Intro	d	uction
000	0	0

. Linear maps

2. Quantum maps 000000

3. Consequence

4. Classical

5. Complementarity

Picturing Quantum Processes

Aleks Kissinger

QTFT, Växjö 2015

June 10, 2015

Linear maps

2. Quantum maps

8. Consequence

4. Classical 000000 5. Complementarity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Quantum Picturalism: what it is, what it isn't

• 'QPism' ⁽ⁱ⁾ is a *methodology* for **expressing**, **teaching**, and **reasoning** about quantum processes

. Linear maps

2. Quantum maps

8. Consequence

4. Classical

5. Complementarity

Quantum Picturalism: what it is, what it isn't

- 'QPism' ⁽ⁱ⁾ is a *methodology* for **expressing**, **teaching**, and **reasoning** about quantum processes
- Diagrams live at the centre, thus composition and interaction

Linear maps

2. Quantum maps 000000 . Consequence

4. Classical 000000 5. Complementarity

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Quantum Picturalism: what it is, what it isn't

- 'QPism' ⁽ⁱ⁾ is a *methodology* for **expressing**, **teaching**, and **reasoning** about quantum processes
- Diagrams live at the centre, thus composition and interaction
- QP is not a *reconstruction*, but some ideas from operational reconstructions play a major role, e.g.

local/process tomography

purification

Linear maps

2. Quantum maps 000000 . Consequence

4. Classical 000000 5. Complementarity

Quantum Picturalism: what it is, what it isn't

- 'QPism' ⁽ⁱ⁾ is a *methodology* for **expressing**, **teaching**, and **reasoning** about quantum processes
- Diagrams live at the centre, thus composition and interaction
- QP is not a *reconstruction*, but some ideas from operational reconstructions play a major role, e.g.

 $\begin{array}{c} 1 \\ \hline \Phi \\ \hline \end{array} = \begin{array}{c} - \\ \hline \\ \hline \\ \widehat{f} \\ \hline \end{array}$

purification

• ...and relationship between operational setups and theoretical models:

1. Linear maps 00000 2. Quantum maps

3. Consequence

4. Classical 000000

5. Complementarity

Picturing Quantum Processes

A first course in quantum theory and diagrammatic reasoning

Bob Coecke & Aleks Kissinger CUP 2015

1. Linear maps 00000 2. Quantum maps 000000

3. Consequence

4. Classical

5. Complementarity

Picturing Quantum Processes

chapters 4-9 (roughly)

1. Process theory of linear maps

chapters 4-9 (roughly)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 1. Process theory of linear maps
- 2. quantum maps via 'doubling' construction

- 1. Process theory of **linear maps**
- 2. quantum maps via 'doubling' construction
- 3. Consequences: purification, causality, no-signalling, no-broadcasting

- 1. Process theory of **linear maps**
- 2. quantum maps via 'doubling' construction
- 3. Consequences: purification, causality, no-signalling, no-broadcasting
- 4. Classical/quantum interaction

- 1. Process theory of **linear maps**
- 2. quantum maps via 'doubling' construction
- 3. Consequences: purification, causality, no-signalling, no-broadcasting
- 4. Classical/quantum interaction
- 5. Complementarity

• Wires represent systems, boxes represent processes

• Wires represent systems, boxes represent processes

• The world is organised into *process theories*, collections of processes that make sense to combine into *diagrams*

Introduction	1. Linear maps	2. Quantum maps	3. Consequences	4. Classical	5. Complementarity
0000●	00000	000000		000000	000
Recap					

• Certain processes play a special role:

Introduction 0000●	1. Linear maps 00000	2. Quantum maps 000000	3. Consequences	4. Classical 000000	5. Complementarity 000
		Re	есар		
• C	ertain processes p	lay a special role:			
	states: ψ	7 effects:	ϕ	numbers: 📣	

• State + effect = number, interpreted as:

this is called the Born rule.

