
Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

New reasoning techniques for monoidal algebra

Aleks Kissinger

November 4, 2015

QUANTUM

GROUP

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Algebra and rewriting

• Consider a monoid (A, ·, e):

(a · b) · c = a · (b · c) and a · e = a = e · a

• Normally, mathematical tools, e.g. automated theorem provers
would use these equations as rewrite rules:

(a · b) · c a · (b · c) a · e a e · a a

• It is also possible to write these equations as trees:

=

a b c b ca

= =

a aa

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Algebra and rewriting

• Consider a monoid (A, ·, e):

(a · b) · c = a · (b · c) and a · e = a = e · a

• Normally, mathematical tools, e.g. automated theorem provers
would use these equations as rewrite rules:

(a · b) · c a · (b · c) a · e a e · a a

• It is also possible to write these equations as trees:

=

a b c b ca

= =

a aa

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Algebra and rewriting

• Consider a monoid (A, ·, e):

(a · b) · c = a · (b · c) and a · e = a = e · a

• Normally, mathematical tools, e.g. automated theorem provers
would use these equations as rewrite rules:

(a · b) · c a · (b · c) a · e a e · a a

• It is also possible to write these equations as trees:

=

a b c b ca

= =

a aa

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Algebra and rewriting

• Consider a monoid (A, ·, e):

(a · b) · c = a · (b · c) and a · e = a = e · a

• Normally, mathematical tools, e.g. automated theorem provers
would use these equations as rewrite rules:

(a · b) · c a · (b · c) a · e a e · a a

• It is also possible to write these equations as trees:

=

a b c b ca

= =

a aa

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Algebra and rewriting

• Since these equations are (left- and right-) linear in the free variables,
we can drop them:

=

a b c b ca

⇒ =

• The role of variables is replaced by the notion that the LHS and RHS
have a shared boundary

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Algebra and rewriting

• Since these equations are (left- and right-) linear in the free variables,
we can drop them:

=

a b c b ca

⇒ =

• The role of variables is replaced by the notion that the LHS and RHS
have a shared boundary

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Diagram substitution

• One could apply the rule “(a · b) · c→ a · (b · c)” using the usual
“instantiate, match, replace” style:

w · ((x · (y · e)) · z) w · (x · ((y · e) · z))

• ...or by cutting the LHS directly out of the tree and gluing in the RHS:

w
x

y
z x z

w

y

⇒

z
w

x
y

⇒

• This treats inputs and outputs symmetrically

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Diagram substitution

• One could apply the rule “(a · b) · c→ a · (b · c)” using the usual
“instantiate, match, replace” style:

w · ((x · (y · e)) · z) w · (x · ((y · e) · z))

• ...or by cutting the LHS directly out of the tree and gluing in the RHS:

w
x

y
z x z

w

y

⇒

z
w

x
y

⇒

• This treats inputs and outputs symmetrically

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Diagram substitution

• One could apply the rule “(a · b) · c→ a · (b · c)” using the usual
“instantiate, match, replace” style:

w · ((x · (y · e)) · z) w · (x · ((y · e) · z))

• ...or by cutting the LHS directly out of the tree and gluing in the RHS:

w
x

y
z x z

w

y

⇒

z
w

x
y

⇒

• This treats inputs and outputs symmetrically

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Algebra and coalgebra

• We can consider structures with many outputs as well as inputs.

• Coalgebraic structures: algebraic structures “upside-down”
• E.g. comonoids, which consist of a comultiplication operation and a

counit satisfying:

=
= =

• Algebra and coalgebra can interact in many interesting ways:

= = . . .

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Algebra and coalgebra

• We can consider structures with many outputs as well as inputs.
• Coalgebraic structures: algebraic structures “upside-down”

• E.g. comonoids, which consist of a comultiplication operation and a
counit satisfying:

=
= =

• Algebra and coalgebra can interact in many interesting ways:

= = . . .

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Algebra and coalgebra

• We can consider structures with many outputs as well as inputs.
• Coalgebraic structures: algebraic structures “upside-down”
• E.g. comonoids, which consist of a comultiplication operation and a

counit satisfying:

=
= =

• Algebra and coalgebra can interact in many interesting ways:

= = . . .

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Algebra and coalgebra

• We can consider structures with many outputs as well as inputs.
• Coalgebraic structures: algebraic structures “upside-down”
• E.g. comonoids, which consist of a comultiplication operation and a

counit satisfying:

=
= =

• Algebra and coalgebra can interact in many interesting ways:

= = . . .

