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Clustering

e Image processing, medicine,

Breast tumor sample Normal tissue

repository.




Clustering

e social sciences,

L R

Social Network ™ _
P - |

e life sciences, brain research, ...
Data repository.
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Clustering: what is it?

e Informally: grouping objects in such a way that objects in
each group are more similar to each other than to objects
in other groups.

P S U

e Formally: an optimization problem. Define an objective
function whose optimization yields a division of objects
into (disjoint) groups. k-means clustering objective:

DD % = ficllo, where fic = Yoee. %/ Icl-

ceC Xec




Clustering: how to do it?

e Clustering as an optimization problem is in general
NP-hard.

o Efficient heuristic and approximation algorithms are
developed to find sub optimal solutions.
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Clustering: data versus graphs

e Data clustering uses a distance func-
tion that quantifies the similarity be-
tween each pair of patterns.

e Graph clustering uses weighted edges
describing a relation over patterns.
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From data to graph clustering

e Proximity graphs may be used to transform a data
clustering problem into a graph clustering one.

Distance matrix — kNN graph  —  Graph clustering
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Axioms for data clustering
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There is no unique definition of clustering.

Can we formalize our intuition of good objective
functions?

Are existing objective functions good?

Can we design better objective functions?
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Axioms for data clustering

Kleinberg' s axiomatic framework

Kleinberg proved an impossibility result concerning the
axiomatization of the notion of data clustering.

He focused on clustering functions € : D — C, from distance
functions over a dataset S to clusterings of S, d — C.

Theorem (Kleinberg 2002)

There is no clustering function that is scale invariant,

consistent and rich.
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Kleinberg's axioms

e Scale-Invariance.
Vd e D,a>0. C(d)= C(ad).
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Kleinberg's axioms

¢ Richness.
range(C) is equal to the set of all partitions of S.

3d.¢ (d) (S)@@@
e.g.d:® @ @
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Kleinberg's axioms

¢ Consistency.
vd,d" € D. ((:"(d) = C and d' is a C-transformation of d

= ((d") = C).
d" is a C-transformation of d if Vi,j € S
o j~cj=d(i,)) <d(i,));
o igkcj=d(i,j)=d(ij).

(s ©)-00@
-8 ©)-000
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Kleinberg result

C' is a refinement of C (C' C C) if
Ve C"dce Cst. ¢ Ce.

{G,...,C,} CCisan antichainif Vi,ji#j= G C,.

Theorem

If C is Scale Invariant and Consistent then range(é ) is an

antichain.

Proof (sketch)

Suppose C is Consistent and Scale Invariant. Let C; C G in
range(C). Construct d such that €(d) = C;. Choose o such
that @’ = ad and C(d') = G.
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Other results

Quality functions
Ackerman and Ben-David used quality functions @ instead of
clustering functions. @ : D x C — R>(, mapping a distance

function and a clustering into a non-negative real number,
(d,C)+—r.

Theorem (Ackerman, Ben-David 2008)

There is a clustering quality function that is permutation
invariant, scale invariant, monotonic and rich.

C-index = (s — Smin)/(Smax — Smin), Where s = ZiNd d(i,j),
Smin IS the sum of the n minimal (over all pairs of patterns)
distances, Spax is the sum of the n maximal distances,

n=(iJ) | i~ci}l



To summarize

Previous work on axioms for clustering objective functions

are framed in terms of distance functions.

Kleinberg's impossibility result is for clustering functions.

Quality functions are more flexible and allow for
axiomatization of data clustering.

What about graph clustering? This is a different -
although related - story ...
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Axioms for graph clustering
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Distance functions
d(i,j)
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Distance functions

d(i,J)
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A symmetric weighted graph (or network) is a pair (V, E) of

e 23 finite set V of nodes, and
e a function E : V x V — R>¢ of edge weights,
such that E(i,j) = E(j, i) for all i,j € V.
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Graph clustering

A clustering C of a graph G = (V/, E) is a partition of its nodes. J
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Clustering: formalizations

1. Clustering function
C : Graph — Clustering

(g &)L &
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Clustering: formalizations

1. Clustering function
C : Graph — Clustering

2. Quality function
Q : Graph x Clustering — R

OO
Q 0. —0.1234
(o)—(©)
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Clustering: formalizations

1. Clustering function
C : Graph — Clustering

2. Quality function
Q : Graph x Clustering — R

3. Quality relation
. <6 . C Clustering x Clustering

. .
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Some quality functions

Connected components

Total weight of within cluster edges

Q(G.C) =) w
e Modularity N
QG.C) =) (we/w — (ve/w)?)

e Many more

Q(G, () = Z —w, log(ve/vv)

ceC
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Families of quality functions

Connected components with threshold

Total weight of within cluster edges with penalty
Q(G.C) =) we—alC|

ceC
e Modularity
Q6. €) = 3 (we/wy — 1(ve/w)?)
ceC

e Many more

Q(G, () = Z —w, log(v. /)

ceC
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Axiom 1: Scale invariance

Intuition: The magnitude of the edge weights shouldn’t
matter.