Introduction	1. Linear maps	2. Quantum maps	3. Consequences	4. Classical	5. Co
00000	●0000	000000		000000	000

(L1) Every type has a (finite) *basis*:

$$\left(\text{for all } \overrightarrow{i} : \overrightarrow{f} = \overrightarrow{g} \\ \overrightarrow{i} & \overrightarrow{i} \end{array}\right) \implies \overrightarrow{f} = \overrightarrow{g}$$

(L1) Every type has a (finite) basis:

$$\left(\text{for all } \overrightarrow{i} : \overrightarrow{f} = \overrightarrow{g} \\ \overrightarrow{i} & \overrightarrow{i} \end{array}\right) \implies \overrightarrow{f} = \overrightarrow{g}$$

(L2) Processes can be *summed*:

(L1) Every type has a (finite) basis:

$$\left(\text{for all } \overrightarrow{i} : \overrightarrow{f} = \overrightarrow{g} \\ \overrightarrow{i} & \overrightarrow{i} \end{array}\right) \implies \overrightarrow{f} = \overrightarrow{g}$$

(L2) Processes can be summed:

(L3) Numbers are the complex numbers: $\diamondsuit \in \mathbb{C}$

Bases \Leftrightarrow process tomography

Theorem

$$\left(\text{for all } \begin{array}{c} \downarrow \\ i \\ i \\ \end{array}, \begin{array}{c} \downarrow \\ j \\ \end{array} \right) : \begin{array}{c} \downarrow \\ f \\ \vdots \\ i \\ \end{array} \right) = \begin{array}{c} \downarrow \\ g \\ \vdots \\ \vdots \\ \end{array} \right) \implies \begin{array}{c} \downarrow \\ f \\ \vdots \\ \end{array} \right) \implies \begin{array}{c} \downarrow \\ f \\ \vdots \\ \end{array} = \begin{array}{c} \downarrow \\ g \\ \vdots \\ \end{array} \right)$$

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

1. Linear maps ○●○○○ 2. Quantum maps

3. Consequence

4. Classical

・ロト ・個ト ・モト ・モト

э

5. Complementarity

Bases \Leftrightarrow process tomography

Theorem

Proof.

1. Linear maps ○●○○○ 2. Quantum maps

3. Consequence

4. Classical

・ロト ・ 同ト ・ ヨト ・ ヨト

э

5. Complementarity

Bases \Leftrightarrow process tomography

Theorem

Proof.

Introduction	
00000	

1. Linear maps ○●○○○ 2. Quantum maps

3. Consequence

4. Classical

5. Complementarity

Bases \Leftrightarrow process tomography

Theorem

Proof.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

1. Linear maps ○●○○○ 2. Quantum maps

3. Consequence

4. Classical

5. Complementarity

Bases \Leftrightarrow process tomography

Theorem

Proof.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

1. Linear maps ○●○○○ 2. Quantum maps

3. Consequence

4. Classical

5. Complementarity

Bases \Leftrightarrow process tomography

Theorem

Proof.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

1.	Linear	maps
00	000	

2. Quantum maps

Consequence
 0000

4. Classical

(日)、(同)、(日)、(日)、(日)、

5. Complementarity

Bases \Leftrightarrow process tomography

Theorem

• In other words, *f* is uniquely fixed by its *matrix*:

$$\begin{pmatrix} f_1^1 & f_2^1 & \cdots & f_m^1 \\ f_1^2 & f_2^2 & \cdots & f_m^2 \\ \vdots & \vdots & \ddots & \vdots \\ f_1^n & f_2^n & \cdots & f_m^n \end{pmatrix} \quad \text{where} \quad f_i^j := \underbrace{\begin{array}{c} j \\ f \\ f_i \end{array}}_{i}$$

1. Linear maps 00●00 2. Quantum maps 000000

Consequence
 0000

4. Classical

5. Complementarity

What about the Born rule?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

1. Linear maps

2. Quantum maps

Consequence
 0000

4. Classical

5. Complementarity

The Born rule for relations

▲□▶ ▲□▶ ▲注▶ ▲注▶ 三注 - 釣��

1. Linear maps 000●0 2. Quantum maps

Consequence
 0000

4. Classical

5. Complementarity

The Born rule for relations

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

1. Linear maps 00000

2. Quantum maps

Consequence
 0000

4. Classical

5. Complementarity

The Born rule for linear maps

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ⊙

 Linear maps 00000 2. Quantum maps 00000 3. Consequence

4. Classical

5. Complementarity

Doubled states and effects

Letting:

 Linear maps 00000 2. Quantum maps ○●○○○○ Consequence
 0000

4. Classical

5. Complementarity

Doubled states and effects

Letting:

yields...

