Diagrammatic Reasoning and Quantum Computation

Aleks Kissinger
ACA, Kalamata

November 4, 2015
\Rightarrow Radboud University

Picturing Quantum Processes

A first course in quantum theory and diagrammatic reasoning
Bob Coecke \& Aleks Kissinger
CUP 2015

Algebra and rewriting

- An algebraic theory consists of a set of operations and constants, satisfying certain equations

Algebra and rewriting

- An algebraic theory consists of a set of operations and constants, satisfying certain equations
- e.g. a monoid consists of a binary operation and constant e such that:

$$
(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad \text { and } \quad a \cdot e=a=e \cdot a
$$

Algebra and rewriting

- An algebraic theory consists of a set of operations and constants, satisfying certain equations
- e.g. a monoid consists of a binary operation and constant e such that:

$$
(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad \text { and } \quad a \cdot e=a=e \cdot a
$$

- We can apply an equation as a term rewrite rule

Algebra and rewriting

- An algebraic theory consists of a set of operations and constants, satisfying certain equations
- e.g. a monoid consists of a binary operation and constant e such that:

$$
(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad \text { and } \quad a \cdot e=a=e \cdot a
$$

- We can apply an equation as a term rewrite rule
- Instantiate free variables:

$$
(a \cdot b) \cdot c=a \cdot(b \cdot c) /\left\{\begin{array}{l}
a:=x \\
b:=(y \cdot e) \\
c:=z
\end{array}\right.
$$

Algebra and rewriting

- An algebraic theory consists of a set of operations and constants, satisfying certain equations
- e.g. a monoid consists of a binary operation and constant e such that:

$$
(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad \text { and } \quad a \cdot e=a=e \cdot a
$$

- We can apply an equation as a term rewrite rule
- Instantiate free variables:

$$
(a \cdot b) \cdot c=a \cdot(b \cdot c) /\left\{\begin{array}{l}
a:=x \\
b:=(y \cdot e) \\
c:=z
\end{array}\right.
$$

then replace a sub-term:

$$
w \cdot((x \cdot(y \cdot e)) \cdot z) \rightsquigarrow \quad w \cdot(x \cdot((y \cdot e) \cdot z))
$$

Algebra and rewriting

- Alternatively, we could write these equations as trees:

$$
\hat{a}_{a}=\left.\right|_{a}=\rho_{a}
$$

Algebra and rewriting

- Alternatively, we could write these equations as trees:

$$
{\underset{a}{a}}^{g_{a}}=\left.\right|_{a}
$$

- In which case:

$$
w \cdot((x \cdot(y \cdot e)) \cdot z) \quad \sim \quad w \cdot(x \cdot((y \cdot e) \cdot z))
$$

Algebra and rewriting

- Alternatively, we could write these equations as trees:

$$
{\underset{a}{b}}_{g_{a}}=\underbrace{}_{a}
$$

- In which case:

$$
w \cdot((x \cdot(y \cdot e)) \cdot z) \quad \rightsquigarrow \quad w \cdot(x \cdot((y \cdot e) \cdot z))
$$

becomes:

Diagram substitution

- Note we can drop the free variables:

Diagram substitution

- Note we can drop the free variables:

- The role of variables is replaced by the fact that the LHS and RHS have a shared boundary:

Diagram substitution

- Note we can drop the free variables:

- The role of variables is replaced by the fact that the LHS and RHS have a shared boundary:

- This treats inputs and outputs symmetrically

Algebra and coalgebra

- We can consider structures with many outputs as well as inputs.

