps
  - Searching for needed theorems
  - Tedious properties
- Proof structure is lost
  - Uninteresting parts overshadow interesting ones

## Interactive proofs

- ▶ Formal proof skeleton + filling in the gaps
  - Searching for needed theorems
  - Tedious properties
- Proof structure is lost
  - Uninteresting parts overshadow interesting ones
- Automation for Interactive Proof
  - Tableaux: Itaut, Tauto, Blast
  - Rewriting: Simp, Subst, HORewrite
  - ▶ Decision Procedures: Congruence Closure, Ring, Omega, Cooper
- ▶ Large-theory ATP and translation techniques
  - Mizar: MaLARea
  - Isabelle/HOL: Sledgehammer
  - HOL(y)Hammer

# MizAR demo

https://www.youtube.com/watch?v=4es4iJKtM3I





How much can it do?



How much can it do?

- Flyspeck (including core HOL Light and Multivariate)
- Mizar / MML
- Isabelle (Auth, Jinja)



How much can it do?

- Flyspeck (including core HOL Light and Multivariate)
- Mizar / MML
- Isabelle (Auth, Jinja)

$$pprox 45\%$$

## Translation Overview

- Various exports to FOF
  - MESON-style monomorphisation
  - TFF-style type tagging
  - Isabelle-style type guards
- Export to TFF1
  - Additional provers (Alt-ergo)
  - ▶ Tools that do Monomorphisation of TPTP (Why3, tptp2X)
- Export to THF0
  - Satallax, Leo-II, ...
  - Monomorphisation makes the problems big and slow
- SMT solvers
  - Reconstruction
- Export to other ITPs
  - Rarely better

## Translation overview (HOL)

- **1** Heuristic type instantiation
  - Similar for induction
- 2 Eliminate  $\epsilon$
- **3** Remove  $\lambda$ -abstractions
  - lifting, combinators, ...
- **4** Optimizations
  - ▶ if..then..else,∃!
- **5** Separate predicates and terms
  - Consider cases, introduce bool variables
- 6 NNF, Skolemize
- 7 Use apply functor to make all applications first-order
- 8 Encode remaining types
  - monomorphisation, tags, guards
- 9 Various optimizations (incomplete)

# HOL(y) Hammer

*Learning-assisted automated reasoning for HOL Light* 





## **Request Advice:**

Input the HOL Light formula to prove and select HOL Light session:

- polyhedron p ==> convex (relative\_interior p)
- mv193.

Submit

(cache:OK)(session:OK)(parse:OK)SSSAWAAWAW

Result (3.81s): CONVEX\_RELATIVE\_INTERIOR POLYHEDRON\_IMP\_CONVEX Replaying: SUCCESS (0.29s):SIMP\_TAC[POLYHEDRON\_IMP\_CONVEX;CONVEX\_RELATIVE\_INTERIOR]

Examples:

## Re-proving (Flyspeck, 30sec)

| Prover    | Theorem% | CounterSat% | Sotac $-\Sigma$ |
|-----------|----------|-------------|-----------------|
| E-par     | 38.4     | 0.0         | 69.12           |
| Z3-4      | 36.1     | 0.0         | 61.51           |
| E         | 32.6     | 0.0         | 45.44           |
| Leo II    | 31.0     | 0.0         | 45.77           |
| Vampire   | 30.5     | 0.0         | 45.75           |
| CVC3      | 28.9     | 0.0         | 43.36           |
| Satallax  | 26.9     | 0.0         | 48.75           |
| Yices1    | 25.3     | 0.0         | 33.32           |
| IProver   | 24.5     | 0.6         | 29.50           |
| Prover9   | 24.3     | 0.0         | 29.98           |
| Spass     | 22.9     | 0.0         | 26.22           |
| LeanCop   | 21.4     | 0.0         | 26.98           |
| AltErgo   | 19.8     | 0.0         | 26.82           |
| Paradox 4 | 0.0      | 18.2        | 0.06            |
| any       | 50.2     | -           | -               |

## Machine learning techniques

Algorithms

- Syntactic methods
  - ▶ Neighbours using various metrics, Recursive (MePo)
- Sparse Naive Bayes
  - Variable prior, Confidence
- k-Nearest Neighbours
  - ▶ TF-IDF, Dependency weighting
- Neural Networks
  - Winnow, Perceptron
- Linear Regression
  - Needs feature and theorem space reduction

Combining original and ATP dependencies

Added value depends on the precision of human deps

#### Features for Machine Learning

▶ A function that given a goal or premise returns a sparse vector

- Optionally weights for kinds of features
- Internal TF-IDF
- Types and type variables
- Constants
- Subterms / Patterns
  - No variable normalization
  - De-Bruijn indices
  - Types of variables
  - Normalization of type variables
- ▶ Meta information: Theory name, kind of rule, contains ∃, ...

