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Quantum Picturalism: what it is, what it isn’t

• ‘QPism’ ☺ is a methodology for expressing, teaching, and reasoning
about quantum processes

• Diagrams live at the centre, thus composition and interaction

• QP is not a reconstruction, but some ideas from operational reconstructions
play a major role, e.g.
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2. quantum maps via ‘doubling’ construction

3. Consequences: purification, causality, no-signalling, no-broadcasting

4. Classical/quantum interaction
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Recap

• Wires represent systems, boxes represent processes
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• The world is organised into process theories, collections of processes that
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Recap

• Certain processes play a special role:

states: ψ effects: φ numbers: λ

• State + effect = number, interpreted as:

ψ

φtest

state
probability

this is called the Born rule.
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linear maps

In the process theory of linear maps:

(L1) Every type has a (finite) basis:for all i :

i

f
=
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g

 =⇒ f = g

(L2) Processes can be summed :

∑
i

fi where ∑
i
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fhi

g
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(L3) Numbers are the complex numbers: λ ∈ C
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Bases ⇔ process tomography

Theoremfor all i , j :

i
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Bases ⇔ process tomography

Theoremfor all i , j :

i

f

j

=

i

g

j
 =⇒ f = g

• In other words, f is uniquely fixed by its matrix :
f 11 f 12 · · · f 1m

f 21 f 22 · · · f 2m

...
...

. . .
...

f n1 f n2 · · · f nm

 where f ji :=

i

f

j
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What about the Born rule?

ψ

φtest

state
probability
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The Born rule for relations
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B := {0, 1}

possibility



Introduction 1. Linear maps 2. Quantum maps 3. Consequences 4. Classical 5. Complementarity

The Born rule for linear maps

ψ

φtest
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Fixing the problem
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Doubled states and effects

Letting:

ψψ
:=ψ̂ and

φφ
:=φ̂

yields...

test
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ψψ
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A new process theory from an old one...

• The theory of pure quantum maps has types:

:=

Â

• and processes:

=f̂ ff

for all processes f from linear maps.
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Embedding the old theory

• linear maps embed in quantum maps, and this embedding preserves
diagrams:

double

 f

g

h

 =

ĝ

ĥf̂

• But now we’re in a bigger space, so there is room for something new,
discarding :

ψ̂
=
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What is discarding?

ψ̂
=

ψ ψ

???

• So discarding is defined as the effect:

:=

• In fact, this is the unique map with this property. Let {ψ̂i}i be a basis of
pure states (e.g. z+, z−, x+, y+), then:

ψ̂i

=
d

ψ̂i

= =⇒ = d
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quantum maps

Definition
The process theory of quantum maps consists of all processes obtained from
pure quantum maps and discarding:

f̂

. . .{ }

. . .

• e.g. ρ :=
ψ̂

and Φ :=

f̂

ĝ

ĥ
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Causality

• This gives all quantum processes, including post-selected ones

• To get all of the deterministically realisable processes, we additionally
require causality :

Φ =

• Causality =⇒ no-signalling:
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Purification

• Any quantum map extends to a pure quantum map on an extended system:

Φ =
f̂

• This is built-in to our definition of quantum maps:

f̂

ĝ

ĥ

7→ ĝ

f̂ ĥ

• If Ψ causal, f̂ must be isometry: Stinespring dilation.
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No-broadcasting from pure extension

Theorem
A state is pure if and only if any extension separates:

ψ̂ =
ρ

=⇒
ρ

= ψ̂ ρ′

Corollary

There exists no quantum map ∆ such that:

∆ =∆ =
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No-broadcasting from pure extension - proof

Broadcast to the left:

=∆

Bend the wire:

∆ = =⇒ ∆ = ρ

Unbend the wire and try to broadcast to the right:

∆ = ρ =⇒ ∆ = ρ
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Classical systems

• Protocols, experiments, etc. are always about the interaction of quantum
and classical systems

• We extend graphical language:

quantum systems → double wires
classical systems → single wires

• States are probability distributions:

p =
∑
j
pj j ↔


p1

p2

...
pn


• Processes are stochastic maps:

f ↔


p11 p12 · · · p1m

p21 p22 · · · p2m

...
...

