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Clustering

• Image processing, medicine,

• biology, economy, ... see, e.g., UCI ML repository.
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Clustering

• social sciences,

• life sciences, brain research, ... see, e.g., UCI Network

Data repository.
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Clustering: what is it?

• Informally: grouping objects in such a way that objects in

each group are more similar to each other than to objects

in other groups.

• Formally: an optimization problem. Define an objective

function whose optimization yields a division of objects

into (disjoint) groups. k-means clustering objective:∑
c∈C

∑
~x∈c

||~x − ~µc ||2, where ~µc =
∑

~x∈c ~x/|c |.
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Clustering: how to do it?

• Clustering as an optimization problem is in general

NP-hard.

• Efficient heuristic and approximation algorithms are

developed to find sub optimal solutions.
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Clustering: data versus graphs

• Data clustering uses a distance func-

tion that quantifies the similarity be-

tween each pair of patterns.

• Graph clustering uses weighted edges

describing a relation over patterns.
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From data to graph clustering

• Proximity graphs may be used to transform a data

clustering problem into a graph clustering one.

Distance matrix → kNN graph → Graph clustering
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·


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Why axioms?

• There is no unique definition of clustering.

• Can we formalize our intuition of good objective

functions?

• Are existing objective functions good?

• Can we design better objective functions?
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Axioms for data clustering

Kleinberg’ s axiomatic framework
Kleinberg proved an impossibility result concerning the

axiomatization of the notion of data clustering.

He focused on clustering functions Ĉ : D → C, from distance

functions over a dataset S to clusterings of S , d 7→ C .

Theorem (Kleinberg 2002)

There is no clustering function that is scale invariant,

consistent and rich.
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Kleinberg’s axioms

• Scale-Invariance.

∀d ∈ D, α > 0. Ĉ (d) = Ĉ (αd).

Ĉ

 a

b

c

d

 = Ĉ

 a

b

c

d


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Kleinberg’s axioms

• Richness.

range(Ĉ ) is equal to the set of all partitions of S .

∃d .Ĉ (d) = a b c d

e.g. d =
a

b
c d
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Kleinberg’s axioms

• Consistency.

∀d , d ′ ∈ D.
(
Ĉ (d) = C and d ′ is a C -transformation of d

⇒ Ĉ (d ′) = C
)
.

d ′ is a C-transformation of d if ∀i , j ∈ S

• i ∼C j ⇒ d ′(i , j) ≤ d(i , j);

• i 6∼C j ⇒ d ′(i , j) ≥ d(i , j).

Ĉ

 a

b

c

 = a b c

⇒ Ĉ

(
a

b
c

)
= a b c
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Ĉ (d) = C and d ′ is a C -transformation of d
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Kleinberg result

C ′ is a refinement of C (C ′ v C ) if

∀c ′ ∈ C ′ ∃c ∈ C s.t. c ′ ⊆ c .

{C1, . . . ,Cn} ⊂ C is an antichain if ∀i , j i 6= j ⇒ Ci 6v Cj .

Theorem

If Ĉ is Scale Invariant and Consistent then range(Ĉ ) is an

antichain.

Proof (sketch)

Suppose Ĉ is Consistent and Scale Invariant. Let C0 v C1 in

range(Ĉ ). Construct d such that Ĉ (d) = C1. Choose α such

that d ′ = αd and Ĉ (d ′) = C0.
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Other results

Quality functions
Ackerman and Ben-David used quality functions Q instead of

clustering functions. Q : D × C → R≥0, mapping a distance

function and a clustering into a non-negative real number,

(d ,C ) 7→ r .

Theorem (Ackerman, Ben-David 2008)

There is a clustering quality function that is permutation

invariant, scale invariant, monotonic and rich.

C-index = (s − smin)/(smax − smin), where s =
∑

i∼C j
d(i , j),

smin is the sum of the n minimal (over all pairs of patterns)

distances, smax is the sum of the n maximal distances,

n = |{(i , j) | i ∼C j}|.
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To summarize

• Previous work on axioms for clustering objective functions

are framed in terms of distance functions.

