000 00000000000	000	00000	0

Axioms for graph clustering objective functions

Twan van Laarhoven

Institute for Computing and Information Sciences Radboud University Nijmegen, The Netherlands

28th June 2013

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000	0000000000000	000	00000	O
Outline				

Introduction

Axioms

Modularity

Adaptive Modularity

Conclusion

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
●00	0000000000000	000		O
The moti	ivation			

- There is no strict definition of clustering.
- Can we formalize our intuition?
- Previous work is about distance based clustering (hierarchical clustering, K-means, etc.)
- What about graphs?

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000				

The setting

Definition (Graph)

A symmetric weighted graph is a pair (V, E) of

- a finite set V of nodes, and
- a function $E: V \times V \rightarrow \mathbb{R}_{\geq 0}$ of *edge weights*,

such that E(i,j) = E(j,i) for all $i,j \in V$.

- Larger weight = stronger connection.
- We allow self loops.

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000				
- T EL	(,)			
The setti	ng (cont.)			

Definition (Clustering)

A clustering C of a graph G = (V, E) is a partition of its nodes.

Definition (Clustering function)

A graph clustering function f is a function from graphs G to clusterings of G.

Definition (Objective function)

A graph clustering objective function Q is a function from graphs G and clusterings of G to \mathbb{R} .

• Larger objective value = better.

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000	000000000000	000	00000	0
Outline				

Introduction

Axioms

Modularity

Adaptive Modularity

Conclusion

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000	●000000000000	000	00000	0

The form of axioms

Things that define clusterings

	Form	Notation	2
1	Clustering function	$f(G) = \operatorname{argmax}_{C} Q(G, C)$	
2	Objective function	Q(G,C)	
3	Objective relation	$Q(G, C) \ge Q(G, D)$ or $C \ge_G D$	
			3

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000	o●ooooooooooo	000	00000	O

Axiom 1: Scale invariance (first form)

A graph clustering objective function Q is *scale invariant* if

- for all graphs G = (V, E),
- all constants $\alpha > 0$,

$$f(G) = f(\alpha G).$$

(where
$$\alpha G = (V, (i, j) \mapsto \alpha E(i, j))$$
.)

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000	0●00000000000	000	00000	O

Axiom 1: Scale invariance (second form)

A graph clustering objective function Q is *scale invariant* if

- for all graphs G = (V, E),
- all constants $\alpha > 0$,
- all clusterings C of G,

$$Q(G, C) = Q(\alpha G, C).$$

(where $\alpha G = (V, (i, j) \mapsto \alpha E(i, j)).$)

$$Q\left(\begin{array}{c} a & b & d \\ c & -e \end{array}\right) = Q\left(\begin{array}{c} a & b & d \\ c & -e \end{array}\right)$$

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000	0●00000000000	000	00000	O

Axiom 1: Scale invariance (second form)

A graph clustering objective function Q is *scale invariant* if

- for all graphs G = (V, E),
- all constants $\alpha > 0$,
- all clusterings C of G,

 $Q(G, C) = \alpha Q(\alpha G, C) ???$ (where $\alpha G = (V, (i, j) \mapsto \alpha E(i, j)).)$

$$Q\left(\begin{array}{c} a & b & d \\ c & -e \end{array}\right) = \alpha Q\left(\begin{array}{c} a & b & d \\ c & -e \end{array}\right)$$

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000	o●ooooooooooo	000	00000	0

Axiom 1: Scale invariance (third form)

A graph clustering objective function Q is scale invariant if

- for all graphs G = (V, E),
- all constants $\alpha > 0$,
- all clusterings C_1, C_2 of G,

 $Q(G, C_1) \ge Q(G, C_2)$ if and only if $Q(\alpha G, C_1) \ge Q(\alpha G, C_2)$. (where $\alpha G = (V, (i, j) \mapsto \alpha E(i, j))$.)

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000	00●000000000	000	00000	O

Axiom 2: permutation invariance

A graph clustering objective function Q is *permutation invariant* if

- for all graphs G = (V, E) and
- all isomorphisms $f: V \to V'$,
- it is the case that Q(G, C) = Q(f(G), f(C)).

(where f is extended to graphs and clusterings in the obvious way.)

$$Q\left(\begin{array}{c} 0 \\ 0 \\ c \\ c \\ \end{array}\right) = Q\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array}\right)$$

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000	000●000000000	000	00000	O
.				

Axiom 3: Richness

- A graph clustering objective function Q is *rich* if
 - for all sets V and
 - all partitions C^* of V,

there is

- a graph G = (V, E)
- such that C^* is the optimal clustering of G.

Intuition:

- No trivial objective functions.
- No fixed number of clusters.

