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Outline

1. Review quantum maps, quantum/classical maps, and spiders

2. Enrich our language with multi-coloured spiders and phases

3. Use these new language features to define complementarity and strong
complementarity

4. Specialise to qubits and define the ZX-calculus
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Review

Review – Quantum states

I Quantum states look like this: ρ

I They can always be written in terms of a pure state + :

ρ = f̂ := ff=ff

I So ‘up to bending’, a.k.a. partial transpose:

ff ⇐⇒
ff

=
f

f

quantum state ρ positive map f †f
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Review

Review – Quantum maps

I Quantum maps look like this: Φ

I They can always be purified:

= f̂ ′f̂=Φ

I =
∑
i

i for any ONB, so Φ has a Kraus form:

Φ =
∑
i

f̂i where
f̂

i

:=f̂i

I Up to bending:

∑
i

fi fi ⇐⇒

fi

fi

∑
i

quantum map Φ CP-map
∑
i
fi (−)f †i
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Review

Review – Discarding and causality

I Physically realisable quantum maps satisfy causality:

Φ =

I Discarding a state amounts to taking a trace:

f

f

f f

=
ρ

= Tr(ρ)=

I Causal states ↔ positive operators with trace 1
Causal maps ↔ trace-preserving CP-maps (CPTPs)
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Review

Review – Classical states

I Classical states look like this:
x

I They can always be written as:
ψ̂ pure quantum state

basis measurement

I ...hence the notation. The dot singles out a preferred basis, and in that basis, a classical state is a
vector of positive numbers:

ψ̂
=
∑
i
pi i

↔


p1
p2
· · ·
pn



I Causality forces these numbers to sum to 1:

ψ̂
=

ψ̂
= ⇐⇒

∑
i

pi = 1
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Review

Review – Quantum/classical maps

I So, causal classical states are just plain old probability distributions.

I Similarly, causal classical maps are precisely the linear maps that preserve probability distributions,
a.k.a. stochastic maps.

I Quantum/classical maps generalise both CP-maps and stochastic maps.

Φ

classical-quantum

⊇⊆Φ

quantum

f̂

classical
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Review

Review – Spiders

I Linear/quantum maps can be defined in terms of basis states (and numbers) using sums.

I There already exists a family of maps that do much of the same work, but more elegantly and
graphically.

m︷ ︸︸ ︷
· · · · ·

· · ·︸ ︷︷ ︸
n

:=
∑
i

m︷ ︸︸ ︷
i
· · · · ·

i

i · · · i︸ ︷︷ ︸
n

Spiders!
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Review

Review – Spiders

I Spiders are ‘generalised correlators’. They force all ‘legs’ to take the same value.

I We have seen classical spiders (single wires):

I ...quantum spiders (double wires):

· · ·

· · · · ·
:=

· · ··

· · ·

I ...and classical/quantum (a.k.a. bastard) spiders:

:=

· · ·

· · ·

· · ·

· · ·
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Multi-coloured spiders

Multi-coloured spiders

I Most interesting quantum features appear only when we ditch preferred bases for systems and
instead study interaction of multiple bases.

I Different bases → different coloured spiders

m︷ ︸︸ ︷
· · · · ·

· · ·︸ ︷︷ ︸
n

:=
∑
i

m︷ ︸︸ ︷
i
· · · · ·

i

i · · · i︸ ︷︷ ︸
n

m︷ ︸︸ ︷
· · ·

· · · · ·

︸ ︷︷ ︸
n

:=
∑
i

m︷ ︸︸ ︷
i
· · · · ·

i

i · · · i︸ ︷︷ ︸
n
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Multi-coloured spiders

Two kinds of measurement

I Each spider induces a basis measurement:

measure in {
i
}i

probabilities w.r.t. {
i
}i

measure in {
i
}i

probabilities w.r.t. {
i
}i

quantum system

I Their adjoints are preparations:

encoded as quantum states {
i
}i

classical input w.r.t. {
i
}i

encoded as quantum states {
i
}i

classical input w.r.t. {
i
}i
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Multi-coloured spiders

Measuring ⇒ preparing

I What happens when we measure then prepare? Decoherence.

(
ρ =

∑
ij
ρij i j

)
7→


ρ

=
∑
i
ρii i i



I Decoherence models the situation where we forget the classical in the middle. However, we may
have access to this classical data, i.e. if the detector clicks. So, we could just as well keep a copy.

=

I This lets us model non-demolition measurement devices. The demolition measurement can be
recovered just by discarding the (quantum) output:

=
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Multi-coloured spiders

Preparing ⇒ measuring

I What happens when we prepare then measure? It depends on the choice of bases.

I When we take the same basis for both:

=

I The other extreme is:

=

I In other words: (encode in ) + (measure in ) = (no data transfer)

I This is precisely what it means for two bases to be complementary
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Complementarity

Complementarity – QKD

I This is at the heart of quantum key distribution.