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Equational reasoning with diagram substitution

• As before, we can use graphical identities to perform substitutions,
but on graphs, rather than trees

=

• For example:

⇒ ⇒

• This style of rewriting works for any (co)algebraic structure in a
monoidal category, a.k.a. monoidal algebras.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Equational reasoning with diagram substitution

• As before, we can use graphical identities to perform substitutions,
but on graphs, rather than trees

=

• For example:

⇒ ⇒

• This style of rewriting works for any (co)algebraic structure in a
monoidal category, a.k.a. monoidal algebras.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Equational reasoning with diagram substitution

• As before, we can use graphical identities to perform substitutions,
but on graphs, rather than trees

=

• For example:

⇒ ⇒

• This style of rewriting works for any (co)algebraic structure in a
monoidal category, a.k.a. monoidal algebras.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Algebraic structures in SMCs

• A (single-sorted) monoidal algebra A consists of an object A and a set
of morphisms whose inputs/outputs have type A:

A

A A

A

A

A A

A
. . .

called the generators of A,

• and some equations:

=
=

= . . .

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Algebraic structures in SMCs

• A (single-sorted) monoidal algebra A consists of an object A and a set
of morphisms whose inputs/outputs have type A:

A

A A

A

A

A A

A
. . .

called the generators of A,
• and some equations:

=
=

= . . .

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Example: Frobenius algebras

• A commutative Frobenius algebra consists of a tuple (A, , , ,)

such that:
• (A, ,) forms a commutative monoid:

= = = =

• (A, ,) forms a commutative comonoid:

=
= = =

• The Frobenius law is satisfied:

= =

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Example: Bialgebras

• A (bi)commutative bialgebra consists of a tuple (A, , , ,)

such that:
• (A, ,) forms a monoid:

= = = =

• (A, ,) forms a comonoid:

=
= = =

• The bialgebra laws are satisfied:

= = =

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

PROPs

• Monoidal algebras can also be defined via functorial semantics:

1. Define a theory category T whose objects are natural numbers (i.e.
arities) and:

m⊗ n := m + n

For SMCs, this is called a PROduct category with Permutations (PROP).
2. Fix another SMC C (e.g. functions, relations, linear maps, etc.).
3. T-algebras in C are then symmetric monoidal functors:

J−K : T→ C

• PROPs come in two flavours:

1. Syntactic PROPs have as morphisms diagrams of generators, modulo
some set of diagram equations. Deciding equality⇔ solving a word
problem.

2. Semantic PROPs have morphisms with a concrete description (functions,
relations, finite matrices, etc.). Equality is usually (easily) decidable.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

PROPs

• Monoidal algebras can also be defined via functorial semantics:
1. Define a theory category T whose objects are natural numbers (i.e.

arities) and:
m⊗ n := m + n

For SMCs, this is called a PROduct category with Permutations (PROP).

2. Fix another SMC C (e.g. functions, relations, linear maps, etc.).
3. T-algebras in C are then symmetric monoidal functors:

J−K : T→ C

• PROPs come in two flavours:

1. Syntactic PROPs have as morphisms diagrams of generators, modulo
some set of diagram equations. Deciding equality⇔ solving a word
problem.

2. Semantic PROPs have morphisms with a concrete description (functions,
relations, finite matrices, etc.). Equality is usually (easily) decidable.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

PROPs

• Monoidal algebras can also be defined via functorial semantics:
1. Define a theory category T whose objects are natural numbers (i.e.

arities) and:
m⊗ n := m + n

For SMCs, this is called a PROduct category with Permutations (PROP).
2. Fix another SMC C (e.g. functions, relations, linear maps, etc.).

3. T-algebras in C are then symmetric monoidal functors:

J−K : T→ C

• PROPs come in two flavours:

1. Syntactic PROPs have as morphisms diagrams of generators, modulo
some set of diagram equations. Deciding equality⇔ solving a word
problem.

2. Semantic PROPs have morphisms with a concrete description (functions,
relations, finite matrices, etc.). Equality is usually (easily) decidable.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

PROPs

• Monoidal algebras can also be defined via functorial semantics:
1. Define a theory category T whose objects are natural numbers (i.e.

arities) and:
m⊗ n := m + n

For SMCs, this is called a PROduct category with Permutations (PROP).
2. Fix another SMC C (e.g. functions, relations, linear maps, etc.).
3. T-algebras in C are then symmetric monoidal functors:

J−K : T→ C

• PROPs come in two flavours:

1. Syntactic PROPs have as morphisms diagrams of generators, modulo
some set of diagram equations. Deciding equality⇔ solving a word
problem.