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000	0000●00000000	000	00000	O

Definition (Consistent improvement)

Let

- G = (V, E) and G' = (V, E') be graphs, and
- C be a clustering of G and G'.

Then G' is a C-consistent improvement of G if

- $E'(i,j) \ge E(i,j)$ for all $i \sim_C j$ and
- $E'(i,j) \leq E(i,j)$ for all $i \not\sim_C j$.

Intuition:

• Consistent improvements make a clustering fit better.

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000	000000000000	000	00000	0
D · ·				

Axiom 4: Monotonicity

A graph clustering objective function Q is monotonic if

- for all graphs G,
- all clusterings C of G and
- all C-consistent improvements G' of G
- it is the case that $Q(G', C) \ge Q(G, C)$.

$$Q\left(\begin{array}{c} 0 \\ 0 \\ c \\ \end{array}\right) \geq Q\left(\begin{array}{c} 0 \\ 0 \\ c \\ \end{array}\right) \geq Q\left(\begin{array}{c} 0 \\ 0 \\ c \\ \end{array}\right)$$

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000	oooooooooooo	000	00000	0
				i i i i i i i i i i i i i i i i i i i

Definition (agreement)

Let

- $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs and
- $V_a \subseteq V_1 \cap V_2$.

The graphs agree on V_a if $E_1(i,j) = E_2(i,j)$ for all $i,j \in V_a$.

Definition (agreement on neighborhood)

The graphs also agree on the neighborhood of V_a if $E_1(i,j) = E_2(i,j)$ for all $i \in V_a$, $j \in V_1 \cap V_2$, and $E_1(i,j) = 0$ for all $i \in V_a$, $j \in V_1 \setminus V_2$, and $E_2(i,j) = 0$ for all $i \in V_a$, $j \in V_2 \setminus V_1$.

What this means:

• For nodes/clusters in V_a , all incident edges are the same.

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
	000000000000			

Definition (agreement)

Let

- $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs and
- $V_a \subseteq V_1 \cap V_2$.

The graphs agree on V_a if $E_1(i,j) = E_2(i,j)$ for all $i,j \in V_a$.

Definition (agreement on neighborhood)

The graphs also agree on the neighborhood of V_a if $E_1(i,j) = E_2(i,j)$ for all $i \in V_a$, $j \in V_1 \cap V_2$, and $E_1(i,j) = 0$ for all $i \in V_a$, $j \in V_1 \setminus V_2$, and $E_2(i,j) = 0$ for all $i \in V_a$, $j \in V_2 \setminus V_1$.

What this means:

• For nodes/clusters in V_a , all incident edges are the same.

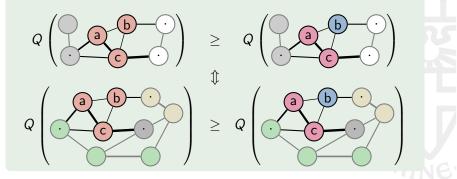
Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion

Axiom 5: Locality

A graph clustering objective function Q is *local* if

- for all graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ that agree on a set V_a and its neighborhood,
- for all clusterings C_1 of $V_1 \setminus V_a$, C_2 of $V_2 \setminus V_a$ and C_a , D_a of V_a .
- $\begin{array}{ll} \text{if} & Q(G_1,C_a\cup C_1)\geq Q(G_1,D_a\cup C_1)\\ \text{then} & Q(G_2,C_a\cup C_2)\geq Q(G_2,D_a\cup C_2). \end{array} \end{array}$

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000	○○○○○○○●○○○○	000	00000	O
Local chan	ges			



Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000	00000000000000	000	00000	0

Special cases

- G₁ = G₂: change part of a clustering.
 In practice: optimize parts separately (divide and conquer).
- $V_a = \emptyset$: union of two disjoint graphs.

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
	00000000000000			

Interlude: Related work

Theorem (Kleinberg 2002)

There is no clustering function that is permutation invariant, scale invariant, monotonic and rich.

Theorem (Ackerman, Ben-David 2008)

There is a clustering quality function that is permutation invariant, scale invariant, monotonic and rich.

Introduction 000	Axioms ooooooooooooooo	Modularity 000	Adaptive Modularity	Conclusion O
Discontir	nuity is magic			

Theorem

There is a graph clustering function that is scale invariant, permutation invariant, monotonic, rich and local.

Connected components

 $f_{coco}(G) =$ the connected components of G

 $Q_{\text{coco}}(G, C) = \mathbf{1}[C \text{ are the connected components of } G]$

Huh!?!?

- Doesn't this contradict Kleinberg's theorem?
- No: edge weight $0 = \text{distance } \infty$.

