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The motivation

• There is no strict definition of clustering.

• Can we formalize our intuition?

• Previous work is about distance based clustering (hierarchical
clustering, K-means, etc.)

• What about graphs?
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The setting

Definition (Graph)

A symmetric weighted graph is a pair (V ,E ) of

• a finite set V of nodes, and

• a function E : V × V → R≥0 of edge weights,

such that E (i , j) = E (j , i) for all i , j ∈ V .

• Larger weight = stronger connection.

• We allow self loops.
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The setting (cont.)

Definition (Clustering)

A clustering C of a graph G = (V ,E ) is a partition of its nodes.

Definition (Clustering function)

A graph clustering function f is a function from graphs G to
clusterings of G .

Definition (Objective function)

A graph clustering objective function Q is a function from graphs
G and clusterings of G to R.

• Larger objective value = better.
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The form of axioms

Things that define clusterings

Form Notation
1 Clustering function f (G ) = argmaxC Q(G ,C )
2 Objective function Q(G ,C )
3 Objective relation Q(G ,C ) ≥ Q(G ,D) or C ≥G D
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Basic axioms

Axiom 1: Scale invariance (first form)

A graph clustering objective function Q is scale invariant if

• for all graphs G = (V ,E ),

• all constants α > 0,

f (G ) = f (αG ).

(where αG = (V , (i , j) 7→ αE (i , j)).)

Example
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Basic axioms

Axiom 1: Scale invariance (second form)

A graph clustering objective function Q is scale invariant if

• for all graphs G = (V ,E ),

• all constants α > 0,

• all clusterings C of G ,

Q(G ,C ) = Q(αG ,C ).

(where αG = (V , (i , j) 7→ αE (i , j)).)

Example
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Basic axioms

Axiom 1: Scale invariance (third form)

A graph clustering objective function Q is scale invariant if

• for all graphs G = (V ,E ),

• all constants α > 0,

• all clusterings C1,C2 of G ,

Q(G ,C1) ≥ Q(G ,C2) if and only if Q(αG ,C1) ≥ Q(αG ,C2).

(where αG = (V , (i , j) 7→ αE (i , j)).)

Example

Q

( )
≥ Q

( )
⇐⇒ Q

( )
≥ Q

( )
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Basic axioms

Axiom 2: permutation invariance

A graph clustering objective function Q is permutation invariant if

• for all graphs G = (V ,E ) and

• all isomorphisms f : V → V ′,

it is the case that Q(G ,C ) = Q(f (G ), f (C )).

(where f is extended to graphs and clusterings in the obvious way.)

Example

Q
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Basic axioms

Axiom 3: Richness

A graph clustering objective function Q is rich if

• for all sets V and

• all partitions C ∗ of V ,

there is

• a graph G = (V ,E )

• such that C ∗ is the optimal clustering of G .

Intuition:

• No trivial objective functions.

• No fixed number of clusters.
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Basic axioms

Definition (Consistent improvement)

Let

• G = (V ,E ) and G ′ = (V ,E ′) be graphs, and

• C be a clustering of G and G ′.

Then G ′ is a C -consistent improvement of G if

• E ′(i , j) ≥ E (i , j) for all i ∼C j and

• E ′(i , j) ≤ E (i , j) for all i 6∼C j .

Intuition:

• Consistent improvements make a clustering fit better.
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Basic axioms

Axiom 4: Monotonicity

A graph clustering objective function Q is monotonic if

• for all graphs G ,

• all clusterings C of G and

• all C -consistent improvements G ′ of G

it is the case that Q(G ′,C ) ≥ Q(G ,C ).

Example

Q
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Local changes

Definition (agreement)

Let

• G1 = (V1,E1) and G2 = (V2,E2) be two graphs and

• Va ⊆ V1 ∩ V2.

The graphs agree on Va if E1(i , j) = E2(i , j) for all i , j ∈ Va.

Definition (agreement on neighborhood)

The graphs also agree on the neighborhood of Va if
E1(i , j) = E2(i , j) for all i ∈ Va, j ∈ V1 ∩ V2, and
E1(i , j) = 0 for all i ∈ Va, j ∈ V1 \ V2, and
E2(i , j) = 0 for all i ∈ Va, j ∈ V2 \ V1.

