Picturing Quantum Processes

Aleks Kissinger
QTFT, Växjö 2015
June 10, 2015

Quantum Picturalism: what it is, what it isn't

- 'QPism' © is a methodology for expressing, teaching, and reasoning about quantum processes

Quantum Picturalism: what it is, what it isn't

- 'QPism' © is a methodology for expressing, teaching, and reasoning about quantum processes
- Diagrams live at the centre, thus composition and interaction

Quantum Picturalism: what it is, what it isn't

- 'QPism' © is a methodology for expressing, teaching, and reasoning about quantum processes
- Diagrams live at the centre, thus composition and interaction
- QP is not a reconstruction, but some ideas from operational reconstructions play a major role, e.g.

local/process tomography

purification

Quantum Picturalism: what it is, what it isn't

- 'QPism' © is a methodology for expressing, teaching, and reasoning about quantum processes
- Diagrams live at the centre, thus composition and interaction
- QP is not a reconstruction, but some ideas from operational reconstructions play a major role, e.g.

- ...and relationship between operational setups and theoretical models:

Picturing Quantum Processes

A first course in quantum theory and diagrammatic reasoning
Bob Coecke \& Aleks Kissinger
CUP 2015

Outline

Picturing Quantum Processes

chapters 4-9 (roughly)

Outline

Picturing Quantum Processes

chapters 4-9 (roughly)

1. Process theory of linear maps

Outline

Picturing Quantum Processes

chapters 4-9 (roughly)

1. Process theory of linear maps
2. quantum maps via 'doubling' construction

Outline

Picturing Quantum Processes
 chapters 4-9 (roughly)

1. Process theory of linear maps
2. quantum maps via 'doubling' construction
3. Consequences: purification, causality, no-signalling, no-broadcasting

Outline

Picturing Quantum Processes
 chapters 4-9 (roughly)

1. Process theory of linear maps
2. quantum maps via 'doubling' construction
3. Consequences: purification, causality, no-signalling, no-broadcasting
4. Classical/quantum interaction

Outline

Picturing Quantum Processes
 chapters 4-9 (roughly)

1. Process theory of linear maps
2. quantum maps via 'doubling' construction
3. Consequences: purification, causality, no-signalling, no-broadcasting
4. Classical/quantum interaction
5. Complementarity

Recap

- Wires represent systems, boxes represent processes

Recap

- Wires represent systems, boxes represent processes

- The world is organised into process theories, collections of processes that make sense to combine into diagrams

Recap

- Certain processes play a special role:

effects:
 numbers:

Recap

- Certain processes play a special role:

effects:

- State + effect $=$ number, interpreted as:

this is called the Born rule.

linear maps

In the process theory of linear maps:

linear maps

In the process theory of linear maps:
(L1) Every type has a (finite) basis:

$$
\left(\begin{array}{cc}
\text { for all } \frac{1}{i}: & \begin{array}{c}
f \\
i \\
i
\end{array} \\
\sqrt{i}
\end{array}\right) \Longrightarrow \frac{1}{\square}=\frac{1}{\square}
$$

linear maps

In the process theory of linear maps:
(L1) Every type has a (finite) basis:

$$
\left(\begin{array}{ccc}
\text { for all } \frac{1}{i}: & \begin{array}{c}
f \\
i \\
i
\end{array} \\
\sqrt{i}
\end{array}\right) \Longrightarrow \frac{1}{\square}=\frac{1}{\square}
$$

(L2) Processes can be summed:

where

linear maps

In the process theory of linear maps:
(L1) Every type has a (finite) basis:

$$
\left(\begin{array}{ccc}
\text { for all } \frac{1}{i}: & \begin{array}{c}
f \\
i \\
i
\end{array} \\
\sqrt{i}
\end{array}\right) \Longrightarrow \begin{array}{|}
\hline g \\
\square
\end{array}
$$

(L2) Processes can be summed:

(L3) Numbers are the complex numbers: $\langle\lambda \in \mathbb{C}$

Bases \Leftrightarrow process tomography

Theorem

Bases \Leftrightarrow process tomography

Theorem

Proof.

Bases \Leftrightarrow process tomography

Theorem

Proof.