(P )

(=7
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Axiom 1: Scale invariance

Intuition: The magnitude of the edge weights shouldn’t
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Axiom 1: Scale invariance

Intuition: The magnitude of the edge weights shouldn’t
matter.

A quality function @ is scale invariant if
e for all graphs G = (V, E),
e all constants a > 0,
Q(G, (1) > Q(G, &) if and only if Q(aG, (1) > Q(aG, &).
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Axiom 2: Permutation invariance

Intuition: Only the edge weights should matter.

24 / 49



Axiom 2: Permutation invariance

Intuition: Only the edge weights should matter.

A quality function @ is permutation invariant if
Q(G, C) = Q(f(G), f(C)).

for all
e graphs G = (V,E) and
e all isomorphisms f : V — V/,
where f is extended to graphs and clusterings in the obvious way.
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Axiom 3: Richness

Intuition:
e All clusterings must be possible.
So,
e no trivial quality functions.
e no fixed number of clusters.
A quality function @ is rich if
e for all sets V and
e all partitions C* of V,
there is
e agraph G = (V,E)
e such that C* is the optimal clustering of G.
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Axiom 4: Monotonicity

Intuition: Adding edges inside a cluster or removing edges
between clusters does not make the clustering worse.
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Axiom 4: Monotonicity

Intuition: Adding edges inside a cluster or removing edges
between clusters does not make the clustering worse.

Let
e G=(V,E)and G' = (V,E’) be graphs, and
e C be a clustering of G and G'.

Then G’ is a C-consistent improvement of G if
e E'(i,j) > E(i,j) for all i ~¢ j and
o E'(i,j) < E(i,j) for all i ¢ j.
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Axiom 4: Monotonicity

Intuition: Adding edges inside a cluster or removing edges
between clusters does not make the clustering worse.

A quality function @ is monotonic if
Q(G, C) > Q(G, C).
for all
e graphs G,
e all clusterings C of G and

e all C-consistent improvements G’ of G.
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Axiom 5: Locality

Intuition: Local changes should have local effects.

(g &))<\
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Axiom 5: Locality

Intuition: Local changes should have local effects.
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v

\%

27 / 49



Axiom 5: Locality

Intuition: Local changes should have local effects.
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Axiom 5: Locality

Intuition: Local changes should have local effects.

Two graphs G; and G, agree on the neighborhood of
Vo CVin VW, if
El(i,j) = Eg(i,j) for all i € V,, Jj € ViN VW, and
Ei(i,j)=0 forall i € V,, j€ Vi \ Vs, and
Ez(i,j) =0 forall ie V,, je VW, \ Vi.

So, for nodes/clusters in V,, all incident edges are the same.
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Axiom 5: Locality

Intuition: Local changes should have local effects.

A quality function @ is local if
e for all graphs G; = (V4, E1) and Gy = (W2, E>)
that agree on a set V, and its neighborhood,
e for all clusterings C; of Vi \ V5,
G of Vo' \ V, and
C,, D, of V..

if Q(G1, LU G) > Q(G1,D,U G)
then Q(GQ, C,u CQ) > Q(Gg7 D, U C2)
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Discontinuity is magic

There is a graph clustering function that is scale invariant,
permutation invariant, monotonic, rich and local.
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Discontinuity is magic

There is a graph clustering function that is scale invariant,
permutation invariant, monotonic, rich and local.

écoco(G) = the connected components of G

Qcoco(G, C) = 1[C are the connected components of G]

e Doesn't this contradict Kleinberg's theorem?
e No: edge weight = 0 < distance = oc.

e Connected components are unstable.
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Axiom 6: continuity

Intuition:
e Don't allow such unstable quality functions.

e A small change in edge weights should lead to only a
small change in quality.

A quality function @ is continuous if
e for every € > 0 and
e every graph G = (V,E)
there exists a § > 0 such that
e for every graph G' = (V, E’) and
e every clustering C of G,
we have ||[E' — E|lmax < 0 = |Q(G',C) — Q(G, ()| < e.
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Modularity
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Modularity

Intuition:

e Balance within cluster edges against cluster volume.