What this means:

• For nodes/clusters in Va, all incident edges are the same.
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Local changes

Axiom 5: Locality

A graph clustering objective function Q is local if

• for all graphs G1 = (V1,E1) and G2 = (V2,E2)
that agree on a set Va and its neighborhood,

• for all clusterings C1 of V1 \ Va, C2 of V2 \ Va and Ca,Da of
Va.

if Q(G1,Ca ∪ C1) ≥ Q(G1,Da ∪ C1)
then Q(G2,Ca ∪ C2) ≥ Q(G2,Da ∪ C2).
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Local changes

Example
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Local changes

Special cases

• G1 = G2: change part of a clustering.
In practice: optimize parts separately (divide and conquer).

• Va = ∅: union of two disjoint graphs.
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Interlude: Related work

Theorem (Kleinberg 2002)

There is no clustering function that is permutation invariant, scale
invariant, monotonic and rich.

Theorem (Ackerman, Ben-David 2008)

There is a clustering quality function that is permutation invariant,
scale invariant, monotonic and rich.
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Discontinuity is magic

Theorem

There is a graph clustering function that is scale invariant,
permutation invariant, monotonic, rich and local.

Connected components

fcoco(G ) = the connected components of G

Qcoco(G ,C ) = 1[C are the connected components of G ]

Huh!?!?
• Doesn’t this contradict Kleinberg’s theorem?

• No: edge weight 0 = distance ∞.
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Discontinuity is magic

Why I don’t like it

• Adding/removing an edge with tiny weight ε changes the
graph slightly, but the clustering completely.

• Possibly unstable.

• So don’t allow it.

Axiom 6: continuity

An objective function Q is continuous if a small change in the
graph leads to a small change in the objective value.
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An objective function

Modularity

Qmodularity(G ,C ) =
∑
c∈C

(
wc

vV
−
( vc
vV

)2
)
.

Where
vc =

∑
i∈c

∑
j∈V

E (i , j) volume of cluster

wc =
∑
i∈c

∑
j∈c

E (i , j) within cluster weight.
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Properties

The obvious:

• Modularity is permutation invariant.

• Modularity is scale invariant.

• Modularity is continuous.

The less obvious:

• Modularity is rich.

The bad:

• Modularity is not local.

• Modularity is not monotonic.
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What goes wrong?

Modularity is not monotonic.

Qmodularity

(
a b c d

1 1
)

= 0.125

Qmodularity

(
a b c d

0.1 1
)

= 0.079

Qmodularity

(
a b c d

1 10
)

= 0.079
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Fixed Scale modularity

Idea 1

Fix the scale

QM-fixed(G ,C ) =
∑
c∈C

(
wc

M
−
(vc
M

)2
)

Is it monotonic?
Take vc = wc + bc (within + between)

∂QM-fixed(G ,C )

∂wc
=

1

M
− 2wc + 2bc

M2
.

This is negative when 2vc > M

⇒ not monotonic
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Adaptive Scale Modularity

Idea 2

Add some vc to the denominator

QM,γ(G ,C ) =
∑
c∈C

(
wc

M + γvc
−
( vc
M + γvc

)2
)
.

Theorem

Adaptive scale modularity is monotonic for all M ≥ 0 and γ ≥ 2.

Theorem

Adaptive scale modularity is rich for all M ≥ 0 and γ ≥ 1.

Theorem

Adaptive scale modularity is scale invariant for M = 0.
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Adaptive Scale Modularity: related objectives

• When γ = 0, we get fixed scale modularity.
Equivalent to other modularity variants.

• When γ = 0 and M = vV , we get modularity.

• When M = 0 we get

Q0,γ(G ,C ) ∝
∑
c∈C

(wc

vc
− 1

γ

)
,

i.e. normalized cut.

• When M →∞ we get

Q∞,γ(G ,C ) ∝
∑
c∈C

wc ,

i.e. unnormalized cut.
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Adaptive Scale Modularity: behavior

Take a simple graph: w w
b

• Two cliques each with w within weight

• Connected by edges with total weight b.

• Total volume 2w + 2b.

• What is the behavior of adaptive scale modularity?
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Summary

• 6 axioms for graph clustering objectives.

• Graph setting allows for locality.

• Modularity is not monotonic.

• Non-monotonicity leads to splitting of cliques.

• Adaptive scale modularity satisfies all axioms (when M = 0).

• Generalizes both modularity and normalized cut.
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Thank you for your attention.

Axioms for graph clustering objective functions

Twan van Laarhoven

Institute for Computing and Information Sciences
Radboud University Nijmegen, The Netherlands

28th June 2013
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