2. Semantic PROPs have morphisms with a concrete description (functions,
relations, finite matrices, etc.). Equality is usually (easily) decidable.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

PROPs

• Monoidal algebras can also be defined via functorial semantics:
1. Define a theory category T whose objects are natural numbers (i.e.

arities) and:
m⊗ n := m + n

For SMCs, this is called a PROduct category with Permutations (PROP).
2. Fix another SMC C (e.g. functions, relations, linear maps, etc.).
3. T-algebras in C are then symmetric monoidal functors:

J−K : T→ C

• PROPs come in two flavours:

1. Syntactic PROPs have as morphisms diagrams of generators, modulo
some set of diagram equations. Deciding equality⇔ solving a word
problem.

2. Semantic PROPs have morphisms with a concrete description (functions,
relations, finite matrices, etc.). Equality is usually (easily) decidable.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

PROPs

• Monoidal algebras can also be defined via functorial semantics:
1. Define a theory category T whose objects are natural numbers (i.e.

arities) and:
m⊗ n := m + n

For SMCs, this is called a PROduct category with Permutations (PROP).
2. Fix another SMC C (e.g. functions, relations, linear maps, etc.).
3. T-algebras in C are then symmetric monoidal functors:

J−K : T→ C

• PROPs come in two flavours:
1. Syntactic PROPs have as morphisms diagrams of generators, modulo

some set of diagram equations. Deciding equality⇔ solving a word
problem.

2. Semantic PROPs have morphisms with a concrete description (functions,
relations, finite matrices, etc.). Equality is usually (easily) decidable.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

PROPs

• Monoidal algebras can also be defined via functorial semantics:
1. Define a theory category T whose objects are natural numbers (i.e.

arities) and:
m⊗ n := m + n

For SMCs, this is called a PROduct category with Permutations (PROP).
2. Fix another SMC C (e.g. functions, relations, linear maps, etc.).
3. T-algebras in C are then symmetric monoidal functors:

J−K : T→ C

• PROPs come in two flavours:
1. Syntactic PROPs have as morphisms diagrams of generators, modulo

some set of diagram equations. Deciding equality⇔ solving a word
problem.

2. Semantic PROPs have morphisms with a concrete description (functions,
relations, finite matrices, etc.). Equality is usually (easily) decidable.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Example: Commutative monoids are functions
• Let F be the PROP whose morphisms f : m→ n are functions

between finite sets:

f : {0, . . . , m− 1} → {0, . . . , n− 1}

• f ⊗ g : m + m′ → n + n′ is given by disjoint union of functions:

(f ⊗ g)(i) =

{
f (i) if i < m
g(i−m) + n if i ≥ m

• This whole category is generated by identities, swaps, and a single
commutative monoid:

:= := ∅

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Example: Commutative monoids are functions
• Let F be the PROP whose morphisms f : m→ n are functions

between finite sets:

f : {0, . . . , m− 1} → {0, . . . , n− 1}

• f ⊗ g : m + m′ → n + n′ is given by disjoint union of functions:

(f ⊗ g)(i) =

{
f (i) if i < m
g(i−m) + n if i ≥ m

• This whole category is generated by identities, swaps, and a single
commutative monoid:

:= := ∅

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Example: Commutative monoids are functions
• Let F be the PROP whose morphisms f : m→ n are functions

between finite sets:

f : {0, . . . , m− 1} → {0, . . . , n− 1}

• f ⊗ g : m + m′ → n + n′ is given by disjoint union of functions:

(f ⊗ g)(i) =

{
f (i) if i < m
g(i−m) + n if i ≥ m

• This whole category is generated by identities, swaps, and a single
commutative monoid:

:= := ∅

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Example: Commutative monoids are functions

• Pretty easy to see, just consider n-ary trees of :

...
...

:=

• Then, any diagram of and can be put in normal form, and those
normal forms are classified by functions:

↔

• Similarly, Fop is the PROP for cocommutative comonoids.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Example: Commutative monoids are functions

• Pretty easy to see, just consider n-ary trees of :

...
...

:=

• Then, any diagram of and can be put in normal form, and those
normal forms are classified by functions:

↔

• Similarly, Fop is the PROP for cocommutative comonoids.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Example: Commutative monoids are functions

• Pretty easy to see, just consider n-ary trees of :

...
...