Bases \Leftrightarrow process tomography

Theorem

Proof.

$$
\frac{\sqrt{f}}{\sqrt{j}}=\frac{\sqrt{g}}{\sqrt{j}}
$$

Bases \Leftrightarrow process tomography

Theorem

Proof.

$$
\frac{\downarrow}{f}=\frac{\square}{g}
$$

Bases \Leftrightarrow process tomography

Theorem

Proof.

$$
\stackrel{l}{f}=\underset{\square}{\underline{g}}
$$

Bases \Leftrightarrow process tomography

Theorem

- In other words, f is uniquely fixed by its matrix:

$$
\left(\begin{array}{cccc}
f_{1}^{1} & f_{2}^{1} & \cdots & f_{m}^{1} \\
f_{1}^{2} & f_{2}^{2} & \cdots & f_{m}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
f_{1}^{n} & f_{2}^{n} & \cdots & f_{m}^{n}
\end{array}\right)
$$

where

What about the Born rule?

The Born rule for relations

The Born rule for relations

The Born rule for linear maps

Fixing the problem

Doubled states and effects

Letting:

Doubled states and effects

Letting:
yields...

A new process theory from an old one...

- The theory of pure quantum maps has types:

A new process theory from an old one...

- The theory of pure quantum maps has types:

$$
\left.\boldsymbol{a}=\begin{array}{ll}
& \begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array} \\
1
\end{array}\right]
$$

- and processes:

for all processes f from linear maps.

Embedding the old theory

- linear maps embed in quantum maps, and this embedding preserves diagrams:

Embedding the old theory

- linear maps embed in quantum maps, and this embedding preserves diagrams:

- But now we're in a bigger space, so there is room for something new

Embedding the old theory

- linear maps embed in quantum maps, and this embedding preserves diagrams:

- But now we're in a bigger space, so there is room for something new, discarding:

$$
\dot{\square}
$$

What is discarding?

What is discarding?

What is discarding?

What is discarding?

- So discarding is defined as the effect:

What is discarding?

- So discarding is defined as the effect:
- In fact, this is the unique map with this property. Let $\left\{\widehat{\psi}_{i}\right\}_{i}$ be a basis of pure states (e.g. $z^{+}, z^{-}, x^{+}, y^{+}$), then:

What is discarding?

- So discarding is defined as the effect:
- In fact, this is the unique map with this property. Let $\left\{\widehat{\psi}_{i}\right\}_{i}$ be a basis of pure states (e.g. $z^{+}, z^{-}, x^{+}, y^{+}$), then:

quantum maps

Definition

The process theory of quantum maps consists of all processes obtained from pure quantum maps and discarding:

quantum maps

Definition

The process theory of quantum maps consists of all processes obtained from pure quantum maps and discarding:

- e.g.

Causality

- This gives all quantum processes, including post-selected ones

Causality

- This gives all quantum processes, including post-selected ones
- To get all of the deterministically realisable processes, we additionally require causality:
啇 = 行

Causality

- This gives all quantum processes, including post-selected ones
- To get all of the deterministically realisable processes, we additionally require causality:

$$
\frac{\bar{\square}}{\bar{\Phi}}=\frac{\overline{1}}{\square}
$$

- Causality \Longrightarrow no-signalling:

Causality

- This gives all quantum processes, including post-selected ones
- To get all of the deterministically realisable processes, we additionally require causality:

$$
\frac{\bar{\square}}{\bar{\Phi}}=\frac{\overline{1}}{\square}
$$

- Causality \Longrightarrow no-signalling:

Causality

- This gives all quantum processes, including post-selected ones
- To get all of the deterministically realisable processes, we additionally require causality:
高 = =
- Causality \Longrightarrow no-signalling:

Causality

- This gives all quantum processes, including post-selected ones
- To get all of the deterministically realisable processes, we additionally require causality:

$$
\text { 产 }=\overline{+}
$$

- Causality \Longrightarrow no-signalling:

Purification

- Any quantum map extends to a pure quantum map on an extended system:

Purification

- Any quantum map extends to a pure quantum map on an extended system:

- This is built-in to our definition of quantum maps:

Purification

- Any quantum map extends to a pure quantum map on an extended system:

$$
\frac{1}{\square}=\frac{\bar{\square}}{\hat{f}}
$$

- This is built-in to our definition of quantum maps:

- If Ψ causal, \widehat{f} must be isometry: Stinespring dilation.