Algebra and coalgebra

- We can consider structures with many outputs as well as inputs.
- Coalgebraic structures: algebraic structures "upside-down"

Algebra and coalgebra

- We can consider structures with many outputs as well as inputs.
- Coalgebraic structures: algebraic structures "upside-down"
- e.g. a comonoid satisfies:

Algebra and coalgebra

- We can consider structures with many outputs as well as inputs.
- Coalgebraic structures: algebraic structures "upside-down"
- e.g. a comonoid satisfies:

$$
\zeta=\%=\}
$$

- The most interesting structures consist of algebras interacting with coalgebras:

$$
\dot{\beta}=\cdot \varphi
$$

$$
\oint_{0}=\downarrow \circ
$$

Equational reasoning with diagram substitution

- Again, we use equations to perform substitutions, but on graphs rather than just trees

Equational reasoning with diagram substitution

- Again, we use equations to perform substitutions, but on graphs rather than just trees

- For example:

Example: Quantum circuit rewriting

$$
\stackrel{\phi}{\phi} \stackrel{\bullet}{H}=\begin{aligned}
& H \\
& \bullet \\
& \bullet \\
& \emptyset
\end{aligned}
$$

Example: Quantum circuit rewriting

Example: Quantum circuit rewriting

So, we can define an equational theory for quantum circuits, using rewriting.

Why an equational theory for quantum circuits?

Why an equational theory for quantum circuits?

- circuit optimization:

Why an equational theory for quantum circuits?

- circuit optimization:

- verify equivalence (e.g. when adding error-correction)

- (automated) translation to other gate sets and paradigms
- exploit algebraic invariants to prove properties about computations

A complete set of gate identities

- These equations are complete for Clifford circuits:

(Selinger 2013)

As an equational theory

- The good:

As an equational theory

- The good:
- complete for Clifford circuits:

$$
\llbracket C_{1} \rrbracket=\llbracket C_{2} \rrbracket \quad \Longrightarrow \quad C_{1}={ }_{E} \quad C_{2}
$$

As an equational theory

- The good:
- complete for Clifford circuits:

$$
\llbracket C_{1} \rrbracket=\llbracket C_{2} \rrbracket \quad \Longrightarrow \quad C_{1}={ }_{E} \quad C_{2}
$$

- unique normal forms

As an equational theory

- The good:
- complete for Clifford circuits:

$$
\llbracket C_{1} \rrbracket=\llbracket C_{2} \rrbracket \quad \Longrightarrow \quad C_{1}={ }_{E} \quad C_{2}
$$

- unique normal forms
- relatively compact (3 generators, 15 rules)

As an equational theory

- The good:
- complete for Clifford circuits:

$$
\llbracket C_{1} \rrbracket=\llbracket C_{2} \rrbracket \quad \Longrightarrow \quad C_{1}={ }_{E} \quad C_{2}
$$

- unique normal forms
- relatively compact (3 generators, 15 rules)
- The bad:

As an equational theory

- The good:
- complete for Clifford circuits:

$$
\llbracket C_{1} \rrbracket=\llbracket C_{2} \rrbracket \quad \Longrightarrow \quad C_{1}={ }_{E} \quad C_{2}
$$

- unique normal forms
- relatively compact (3 generators, 15 rules)
- The bad:
- rules are large, and don't carry any intuition or algebraic structure

As an equational theory

- The good:
- complete for Clifford circuits:

$$
\llbracket C_{1} \rrbracket=\llbracket C_{2} \rrbracket \quad \Longrightarrow \quad C_{1}={ }_{E} \quad C_{2}
$$

- unique normal forms
- relatively compact (3 generators, 15 rules)
- The bad:
- rules are large, and don't carry any intuition or algebraic structure
- rewrite strategy is complicated (17 derived gates, 100 derived rules)

As an equational theory

- The good:
- complete for Clifford circuits:

$$
\llbracket C_{1} \rrbracket=\llbracket C_{2} \rrbracket \quad \Longrightarrow \quad C_{1}={ }_{E} \quad C_{2}
$$

- unique normal forms
- relatively compact (3 generators, 15 rules)
- The bad:
- rules are large, and don't carry any intuition or algebraic structure
- rewrite strategy is complicated (17 derived gates, 100 derived rules)
- The ugly:

As an equational theory

- The good:
- complete for Clifford circuits:

$$
\llbracket C_{1} \rrbracket=\llbracket C_{2} \rrbracket \quad \Longrightarrow \quad C_{1}={ }_{E} \quad C_{2}
$$

- unique normal forms
- relatively compact (3 generators, 15 rules)
- The bad:
- rules are large, and don't carry any intuition or algebraic structure
- rewrite strategy is complicated (17 derived gates, 100 derived rules)
- The ugly:
- proof of completeness is extremely complicated (>100 pages long! though mostly machine-generated)

Can we do better?

