Picturing Quantum Entanglement ...in MBQC

Aleks Kissinger

March 7, 2015

ZX-calculus

- The ZX-calculus is a formalism that studies diagrams built from three kinds of generators:

$$
\begin{aligned}
& \overbrace{\text { ? }}^{\ldots}:=|0 \ldots 0\rangle\langle 0 \ldots 0|+e^{i \alpha}|1 \ldots 1\rangle\langle 1 \ldots 1| \\
& \text { ? } \\
& \text { 直 }:=|+\rangle\langle 0|+|-\rangle\langle 1|
\end{aligned}
$$

ZX-calculus in QC

- Admits an encoding of circuits:

ZX-calculus in QC

- Admits an encoding of circuits:

- ...and MBQC:

ZX-calculus in QC

- Admits an encoding of circuits:

- ...and MBQC:

- ...and a means of translating between the two. $(\Leftarrow \%)$

Algebraic structure

- All of its power comes from its underlying algebraic structures:

- ...which have been studied extensively in category theory and representation theory.

Algebraic structure

- All of its power comes from its underlying algebraic structures:

- ...which have been studied extensively in category theory and representation theory.

Hopf algebras and \mathbb{Z}_{2}-matrices

- (Commutative, self-inverse) Hopf algebra expressions are totally characterised by their \mathbb{Z}_{2}-path matrices:

Hopf algebras and \mathbb{Z}_{2}-matrices

- (Commutative, self-inverse) Hopf algebra expressions are totally characterised by their \mathbb{Z}_{2}-path matrices:

Hopf algebras and \mathbb{Z}_{2}-matrices

- (Commutative, self-inverse) Hopf algebra expressions are totally characterised by their \mathbb{Z}_{2}-path matrices:

Hopf algebras and \mathbb{Z}_{2}-matrices

- (Commutative, self-inverse) Hopf algebra expressions are totally characterised by their \mathbb{Z}_{2}-path matrices:

Hopf algebras and \mathbb{Z}_{2}-matrices

- (Commutative, self-inverse) Hopf algebra expressions are totally characterised by their \mathbb{Z}_{2}-path matrices:

- In category-theoretic terms, this means $\operatorname{Mat}\left(\mathbb{Z}_{2}\right)$ is a PROP for commutative, self-inverse Hopf algebras.

Measuring Entanglement

- Proposition: The amount of entanglement across any bipartition of a graph state is equal to its cut-rank (i.e. the rank of the associated adjacency matrix over $\left.\mathbb{Z}_{2}\right)^{1}$, e.g.

$\rightsquigarrow \quad \operatorname{rank}\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)=2$ ebits

[^0]

\[

\left($$
\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}
$$\right)
\]

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Measuring Entanglement

- When the cut-rank is k, this always yields a factorisation by isometries through k wires

Measuring Entanglement

- When the cut-rank is k, this always yields a factorisation by isometries through k wires
- Writing as a bipartite state:

Measuring Entanglement

- When the cut-rank is k, this always yields a factorisation by isometries through k wires
- Writing as a bipartite state:

- Computing the entropy of entanglement:

Measuring Entanglement

- When the cut-rank is k, this always yields a factorisation by isometries through k wires
- Writing as a bipartite state:

- Computing the entropy of entanglement:

Measuring Entanglement

- When the cut-rank is k, this always yields a factorisation by isometries through k wires
- Writing as a bipartite state:

- Computing the entropy of entanglement:

Measuring Entanglement

- When the cut-rank is k, this always yields a factorisation by isometries through k wires
- Writing as a bipartite state:

- Computing the entropy of entanglement:

$$
\underset{\underline{D}}{\underline{1}})
$$

Measuring Entanglement

- When the cut-rank is k, this always yields a factorisation by isometries through k wires
- Writing as a bipartite state:

- Computing the entropy of entanglement:

$$
k \cdot S\left(\frac{\perp}{-}\right)=k
$$

[^0]: ${ }^{1}$ Hein, Eisart, Briegel. arXiv:quant-ph/0602096, Prop. 11