:=

• Then, any diagram of and can be put in normal form, and those
normal forms are classified by functions:

↔

• Similarly, Fop is the PROP for cocommutative comonoids.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Distributive laws

• What happens when we combine two monoidal algebras, e.g.
(,) and (,)?

• ...not much! Until we add a distributive law.
• This is a distributive law of monads in the bicategory of monoids in

spans of categories ...or something like that...

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Distributive laws

• What happens when we combine two monoidal algebras, e.g.
(,) and (,)?

• ...not much!

Until we add a distributive law.
• This is a distributive law of monads in the bicategory of monoids in

spans of categories ...or something like that...

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Distributive laws

• What happens when we combine two monoidal algebras, e.g.
(,) and (,)?

• ...not much! Until we add a distributive law.

• This is a distributive law of monads in the bicategory of monoids in
spans of categories ...or something like that...

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Distributive laws

• What happens when we combine two monoidal algebras, e.g.
(,) and (,)?

• ...not much! Until we add a distributive law.
• This is a distributive law of monads in the bicategory of monoids in

spans of categories

...or something like that...

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Distributive laws

• What happens when we combine two monoidal algebras, e.g.
(,) and (,)?

• ...not much! Until we add a distributive law.
• This is a distributive law of monads in the bicategory of monoids in

spans of categories ...or something like that...

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Distributive laws

• More concretely, give us the means to move two pieces of structure
past each other:

⇒

• So, normal forms for each of the individual theories become normal
forms for the composed theory:

⇒ ⇒

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Example: Bialgebras are matrices
• Bialgebras consist of a monoid (,), a comonoid (,), and a

distributive law:

=

= =

=

• So, normal forms look like this:

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Example: Bialgebras are matrices
• Bialgebras consist of a monoid (,), a comonoid (,), and a

distributive law:

=

= =

=

• So, normal forms look like this:

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Example: Bialgebras are matrices

• These are classified by matrices over N:

↔

1 0 1
1 2 0

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Example: Bialgebras are matrices

• These are classified by matrices over N:

↔

1 0 1
1 2 0

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Example: Bialgebras are matrices

• These are classified by matrices over N:

↔

1 0 1
1 2 0

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Diagrams with repetition

• Many of these theorems have something in common: the deal with
repreated structures, like trees and cotrees:

...
...

:= ...
...

:=

• ...and tree/cotrees, a.k.a. spiders:

...
...

:=
...

...

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Diagrams with repetition

• Many of these theorems have something in common: the deal with
repreated structures, like trees and cotrees:

...
...

:= ...
...

:=

• ...and tree/cotrees, a.k.a. spiders:

...
...

:=
...

...

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Diagrams with repetition

• Individual rules can by meta-rules

• For example, the rules of commutative monoids can be all be
expressed by letting trees fuse:

...

=
...

...

• Similarly, the rules of commutative Frobenius algebras are expressed
by letting spiders fuse:

...

=

...
...

...

...

...

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Diagrams with repetition

• Individual rules can by meta-rules
• For example, the rules of commutative monoids can be all be

expressed by letting trees fuse:

...

=
...

...

• Similarly, the rules of commutative Frobenius algebras are expressed
by letting spiders fuse:

...

=

...
...

...

...

...

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Diagrams with repetition

• Individual rules can by meta-rules
• For example, the rules of commutative monoids can be all be

expressed by letting trees fuse:

...

=
...

...

• Similarly, the rules of commutative Frobenius algebras are expressed
by letting spiders fuse:

...

=

...
...

...

...

...

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Diagrams with repetition

• Others are harder to say. For instance, bialgebras have several
meta-rules.

• The most general is the path counting rule, but this has some
intriguing consequences, e.g.:

...

...

=
... ...

... ...

...

...

where the RHS is a connected bipartite graph.
• These three examples have something in common: they rely on your

brain, and some “blah blah” to fill in the “· · · ”

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Diagrams with repetition

• Others are harder to say. For instance, bialgebras have several
meta-rules.

• The most general is the path counting rule, but this has some
intriguing consequences, e.g.:

...

...

=
... ...

... ...

...

...

where the RHS is a connected bipartite graph.

• These three examples have something in common: they rely on your
brain, and some “blah blah” to fill in the “· · · ”

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Diagrams with repetition

• Others are harder to say. For instance, bialgebras have several
meta-rules.

• The most general is the path counting rule, but this has some
intriguing consequences, e.g.:

...

...

=
... ...

... ...

...