I When Bob measures in the correct basis, he gets what I send:

=

Aleks AleksBob Bob

I When Bob measures in the incorrect basis, he gets noise:

=

Aleks AleksBob Bob
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Complementarity

Complementarity – Stern-Gerlach

I Suppose is a spin-Z measurement and is a spin-X measurement, then we could imagine a
Stern-Gerlach type setup:

X

Z

Z

I Since Z and X are complementary, this simplifies as:

= = =

I Thus the outcome of final measurement is uniformly random.

(recall = flat probability distribution w.r.t. { j }j).
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Complementarity

Complementarity – Stern-Gerlach

I Since it disconnects, the output stays random, even when we post-select the first measurement to
be spin-up (i.e. ‘block off the spin-down output’):

0

=

0

I We conclude from above that the X measurement (maximally) disturbs the system, w.r.t. the final
Z measurement.
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Complementarity

Complementarity ↔ Mutually unbiased bases

Definition
Two bases { j }j and { j }j are called mutually unbiased if:

∀i , j .
i

j
=

1

D
or equivalently, ∀i , j .

∣∣∣∣∣ i

j

∣∣∣∣∣ =
1√
D

Theorem
Two bases are mutually unbiased iff they satisfy the complementarity equation:

= 1
D or equivalently, = 1

D

Proof.
(Compl. ⇒ MUB)

jj

i i

= 1
D

=
i

j

= 1
D

(MUB ⇒ Compl.) follows similarly by comparing matrix entries.
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Complementarity

General unbiased points

I Any pure state ψ̂ is called unbiased w.r.t. to a basis if

∀i .
ψ̂

i

= λ

where λ doesn’t depend on i (and = 1
D when ψ̂ is normalised).

I This is the same as saying measuring ψ̂ gives no information:

=
ψ̂

λ

I We could just as easily use this definition of unbiasedness for MUBs. Then, the complementarity
equation follows just by evaluating on basis elements:

= 1
D

i

i

=

i

1
D

=
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Phases

Phase-states

I Killing the global phase, unbiased states can be parametrised by D − 1 complex phase factors:

~α := double

(
0

+
∑
j
e iαj

j

)

α := double

(
0

+
∑
j
e iαj

j

)

I Thus, unbiased states are also called phase states

I Specialising to the 2D case:

~α := double

(
0

+ e iα
1

)

α := double

(
0

+ e iα
1

)
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Phases

Phase-states

I The phase states for the computational basis in 2D are just the equator of the Bloch sphere.

α

0

1

α

I Since decoherence projects to the axis of the Bloch ball, in particular:

α

= =

I So, phases get clobbered in the quantum/classical passage
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Phases

The phase group

I How do we define phase rotations?

I A clue comes from the the phase group structure of spiders

~β~α
~α+~β

:=

(
~α

)
= -α 0 :=

I If we multiply on the left (or the right) with a phase-state α, it performs an α rotation:

α
:=α :: β 7→

α+β

β

0

1

α
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Phases

...watch as they get eaten by spiders

I Note that is doesn’t matter where we attach a phase-state to a spider:

· · ·

· · · · ·

α

· · ·α

· · ·

=

I A consequence is that phase maps commute through spiders:

· · ·

· · · · ·

α

· · ·
α

· · ·

=

I We simplify our notation by letting spiders eat connected phases:

α

· · ·

· · · · ·

:=

· · ·

· · · · ·

α

· · ·α

· · ·

=
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Phases

Generalised spider law

(phase group) + (spider fusion) = (phase-spider fusion)

α1

=
∑

iαi

α2

α5

α4

α3
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Strong complementarity

Basis elements as phase states

I For a complementary pair / the basis states of are unbiased w.r.t. , so we could also write
them as phase states. For := Z and := X ,

0
= 0 1

= π

I So, since gives us a way multiply phases, we can multiply -basis elements.

i j αjαi

= =
αi+αj

I While in general, αi + αj won’t be another basis element, this is the case for Z/X :

0 0

= 0
0 π

= π

0π

= π
ππ

= 0
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Strong complementarity

Basis elements as phase states

I So, lives a double life. On the one hand, it’s single version can be seen as an operation on
classical data:

00

=
0

00

=
1

1 0

=
1

1 1

=
0

namely, Z2-multiplication.

I On the other hand, it is a quantum operation on phase-states:

0 0

= 0
0 π

= π

0π

= π
ππ

= 0

I ...and since { j }j encodes the phase-states (via preparation):

= =
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Strong complementarity

Strong complementarity

Definition
A pair of spiders is said to be strongly complementary if the following equations are satisfied:

= = =

I Unfolding this doubled-stuff yields some equations that will be familiar to some:

= = =

I Strongly complementary pairs of spiders form bi-algebras!
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Strong complementarity

Strong complementarity ⇒ complementarity

Theorem
Strongly complementarity =⇒ complementarity.