2. Quantum maps 000000

3. Consequence

4. Classical

5. Complementarity

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

A new process theory from an old one...

• The theory of **pure quantum maps** has types:

2. Quantum maps

3. Consequence

4. Classical

(a)

э

5. Complementarity

A new process theory from an old one...

• The theory of **pure quantum maps** has types:

$$:= \left[\begin{array}{c} & & \\$$

and processes:

for all processes f from linear maps.

Embedding the old theory

• **linear maps** embed in **quantum maps**, and this embedding preserves diagrams:

Embedding the old theory

• **linear maps** embed in **quantum maps**, and this embedding preserves diagrams:

・ロト ・個ト ・モト ・モト

э

• But now we're in a bigger space, so there is room for something new

Embedding the old theory

• **linear maps** embed in **quantum maps**, and this embedding preserves diagrams:

• But now we're in a bigger space, so there is room for something new, *discarding*:

$$\frac{\bar{-}}{\bar{\psi}} =$$

1. Linear map 00000 2. Quantum maps 000000

Consequence
 0000

4. Classical

5. Complementarity

What is discarding?

1. Linear maps 00000

2. Quantum maps 000000

Consequence
 0000

4. Classical

5. Complementarity

What is discarding?

1. Linear map 00000 2. Quantum maps 000000

3. Consequences

4. Classical

5. Complementarity

What is discarding?

Introduction 00000	1. Linear maps 00000	2. Quantum maps 0000●0	3. Consequences	4. Classical	5. Complementarity 000
		What is c	liscarding?		
	$\overline{\frac{-}{\widehat{\psi}}} =$		$= \begin{array}{c} \psi \\ \psi \\ \psi \\ \psi \\ \psi \\ \end{array} = $		

• So discarding is defined as the effect:

$$\overline{\mathbf{T}}$$
 := $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

Introduction 00000	1. Linear maps 00000	2. Quantum maps 0000●0	3. Consequences	4. Classical	5. Complementarity		
What is discarding?							

• So discarding is defined as the effect:

In fact, this is the unique map with this property. Let {\$\hat{\u03c6}_i\$}\$; be a basis of pure states (e.g. \$z^+\$, \$z^-\$, \$x^+\$, \$y^+\$), then:

Introduction 00000	1. Linear maps 00000	2. Quantum maps 0000●0	3. Consequences	4. Classical	5. Complementarity	
What is discarding?						

• So discarding is defined as the effect:

$$\overline{\mathsf{T}}$$
 := $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

In fact, this is the unique map with this property. Let {\$\hat{\u03c6}_i\$}\$ is a basis of pure states (e.g. \$z^+\$, \$z^-\$, \$x^+\$, \$y^+\$), then:

$$\frac{\overline{-}}{\widehat{\psi}_{i}} = \frac{\overline{d}}{\widehat{\psi}_{i}} \implies \frac{\overline{-}}{\overline{-}} = \frac{\overline{d}}{\overline{d}}$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ Q @

quantum maps

Definition

The process theory of **quantum maps** consists of all processes obtained from pure quantum maps and discarding:

quantum maps

Definition

The process theory of **quantum maps** consists of all processes obtained from pure quantum maps and discarding:

• This gives all quantum processes, including post-selected ones

- This gives all quantum processes, including post-selected ones
- To get all of the *deterministically realisable* processes, we additionally require *causality*:

$$\begin{bmatrix} \bar{-} \\ \bar{-} \\ \phi \\ I \end{bmatrix} = \bar{-} \\ \bar{-} \\ \bar{-} \\ \bar{-} \end{bmatrix}$$