...

where the RHS is a connected bipartite graph.
• These three examples have something in common: they rely on your

brain, and some “blah blah” to fill in the “· · · ”

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Diagrammatic meta-language

• Can we develop a meta-language for diagrams which is...

• easy enough to use by hand,
• expressive enough to talk about lots of different kinds of families of

diagrams,
• formal enough to produce machine-checkable proofs,
• and comes with a bag of tricks for building those proofs?

• One answer is the !-box langauge

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Diagrammatic meta-language

• Can we develop a meta-language for diagrams which is...
• easy enough to use by hand,

• expressive enough to talk about lots of different kinds of families of
diagrams,

• formal enough to produce machine-checkable proofs,
• and comes with a bag of tricks for building those proofs?

• One answer is the !-box langauge

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Diagrammatic meta-language

• Can we develop a meta-language for diagrams which is...
• easy enough to use by hand,
• expressive enough to talk about lots of different kinds of families of

diagrams,

• formal enough to produce machine-checkable proofs,
• and comes with a bag of tricks for building those proofs?

• One answer is the !-box langauge

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Diagrammatic meta-language

• Can we develop a meta-language for diagrams which is...
• easy enough to use by hand,
• expressive enough to talk about lots of different kinds of families of

diagrams,
• formal enough to produce machine-checkable proofs,

• and comes with a bag of tricks for building those proofs?

• One answer is the !-box langauge

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Diagrammatic meta-language

• Can we develop a meta-language for diagrams which is...
• easy enough to use by hand,
• expressive enough to talk about lots of different kinds of families of

diagrams,
• formal enough to produce machine-checkable proofs,
• and comes with a bag of tricks for building those proofs?

• One answer is the !-box langauge

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Diagrammatic meta-language

• Can we develop a meta-language for diagrams which is...
• easy enough to use by hand,
• expressive enough to talk about lots of different kinds of families of

diagrams,
• formal enough to produce machine-checkable proofs,
• and comes with a bag of tricks for building those proofs?

• One answer is the !-box langauge

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

!-boxes

• We can formalise families of diagrams (with variable-arity
generators) using some graphical syntax:

⇒
...

• The blue boxes are called !-boxes. A graph with !-boxes is called a
!-graph. Can be interpreted as a set of concrete graphs:

= · · ·, ,, ,

{ }

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

!-boxes

• We can formalise families of diagrams (with variable-arity
generators) using some graphical syntax:

⇒
...

• The blue boxes are called !-boxes. A graph with !-boxes is called a
!-graph. Can be interpreted as a set of concrete graphs:

= · · ·, ,, ,

{ }

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

!-boxes

• The diagrams represented by a !-graph are all those obtained by
performing EXPAND and KILL operations on !-boxes

EXPANDb=⇒ KILLb=⇒

• We can also introduce equations involving !-boxes:

...

=

...
...

...

...

...

⇒ =

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

!-boxes

• The diagrams represented by a !-graph are all those obtained by
performing EXPAND and KILL operations on !-boxes

EXPANDb=⇒ KILLb=⇒

• We can also introduce equations involving !-boxes:

...

=

...
...

...

...

...

⇒ =

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

!-boxes: matching

• !-boxes on the LHS are in 1-to-1 correspondence with RHS

=

• EXPAND and KILL operations applied to both sides simultaneously
to instantiate a rule.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

!-boxes: matching

• !-boxes on the LHS are in 1-to-1 correspondence with RHS

=

• EXPAND and KILL operations applied to both sides simultaneously
to instantiate a rule.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

!-graph to concrete graph rewriting

• Rewriting concrete diagrams: find an instantiation of the rule such
that the LHS matches the diagram:

= ⇒ =

• Then apply it as usual:

⇒ ⇒

• Sound and complete, in the absence of “wild” !-boxes

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

!-graph to concrete graph rewriting

• Rewriting concrete diagrams: find an instantiation of the rule such
that the LHS matches the diagram:

= ⇒ =

• Then apply it as usual:

⇒ ⇒

• Sound and complete, in the absence of “wild” !-boxes

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

!-graph to concrete graph rewriting

• Rewriting concrete diagrams: find an instantiation of the rule such
that the LHS matches the diagram:

= ⇒ =

• Then apply it as usual:

⇒ ⇒

• Sound and complete, in the absence of “wild” !-boxes

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

!-graph to !-graph rewriting

• The real power comes from applying !-box rewrite rules on !-graphs
themselves.