No-broadcasting from pure extension

Theorem
A state is pure if and only if any extension separates:

No-broadcasting from pure extension

Theorem
A state is pure if and only if any extension separates:

Corollary
There exists no quantum map Δ such that:

$$
\frac{\frac{\overline{1}}{\Delta}}{\frac{\overline{1}}{1}}=\left\lvert\, \quad \frac{\overline{\bar{\omega}}}{\frac{\Delta}{1}}=\right.
$$

No-broadcasting from pure extension - proof
Broadcast to the left:

$$
\stackrel{\perp \stackrel{\rightharpoonup}{\varphi}}{\stackrel{\rightharpoonup}{\top}}=\mid
$$

No-broadcasting from pure extension - proof
Broadcast to the left:

$$
\frac{\sqrt{\overline{1}}}{\frac{\overline{1}}{1}}=
$$

Bend the wire:

No-broadcasting from pure extension - proof

Broadcast to the left:

$$
\stackrel{\perp \stackrel{\rightharpoonup}{\varphi}}{\stackrel{\rightharpoonup}{\top}}=\mid
$$

Bend the wire:

No-broadcasting from pure extension - proof

Broadcast to the left:

$$
\frac{\sqrt{\overline{1}}}{\frac{\overline{1}}{1}}=
$$

Bend the wire:

Unbend the wire and try to broadcast to the right:

$$
\frac{\square}{\Delta}=\left\lvert\, \begin{gathered}
\frac{1}{\rho}
\end{gathered} \quad \Longrightarrow \quad \frac{\bar{\square}}{\frac{\Delta}{\Delta}}=\overline{1}=\overline{\bar{\rho}}\right.
$$

Classical systems

- Protocols, experiments, etc. are always about the interaction of quantum and classical systems

Classical systems

- Protocols, experiments, etc. are always about the interaction of quantum and classical systems
- We extend graphical language:
quantum systems \rightarrow double wires
classical systems \rightarrow single wires

Classical systems

- Protocols, experiments, etc. are always about the interaction of quantum and classical systems
- We extend graphical language:
quantum systems \rightarrow double wires
classical systems \rightarrow single wires
- States are probability distributions:

$$
\sqrt{p}=\sum_{j} p^{j} \stackrel{l}{\dot{V}} \quad \leftrightarrow \quad\left(\begin{array}{c}
p^{1} \\
p^{2} \\
\vdots \\
p^{n}
\end{array}\right)
$$

Classical systems

- Protocols, experiments, etc. are always about the interaction of quantum and classical systems
- We extend graphical language:
quantum systems \rightarrow double wires
classical systems \rightarrow single wires
- States are probability distributions:

$$
\sqrt{p}=\sum_{j} p^{j} \stackrel{l}{\downarrow} \quad \leftrightarrow \quad\left(\begin{array}{c}
p^{1} \\
p^{2} \\
\vdots \\
p^{n}
\end{array}\right)
$$

- Processes are stochastic maps:

$$
\stackrel{+}{\square} \leftrightarrow\left(\begin{array}{cccc}
p_{1}^{1} & p_{2}^{1} & \cdots & p_{m}^{1} \\
p_{1}^{2} & p_{2}^{2} & \cdots & p_{m}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
p_{1}^{n} & p_{2}^{n} & \cdots & p_{m}^{n}
\end{array}\right)
$$

Classical operations

- Deleting is marginalisation:

$$
\uparrow:=\sum_{i} / i
$$

Classical operations

- Deleting is marginalisation:

$$
T:=\sum_{i}<i
$$

- Classical causality just means stochastic:

$$
\frac{9}{f}=9
$$

Classical operations

- Deleting is marginalisation:

$$
T:=\sum_{i}<\vec{i}
$$

- Classical causality just means stochastic:

$$
\frac{Q}{f}=?
$$

- We can broadcast classically:

Generalising to spiders

- These generalise to a whole family of maps, called spiders:

Generalising to spiders

- These generalise to a whole family of maps, called spiders:

- where the only rule to remember is:

Quantum spiders

- A quantum spider is a classical spider, doubled:

Quantum spiders

- A quantum spider is a classical spider, doubled:

- An example is the GHZ state:

$$
\frac{1}{\text { GHZ }}:=\text { double }\left(\sum_{i} \sqrt[i]{\sqrt[i]{\sqrt{i}}}\right)
$$

Quantum spiders

- A quantum spider is a classical spider, doubled:

- An example is the GHZ state:

$$
\frac{1}{\text { GHZ }}:=\text { do }=\operatorname{double}\left(\sum_{i} \sqrt[i]{\sqrt[i]{\sqrt{2}}}\right)
$$

- They also fuse:

Bastard spiders

- The third type of spider treats some legs as classical, and some pairs of legs as quantum:

Bastard spiders

- The third type of spider treats some legs as classical, and some pairs of legs as quantum:

- We call these (seemingly) weird things bastard spiders

Bastard spiders

- The third type of spider treats some legs as classical, and some pairs of legs as quantum:

- We call these (seemingly) weird things bastard spiders
- Again they fuse together:

Measurement's a bastard

- The most important example is ONB-measurement:

Measurement's a bastard

- The most important example is ONB-measurement:

$$
\oint: \quad \stackrel{\square}{\square} \mapsto\left(\begin{array}{c}
P(1 \mid \rho) \\
P(2 \mid \rho) \\
\vdots \\
P(n \mid \rho)
\end{array}\right)
$$

- whose adjoint is ONB-encoding:

$$
\phi:: \quad i \quad \mapsto \frac{1}{i}
$$

Measurement's a bastard

- The most important example is ONB-measurement:

$$
\oint: \quad \stackrel{\square}{\emptyset} \mapsto\left(\begin{array}{c}
P(1 \mid \rho) \\
P(2 \mid \rho) \\
\vdots \\
P(n \mid \rho)
\end{array}\right)
$$

- whose adjoint is ONB-encoding:

$$
\phi:: \quad i
$$

- Combining these yields more general stuff, e.g. non-demo measurements:

Multi-coloured spiders

- Different bases \rightarrow different coloured spiders

Multi-coloured spiders

- Different bases \rightarrow different coloured spiders

- Two spiders \bigcirc and \bigcirc are complementary if:

$($ encode in $\bigcirc)+($ measure in $\bigcirc)=($ no data transfer $)$

Complementarity - Stern-Gerlach

- For example, we can model Stern-Gerlach:

Complementarity - Stern-Gerlach

- For example, we can model Stern-Gerlach:

- which simplifies as:

Applications

Picturing Quantum Processes
 the rest...

Applications

Picturing Quantum Processes
 the rest...

1. Quantum info: Complementarity and cousin strong complementary give graphical presentations for many protocols, e.g. QKD, QSS

Applications

Picturing Quantum Processes

the rest...

1. Quantum info: Complementarity and cousin strong complementary give graphical presentations for many protocols, e.g. QKD, QSS
2. Quantum computing: Complementary spiders give a handy toolkit for building quantum circuits and MBQC

Applications

Picturing Quantum Processes

the rest...

1. Quantum info: Complementarity and cousin strong complementary give graphical presentations for many protocols, e.g. QKD, QSS
2. Quantum computing: Complementary spiders give a handy toolkit for building quantum circuits and MBQC
3. Quantum resources: Framework for resource theories, e.g. entanglement, purity

Applications

Picturing Quantum Processes

the rest...

1. Quantum info: Complementarity and cousin strong complementary give graphical presentations for many protocols, e.g. QKD, QSS
2. Quantum computing: Complementary spiders give a handy toolkit for building quantum circuits and MBQC
3. Quantum resources: Framework for resource theories, e.g. entanglement, purity
4. Quantum foundations: (spoiler alert!) GHZ/Mermin argument in diagrams

Applications

Picturing Quantum Processes

the rest...

1. Quantum info: Complementarity and cousin strong complementary give graphical presentations for many protocols, e.g. QKD, QSS
2. Quantum computing: Complementary spiders give a handy toolkit for building quantum circuits and MBQC
3. Quantum resources: Framework for resource theories, e.g. entanglement, purity
4. Quantum foundations: (spoiler alert!) GHZ/Mermin argument in diagrams

Thanks!