• Kleinberg’s impossibility result is for clustering functions.

• Quality functions are more flexible and allow for

axiomatization of data clustering.

• What about graph clustering? This is a different -

although related - story ...
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Graphs

Distance functions Graphs

d(i , j) E (i , j)

c

a

d

b

c

a

d

b
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d
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c

a

d
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Graphs

a
b

c e

d

g

f

h i j

k

A symmetric weighted graph (or network) is a pair (V ,E ) of

• a finite set V of nodes, and

• a function E : V × V → R≥0 of edge weights,

such that E (i , j) = E (j , i) for all i , j ∈ V .
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Graph clustering

a
b

c e

d

g

f

h i j

k

A clustering C of a graph G = (V ,E ) is a partition of its nodes.
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Clustering: formalizations

1. Clustering function

Ĉ : Graph→ Clustering

Ĉ

 a
b

c e

d
 = a

b

c e

d

2. Quality function

Q : Graph× Clustering→ R

3. Quality relation

· �G · ⊆ Clustering× Clustering
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Ĉ : Graph→ Clustering

2. Quality function

Q : Graph× Clustering→ R

Q

 a
b

c e

d
 = 0.1234

3. Quality relation

· �G · ⊆ Clustering× Clustering

20 / 49



Clustering: formalizations

1. Clustering function
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Some quality functions

• Connected components

• Total weight of within cluster edges

Q(G ,C ) =
∑
c∈C

wc

• Modularity

Q(G ,C ) =
∑
c∈C

(
wc/vV − (vc/vV )2

)
• Many more

Q(G ,C ) =
∑
c∈C

−wc log(vc/vV )

· · ·
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Families of quality functions

• Connected components with threshold

• Total weight of within cluster edges with penalty

Q(G ,C ) =
∑
c∈C

wc − α|C |

• Modularity

Qγ
RB(G ,C ) =

∑
c∈C

(
wc/vV − γ(vc/vV )2

)
• Many more

Q(G ,C ) =
∑
c∈C

−wc log(vc/α)

· · ·
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Axiom 1: Scale invariance

Intuition: The magnitude of the edge weights shouldn’t

matter.

Ĉ

 a
b

c e

d
 = Ĉ

 a
b

c e

d

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Axiom 1: Scale invariance

Intuition: The magnitude of the edge weights shouldn’t

matter.

A quality function Q is scale invariant if

• for all graphs G = (V ,E ),

• all constants α > 0,

Q(G ,C1) ≥ Q(G ,C2) if and only if Q(αG ,C1) ≥ Q(αG ,C2).
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Axiom 2: Permutation invariance

Intuition: Only the edge weights should matter.

Q

 a
b

c e

d
 = Q

 z

v

yx

u


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Axiom 2: Permutation invariance

Intuition: Only the edge weights should matter.

A quality function Q is permutation invariant if

Q(G ,C ) = Q(f (G ), f (C )).

for all

• graphs G = (V ,E ) and

• all isomorphisms f : V → V ′,

where f is extended to graphs and clusterings in the obvious way.
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Axiom 3: Richness

Intuition:

• All clusterings must be possible.

So,

• no trivial quality functions.

• no fixed number of clusters.

A quality function Q is rich if

• for all sets V and

• all partitions C ∗ of V ,

there is

• a graph G = (V ,E )

• such that C ∗ is the optimal clustering of G .
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Axiom 4: Monotonicity

Intuition: Adding edges inside a cluster or removing edges

between clusters does not make the clustering worse.

Q

 a
b

c e

d
 ≥ Q

 a
b

c e

d

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Axiom 4: Monotonicity

Intuition: Adding edges inside a cluster or removing edges

between clusters does not make the clustering worse.

Let

• G = (V ,E ) and G ′ = (V ,E ′) be graphs, and

• C be a clustering of G and G ′.