. . .
...

pn1 pn2 · · · pnm
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Classical operations

• Deleting is marginalisation:

:=
∑
i

i

• Classical causality just means stochastic:

f =

• We can broadcast classically:

= = where :=
∑
i

i i

i
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Generalising to spiders

• These generalise to a whole family of maps, called spiders:

· · · · ·

· · ·

i

i i

ii

i

:=

n

m

∑
i

· · · · ·

· · ·

n

m

• where the only rule to remember is:
... ...

... =

... ...

...

...
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Quantum spiders

• A quantum spider is a classical spider, doubled:

...

...
:= double

( ...

...

)
=

...

...

• An example is the GHZ state:

GHZ := = double

(∑
i

i i i

)

• They also fuse:
...

...

...

...

... =

...

...



Introduction 1. Linear maps 2. Quantum maps 3. Consequences 4. Classical 5. Complementarity

Quantum spiders

• A quantum spider is a classical spider, doubled:

...

...
:= double

( ...

...

)
=

...

...

• An example is the GHZ state:

GHZ := = double

(∑
i

i i i

)

• They also fuse:
...

...

...

...

... =

...

...



Introduction 1. Linear maps 2. Quantum maps 3. Consequences 4. Classical 5. Complementarity

Quantum spiders

• A quantum spider is a classical spider, doubled:

...

...
:= double

( ...

...

)
=

...

...

• An example is the GHZ state:

GHZ := = double

(∑
i

i i i

)

• They also fuse:
...

...

...

...

... =

...

...



Introduction 1. Linear maps 2. Quantum maps 3. Consequences 4. Classical 5. Complementarity

Bastard spiders

• The third type of spider treats some legs as classical, and some pairs of legs
as quantum:

... ...

...
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:=

• We call these (seemingly) weird things bastard spiders

• Again they fuse together:
... ...

... =

... ...
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...



Introduction 1. Linear maps 2. Quantum maps 3. Consequences 4. Classical 5. Complementarity

Bastard spiders

• The third type of spider treats some legs as classical, and some pairs of legs
as quantum:

... ...

...

...

...
...

...

...

:=

• We call these (seemingly) weird things bastard spiders

• Again they fuse together:
... ...

... =

... ...

...

...



Introduction 1. Linear maps 2. Quantum maps 3. Consequences 4. Classical 5. Complementarity

Bastard spiders

• The third type of spider treats some legs as classical, and some pairs of legs
as quantum:

... ...

...

...

...
...

...

...

:=

• We call these (seemingly) weird things bastard spiders

• Again they fuse together:
... ...

... =

... ...

...

...



Introduction 1. Linear maps 2. Quantum maps 3. Consequences 4. Classical 5. Complementarity

Measurement’s a bastard

• The most important example is ONB-measurement:

:: ρ 7→


P(1|ρ)
P(2|ρ)

...
P(n|ρ)



• whose adjoint is ONB-encoding :

:: i 7→ i

• Combining these yields more general stuff, e.g. non-demo measurements:

=
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Multi-coloured spiders

• Different bases → different coloured spiders

m︷ ︸︸ ︷
...

...

︸ ︷︷ ︸
n

:=
∑
i

m︷ ︸︸ ︷
i · · · · · i

i · · · i︸ ︷︷ ︸
n

m︷ ︸︸ ︷
· · ·

· · · · ·

︸ ︷︷ ︸
n

:=
∑
i

m︷ ︸︸ ︷
i · · · · · i

i · · · i︸ ︷︷ ︸
n

• Two spiders and are complementary if:

=

(encode in ) + (measure in ) = (no data transfer)
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Complementarity – Stern-Gerlach

• For example, we can model Stern-Gerlach:

N

S
SN

S

N  X

Z

Z

• which simplifies as:

= = no data transfer
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Applications

Picturing Quantum Processes
the rest...

1. Quantum info: Complementarity and cousin strong complementary give
graphical presentations for many protocols, e.g. QKD, QSS

2. Quantum computing: Complementary spiders give a handy toolkit for
building quantum circuits and MBQC

3. Quantum resources: Framework for resource theories, e.g. entanglement,
purity

4. Quantum foundations: (spoiler alert!) GHZ/Mermin argument in
diagrams

Thanks!
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