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000	oooooooooooooo	000	00000	0
Discontir	nuity is magic			

Theorem

There is a graph clustering function that is scale invariant, permutation invariant, monotonic, rich and local.

Connected components

 $f_{coco}(G) =$ the connected components of G

 $Q_{\text{coco}}(G, C) = \mathbf{1}[C \text{ are the connected components of } G]$

Huh!?!?

- Doesn't this contradict Kleinberg's theorem?
- No: edge weight $0 = \text{distance } \infty$.

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000	ooooooooooooooo	000	00000	O
Disconti	nuity is magic			

Theorem

There is a graph clustering function that is scale invariant, permutation invariant, monotonic, rich and local.

Connected components

 $f_{coco}(G) =$ the connected components of G

 $Q_{\text{coco}}(G, C) = \mathbf{1}[C \text{ are the connected components of } G]$

Huh!?!?

- Doesn't this contradict Kleinberg's theorem?
- No: edge weight $0 = \text{distance } \infty$.

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000	00000000000	000	00000	0

Discontinuity is magic

Why I don't like it

- Adding/removing an edge with tiny weight ϵ changes the graph slightly, but the clustering completely.
- Possibly unstable.
- So don't allow it.

Axiom 6: continuity

An objective function Q is *continuous* if a small change in the graph leads to a small change in the objective value.

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000	0000000000000		00000	O
Outline				

Introduction

Axioms

Modularity

Adaptive Modularity

Conclusion

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000	0000000000000	000	00000	

An objective function

Modularity

$$Q_{\text{modularity}}(G, C) = \sum_{c \in C} \left(\frac{w_c}{v_V} - \left(\frac{v_c}{v_V} \right)^2 \right).$$

Where

$$v_c = \sum_{i \in c} \sum_{j \in V} E(i,j)$$
 volume of cluster
 $w_c = \sum_{i \in c} \sum_{j \in c} E(i,j)$ within cluster weight.

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
	0000000000000	○●○	00000	O
- · ·				

Properties

The obvious:

- Modularity is permutation invariant.
- Modularity is scale invariant.
- Modularity is continuous.

The less obvious:

• Modularity is rich.

The bad:

- Modularity is *not* local.
- Modularity is *not* monotonic.

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000	0000000000000	○○●	00000	O
	_			

What goes wrong?

Modularity is not monotonic.

$$Q_{\text{modularity}} \begin{pmatrix} a & 1 & b & c & 1 \\ \hline d & b & c & d \end{pmatrix} = 0.125$$
$$Q_{\text{modularity}} \begin{pmatrix} a & 0.1 & b & c & 1 \\ \hline d & b & c & d \end{pmatrix} = 0.079$$
$$Q_{\text{modularity}} \begin{pmatrix} a & 1 & b & c & 10 \\ \hline d & b & c & d \end{pmatrix} = 0.079$$

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000	0000000000000	000		0
Outline				

Introduction

Axioms

Modularity

Adaptive Modularity

Conclusion

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000	0000000000000	000	•0000	O
Fixed Sca	le modularity			

ldea 1

Fix the scale

$$Q_{M ext{-fixed}}(G, C) = \sum_{c \in C} \left(\frac{w_c}{M} - \left(\frac{v_c}{M} \right)^2 \right)$$

Is it monotonic?

Take $v_c = w_c + b_c$ (within + between)

$$\frac{\partial Q_{M-\text{fixed}}(G,C)}{\partial w_c} = \frac{1}{M} - \frac{2w_c + 2b_c}{M^2}$$

This is negative when $2v_c > M$ \Rightarrow **not monotonic**

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000	0000000000000	000	●0000	O
Fixed Sc	ale modularity			

Idea 1

Fix the scale

$$Q_{M ext{-fixed}}(G, C) = \sum_{c \in C} \left(\frac{w_c}{M} - \left(\frac{v_c}{M} \right)^2 \right)$$

Is it monotonic? Take $v_c = w_c + b_c$ (within + between)

$$\frac{\partial Q_{M-\text{fixed}}(G,C)}{\partial w_c} = \frac{1}{M} - \frac{2w_c + 2b_c}{M^2}.$$

This is negative when $2v_c > M$ \Rightarrow not monotonic

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
000	0000000000000	000	●0000	O
Fixed Sc	ale modularity			

Idea 1

Fix the scale

$$Q_{M ext{-fixed}}(G, C) = \sum_{c \in C} \left(\frac{w_c}{M} - \left(\frac{v_c}{M} \right)^2 \right)$$

Is it monotonic? Take $v_c = w_c + b_c$ (within + between)

$$\frac{\partial Q_{M-\text{fixed}}(G,C)}{\partial w_c} = \frac{1}{M} - \frac{2w_c + 2b_c}{M^2}.$$

This is negative when $2v_c > M$ \Rightarrow not monotonic

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
			0000	

Idea 2

Add some v_c to the denominator

$$Q_{M,\gamma}(G,C) = \sum_{c \in C} \left(\frac{w_c}{M + \gamma v_c} - \left(\frac{v_c}{M + \gamma v_c} \right)^2 \right)$$

Theorem

Adaptive scale modularity is monotonic for all $M \ge 0$ and $\gamma \ge 2$.