• To define a more powerful notion of instantiation, we decompose
EXPAND as two new operations:

COPYb=⇒
DROPb′=⇒

• These operations are sound w.r.t. concrete instantiation, i.e. they
don’t produce any new concrete instances.

• Now, rewriting !-graphs is just the same as rewriting concrete graphs,
with one extra restriction:

• If any part of an edge is in a !-box, we must cut through it.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

!-graph to !-graph rewriting

• The real power comes from applying !-box rewrite rules on !-graphs
themselves.

• To define a more powerful notion of instantiation, we decompose
EXPAND as two new operations:

COPYb=⇒
DROPb′=⇒

• These operations are sound w.r.t. concrete instantiation, i.e. they
don’t produce any new concrete instances.

• Now, rewriting !-graphs is just the same as rewriting concrete graphs,
with one extra restriction:

• If any part of an edge is in a !-box, we must cut through it.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

!-graph to !-graph rewriting

• The real power comes from applying !-box rewrite rules on !-graphs
themselves.

• To define a more powerful notion of instantiation, we decompose
EXPAND as two new operations:

COPYb=⇒
DROPb′=⇒

• These operations are sound w.r.t. concrete instantiation, i.e. they
don’t produce any new concrete instances.

• Now, rewriting !-graphs is just the same as rewriting concrete graphs,
with one extra restriction:

• If any part of an edge is in a !-box, we must cut through it.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

!-graph to !-graph rewriting

• The real power comes from applying !-box rewrite rules on !-graphs
themselves.

• To define a more powerful notion of instantiation, we decompose
EXPAND as two new operations:

COPYb=⇒
DROPb′=⇒

• These operations are sound w.r.t. concrete instantiation, i.e. they
don’t produce any new concrete instances.

• Now, rewriting !-graphs is just the same as rewriting concrete graphs,
with one extra restriction:

• If any part of an edge is in a !-box, we must cut through it.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

!-graph to !-graph rewriting

• The real power comes from applying !-box rewrite rules on !-graphs
themselves.

• To define a more powerful notion of instantiation, we decompose
EXPAND as two new operations:

COPYb=⇒
DROPb′=⇒

• These operations are sound w.r.t. concrete instantiation, i.e. they
don’t produce any new concrete instances.

• Now, rewriting !-graphs is just the same as rewriting concrete graphs,
with one extra restriction:

• If any part of an edge is in a !-box, we must cut through it.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

!-graph to !-graph rewriting

• !-graph rewriting: first instantiate:

= ⇒ =

• Then apply:

⇒ ⇒

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

!-graph to !-graph rewriting

• !-graph rewriting: first instantiate:

= ⇒ =

• Then apply:

⇒ ⇒

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Recursive definition

• Once we have !-boxes around, we can make recursive definitions:

t :=

t := t

• And, as usual, recursive definition goes hand-in-hand with inductive
proof...

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Recursive definition

• Once we have !-boxes around, we can make recursive definitions:

t :=

t := t

• And, as usual, recursive definition goes hand-in-hand with inductive
proof...

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Induction principle for !-graphs

• Let FIXb(G = H) be the same as G = H, but !-box b cannot be
expanded

• Using FIX, we can define induction

KILLb(G = H) FIXb(G = H) =⇒ EXPANDb(G = H)

G = H
ind

• By (normal) induction over proofs involving concrete graphs, we can
prove admissibility.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Induction principle for !-graphs

• Let FIXb(G = H) be the same as G = H, but !-box b cannot be
expanded

• Using FIX, we can define induction

KILLb(G = H) FIXb(G = H) =⇒ EXPANDb(G = H)

G = H
ind

• By (normal) induction over proofs involving concrete graphs, we can
prove admissibility.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Induction principle for !-graphs

• Let FIXb(G = H) be the same as G = H, but !-box b cannot be
expanded

• Using FIX, we can define induction

KILLb(G = H) FIXb(G = H) =⇒ EXPANDb(G = H)

G = H
ind

• By (normal) induction over proofs involving concrete graphs, we can
prove admissibility.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Induction principle for !-graphs

• Using !-box induction, we can now prove standard things like:

=

• But this just looks like something in term-land. We can actually prove
much more interesting things like:

...

...

=
... ...

... ...

...

...

⇒ =

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Induction principle for !-graphs

• Using !-box induction, we can now prove standard things like:

=

• But this just looks like something in term-land. We can actually prove
much more interesting things like:

...

...

=
... ...

... ...

...

...

