The CP*-construction: A Category of Classical and Quantum Channels

Bob Coecke

Chris Heunen Aleks Kissinger*

November 4, 2015

A category for protocols

- \blacktriangleright Fix a category **V**. Think of the objects as state spaces, morphisms as *pure* state evolution.
- Goal: construct a category that is useful for reasoning about quantum protocols.
- To accomplish this, we should generalise in two ways:
 - 1. pure states → mixed states 2. quantum data \implies quantum + classical data
- Concretely:
- 1. $|\psi\rangle \in H$ $\implies \rho \in \mathcal{L}(H)$ 2. operators in $\mathcal{L}(H)$ \implies elements in C*-algebra A
- Abstractly:
 - 1. V
 - 2. CPM[**V**]

 \implies CPM[V] \implies category of "abstract C*-algebras"

Compact closed categories

Objects are represented as wires, morphisms are boxes

Horizontal and vertical composition:

$$\begin{array}{c} c\uparrow\\ \hline g\\ B\uparrow\\ \hline f\\ A\uparrow \end{array} \circ \begin{array}{c} B\uparrow\\ \hline f\\ A\uparrow \end{array} = \begin{array}{c} c\uparrow\\ \hline g\\ B\uparrow\\ \hline f\\ A\uparrow \end{array} \qquad \begin{array}{c} B\uparrow\\ \hline f\\ A\uparrow \end{array} \otimes \begin{array}{c} B\uparrow\\ \hline g\\ A'\uparrow \end{array} = \begin{array}{c} B\uparrow\\ \hline f\\ A\uparrow \end{array} \begin{array}{c} B\uparrow\\ \hline g\\ A'\uparrow \end{array}$$

Crossings (symmetry maps):

Turning stuff upside-down: duals and daggers

 Compact closure: all objects H have duals H*, characterised by duality maps. Think: dual space.

- We define a functor †: V^{op} → V that respects all the compact closed structure, and (f[†])[†] = f. Think: conjugate-transpose.
- This gives us 4 ways to represent (the data of) a ket:

...or any other map for that matter:

Completely positive maps

To see how we construct abstract CPMs, consider the concrete case. Any CPM can be represented using Kraus matrices:

$$\Theta(\rho) = \sum_i B_i \rho B_i^{\dagger}$$

• We can eliminate the sum by purification. Let $B = \sum_i |i\rangle \otimes B_i$, then:

Completely positive maps (cont'd)

▶ In a compact closed category, maps $\rho : A \to A$ are the same as points $\hat{\rho} : I \to A^* \otimes A$, and operators $\Theta : [A \to A] \to [B \to B]$ are the same as first order maps $\hat{\Theta} : A^* \otimes A \to B^* \otimes B$.

This is equivalent to the trace-based definition of Θ, up to bending some wires.

The category $\mathrm{CPM}[\mathbf{V}]$

- \blacktriangleright The category ${\rm CPM}[{\bm V}]$ has the same objects as ${\bm V}$
- ▶ A morphism from A to B is a V-morphism from $A^* \otimes A$ to $B^* \otimes B$, such that there exists same X and some map $g : A \to X \otimes B$ where:

If X = A ⊗ B, then X^{*} = B^{*} ⊗ A^{*}. To maintain this "mirror image", the monoidal product involves a reshuffling of wires:

Classical data

- In CPM[FHilb], the (normalised) points of an object A are density matrices and maps are CPMs, as required.
- In the density matrix formalism, meaurement can be expressed by projecting an arbitrary density matrix ρ onto the diagonal w.r.t. some basis:

 $m_Z(\rho) = \text{Diag}(\text{prob}_Z(\rho, 1), \text{ prob}_Z(\rho, 2), \text{ prob}_Z(\rho, 3), \ldots)$

- …but ρ is an arbitrary state, whereas the RHS is a classical probability distribution. It lives in a tiny corner of L(H).
- We would like objects not just for the whole quantum state space, but for classical or semi-classical subspaces.