Proof.

= = = ===

(??)(??)(??)
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Strong complementarity

Classifying strongly complementary bases

I Unlike MUBs, strongly complementary bases are easy to classify.

I For one thing, maximal sets of bases that are pairwise-SC are always size 2

I ...and these pairs are classified in all dimensions.

Theorem
Strongly complementary pairs of basis of dimension D are in 1-to-1 correspondence with Abelian groups
of order D.

Proof.
(sketch) acts as a group operation on { j }j . Fixing which group operation totally characterises

, and hence { j }j .
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Strong complementarity

Making sense of phase-multiply

I We tried to give some (pseudo-)operational interpretation of this equation:

=

I But it falls down because, while is a good quantum map, it isn’t causal:

= 6=

So it isn’t physical.

I This is because, it is both pure, and it throws stuff away. E.g. for the Z/X example before, it is
Z2-multiply, a.k.a. XOR.
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Strong complementarity

Making sense of phase-multiply

I However, is part of a physical map, if we play a standard trick from quantum computing. We
simply copy (some of) the input:

I Causality is restored! At least, whenever and are complementary.

= = =

I Returning to the Z/X example, this in fact gives us a CNOT gate:

i j

= i⊕ji

i

j

i

=
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Strong complementarity

Building everything – single-qubit gates

I Using just Z -spiders and X -spiders, we can build CNOT gates.

I Also, we can build any single-qubit unitary using phase maps (via the Euler decomposition):

U β

γ

α

:=

Theorem
The following maps suffice to build any quantum circuit (i.e. unitary quantum map from qubits to
qubits):

α

· · ·

· · · · ·

α

· · ·

· · · · ·

where α ∈ [0, 2π).

Corollary

The following maps suffice to build any qubit quantum map:

α

· · ·

· · · · ·

α

· · ·

· · · · ·
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Strong complementarity

Completeness?

I So, we have enough generators to build any quantum map.

I However, do we have enough relations (i.e. diagram equations) to prove that two quantum maps
are equal?

I We already have a fair few:

... ... ...
α

... = α+β

β
...... ...

... ... ...
α

= α+β

β
...... ...

...

= =
π

=
π

π
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Strong complementarity

Clifford maps

I But there there are still some equations that can’t be proven, e.g.

-π2
π
2 =

I Whether a finite, complete set of equations exists for the general phases is still an open problem.
(My prediction: no)

I We can make our job easier by restricting to...

Definition
Let the family of Clifford maps consist of any map generated by:

π
2

· · ·

· · · · ·
π
2

· · ·

· · · · ·

(Clifford circuit := unitary Clifford map)
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Strong complementarity

Geometry

I We nearly have a complete set of equations for the Clifford maps, but we’re missing some info about
the geometry of the Bloch sphere

I The first:

α

π =
π

α π

−α
π

-α

I The second concerns the Hadamard gate, which interchanges the two colours:

α

· · · · ·

· · ·
α

· · ·

· · · · ·

H H H

H H H

=

I Since it is a unitary rotation, we can give its Euler decomposition:

H
π
2

π
2

π
2

:=

-π2

-π2

-π2
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The ZX-Calculus

The ZX-Calculus

Definition
The ZX-calculus consists of:

I Two spider-fusion rules:

... ... ...
α

... = α+β

β
...... ...

... ... ...
α

= α+β

β
...... ...

...

I Three rules coming from strong complementarity:

= =
π

=
π

π

I Two Bloch sphere rules:

=
π

α π

−α

α

· · · · ·

· · ·
α

· · ·

· · · · ·

H H H

H H H

= H
π
2

π
2

π
2

:=
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The ZX-Calculus

Completeness

Theorem
The ZX-calculus is complete for Clifford maps.

I The proof makes use of a graph-theoretic trick called local complementation, borrowed from
MBQC. (We’ll see the relationship between ZX and MBQC next time.)

I Thus ZX is complete for the classically simulable/Clifford/stabiliser fragment of the theory.

I It is provably incomplete for arbitrary phases

I ...but it is complete for at least one other fragment: single-qubit unitaries with π
4 phase maps

(a.k.a. Clifford + T ).
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The ZX-Calculus

Summary

I We built up to the ZX-calculus, which is a graphical swiss army knife for calculating with qubits.

I Along the way, we met two important relationships between pairs of measurements:

complementarity: = strong complementarity: =

I Next time, we’ll look at how to use the ZX-calculus in four areas:

1. Quantum algorithms
2. Measurement-based quantum computing
3. Security protocols
4. Non-locality

I ...and demonstrate a tool for automating calculation in ZX: QuantoDerive
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