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Outline

• EUDI-wallet based on eSIM and eID-smartcard (future end-state?) 
• SECDSA properties
• The foundation: Split-ECDSA (SECDSA) 
• SECDSA based HSM EUDI-wallet using standard mobile hardware
• Proof-of-Associations on standard mobile hardware and HSMs
• EUDI-wallet roadmap
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EUDI-wallet based on eSIM and eID-smartcard (future end-state)

EUDI
Javacard applet

APP
Store

Wallet
APP

Attribute 
Provider

Relying 
Party

(website)

EA
L4

+

eSIM

See BSI_SAM_PositionPaper_v1-1.pdf
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eSE is always connected to Wallet APP → more difficult to  secure than separate SE.

• Advanced JavaCard application:
- Provides all attestation keypairs  under PIN 

control 
- Delivers all attestation private keys
- Uses no SECDSA but is compatible with it

• Technologically best, but takes time to realize.
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WSCD=Wallet Secure Cryptographic Device

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Secure-Elements/SAM/BSI_SAM_PositionPaper_v1-1.pdf
https://github.com/eu-digital-identity-wallet/eudi-doc-architecture-and-reference-framework/blob/main/docs/arf.md
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SECDSA properties
• Allows for EUDI-wallets based on native mobile cryptographic hardware (*) albeit probably not on 

eIDAS High assurance level by itself.
• Allows HSM assisted EUDI-wallet based on native mobile cryptographic hardware with properties:

- eIDAS High assurance level (based on eIDAS1 notification process) 
- Optimal security (no information stored in wallet or stored/processed at WP allowing for PIN 

brute-force)
- Support for publicly verifiable, non-reputable wallet instructions signatures providing:

- provable “sole control” and transaction transparency, 
- expedient dispute resolution for users,
- liability reduction for wallet provider and (PID) issuers.

- Can be based on HSM PKCS#11 standard.
- Efficient as requires only one HSM PKCS#11 call (DH) overhead per wallet authentication.

• Allows Proof-of-Association for standalone EUDI-wallet using standard mobile cryptographic 
hardware (*).

(*) iOS/Secure Enclave, Android/Hardware Backed Keystore or StrongBox, Windows-Linux/TPM.
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The foundation: Split-ECDSA (SECDSA)

• The mobile cryptographic hardware is called Secure Cryptographic Environment (SCE) in the SECDSA paper.
• SCE delivers an attested public key U = 𝑢 ⋅ 𝐺 (with private key 𝑢).
• The PIN-key σ is derived from the user PIN and another key in the SCE: each PIN results in a different PIN-key.
• The public key 𝐘 = 𝜎 ⋅ 𝑢 ⋅ 𝐺 and signature 𝑟, 𝑠  are called the raw SECDCA public key and raw signature. 
• That 𝑟, 𝑠  is a correct ECDSA signature for private key 𝜎 ⋅ μ is a simple verification.  
• Raw SECDSA public key/signature allow for PIN brute-force: may not be stored or leave wallet unencrypted.
• By repetitive SCE use (output = input) the generation time of the PIN-key can be controlled, e.g. set to 1 second. This allows 

controlling the expected PIN-brute-force time and thus the effectiveness of PIN-brute-force.
• The key 𝜎 can also be protected by biometric (finger, face) access control of the platform.
• Could be base for (next slide):

- eIDAS substantial stand-alone EUDI-wallet based on native cryptographic hardware,
- eIDAS High stand-alone EUDI-wallet based on simple smartcard application.

Call to SCE
(=hardware)

https://eprint.iacr.org/2021/910
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SECDSA-based stand-alone EUDI-wallet
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HSM assisted EUDI-wallet
based on native mobile cryptographic hardware  
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SECDSA based HSM EUDI-wallet using standard mobile hardware
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• During wallet initialisation, an Internal Certificate (IC) is agreed between wallet and wallet provider.

• Internal certificate holds unique Wallet Identifier (WId) and homomorphically encrypted raw SECDSA public key 
with DH key managed by the WP HSM to prevent PIN brute-forcing. Raw SECDSA Public key not revealed to WP.

• The IC is stored in the Wallet User DB together with a PIN counter.

• SECDSA signatures on Key Management (KM) instructions are also homomorphically encrypted allowing WP 
verification against encrypted raw SECDSA public key without information appearing allowing PIN brute-force. 

• When correct, the SECDSA signatures on the KM instructions are made publicly verifiable by the WP HSM 
allowing for non-repudiation of the KM instruction.

• All homomorphic encryption techniques are very simple (see next slides).

TECH DETAILS
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• Homomorphically encrypted raw public key 𝒀 takes form (𝒂 ⋅ 𝐆, 𝒂 ⋅ 𝒀) with secret scalar 𝒂 managed in HSM.

• By using standard blinding techniques, the WP gets hold of the encrypted raw public key without seeing it.

• In practical implementations, each wallet/user gets its own secret scalar 𝒂 (Diffie-Hellman key).

TECH DETAILS

𝐆′, 𝒀′  
:=

𝒂 ⋅ 𝐆, 𝒂 ⋅ 𝒀

𝒂 
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The raw SECDSA signature 𝑟, 𝑠  is encrypted by the wallet in two steps:

1. It is first transferred into an equivalent form 𝑅, 𝑠  with 𝑅 ∈ < 𝐺 >. Compare Algorithm 3 of SECDSA paper. 

2. Signature is homomorphically encrypted as 𝑈, 𝑉, 𝑊 ≔ 𝑅, 𝑠−1 ⋅ 𝐺′, 𝑠−1 ⋅ 𝑌′  plus a Zero-Knowledge proof 

ZK1, e.g. Schnorr, proving this (∃ 𝑥: 𝑉, 𝑊 =  (𝑥 ⋅ 𝐺′, 𝑥 ⋅ 𝑌′)).

