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A symmetric weighted graph (or network) is a pair (V, E) of

e 23 finite set V of nodes, and
e a function E : V x V — R>¢ of edge weights,
such that E(i,j) = E(j, i) for all i,j € V.




Graph clustering

A clustering C of a graph G = (V/, E) is a partition of its nodes. J




Applications

Social networks

Hyperlinks

Protein interaction networks

References between mathematical theorems

Brain parcellation

4 /33



Clustering methods

1. Clustering function
C : Graph — Clustering
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Clustering methods

1. Clustering function
C : Graph — Clustering

2. Quality function
Q : Graph x Clustering — R

3. Quality relation
. <6 . C Clustering x Clustering

. .



Clustering by optimization

Graph clustering is NP hard.

Top down:
find best cut and repeat

Bottom up:
group nodes together

Simulated annealing
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Louvain method

e V.D. Blondel, JL. Guillaume, R. Lambiotte, E. Lefebvre
Fast unfolding of communities in large networks
J. Stat. Mech. 2008

e Best graph clustering method in surveys.
e Method:

@ Move nodes into neighboring clusters to improve quality.
® Repeat until local maximum.
©® Now cluster the clusters.



Louvain method (example)




Louvain method (example)

8 /33



Louvain method (example)

8 /33



Louvain method (example)

8 /33



Louvain method (example)

8 /33



Louvain method (example)

8 /33



Louvain method (example)




Louvain method (example)

8 /33



Louvain method (example)




Louvain method (example)

8 /33



Some quality functions

Connected components

Total weight of within cluster edges

Q(G.C) =) w
e Modularity N
QG.C) =) (we/w — (ve/w)?)

e Many more

Q(G, () = Z —w, log(ve/vv)

ceC
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Families of quality functions

Connected components with threshold

Total weight of within cluster edges with penalty
Q(G.C) =) we—alC|

ceC
e Modularity
Q6. €) = 3 (we/wy — 1(ve/w)?)
ceC

e Many more

Q(G, () = Z —w, log(v. /)

ceC
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Axioms
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Which of these quality functions are good?

There is no good definition of clustering.

Can we formalize our intuition?

Previous work is about distance based clustering
(hierarchical clustering, K-means, etc.)

e What about graphs?
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Axiom 1: Scale invariance

Intuition: The absolute value of the edge weights shouldn’t
matter.

(P )
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Axiom 1: Scale invariance

Intuition: The absolute value of the edge weights shouldn’t
matter.

A quality function @ is scale invariant if
e for all graphs G = (V, E),
e all constants a > 0,
Q(G, (1) > Q(G, &) if and only if Q(aG, (1) > Q(aG, &).
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Axiom 2: Permutation invariance

Intuition: Only the edge weights should matter.
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Axiom 2: Permutation invariance

Intuition: Only the edge weights should matter.

A quality function @ is permutation invariant if
Q(G, C) = Q(f(G), f(C)).

for all
e graphs G = (V,E) and
e all isomorphisms f : V — V/,
where f is extended to graphs and clusterings in the obvious way.
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Axiom 3: Richness

Intuition:
e All clusterings must be possible.
So,
e no trivial quality functions.
e no fixed number of clusters.
A quality function @ is rich if
e for all sets V and
e all partitions C* of V,
there is
e agraph G = (V,E)
e such that C* is the optimal clustering of G.
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Axiom 4: Monotonicity

Intuition: Adding edges inside a cluster or removing edges
between clusters does not make the clustering worse.
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Axiom 4: Monotonicity

Intuition: Adding edges inside a cluster or removing edges
between clusters does not make the clustering worse.

Let
e G=(V,E)and G' = (V,E’) be graphs, and
e C be a clustering of G and G'.

Then G’ is a C-consistent improvement of G if
e E'(i,j) > E(i,j) for all i ~¢ j and
o E'(i,j) < E(i,j) for all i ¢ j.
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Axiom 4: Monotonicity

Intuition: Adding edges inside a cluster or removing edges
between clusters does not make the clustering worse.

A quality function @ is monotonic if
Q(G, C) > Q(G, C).
for all
e graphs G,
e all clusterings C of G and

e all C-consistent improvements G’ of G.
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Axiom 5: Locality

Intuition: Local changes should have local effects.
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Axiom 5: Locality

Intuition: Local changes should have local effects.