Then G ′ is a C -consistent improvement of G if

• E ′(i , j) ≥ E (i , j) for all i ∼C j and

• E ′(i , j) ≤ E (i , j) for all i 6∼C j .
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Axiom 4: Monotonicity

Intuition: Adding edges inside a cluster or removing edges

between clusters does not make the clustering worse.

A quality function Q is monotonic if

Q(G ′,C ) ≥ Q(G ,C ).

for all

• graphs G ,

• all clusterings C of G and

• all C -consistent improvements G ′ of G .
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Axiom 5: Locality

Intuition: Local changes should have local effects.

Q

 a
b

c e

d
 = Q

 a
b

c

+ Q


e

d

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Axiom 5: Locality

Intuition: Local changes should have local effects.

Q

 a
b

c· ·

·
 ≥ Q

 a
b

c· ·

·


m

Q


a b

c· ·

·
 ≥ Q


a b

c· ·

·

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Axiom 5: Locality

Intuition: Local changes should have local effects.

Two graphs G1 and G2 agree on the neighborhood of

Va ⊆ V1 ∩ V2 if

E1(i , j) = E2(i , j) for all i ∈ Va, j ∈ V1 ∩ V2, and

E1(i , j) = 0 for all i ∈ Va, j ∈ V1 \ V2, and

E2(i , j) = 0 for all i ∈ Va, j ∈ V2 \ V1.

So, for nodes/clusters in Va, all incident edges are the same.
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Axiom 5: Locality

Intuition: Local changes should have local effects.

A quality function Q is local if

• for all graphs G1 = (V1,E1) and G2 = (V2,E2)

that agree on a set Va and its neighborhood,

• for all clusterings C1 of V1 \ Va,

C2 of V2 \ Va and

Ca,Da of Va.

if Q(G1,Ca ∪ C1) ≥ Q(G1,Da ∪ C1)

then Q(G2,Ca ∪ C2) ≥ Q(G2,Da ∪ C2).
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Discontinuity is magic

Theorem
There is a graph clustering function that is scale invariant,

permutation invariant, monotonic, rich and local.

Ĉcoco(G ) = the connected components of G

Qcoco(G ,C ) = 1[C are the connected components of G ]

• Doesn’t this contradict Kleinberg’s theorem?

• No: edge weight = 0⇔ distance =∞.

• Connected components are unstable.
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Axiom 6: continuity

Intuition:

• Don’t allow such unstable quality functions.

• A small change in edge weights should lead to only a

small change in quality.

A quality function Q is continuous if

• for every ε > 0 and

• every graph G = (V ,E )

there exists a δ > 0 such that

• for every graph G ′ = (V ,E ′) and

• every clustering C of G ,

we have ‖E ′ − E‖max < δ ⇒ |Q(G ′,C )− Q(G ,C )| < ε.
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Modularity

Intuition:

• Balance within cluster edges against cluster volume.

Qmodularity(G ,C ) =
∑
i ,j∈V

(
E (i , j)

vV
− vi

vV

vj
vV

)
1[i ∼C j ].

=
∑
c∈C

(
wc

vV
−
( vc
vV

)2
)
.

Where
vc =

∑
i∈c

∑
j∈V

E (i , j) volume of cluster

wc =
∑
i∈c

∑
j∈c

E (i , j) within cluster weight.
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Properties

The obvious:

• Modularity is permutation invariant.

• Modularity is scale invariant.

• Modularity is continuous.

The less obvious:

• Modularity is rich.

The bad:

• Modularity is not local.

• Modularity is not monotonic.
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Modularity is not local

Qmodularity

(
a b c d

2 1 2
)

= 0.3

Qmodularity

(
a b c d

2 1 2
)

= 0

Qmodularity

(
a b c d x y2 1 2 20

)
= 0.3

Qmodularity

(
a b c d x y2 1 2 20

)
= 0.32
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Modularity is not monotonic

Qmodularity

(
a b c d

1 1
)

= 0.125

Qmodularity

(
a b c d

0.1 1
)

= 0.079

Qmodularity

(
a b c d

1 10
)

= 0.079
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Idea 1: Fix the scale

QM-fixed(G ,C ) =
∑
c∈C

(
wc

M
−
(vc
M

)2
)

Is it monotonic?