- Yes!

Can we do better?

- Yes!
- We can capture underlying algebraic structure by decomposing gates into smaller pieces

Can we do better?

- Yes!
- We can capture underlying algebraic structure by decomposing gates into smaller pieces

Decomposing CNOT

Decomposing CNOT

Decomposing CNOT

Decomposing CNOT

Decomposing CNOT

'Copy' maps

$$
\left\{\begin{array} { l }
{ | 0 \rangle \mapsto | 0 0 \rangle } \\
{ | 1 \rangle \mapsto | 1 1 \rangle }
\end{array} \quad \left\{\quad \left\{\begin{array}{l}
|00\rangle \mapsto|0\rangle \\
|01\rangle \mapsto|1\rangle \\
|10\rangle \\
|11\rangle \\
|11\rangle \\
\mapsto|0\rangle
\end{array}\right.\right.\right.
$$

'Copy' maps

$$
\left\{\begin{array}{l}
|0\rangle \longmapsto|00\rangle \\
|1\rangle \longmapsto|11\rangle
\end{array}\right.
$$

'Copy' maps

$$
\left\{\begin{array}{l}
|0\rangle \mapsto|00\rangle \\
|1\rangle \mapsto|11\rangle
\end{array}\right.
$$

'Copy' maps
$\oint \quad\left\{\begin{array}{l}|0\rangle \mapsto|00\rangle \\ |1\rangle \mapsto|11\rangle\end{array}\right.$

'Copy' maps

$\oint \quad\left\{\begin{array}{l}|0\rangle \mapsto|00\rangle \\ |1\rangle \mapsto|11\rangle\end{array}\right.$
'Copy' maps
$\oint \quad\left\{\begin{array}{l}|0\rangle \mapsto|00\rangle \\ |1\rangle \mapsto|11\rangle\end{array}\right.$
$9\left\{\begin{array}{l}|0\rangle \mapsto 1 \\ |1\rangle \mapsto 1\end{array}\right.$
'Copy' maps

$9\{\langle 0|+\langle 1|$
'Copy' maps

$$
\begin{array}{lll}
\text { ¢ } & \left\{\begin{array}{lll}
|0\rangle \mapsto|00\rangle \\
|1\rangle \mapsto|11\rangle
\end{array}\right. & \text { 个 }
\end{array}\{\langle 0|+\langle 1|
$$

Algebraic identities．．．

These satisfy 8 identities：

$$
\begin{aligned}
& \text { 乡日 } \\
& \text { \& }=1 \\
& \psi-\neq \\
& \text { 仿一羔 }
\end{aligned}
$$

．．．making them a commutative Frobenius algebra．

But luckily...

...you don't need to remember all that! The only thing to remember is, for:

But luckily...
...you don't need to remember all that! The only thing to remember is, for:

we have:

But luckily...
...you don't need to remember all that! The only thing to remember is, for:

we have:

or equivalently:

But luckily...
...you don't need to remember all that! The only thing to remember is, for:

$$
\underbrace{\cdots}_{\text {... }}:=\left\{\begin{array}{l}
|+. .+\rangle \mapsto|+\ldots+\rangle \\
|-. .-\rangle \mapsto|-\ldots-\rangle
\end{array}\right.
$$

we have:

or equivalently:

What about 2-colour diagrams?

Direction of edges doesn't matter:

What about 2-colour diagrams?