𝐆′, 𝒀′  
:=

𝒂 ⋅ 𝐆, 𝒂 ⋅ 𝒀

Instruction signature of form

𝑈, 𝑉, 𝑊 ≔ 𝑅, 𝑠−1 ⋅ 𝐺′, 𝑠−1 ⋅ 𝑌′  plus ZK1 

TECH DETAILS

𝒂 

https://eprint.iacr.org/2021/910


12

𝒂 

The encrypted signature is validated by the Wallet provider as follows:

1. The original r is reformed from 𝑈 (i.e. 𝑅).

2. Homomorphic verification: 𝑎 ⋅ 𝑈 =(∗) Hash(M) ⋅ V + r ⋅ W // Left side is DH operation

3. If Step is not successful PIN counter is increased/account blocked etc….

4. If Step 2 is successful:

• an extra Schnorr ZK2 is formed making (*) publicly verifiable: final SECDSA signature is 𝑈, 𝑉, 𝑊 , ZK1, ZK2. 

• The instruction is performed and the result is returned including the final SECDSA signature.

𝐆′, 𝒀′  
:=

𝒂 ⋅ 𝐆, 𝒂 ⋅ 𝒀

Instruction signature of form

𝑈, 𝑉, 𝑊 ≔ 𝑅, 𝑠−1 ⋅ 𝐺′, 𝑠−1 ⋅ 𝑌′  plus ZK1 

TECH DETAILS
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Or better: SHA256(a ⋅ K)  = ∗ SHA256( Hash(M) ⋅ L + r ⋅ M )
Notes:
• 𝐾 → SHA256(𝑎 ⋅ 𝐾) is DH operation supported by PKCS#11.
• We thus only need one PKCS#11 call to the HSM for the SECDSA signature verification.
• The generation of ZK2 can be done in quiet hours.

ZK2 is not time critical, hence can be generated in quiet hours.

∃ 𝑥: 𝐺′, Hash(M) ⋅ L + r ⋅ M =  (𝑥 ⋅ 𝐺, 𝑥 ⋅ 𝑅))
(it follows x=a so (*) of previous slide holds)

TECH DETAILS

𝑟 is equal to the x-coordinate of 
A modulo 𝑞 the group order.
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• Schnorr Zero Knowledge Proof ZK2 is not PKCS#11 
supported and requires a specific (but simple) HSM 
firmware module.

• Module has access to secret a (or the master key it 
if derived from the Wid which is better).

• Module input:
 WId, U, V, W = 𝐺′, 𝑅, Hash(M) ⋅ L + r ⋅ M
• Module looks up or derives secret a and checks if 

1. 𝑈 = 𝑎 ⋅ 𝐺 (𝐺 is curve basepoint) and 
2. 𝑊 = 𝑎 ⋅ 𝑉 both hold. 

If so, then the Modules generates the  
     Schnorr Zero Knowledge Proof ZK2 to make this   
     publicly verifiable and returns this.
• Note that this Module does not allow an attacker to 

multiply random points with the secret a! That is, 
the Module is not a Diffie-Hellman Oracle.
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Internal CertificateG’
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𝑅 
𝑠−1 ⋅ 𝐺′ 
𝑠−1 ⋅ 𝑌′ 

ZK2

Note: these operations are performed by Wallet 
Provider, i.e. not in the APP. POC only.

Result of instruction

Android Studio project available.
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1. The Wallet Trust Attestation (WTA) is a privacy friendly ISO 23220-3 Secure Area Attestation Object (SAAO)

2. The WTA is an attestation bound to a ECDSA public key U = 𝑢 ⋅ 𝐺 whereby the Wallet Provider guarantees:

a) the wallet/user has possession of u,

b) u is managed in the wallet SCE (cryptographic hardware) and SCE is ‘eIDAS’ compliant.

Note: a WTA is typically issued by the Wallet Provider based on mobile platform (key) attestation capabilities.

3. The wallet/user can generate a public key V associated with the WTA public key U by generating a random scalar z and 
letting V = 𝑧 ⋅ 𝑈. The scalar z could be static, derived from a SCE master key or from a user PIN.

        Note: this fits the SECDSA setup allowing the wallet to ECDSA sign with the private key 𝑣 = 𝑧 ⋅ 𝑢.

4. Wallet/user can prove two public keys 𝑈1, 𝑈2 are associated by proving possession of a private key 𝑦: y ⋅ 𝑈1 = 𝑈2.

        Notes:

• If the public keys are 𝑈1 = 𝑘1 ⋅ 𝑈, 𝑈2 = 𝑘2 ⋅ 𝑈 are associated then 𝑦 = 𝑘2 𝑘1
−1.

• This proof can be given for instance using a Schnorr Zero-Knowledge Proof (‘signature’).

• Associations are performed by (PID) issuers against the WTA public key, or against another public key that is known 
to be associated to this WTA key, e.g. a ‘WTA copy’.

• The proof of association of public keys always needs to be accompanied by a proof of possession of the keys 
involved; efficient combination is possible.

5. Techniques are applicable to stand-alone wallets (standard mobile hardware) and HSM-based wallets (PKCS#11).

Proof-of-Associations on standard mobile hardware and HSMs  



2026 > 2030EUDI-WALLET ROADMAP

SECDSA HSM-based wallet SECDSA HSM-based wallet

SECDSA stand-alone wallet (e)SE based wallet
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