- This gives all quantum processes, including post-selected ones
- To get all of the *deterministically realisable* processes, we additionally require *causality*:

$$\begin{bmatrix} \bar{-} \\ \bar{-} \\ \Phi \end{bmatrix} = \bar{-}$$

- This gives all quantum processes, including post-selected ones
- To get all of the *deterministically realisable* processes, we additionally require *causality*:

$$\begin{bmatrix} \bar{-} \\ \bar{-} \\ \Phi \end{bmatrix} = \bar{-}$$

- This gives all quantum processes, including post-selected ones
- To get all of the *deterministically realisable* processes, we additionally require *causality*:

$$\begin{bmatrix} \bar{\pm} \\ \Phi \\ T \end{bmatrix} = \begin{bmatrix} \bar{\pm} \\ \bar{\pm} \end{bmatrix}$$

- This gives all quantum processes, including post-selected ones
- To get all of the *deterministically realisable* processes, we additionally require *causality*:

$$\frac{\overline{\mp}}{\Phi} = \overline{\mp}$$

inear maps

2. Quantum maps 000000

3. Consequences ○●○○ 4. Classical

5. Complementarity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Purification

• Any quantum map extends to a pure quantum map on an extended system:

$$\Phi = \frac{-}{\widehat{f}}$$

Linear maps

2. Quantum maps 000000

3. Consequences ○●○○ 4. Classical

5. Complementarity

Purification

• Any quantum map extends to a pure quantum map on an extended system:

• This is built-in to our definition of quantum maps:

inear maps

2. Quantum maps 000000

3. Consequences ○●○○ 4. Classical 000000 5. Complementarity

Purification

• Any quantum map extends to a pure quantum map on an extended system:

• This is built-in to our definition of quantum maps:

• If Ψ causal, \hat{f} must be isometry: Stinespring dilation.

. Linear maps

2. Quantum maps 000000

3. Consequences ○○●○ 4. Classical

5. Complementarity

No-broadcasting from pure extension

Theorem

A state is pure if and only if any *extension* separates:

$$\frac{1}{\widehat{\psi}} = \frac{1}{p} \implies \frac{1}{p} \implies \frac{1}{p} = \frac{1}{\widehat{\psi}} \frac{1}{p}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < @

. Linear maps

2. Quantum maps 000000

3. Consequences ○○●○ 4. Classical

5. Complementarity

No-broadcasting from pure extension

Theorem

A state is pure if and only if any *extension* separates:

$$\frac{1}{\widehat{\psi}} = \frac{1}{\rho} \implies \frac{1}{\rho} = \frac{1}{\widehat{\psi}} \frac{1}{\rho}$$

Corollary

There exists no quantum map Δ such that:

$$\begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 のへで

Linear maps 000 2. Quantum maps

.

3. Consequences

4. Classical

5. Complementarity

No-broadcasting from pure extension - proof

Broadcast to the left:

Linear maps 000 2. Quantum maps

3. Consequences

4. Classical

5. Complementarity

No-broadcasting from pure extension - proof

Broadcast to the left:

Bend the wire:

Linear maps 000 2. Quantum maps

3. Consequences

4. Classical

5. Complementarity

No-broadcasting from pure extension - proof

Broadcast to the left:

Bend the wire:

Linear maps 000 2. Quantum maps

3. Consequences

4. Classical

5. Complementarity

No-broadcasting from pure extension - proof

Broadcast to the left:

Bend the wire:

$$\begin{bmatrix} \Box & \overline{T} \\ \Box & \Delta \end{bmatrix} = \begin{bmatrix} \Box & \Box \\ \Box & \Delta \end{bmatrix} \Rightarrow \begin{bmatrix} \Box & \Box \\ \Box & \Delta \end{bmatrix} = \begin{bmatrix} \Box & \Box \\ P \\ P \end{bmatrix}$$

Unbend the wire and try to broadcast to the right:

$$\begin{array}{c} \begin{array}{c} 1 \\ \underline{\Delta} \end{array} \end{array} = \begin{array}{c} 1 \\ \hline P \end{array} \Rightarrow \begin{array}{c} \frac{\overline{\tau}}{\Delta} \end{array} = \begin{array}{c} \overline{\tau} \\ \underline{\Delta} \end{array} \end{array}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 王 ○ ○ ○ ○