Theorem

Adaptive scale modularity is rich for all $M \ge 0$ and $\gamma \ge 1$.

Theorem

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
			00000	

Idea 2

Add some v_c to the denominator

$$Q_{M,\gamma}(G,C) = \sum_{c \in C} \left(\frac{w_c}{M + \gamma v_c} - \left(\frac{v_c}{M + \gamma v_c} \right)^2 \right)$$

Theorem

Adaptive scale modularity is monotonic for all $M \ge 0$ and $\gamma \ge 2$.

Theorem

Adaptive scale modularity is rich for all $M \ge 0$ and $\gamma \ge 1$.

Theorem

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
			00000	

Idea 2

Add some v_c to the denominator

$$Q_{M,\gamma}(G,C) = \sum_{c \in C} \left(\frac{w_c}{M + \gamma v_c} - \left(\frac{v_c}{M + \gamma v_c} \right)^2 \right)$$

Theorem

Adaptive scale modularity is monotonic for all $M \ge 0$ and $\gamma \ge 2$.

Theorem

Adaptive scale modularity is rich for all $M \ge 0$ and $\gamma \ge 1$.

Theorem

Introduction	Axioms	Modularity	Adaptive Modularity	Conclusion
			00000	

Idea 2

Add some v_c to the denominator

$$Q_{M,\gamma}(G,C) = \sum_{c \in C} \left(\frac{w_c}{M + \gamma v_c} - \left(\frac{v_c}{M + \gamma v_c} \right)^2 \right)$$

Theorem

Adaptive scale modularity is monotonic for all $M \ge 0$ and $\gamma \ge 2$.

Theorem

Adaptive scale modularity is rich for all $M \ge 0$ and $\gamma \ge 1$.

Theorem

 Introduction
 Axioms
 Modularity
 Adaptive Modularity
 Conclusion

 000
 0000000000
 000
 000000
 0
 0

Adaptive Scale Modularity: related objectives

- When $\gamma = 0$, we get fixed scale modularity. Equivalent to other modularity variants.
- When $\gamma = 0$ and $M = v_V$, we get modularity.
- When M = 0 we get

$$Q_{0,\gamma}(G,C) \propto \sum_{c \in C} \left(\frac{w_c}{v_c} - \frac{1}{\gamma} \right),$$

i.e. normalized cut.

• When $M o \infty$ we get

$$Q_{\infty,\gamma}(G,C)\propto \sum_{c\in C}w_c,$$

i.e. unnormalized cut.

 Introduction
 Axioms
 Modularity
 Adaptive Modularity
 Conclusion

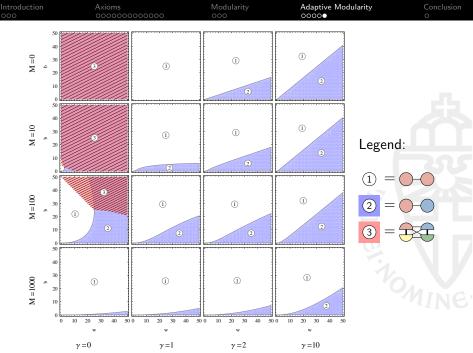
 000
 00000000000
 000
 000●0
 0

Adaptive Scale Modularity: behavior

Take a simple graph: $w^{\underline{b}}$

- Two cliques each with w within weight
- Connected by edges with total weight *b*.
- Total volume 2w + 2b.
- What is the behavior of adaptive scale modularity?

 (\mathbf{w})



Introduction 000	Axioms 0000000000000	Modularity 000	Adaptive Modularity	Conclusion O
Outline				

Introduction

Axioms

Modularity

Adaptive Modularity

Conclusion

Introduction 000	Axioms 0000000000000	Modularity 000	Adaptive Modularity	Conclusion
C				

Summary

- 6 axioms for graph clustering objectives.
- Graph setting allows for locality.
- Modularity is not monotonic.
- Non-monotonicity leads to splitting of cliques.
- Adaptive scale modularity satisfies all axioms (when M = 0).
- Generalizes both modularity and normalized cut.

Thank you for your attention.

Axioms for graph clustering objective functions

Twan van Laarhoven

Institute for Computing and Information Sciences Radboud University Nijmegen, The Netherlands

28th June 2013