E(i,j) vivy . .
Qmodularity(G7 C)= Z (T - WV_V 1[i ~c j]-
ijeVv
_ (m _ (ﬁ)z)
ceC VV W
Where
Ve = Z Z E(i,j) volume of cluster
i€c jeV
we = Z Z E(i,j) within cluster weight.
i€Ec jEc
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The obvious:
e Modularity is permutation invariant.
e Modularity is scale invariant.
e Modularity is continuous.
The less obvious:
e Modularity is rich.
The bad:
e Modularity is not local.

e Modularity is not monotonic.
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Modularity is not local

Qnosus ) 03
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Modularity is not monotonic

Qmodularity ( ) =0.125
Qmodularity ( ) = 0.079

Qmodularity ( ) = 0.079
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Idea 1: Fix the scale

Qm-fixed(G, €) = Z (% - <%>2> J

ceC

Is it monotonic?
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Idea 1: Fix the scale

Quea(6.€) = 3 (7 = (*577)') J

ceC

Is it monotonic?

Take v. = w, + b, (within + between)

0Qm-fixed(G,C) 1 2w, +2b,

ow, M M?2

This is negative when 2v. > M, so not monotonic.
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|dea 2: Add some v, to the denominator

QmA (G, C):Z(M:—Vcﬂyvc - (MICVVCY)' }

ceC
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|dea 2: Add some v, to the denominator

Qu (G, C):Z(Mfcvvc_ <M+chvc)2>' }

ceC

Adaptive scale modularity is
e permutation invariant, continuous and local.
e monotonic for all M > 0 and v > 2.
e rich for all M >0 and v > 1.

e scale invariant for M = 0.
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Proof of monotonicity

Take partial derivatives (v. = w, + b.)

Qu (6. C) = Z(M + v(v:/;c +b) (M +Vl/vc(;cbjr bc))z)'

ceC

IQum~(G,C) M? + (v — 2)Mw, + (27 — 2)Mb, + v v.b.

aWc (M + 7Vc)3
IQmA(G.C)  2Mv.  qwe
Ob. M v)d (M gv)? T

When v > 2, @ is a monotonic increasing function of w, and
decreasing function of b, for all ¢, so the quality function is

monotonic. ]
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Proof sketch of richness

e Given a clustering C* take G to be the clique graph of C*.

e Pick edge weight large enough (k > 2|V|*M), then the
effect of M becomes insignificant.

Q(G,D)mZ(Wd—V—‘%).

V,
ceC TVvd

e There are at most |C*| terms in the sum that are > ¢
(where € depends on k and M)

e The term for ¢ € C is maximal if c=JD,D C C*.

The clique graph with edge weight k of a partition C of V is (V, E)
where E(i,j) = k- 1[i ~¢ Jj]. J
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Related quality functions

e When v = 0, we get fixed scale modularity.
Equivalent to other modularity variants.

e When v =0 and M = vy, we get modularity.
e When M = 0 we get

Qo (G, C) Z(Vv"_ _ 1>,

ceC v
i.e. normalized cut.

e When M — oo we get

Qoor (G, C) x ) we,

ceC
i.e. unnormalized cut.
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Conclusion

40 / 49



Graph and data clustering are related, yet different,

notions.

6 axioms for graph clustering quality functions.

Graph setting allows for locality.

Modularity is not monotonic.

Adaptive scale modularity satisfies all 6 axioms.

Generalizes both modularity and normalized cut.

e Two parameters to control size of clusters.
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Open problems

Applications of adaptive scale modularity to real life
problems.

Overlapping clusters.

Directed graphs.

How to use axioms for developing better algorithms for
clustering.
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Thank you for your attention.

Axioms for graph clustering

Twan van Laarhoven and Elena Marchiori

Institute for Computing and Information Sciences
Radboud University Nijmegen, The Netherlands

27th September 2013
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Extra slides
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Adaptive Scale Modularity behavior

Take a simple graph: M

e Two cliques each with w within weight
e Connected by edges with total weight b.
e Total volume 2w + 2b.

e What is the behavior of adaptive scale modularity?
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Clustering by optimization

Graph clustering is NP hard.

Top down:
find best cut and repeat

Bottom up:
group nodes together

Simulated annealing
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Louvain method

e V.D. Blondel, JL. Guillaume, R. Lambiotte, E. Lefebvre
Fast unfolding of communities in large networks
J. Stat. Mech. 2008

e Best graph clustering method in surveys.
e Method:

@ Move nodes into neighboring clusters to improve quality.
® Repeat until local maximum.
©® Now cluster the clusters.
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Louvain method (example)
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