
1

EUDI-wallets based on Split-ECDSA (SECDA)
and EUDI-wallet roadmap

1

Eric Verheul

All views expressed are personal only

2

Outline

• EUDI-wallet based on eSIM and eID-smartcard (future end-state?)
• SECDSA properties
• The foundation: Split-ECDSA (SECDSA)
• SECDSA based HSM EUDI-wallet using standard mobile hardware
• Proof-of-Associations on standard mobile hardware and HSMs
• EUDI-wallet roadmap

3

EUDI-wallet based on eSIM and eID-smartcard (future end-state)

EUDI
Javacard applet

APP
Store

Wallet
APP

Attribute
Provider

Relying
Party

(website)

EA
L4

+

eSIM

See BSI_SAM_PositionPaper_v1-1.pdf

APP
Store

Wallet
APP

Attribute
Provider

Relying
Party

(website)

PIN

EAL4+

NFC

Embedded
Secure Element (eSE)

Secure Element (SE)

eID

eSE is always connected to Wallet APP → more difficult to secure than separate SE.

• Advanced JavaCard application:
- Provides all attestation keypairs under PIN

control
- Delivers all attestation private keys
- Uses no SECDSA but is compatible with it

• Technologically best, but takes time to realize.

Simple
EUDI

JavaCard
applet

W
SC

D W
SC

D

WSCD=Wallet Secure Cryptographic Device

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Secure-Elements/SAM/BSI_SAM_PositionPaper_v1-1.pdf
https://github.com/eu-digital-identity-wallet/eudi-doc-architecture-and-reference-framework/blob/main/docs/arf.md

4

SECDSA properties
• Allows for EUDI-wallets based on native mobile cryptographic hardware (*) albeit probably not on

eIDAS High assurance level by itself.
• Allows HSM assisted EUDI-wallet based on native mobile cryptographic hardware with properties:

- eIDAS High assurance level (based on eIDAS1 notification process)
- Optimal security (no information stored in wallet or stored/processed at WP allowing for PIN

brute-force)
- Support for publicly verifiable, non-reputable wallet instructions signatures providing:

- provable “sole control” and transaction transparency,
- expedient dispute resolution for users,
- liability reduction for wallet provider and (PID) issuers.

- Can be based on HSM PKCS#11 standard.
- Efficient as requires only one HSM PKCS#11 call (DH) overhead per wallet authentication.

• Allows Proof-of-Association for standalone EUDI-wallet using standard mobile cryptographic
hardware (*).

(*) iOS/Secure Enclave, Android/Hardware Backed Keystore or StrongBox, Windows-Linux/TPM.

5

The foundation: Split-ECDSA (SECDSA)

• The mobile cryptographic hardware is called Secure Cryptographic Environment (SCE) in the SECDSA paper.
• SCE delivers an attested public key U = 𝑢 ⋅ 𝐺 (with private key 𝑢).
• The PIN-key σ is derived from the user PIN and another key in the SCE: each PIN results in a different PIN-key.
• The public key 𝐘 = 𝜎 ⋅ 𝑢 ⋅ 𝐺 and signature 𝑟, 𝑠 are called the raw SECDCA public key and raw signature.
• That 𝑟, 𝑠 is a correct ECDSA signature for private key 𝜎 ⋅ μ is a simple verification.
• Raw SECDSA public key/signature allow for PIN brute-force: may not be stored or leave wallet unencrypted.
• By repetitive SCE use (output = input) the generation time of the PIN-key can be controlled, e.g. set to 1 second. This allows

controlling the expected PIN-brute-force time and thus the effectiveness of PIN-brute-force.
• The key 𝜎 can also be protected by biometric (finger, face) access control of the platform.
• Could be base for (next slide):

- eIDAS substantial stand-alone EUDI-wallet based on native cryptographic hardware,
- eIDAS High stand-alone EUDI-wallet based on simple smartcard application.