⇒ =

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Induction example

• First apply induction to get two sub-goals:

=

= (empty) = =⇒ =

• The base case is an assumption, step case by rewriting:

= =
i.h.
=

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Induction example

• First apply induction to get two sub-goals:

=

= (empty) = =⇒ =

• The base case is an assumption, step case by rewriting:

= =
i.h.
=

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Induction Example
Lemma

=

Proof.
Base:

=

Step:

= =
i.h.

= =

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Induction Example

Theorem

=

Proof.
Base: (by lemma)
Step:

= = =
i.h.

=

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Interacting bialgebras

• Before, we considered algebras with nice, well-understood n.f.’s.

• Now, lets kick things up a notch, and study something whose
algebraic behaviour is less well-understood.

• Consider two bi-algebras which interact with each other as Frobenius
algebras:

• This theory is known as IB, or the phase-free fragment of the
ZX-calculus.

• Its pops up all over the place: signal-flow networks, Petri nets with
boundaries, quantum circuits...

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Interacting bialgebras

• Before, we considered algebras with nice, well-understood n.f.’s.
• Now, lets kick things up a notch, and study something whose

algebraic behaviour is less well-understood.

• Consider two bi-algebras which interact with each other as Frobenius
algebras:

• This theory is known as IB, or the phase-free fragment of the
ZX-calculus.

• Its pops up all over the place: signal-flow networks, Petri nets with
boundaries, quantum circuits...

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Interacting bialgebras

• Before, we considered algebras with nice, well-understood n.f.’s.
• Now, lets kick things up a notch, and study something whose

algebraic behaviour is less well-understood.
• Consider two bi-algebras which interact with each other as Frobenius

algebras:

• This theory is known as IB, or the phase-free fragment of the
ZX-calculus.

• Its pops up all over the place: signal-flow networks, Petri nets with
boundaries, quantum circuits...

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Interacting bialgebras

• Before, we considered algebras with nice, well-understood n.f.’s.
• Now, lets kick things up a notch, and study something whose

algebraic behaviour is less well-understood.
• Consider two bi-algebras which interact with each other as Frobenius

algebras:

• This theory is known as IB, or the phase-free fragment of the
ZX-calculus.

• Its pops up all over the place: signal-flow networks, Petri nets with
boundaries, quantum circuits...

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Interacting bialgebras

• Before, we considered algebras with nice, well-understood n.f.’s.
• Now, lets kick things up a notch, and study something whose

algebraic behaviour is less well-understood.
• Consider two bi-algebras which interact with each other as Frobenius

algebras:

• This theory is known as IB, or the phase-free fragment of the
ZX-calculus.

• Its pops up all over the place: signal-flow networks, Petri nets with
boundaries, quantum circuits...

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Interacting bialgebras

• The simplest example also assumes:

=:= = =

• The first essentially means we can ignore directions in diagrams, and
the second means these bialgebras are actually Hopf algebras, with
trivial antipode.

• Last year, Sobocinski and Bonchi showed (using non-rewriting
techniques) that the PROP for this thing is VecRelZ2 , the category of
linear relations.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Interacting bialgebras

• The simplest example also assumes:

=:= = =

• The first essentially means we can ignore directions in diagrams, and
the second means these bialgebras are actually Hopf algebras, with
trivial antipode.

• Last year, Sobocinski and Bonchi showed (using non-rewriting
techniques) that the PROP for this thing is VecRelZ2 , the category of
linear relations.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Interacting bialgebras

• The simplest example also assumes:

=:= = =

• The first essentially means we can ignore directions in diagrams, and
the second means these bialgebras are actually Hopf algebras, with
trivial antipode.

• Last year, Sobocinski and Bonchi showed (using non-rewriting
techniques) that the PROP for this thing is VecRelZ2 , the category of
linear relations.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Interacting bialgebras are linear relations

• A linear relation from V to W is just a subspace of V×W. They are
composed relation-style.

• In VecRelZ2 , maps f : m→ n are subspaces of Zm
2 ×Zn

2 .
• This gives us a natural notion of pseudo-normal form for diagrams:

• white dots are place-holders
• grey dots are vectors spanning the subspace

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Interacting bialgebras are linear relations

• A linear relation from V to W is just a subspace of V×W. They are
composed relation-style.

• In VecRelZ2 , maps f : m→ n are subspaces of Zm
2 ×Zn

2 .

• This gives us a natural notion of pseudo-normal form for diagrams:

• white dots are place-holders
• grey dots are vectors spanning the subspace

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Interacting bialgebras are linear relations

• A linear relation from V to W is just a subspace of V×W. They are
composed relation-style.