Adding classical objects to $\mathrm{CPM}[\boldsymbol{\mathsf{V}}]$

- ► There are two ways, due to Selinger, to extend CPM[**V**] such that CPM[**FHilb**] will have all of these classical objects:
 - 1. Freely add biproducts. All classical objects can be expressed as direct sums of 1D matrix algebras $\mathcal{L}(\mathbb{C})$.
 - Freely split idempotents. This effectively adds all subspaces of L(H) whose associated projection maps P: L(H) → L(H) are CPMs. Subalgebras are a special case.
- However, one may be "too small" and one may be "too big". Some evidence:
 - 1. The objects of ${\rm CPM}[{\rm Rel}]$ are fairly degenerate (indiscreet groupoids), so ${\rm CPM}[{\rm Rel}]^\oplus$ are just sums of degenerate things.
 - Split[†](CPM[FHilb]) may have objects which are not physically relevant. (open problem)

Another approach: defining "abstract" C*-algebras

- The objects in CPM[V] can be thought of as the abstract analogue of matrix algebras. When V = FHilb, L(ℂⁿ) ≅ M_n(ℂ).
- \blacktriangleright Rather than starting at CPM[V] and trying to extend, start with a notion of abstract C*-algebra, internal to V.
- Vicary 2008: dagger-Frobenius algebras in FHilb are in 1-to-1 correspondence with finite-dimensional C*-algebras
- ► A dagger-FA on an object A is a tuple $(A, \stackrel{\circ}{\not\leftarrow}, \stackrel{\circ}{\Diamond}, \stackrel{\circ}{\bigtriangledown}, \stackrel{\circ}{\bigtriangledown})$ such that $(\stackrel{\circ}{\not\leftarrow}, \stackrel{\circ}{\uparrow})^{\dagger} = \stackrel{\circ}{\bigtriangledown} \stackrel{\circ}{}^{3}$ and $(\stackrel{\circ}{\Diamond})^{\dagger} = \stackrel{\circ}{\heartsuit}$ and:

The category $\mathrm{CP}^*[\boldsymbol{V}]$

► ...

$\mathrm{CP}^*[\boldsymbol{V}]$ is dagger-compact closed

► ...

$\mathrm{CP}^*[\text{FHilb}]$ and $\mathrm{CP}^*[\text{Rel}]$

- ▶ CP*[FHilb] is equivalent to the category of finite-dimensional C*-algebras and completely positive maps
- In Rel, dagger-normalisable Frobenius algebras must be special (loop = identity).

The "pants" algebra

$\mathrm{CPM}[V]\subseteq\mathrm{CP}^*[V]$

$\textbf{Stoch}[\textbf{V}] \subseteq \mathrm{CP}^*[\textbf{V}]$

▶

$\mathrm{CPM}[\boldsymbol{\mathsf{V}}]^\oplus\subseteq\mathrm{CP}^*[\boldsymbol{\mathsf{V}}]\subseteq\mathrm{Split}^\dagger(\mathrm{CPM}[\boldsymbol{\mathsf{V}}])$

١...

Future work

- Generalisation to infinite dimensions
- How many notions from the C*-algebra approach to quantum info can be imported into CP*[V]? Already, many can be used verbitim, e.g. commutative subalgebras, POVMs, broadcasting maps, ...
- CBH characterised QM in information-theoretic terms. Often criticised for being too concrete. We have reproduced some parts of their theorem, as well as shown counter-examples (e.g. commutativity is strictly stronger than broadcasting) for CP*[V].
- For V ≠ FHilb, can we make sense of the objects of CP*[V] as state spaces and the morphisms as evolutions? For instance, the category Stab of stabiliser states and (post-selected) Clifford circuits faithfully embeds into CP*[Rel].
- \blacktriangleright Can we characterise categories of the form ${\rm CP}^*[V]$ axiomatically, as with ${\rm CPM}[V]?$