Call to SCE
(=hardware)

https://eprint.iacr.org/2021/910

6

SECDSA-based stand-alone EUDI-wallet

W
SC

D

W
SC

D

7

HSM assisted EUDI-wallet
based on native mobile cryptographic hardware

8

SECDSA based HSM EUDI-wallet using standard mobile hardware

PKCS11 HSM

WSCD

SECDSA

Wallet
Provider

WebserviceSECDSA

APP
Store
APP

Store

Wallet
APP

eIDAS High (online)

Attribute
Provider

Relying
Party

(website)
PIN

native mobile cryptographic hardware

9

• During wallet initialisation, an Internal Certificate (IC) is agreed between wallet and wallet provider.

• Internal certificate holds unique Wallet Identifier (WId) and homomorphically encrypted raw SECDSA public key
with DH key managed by the WP HSM to prevent PIN brute-forcing. Raw SECDSA Public key not revealed to WP.

• The IC is stored in the Wallet User DB together with a PIN counter.

• SECDSA signatures on Key Management (KM) instructions are also homomorphically encrypted allowing WP
verification against encrypted raw SECDSA public key without information appearing allowing PIN brute-force.

• When correct, the SECDSA signatures on the KM instructions are made publicly verifiable by the WP HSM
allowing for non-repudiation of the KM instruction.

• All homomorphic encryption techniques are very simple (see next slides).

TECH DETAILS

10

• Homomorphically encrypted raw public key 𝒀 takes form (𝒂 ⋅ 𝐆, 𝒂 ⋅ 𝒀) with secret scalar 𝒂 managed in HSM.

• By using standard blinding techniques, the WP gets hold of the encrypted raw public key without seeing it.

• In practical implementations, each wallet/user gets its own secret scalar 𝒂 (Diffie-Hellman key).

TECH DETAILS

𝐆′, 𝒀′
:=

𝒂 ⋅ 𝐆, 𝒂 ⋅ 𝒀

𝒂

11

The raw SECDSA signature 𝑟, 𝑠 is encrypted by the wallet in two steps:

1. It is first transferred into an equivalent form 𝑅, 𝑠 with 𝑅 ∈ < 𝐺 >. Compare Algorithm 3 of SECDSA paper.

2. Signature is homomorphically encrypted as 𝑈, 𝑉, 𝑊 ≔ 𝑅, 𝑠−1 ⋅ 𝐺′, 𝑠−1 ⋅ 𝑌′ plus a Zero-Knowledge proof

ZK1, e.g. Schnorr, proving this (∃ 𝑥: 𝑉, 𝑊 = (𝑥 ⋅ 𝐺′, 𝑥 ⋅ 𝑌′)).

𝐆′, 𝒀′
:=

𝒂 ⋅ 𝐆, 𝒂 ⋅ 𝒀

Instruction signature of form

𝑈, 𝑉, 𝑊 ≔ 𝑅, 𝑠−1 ⋅ 𝐺′, 𝑠−1 ⋅ 𝑌′ plus ZK1

TECH DETAILS

𝒂

https://eprint.iacr.org/2021/910

12

𝒂

The encrypted signature is validated by the Wallet provider as follows:

1. The original r is reformed from 𝑈 (i.e. 𝑅).

2. Homomorphic verification: 𝑎 ⋅ 𝑈 =(∗) Hash(M) ⋅ V + r ⋅ W // Left side is DH operation

3. If Step is not successful PIN counter is increased/account blocked etc….

4. If Step 2 is successful:

• an extra Schnorr ZK2 is formed making (*) publicly verifiable: final SECDSA signature is 𝑈, 𝑉, 𝑊 , ZK1, ZK2.

• The instruction is performed and the result is returned including the final SECDSA signature.

𝐆′, 𝒀′
:=

𝒂 ⋅ 𝐆, 𝒂 ⋅ 𝒀

Instruction signature of form

𝑈, 𝑉, 𝑊 ≔ 𝑅, 𝑠−1 ⋅ 𝐺′, 𝑠−1 ⋅ 𝑌′ plus ZK1

TECH DETAILS

13

Or better: SHA256(a ⋅ K) = ∗ SHA256(Hash(M) ⋅ L + r ⋅ M)
Notes:
• 𝐾 → SHA256(𝑎 ⋅ 𝐾) is DH operation supported by PKCS#11.
• We thus only need one PKCS#11 call to the HSM for the SECDSA signature verification.
• The generation of ZK2 can be done in quiet hours.