Linear maps 0000 2. Quantum maps 000000

Consequence
 0000

4. Classical •00000 5. Complementarity

Classical systems

• Protocols, experiments, etc. are always about the interaction of quantum and classical systems

. Linear maps

2. Quantum maps 000000

Consequence
 0000

4. Classical •00000 5. Complementarity

Classical systems

- Protocols, experiments, etc. are always about the interaction of quantum and classical systems
- We extend graphical language:

quantum systems \rightarrow double wires classical systems \rightarrow single wires

Linear maps

2. Quantum maps 000000

Consequence
 0000

4. Classical •00000 5. Complementarity

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Classical systems

- Protocols, experiments, etc. are always about the interaction of quantum and classical systems
- We extend graphical language:

quantum systems \rightarrow double wires classical systems \rightarrow single wires

• States are *probability distributions*:

$$\begin{array}{c} \downarrow \\ \hline p \\ \end{array} = \sum_{j} p^{j} \begin{array}{c} \downarrow \\ \hline j \\ \end{array} \qquad \leftrightarrow \qquad \begin{pmatrix} p^{1} \\ p^{2} \\ \vdots \\ p^{n} \end{pmatrix}$$

Linear maps

2. Quantum maps 000000

Consequence
 0000

4. Classical

5. Complementarity

Classical systems

- Protocols, experiments, etc. are always about the interaction of quantum and classical systems
- We extend graphical language:

quantum systems \rightarrow double wires classical systems \rightarrow single wires

• States are *probability distributions*:

$$\begin{array}{c} \downarrow \\ \hline p \\ \hline \end{array} = \sum_{j} p^{j} \begin{array}{c} \downarrow \\ \hline j \\ \hline \end{array} \qquad \leftrightarrow \qquad \begin{pmatrix} p^{1} \\ p^{2} \\ \vdots \\ p^{n} \end{pmatrix}$$

• Processes are stochastic maps:

|▲□▶ ▲圖▶ ▲国▶ ▲国▶ | 国|| のへぐ

Introduction	
00000	

Linear maps

2. Quantum maps 000000

3. Consequence

4. Classical

5. Complementarity

Classical operations

• Deleting is marginalisation:

$$\stackrel{\circ}{} := \sum_{i} \Delta_{i}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Classical operations

• Deleting is marginalisation:

$$\stackrel{\circ}{\mid} := \sum_{i} \stackrel{\wedge}{\perp}$$

• Classical causality just means stochastic:

$$\left| \begin{array}{c} 0 \\ f \end{array} \right| = \left| \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right|$$

• Deleting is marginalisation:

$$\stackrel{\bigcirc}{\mid} := \sum_{i} \stackrel{\frown}{\mid}$$

• Classical causality just means stochastic:

$$\frac{f}{f}$$
 = f

• We can broadcast classically:

$$\begin{array}{c} & & \\$$

Generalising to spiders

• These generalise to a whole family of maps, called *spiders*:

Generalising to spiders

• These generalise to a whole family of maps, called *spiders*:

• where the only rule to remember is:

3. Consequences

4. Classical

・ロト ・個ト ・モト ・モト

æ

5. Complementarity

Quantum spiders

• A quantum spider is a classical spider, doubled:

• A quantum spider is a classical spider, doubled:

• An example is the GHZ state:

• A quantum spider is a classical spider, doubled:

• An example is the GHZ state:

$$\bigcup_{\text{GHZ}} := \bigcup_{i \in \mathbb{Z}} = \text{double}\left(\sum_{i} \bigcup_{i \in \mathbb{Z}} \bigcup_{i \in \mathbb{$$

• They also fuse:

• The third type of spider treats some legs as classical, and some pairs of legs as quantum:

• The third type of spider treats some legs as classical, and some pairs of legs as quantum:

・ロト ・個ト ・モト ・モト

э

• We call these (seemingly) weird things bastard spiders

• The third type of spider treats some legs as classical, and some pairs of legs as quantum:

(a)

э

- We call these (seemingly) weird things bastard spiders
- Again they fuse together:

Measurement's a bastard

• The most important example is *ONB-measurement*:

$$\begin{array}{cccc} & & & & \\ \uparrow & & & & \\ \uparrow & & & \\ & & & \\ \end{array} \mapsto \begin{pmatrix} P(1|\rho) \\ P(2|\rho) \\ \vdots \\ P(n|\rho) \end{pmatrix}
\end{array}$$

Measurement's a bastard

• The most important example is *ONB-measurement*:

$$\begin{array}{cccc} & & & & \\ \uparrow & & & & \\ \uparrow & & & \\ & & & \\ & &$$

• whose adjoint is ONB-encoding:

$$\begin{array}{cccc} & & & \\$$

Measurement's a bastard

• The most important example is *ONB-measurement*:

$$\begin{array}{cccc} & & & & \\ \uparrow & :: & & & \\ & & & \\ \uparrow & & & \\ \end{array} \mapsto \begin{pmatrix} P(1|\rho) \\ P(2|\rho) \\ \vdots \\ P(n|\rho) \end{pmatrix}
\end{array}$$

• whose adjoint is ONB-encoding:

$$\downarrow :: \quad \downarrow \\ \checkmark \mapsto \quad \checkmark$$

• Combining these yields more general stuff, e.g. non-demo measurements:

 Introduction
 1. Linear maps
 2. Quantum maps
 3. Consequences
 4. Classical
 5. Complementarity

 00000
 00000
 0000
 0000
 00000
 00000
 00000

 Multi-coloured spiders

• Different bases \rightarrow different coloured spiders

• Different bases \rightarrow different coloured spiders

• Two spiders \bigcirc and \bigcirc are *complementary* if:

(encode in \bigcirc) + (measure in \bigcirc) = (no data transfer)

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへ⊙

troduction

Linear maps

2. Quantum maps

Consequence
 0000

4. Classical

Ζ

Х

Ζ

▲ロト ▲圖ト ▲温ト ▲温ト

臣

5. Complementarity

Complementarity – Stern-Gerlach

• For example, we can model Stern-Gerlach:

tion

Linear maps

2. Quantum maps

Consequences
 0000

4. Classical

5. Complementarity

Complementarity – Stern-Gerlach

• For example, we can model Stern-Gerlach:

• which simplifies as:

Introduction 00000 Linear maps

2. Quantum maps 000000

3. Consequence

4. Classical

5. Complementarity 00●

Picturing Quantum Processes

the rest...

the rest...

1. **Quantum info:** Complementarity and cousin *strong complementary* give graphical presentations for many protocols, e.g. QKD, QSS

1. Quantum info: Complementarity and cousin strong complementary give

- graphical presentations for many protocols, e.g. QKD, QSS
- 2. **Quantum computing:** Complementary spiders give a handy toolkit for building quantum circuits and MBQC

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

the rest...

- 1. **Quantum info:** Complementarity and cousin *strong complementary* give graphical presentations for many protocols, e.g. QKD, QSS
- 2. **Quantum computing:** Complementary spiders give a handy toolkit for building quantum circuits and MBQC
- 3. **Quantum resources:** Framework for resource theories, e.g. entanglement, purity

- 1. **Quantum info:** Complementarity and cousin *strong complementary* give graphical presentations for many protocols, e.g. QKD, QSS
- 2. **Quantum computing:** Complementary spiders give a handy toolkit for building quantum circuits and MBQC
- 3. **Quantum resources:** Framework for resource theories, e.g. entanglement, purity

4. Quantum foundations: (spoiler alert!) GHZ/Mermin argument in diagrams

- 1. **Quantum info:** Complementarity and cousin *strong complementary* give graphical presentations for many protocols, e.g. QKD, QSS
- 2. **Quantum computing:** Complementary spiders give a handy toolkit for building quantum circuits and MBQC
- 3. **Quantum resources:** Framework for resource theories, e.g. entanglement, purity
- 4. Quantum foundations: (spoiler alert!) GHZ/Mermin argument in diagrams

Thanks!