Direction of edges doesn't matter:

...in fact, only topology matters:

Interaction: Hopf algebra

$$
\text { K= 慗 } \quad \dot{\alpha}=99 \quad Y=06
$$

Interaction: Hopf algebra

Red + green spiders also satisfy:

...from which we can derive:

make the overall structure into a Hopf algebra

Circuit calculation

- X

费 X

Making spiders universal

$\underbrace{\cdots}_{\text {... }}:=\left\{\begin{array}{l}|+. .+\rangle \\ |-. .-\rangle\end{array} \mapsto|+\ldots+\rangle\right.$

Making spiders universal

Making spiders universal

(a)
(

Making spiders universal

Theorem
Phased spiders are universal for qubit quantum computation.
Proof.
Let:

蚞労 为
事
为

Completeness

Theorem (Backens 2013)
The ZX-calculus is complete for Clifford ZX-diagrams:

$$
\llbracket D_{1} \rrbracket=\llbracket D_{2} \rrbracket \Longrightarrow D_{1}=z x \quad D_{2}
$$

Measurement-based quantum computing

Measurement-based quantum computing

- Measurement-based quantum computing is an alternative (and equivalent) paradigm to the circuit model

Measurement-based quantum computing

- Measurement-based quantum computing is an alternative (and equivalent) paradigm to the circuit model
- Rather than repeatedly applying operations to a small number of systems, start with a big entangled state called a graph state and do many local measurements in different bases:

Measurement-based quantum computing

- Measurement-based quantum computing is an alternative (and equivalent) paradigm to the circuit model
- Rather than repeatedly applying operations to a small number of systems, start with a big entangled state called a graph state and do many local measurements in different bases:

Measurement-based quantum computing

- Measurement-based quantum computing is an alternative (and equivalent) paradigm to the circuit model
- Rather than repeatedly applying operations to a small number of systems, start with a big entangled state called a graph state and do many local measurements in different bases:

Measurement-based quantum computing

- Measurement-based quantum computing is an alternative (and equivalent) paradigm to the circuit model
- Rather than repeatedly applying operations to a small number of systems, start with a big entangled state called a graph state and do many local measurements in different bases:

Measurement-based quantum computing

- Measurement-based quantum computing is an alternative (and equivalent) paradigm to the circuit model
- Rather than repeatedly applying operations to a small number of systems, start with a big entangled state called a graph state and do many local measurements in different bases:

Measurement-based quantum computing

- Measurement-based quantum computing is an alternative (and equivalent) paradigm to the circuit model
- Rather than repeatedly applying operations to a small number of systems, start with a big entangled state called a graph state and do many local measurements in different bases:

Measurement-based quantum computing

- Measurement-based quantum computing is an alternative (and equivalent) paradigm to the circuit model
- Rather than repeatedly applying operations to a small number of systems, start with a big entangled state called a graph state and do many local measurements in different bases:

Measurement-based quantum computing

- Measurement-based quantum computing is an alternative (and equivalent) paradigm to the circuit model
- Rather than repeatedly applying operations to a small number of systems, start with a big entangled state called a graph state and do many local measurements in different bases:

Measurement-based quantum computing

- Measurement-based quantum computing is an alternative (and equivalent) paradigm to the circuit model
- Rather than repeatedly applying operations to a small number of systems, start with a big entangled state called a graph state and do many local measurements in different bases:

Measurement-based quantum computing

- Measurement-based quantum computing is an alternative (and equivalent) paradigm to the circuit model
- Rather than repeatedly applying operations to a small number of systems, start with a big entangled state called a graph state and do many local measurements in different bases:

Measurement-based quantum computing

- Measurement-based quantum computing is an alternative (and equivalent) paradigm to the circuit model
- Rather than repeatedly applying operations to a small number of systems, start with a big entangled state called a graph state and do many local measurements in different bases:

- But crucially, the choices of measurements can depend on past measurement outcomes. This is called feed-forward, and it's where all the magic happens.

Graph states and cluster states

- Graph states are prepared by starting with many qubits in the $|+\rangle$ state and creating entanglement with controlled-Z operations:

Graph states and cluster states

- Graph states are prepared by starting with many qubits in the $|+\rangle$ state and creating entanglement with controlled-Z operations:

- Since controlled-Z's commute, the only relevant part is the graph:

Measurements and feed-forward

- Compute with single qubit ONB measurements of this form:

$$
\{Q, \pi\}, \alpha, \alpha+\pi\}
$$

Measurements and feed-forward

- Compute with single qubit ONB measurements of this form:

$$
\{\pi, \pi, \alpha, \alpha+\pi\}
$$

- We want to get the first outcome and treat the second outcome as an error:

Measurements and feed-forward

- We can propagate the error out using the ZX-rules:

Measurements and feed-forward

- We can propagate the error out using the ZX-rules:

- If we know an error occurred, we can modify our later measurement choices to account for it:

Measurements and feed-forward

- We can propagate the error out using the ZX-rules:

- If we know an error occurred, we can modify our later measurement choices to account for it:

- $(\leftarrow$ (8) $)$

Notable results

Notable results: MBQC

- Duncan \& Perdrix used the ZX-calculus to offer a new technique for transforming MBQC patterns to circuits, which has some advantages over other known methods, e.g. not requiring ancillas. ${ }^{1}$

(C4)

(C5)

(C6)
- For more details, Ducan has written a self-contained introduction to MBQC from the diagrammatic/ZX point of view, which is available on the arXiv. ${ }^{2}$

[^0]
Notable results: quantum algorithms

- Vicary gave graphical characterisations of standard quantum algorithms ${ }^{3}$

Deutsch-Jozsa

Single-shot Grover

Hidden subgroup

- ...a framework since used by Vicary \& Zeng to develop new algorithms as generalisations ${ }^{4}$

[^1]
Notable results: quantum protocols

- Coecke, along with 3 Wangs and a Zhang give graphical proof of QKD ${ }^{5}$
- Hillebrand gave rewriting proofs of many (~ 25) quantum protocols. ${ }^{6}$
- Zamdzhiev used ZX-calculus to verify 3 kinds of quantum secret sharing. ${ }^{7}$

[^2]
Notable results: quantum non-locality

- AK, Coecke, Duncan, and Wang gave diagrammatic presentation of GHZ/Mermin non-locality argument ${ }^{8}$

- ...which has since been generalised to arbitrary dimensions and quantum-like theories ${ }^{9}$

[^3]
Where do we go from here?

- Completeness (Clifford +T , full)

Where do we go from here?

- Completeness (Clifford +T , full)
- Automation: implementation of Clifford decision procedure, theory synthesis

Where do we go from here?

- Completeness (Clifford +T , full)
- Automation: implementation of Clifford decision procedure, theory synthesis
- Bigger algorithms, more sophisticated protocols, and generally more expressiveness of the diagrammatic language

Thanks!

- Quantomatic is joint work with Lucas Dixon, Alex Merry, Ross Duncan, Vladimir Zamdzhiev, and David Quick
- See: quantomatic.github.io

[^0]: ${ }^{1}$ Rewriting measurement-based quantum computations with generalised flow. R. Duncan, S. Perdrix, ICALP 2010.
 personal.strath.ac.uk/ross.duncan/papers/gflow.pdf
 ${ }^{2} \mathrm{~A}$ graphical approach to measurement-based quantum computing. R. Duncan.
 arXiv:1203.6242

[^1]: ${ }^{3}$ The Topology of Quantum Algorithms. LICS 2013, J. Vicary. arXiv:1209.3917
 ${ }^{4}$ Abstract structure of unitary oracles for quantum algorithms. J.Vicary, W. Zeng.
 arXiv:1406.1278

[^2]: ${ }^{5}$ Graphical Calculus for Quantum Key Distribution. B. Coecke, Q. Wang, B. Wang, Y. Wang, and Q. Zhang. QPL 2011.
 ${ }^{6}$ Quantum Protocols involving Multiparticle Entanglement and their Representations in the zx-calculus. A. Hillebrand. Masters thesis, Oxford 2011. www.cs.ox.ac.uk/people/bob.coecke/Anne.pdf
 ${ }^{7}$ An Abstract Approach towards Quantum Secret Sharing. Masters thesis, Oxford 2012. www.cs.ox.ac.uk/people/bob.coecke/VladimirZamdzhievThesis.pdf

[^3]: ${ }^{8}$ Strong Complementarity and Non-locality in Categorical Quantum Mechanics. B. Coecke,
 R. Duncan, A. Kissinger, Q. Wang. LICS 2012.
 ${ }^{9}$ Mermin Non-Locality in Abstract Process Theories. QPL 2015