Take vc = wc + bc (within + between)

∂QM-fixed(G ,C )

∂wc
=

1

M
− 2wc + 2bc

M2
.

This is negative when 2vc > M , so not monotonic.
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Idea 2: Add some vc to the denominator

QM,γ(G ,C ) =
∑
c∈C

(
wc

M + γvc
−
( vc
M + γvc

)2
)
.

Adaptive scale modularity is

• permutation invariant, continuous and local.

• monotonic for all M ≥ 0 and γ ≥ 2.

• rich for all M ≥ 0 and γ ≥ 1.

• scale invariant for M = 0.
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Proof of monotonicity

Take partial derivatives (vc = wc + bc)

QM,γ(G ,C ) =
∑
c∈C

(
wc

M + γ(wc + bc)
−
( wc + bc
M + γ(wc + bc)

)2
)
.

∂QM,γ(G ,C )

∂wc
=

M2 + (γ − 2)Mwc + (2γ − 2)Mbc + γ2vcbc
(M + γvc)3

.

∂QM,γ(G ,C )

∂bc
= − 2Mvc

(M + γvc)3
− γwc

(M + γvc)2
≤ 0.

When γ ≥ 2, Q is a monotonic increasing function of wc and

decreasing function of bc for all c , so the quality function is

monotonic.
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Proof sketch of richness

• Given a clustering C ∗ take G to be the clique graph of C ∗.

• Pick edge weight large enough (k > 2|V |3M), then the

effect of M becomes insignificant.

Q(G ,D) ≈
∑
c∈C

(
wd −

v 2
d

γvd

)
.

• There are at most |C ∗| terms in the sum that are > ε

(where ε depends on k and M)

• The term for c ∈ C is maximal if c =
⋃

D,D ⊆ C ∗.

The clique graph with edge weight k of a partition C of V is (V ,E )

where E (i , j) = k · 1[i ∼C j ].
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Related quality functions

• When γ = 0, we get fixed scale modularity.

Equivalent to other modularity variants.

• When γ = 0 and M = vV , we get modularity.

• When M = 0 we get

Q0,γ(G ,C ) ∝
∑
c∈C

(wc

vc
− 1

γ

)
,

i.e. normalized cut.

• When M →∞ we get

Q∞,γ(G ,C ) ∝
∑
c∈C

wc ,

i.e. unnormalized cut.

39 / 49



Outline

Introduction

Axioms for data clustering

Axioms for graph clustering

Modularity

Conclusion

40 / 49



Summary

• Graph and data clustering are related, yet different,

notions.

• 6 axioms for graph clustering quality functions.

• Graph setting allows for locality.

• Modularity is not monotonic.

• Adaptive scale modularity satisfies all 6 axioms.

• Generalizes both modularity and normalized cut.

• Two parameters to control size of clusters.
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Open problems

• Applications of adaptive scale modularity to real life

problems.

• Overlapping clusters.

• Directed graphs.

• How to use axioms for developing better algorithms for

clustering.
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Thank you for your attention.

Axioms for graph clustering

Twan van Laarhoven and Elena Marchiori

Institute for Computing and Information Sciences

Radboud University Nijmegen, The Netherlands

27th September 2013
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Adaptive Scale Modularity behavior

Take a simple graph: w w
b

• Two cliques each with w within weight

• Connected by edges with total weight b.

• Total volume 2w + 2b.

• What is the behavior of adaptive scale modularity?
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Clustering by optimization

• Graph clustering is NP hard.

• Top down:

find best cut and repeat

• Bottom up:

group nodes together

• Simulated annealing
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Louvain method

• V.D. Blondel, JL. Guillaume, R. Lambiotte, E. Lefebvre

Fast unfolding of communities in large networks

J. Stat. Mech. 2008

• Best graph clustering method in surveys.

• Method:

1 Move nodes into neighboring clusters to improve quality.

2 Repeat until local maximum.

3 Now cluster the clusters.
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Louvain method (example)
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