## Naive Bayes

- Each predictor
  - Given a vector of features of a goal g and a set of facts
  - Returns the predicted relevance for each fact f
- Assume independence between the features

P(f is relevant for proving g) = P(f is relevant | g' s features)  $= P(f \text{ is relevant } | f_1, \dots, f_n)$   $\propto P(f \text{ is relevant})\Pi_{i=1}^n P(f_i | f \text{ is relevant})$   $\propto \#f \text{ is a proof dependency} \cdot \Pi_{i=1}^n \frac{\#f_i \text{ appears when } f \text{ is a proof dependency}}{\#f \text{ is a proof dependency}}$ Efficient  $\models \text{ Fast predictions}$ 

- Fast updates
- Small models

#### Success Rates



#### Success Rates



## **Proof Reconstruction**

Existing reconstruction mechanisms

- Metis, SMT
- Mizar by
- MESON, Prover9
- Parse TSTP/SMT proofs
  - Create subgoals that match ATP intermediate steps
  - Automatically solve all simple ones
- ▶ High reconstruction rates give confidence in our techniques
  - ▶ Naive reconstruction: 90% (of Flyspeck solved)
    - ▶ MESON, SIMP, ?\_ARITH\_TAC
  - ▶ With TSTP parsing: 96%

#### Outline

#### Automation for Interactive Proof

Translations Evaluation Machine Learning Reconstruction

Towards Qed Strength Logics Knowledge

#### Improve Percentage

- ▶ Is 100% possible?
  - Granularity of steps also increases
- Premise selection
- Encodings
- ► ATP-systems
- Reconstruction

#### Improve Percentage

- Is 100% possible?
  - Granularity of steps also increases
- Premise selection
  - Good machine learning algorithms are still slow
- Encodings
  - Efficient but more complete
- ATP-systems
  - Strategies and combinations
- Reconstruction
  - Formalized decision procedures

## ITP logics

- MizAR
  - Set theory, dependent types, (almost) first order
- ▶ Sledgehammer, HOL(y)Hammer, ...
  - HOL, shallow polymorphism
- ► ACL2
  - Structure Irrelevance, Logic as lists
- ▶ Isabelle/ZF, ...
  - All features of meta-logic necessary
- Coq
  - Good machine-learning, but encodings hard

## Sharing parts among systems

- Machine Learning Predictors
  - Already many shared
- Feature extraction
  - Given common data format
- Certain Transformations
  - $\lambda$ -lifting, combinators, apply functor
  - Monomorphisation, Heuristic instantiation
  - ▶ Type encodings (tags, guards, soft-types, ...)
- Knowledge management
  - ▶ Namespaces, Browsing, Search, Refactoring, Change management
- Readable proof reconstruction

#### **Common Functionality**

- ▶ TPTP hierarchy: FOF, TFF1, THF0, ?
- ▶ THF1 already used
  - Sledgehammer  $\leftrightarrow$  HOL(y)Hammer
  - ► HOL4
- Type-classes
  - Property of a universally quantified type
  - Already in some Isabelle/HOL version of THF1

```
com_ring : $tType > $o
```

- Dependent types and intersection types
  - Already in MPTP

```
![X : int, K : matrix(X)]: ...
![X : t1 & t2]: ...
```

Universes

```
![X : int]: $type(X) : $tType
```

▶ General  $\Pi$ - and Sigma-types

![W : ![X]: X = X]: ...

## Matching concepts across libraries

Same concepts in different proof assistants

- Problem for proof translation
- Manually found 7-70 pairs
- Same properties
  - > Patterns, like associativity, distributivity ...
  - Same algebraic structures do differ.
- Automatically finds 400 pairs of same concepts
  - ▶ In HOL Light, HOL4, Isabelle/HOL
  - Coq: so far only lists analyzed
- Proof advice can be universal?

#### Conclusion and Future work

- Hammer-systems
  - Until recently unappreciated by developers
  - A large number of top-level proofs found automatically
  - Try it!
- ▶ Interoperation between HOL Light, HOL4 and Isabelle/HOL
  - Cross-Prover Advice Service
- ▶ More logics, ITPs, ATPs, and more effective

## HOL(y) Hammer Machine learning based premise selection for HOL Light



http://cl-informatik.uibk.ac.at/software/hh/

#### References



C. Kaliszyk and J. Urban. MizAR 40 for Mizar 40. CoRR, abs/1310.2805, 2013.



C. Kaliszyk and J. Urban.

PRocH: Proof reconstruction for HOL Light.

In M. P. Bonacina, editor, *CADE*, volume 7898 of *Lecture Notes in Computer Science*, pages 267–274. Springer, 2013.

C. Kaliszyk and J. Urban.

HOL(y)Hammer: Online ATP service for HOL Light. Mathematics in Computer Science, 2014. http://dx.doi.org/10.1007/s11786-014-0182-0.

C. Kaliszyk and J. Urban.

Learning-assisted automated reasoning with Flyspeck. Journal of Automated Reasoning, 2014. http://dx.doi.org/10.1007/s10817-014-9303-3.

D. Kühlwein, J. C. Blanchette, C. Kaliszyk, and J. Urban.

MaSh: Machine learning for Sledgehammer.

In S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, Proc. of the 4th International Conference on Interactive Theorem Proving (ITP'13), volume 7998 of LNCS, pages 35-50. Springer, 2013.



C. Tankink, C. Kaliszyk, J. Urban, and H. Geuvers.

Formal mathematics on display: A wiki for Flyspeck.

In J. Carette, D. Aspinall, C. Lange, P. Sojka, and W. Windsteiger, editors, *MKM/Calculemus/DML*, volume 7961 of *Lecture Notes in Computer Science*, pages 152–167. Springer, 2013.