ZK2 is not time critical, hence can be generated in quiet hours.

∃ 𝑥: 𝐺′, Hash(M) ⋅ L + r ⋅ M = (𝑥 ⋅ 𝐺, 𝑥 ⋅ 𝑅))
(it follows x=a so (*) of previous slide holds)

TECH DETAILS

𝑟 is equal to the x-coordinate of
A modulo 𝑞 the group order.

14

• Schnorr Zero Knowledge Proof ZK2 is not PKCS#11
supported and requires a specific (but simple) HSM
firmware module.

• Module has access to secret a (or the master key it
if derived from the Wid which is better).

• Module input:
 WId, U, V, W = 𝐺′, 𝑅, Hash(M) ⋅ L + r ⋅ M
• Module looks up or derives secret a and checks if

1. 𝑈 = 𝑎 ⋅ 𝐺 (𝐺 is curve basepoint) and
2. 𝑊 = 𝑎 ⋅ 𝑉 both hold.

If so, then the Modules generates the
 Schnorr Zero Knowledge Proof ZK2 to make this
 publicly verifiable and returns this.
• Note that this Module does not allow an attacker to

multiply random points with the secret a! That is,
the Module is not a Diffie-Hellman Oracle.

15

Internal CertificateG’
Y’

ZK1

𝑅
𝑠−1 ⋅ 𝐺′
𝑠−1 ⋅ 𝑌′

ZK2

Note: these operations are performed by Wallet
Provider, i.e. not in the APP. POC only.

Result of instruction

Android Studio project available.

16

1. The Wallet Trust Attestation (WTA) is a privacy friendly ISO 23220-3 Secure Area Attestation Object (SAAO)

2. The WTA is an attestation bound to a ECDSA public key U = 𝑢 ⋅ 𝐺 whereby the Wallet Provider guarantees:

a) the wallet/user has possession of u,

b) u is managed in the wallet SCE (cryptographic hardware) and SCE is ‘eIDAS’ compliant.

Note: a WTA is typically issued by the Wallet Provider based on mobile platform (key) attestation capabilities.

3. The wallet/user can generate a public key V associated with the WTA public key U by generating a random scalar z and
letting V = 𝑧 ⋅ 𝑈. The scalar z could be static, derived from a SCE master key or from a user PIN.

 Note: this fits the SECDSA setup allowing the wallet to ECDSA sign with the private key 𝑣 = 𝑧 ⋅ 𝑢.

4. Wallet/user can prove two public keys 𝑈1, 𝑈2 are associated by proving possession of a private key 𝑦: y ⋅ 𝑈1 = 𝑈2.

 Notes:

• If the public keys are 𝑈1 = 𝑘1 ⋅ 𝑈, 𝑈2 = 𝑘2 ⋅ 𝑈 are associated then 𝑦 = 𝑘2 𝑘1
−1.

• This proof can be given for instance using a Schnorr Zero-Knowledge Proof (‘signature’).

• Associations are performed by (PID) issuers against the WTA public key, or against another public key that is known
to be associated to this WTA key, e.g. a ‘WTA copy’.

• The proof of association of public keys always needs to be accompanied by a proof of possession of the keys
involved; efficient combination is possible.

5. Techniques are applicable to stand-alone wallets (standard mobile hardware) and HSM-based wallets (PKCS#11).

Proof-of-Associations on standard mobile hardware and HSMs

2026 > 2030EUDI-WALLET ROADMAP

SECDSA HSM-based wallet SECDSA HSM-based wallet

SECDSA stand-alone wallet (e)SE based wallet

	Dia 1: EUDI-wallets based on Split-ECDSA (SECDA) and EUDI-wallet roadmap
	Dia 2
	Dia 3
	Dia 4
	Dia 5
	Dia 6
	Dia 7
	Dia 8
	Dia 9
	Dia 10
	Dia 11
	Dia 12
	Dia 13
	Dia 14
	Dia 15
	Dia 16
	Dia 17