• In VecRelZ2 , maps f : m→ n are subspaces of Zm
2 ×Zn

2 .
• This gives us a natural notion of pseudo-normal form for diagrams:

• white dots are place-holders
• grey dots are vectors spanning the subspace

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Interacting bialgebras are linear relations

• A linear relation from V to W is just a subspace of V×W. They are
composed relation-style.

• In VecRelZ2 , maps f : m→ n are subspaces of Zm
2 ×Zn

2 .
• This gives us a natural notion of pseudo-normal form for diagrams:

• white dots are place-holders

• grey dots are vectors spanning the subspace

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Interacting bialgebras are linear relations

• A linear relation from V to W is just a subspace of V×W. They are
composed relation-style.

• In VecRelZ2 , maps f : m→ n are subspaces of Zm
2 ×Zn

2 .
• This gives us a natural notion of pseudo-normal form for diagrams:

• white dots are place-holders
• grey dots are vectors spanning the subspace

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Lets see how this works...

• Subspaces can be represented as:

↔
〈

0
1
0
1
1

,

1
0
0
0
1

〉

• The 1’s indicate where edges appear for each vector.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Lets see how this works...

• Subspaces can be represented as:

↔
〈

0
1
0
1
1

,

1
0
0
0
1

〉

• The 1’s indicate where edges appear for each vector.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Lets see how this works...

• Subspaces can be represented as:

↔
〈

0
1
0
1
1

,

1
0
0
0
1

〉

• The 1’s indicate where edges appear for each vector.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Lets see how this works...

• However, this is not unique. We can always add or remove a vector
that is the sum of two other spanning vectors and get the same space:

↔
〈

0
1
0
1
1

 ,

1
0
0
0
1

 ,

1
1
0
1
0

〉

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Addition is a !-box rule

• This ‘addition’ operation can be written as a !-box rule:

=

• We can also apply this forward then backward to get a ‘rotation’ rule:

=

• Note this rule decreases the arity of the white dot on the left by 1.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Addition is a !-box rule

• This ‘addition’ operation can be written as a !-box rule:

=

• We can also apply this forward then backward to get a ‘rotation’ rule:

=

• Note this rule decreases the arity of the white dot on the left by 1.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Addition is a !-box rule

• This ‘addition’ operation can be written as a !-box rule:

=

• We can also apply this forward then backward to get a ‘rotation’ rule:

=

• Note this rule decreases the arity of the white dot on the left by 1.

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

A reduction strategy...

• This gives a reduction strategy for IB-diagrams.

• First, write diagram as a layer of interior white dots, then interior
grey dots, then boundary white dots.

• To get to pseudo-normal form, we just need to get rid of the interior
white dots:

...

......

... ...

...

...

⇒

...

......

...

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

A reduction strategy...

• This gives a reduction strategy for IB-diagrams.
• First, write diagram as a layer of interior white dots, then interior

grey dots, then boundary white dots.

• To get to pseudo-normal form, we just need to get rid of the interior
white dots:

...

......

... ...

...

...

⇒

...

......

...

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

A reduction strategy...

• This gives a reduction strategy for IB-diagrams.
• First, write diagram as a layer of interior white dots, then interior

grey dots, then boundary white dots.
• To get to pseudo-normal form, we just need to get rid of the interior

white dots:
...

......

... ...

...

...

⇒

...

......

...

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

A reduction strategy...

• We do this by applying a rule to reduce the arity of a single white dot,
until the arity is 1, then copy through:

...

......

... ...

...

...

⇒

...

......

... ...

...

...

... ⇒

...

......

... ...

...

...

• Time to fire up Quantomatic!

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

A reduction strategy...

• We do this by applying a rule to reduce the arity of a single white dot,
until the arity is 1, then copy through:

...

......

... ...

...

...

⇒

...

......

... ...

...

...

... ⇒

...

......

... ...

...

...

• Time to fire up Quantomatic!

Intro Monoidal algebras Diagrammatic reasoning Semantic-driven strategies

Thanks!

• Joint work with Lucas Dixon, Alex Merry, Ross Duncan, Vladimir
Zamdzhiev, David Quick, and others

• See: quantomatic.github.io

	Intro
	Intro

	Monoidal algebras
	Monoidal algebras

	Diagrammatic reasoning
	Diagrammatic reasoning

	Semantic-driven strategies
	Semantic-driven strategies