Two graphs G; and G, agree on the neighborhood of
Vo CVin VW, if
El(i,j) = Eg(i,j) for all i € V,, Jj € ViN VW, and
Ei(i,j)=0 forall i € V,, j€ Vi \ Vs, and
Ez(i,j) =0 forall ie V,, je VW, \ Vi.

So, for nodes/clusters in V,, all incident edges are the same.
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Axiom 5: Locality

Intuition: Local changes should have local effects.

A quality function @ is local if
e for all graphs G; = (V4, E1) and Gy = (W2, E>)
that agree on a set V, and its neighborhood,
e for all clusterings C; of Vi \ V5,
G of Vo' \ V, and
C,, D, of V..

if Q(G1, LU G) > Q(G1,D,U G)
then Q(GQ, C,u CQ) > Q(Gg7 D, U C2)
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Interlude: Related work

Theorem (Kleinberg 2002)

There is no clustering function that is permutation invariant,
scale invariant, monotonic and rich.

Theorem (Ackerman, Ben-David 2008)

There is a clustering quality function that is permutation
invariant, scale invariant, monotonic and rich.
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Discontinuity is magic

There is a graph clustering function that is scale invariant,
permutation invariant, monotonic, rich and local.
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Discontinuity is magic

There is a graph clustering function that is scale invariant,
permutation invariant, monotonic, rich and local.

écoco(G) = the connected components of G

Qcoco(G, C) = 1[C are the connected components of G]

e Doesn't this contradict Kleinberg's theorem?
e No: edge weight 0 = distance co.

e Connected components are unstable.
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Axiom 6: continuity

Intuition:

e Don't allow such unstable quality functions.

A quality function Q is continuous if for every graph G and every
clustering C of G, a sufficiently small change in the edge weights

leads to a small change in the objective value.
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Modularity
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Modularity

Intuition:

e Balance within cluster edges against cluster volume.

Qmodularity(G, C) = Z (& — (£>2>

ceC Vv v
Where
Ve = Z Z E(i,j) volume of cluster
iec jeV
We = Z Z E(i,j) within cluster weight.
Iec JEC
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The obvious:
e Modularity is permutation invariant.
e Modularity is scale invariant.
e Modularity is continuous.
The less obvious:
e Modularity is rich.
The bad:
e Modularity is not local.

e Modularity is not monotonic.
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Modularity is not local

Qnosus ) 03
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Modularity is not monotonic

Qmodularity ( ) =0.125
Qmodularity ( ) = 0.079

Qmodularity ( ) = 0.079
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Idea 1: Fix the scale

Qm-fixed(G, €) = Z (% - <%>2> J

ceC

Is it monotonic?
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Idea 1: Fix the scale

Qm-fixed(G, C) = > (% B <%>2> J

ceC

Is it monotonic?

Take v. = w, + b, (within + between)

0Qm-fixed(G,C) 1 2w, +2b,

ow, M M?2

This is negative when 2v. > M, so not monotonic.
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|dea 2: Add some v, to the denominator

QmA (G, C):Z(M:—Vcﬂyvc - (MICVVCY)' }

ceC
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|dea 2: Add some v, to the denominator

Qu (G, C):Z(Mfcvvc_ <M+chvc)2>' }

ceC

Adaptive scale modularity is
e permutation invariant, continuous and local.
e monotonic for all M > 0 and v > 2.
e rich for all M >0 and v > 1.

e scale invariant for M = 0.
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Related quality functions

e When v = 0, we get fixed scale modularity.
Equivalent to other modularity variants.

e When v =0 and M = vy, we get modularity.
e When M = 0 we get

Qo (G, C) Z(Vv"_ _ 1>,

ceC v
i.e. normalized cut.

e When M — oo we get

Qoor (G, C) x ) we,

ceC
i.e. unnormalized cut.
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Adaptive Scale Modularity behavior

Take a simple graph: M

e Two cliques each with w within weight
e Connected by edges with total weight b.
e Total volume 2w + 2b.

e What is the behavior of adaptive scale modularity?
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Conclusion
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Graph clustering by optimization.

6 axioms for graph clustering quality functions.

Graph setting allows for locality.

Modularity is not monotonic.

¢ Non-monotonicity leads to splitting of cliques.

Adaptive scale modularity satisfies all axioms.

Generalizes both modularity and normalized cut.

Two parameters to control size of clusters.

32 /33



Thank you for your attention.

Axioms for graph clustering

Twan van Laarhoven

Institute for Computing and Information Sciences
Radboud University Nijmegen, The Netherlands

9th September 2013

33 /33



	Introduction
	Axioms
	Modularity
	Conclusion

