Interactive Proof for Diagrammatic Languages

Aleks Kissinger
SamsonFest 2013

June 3, 2013

So monoids...

So monoids...

- Consider a monoid (A, \cdot, e) :

$$
(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad \text { and } \quad a \cdot e=a=e \cdot a
$$

So monoids...

- Consider a monoid (A, \cdot, e) :

$$
(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad \text { and } \quad a \cdot e=a=e \cdot a
$$

- Normally, an automated theorem prover would use these equations as rewrite rules, e.g.

$$
(a \cdot b) \cdot c \rightarrow a \cdot(b \cdot c) \quad a \cdot e \rightarrow a \quad e \cdot a \rightarrow a
$$

So monoids...

- Consider a monoid (A, \cdot, e) :

$$
(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad \text { and } \quad a \cdot e=a=e \cdot a
$$

- Normally, an automated theorem prover would use these equations as rewrite rules, e.g.

$$
(a \cdot b) \cdot c \rightarrow a \cdot(b \cdot c) \quad a \cdot e \rightarrow a \quad e \cdot a \rightarrow a
$$

- It is also possible to write these equations as trees:

Monoids

- Since these equations are (left- and right-) linear in the free variables, we can drop them:

Monoids

- Since these equations are (left- and right-) linear in the free variables, we can drop them:

- The role of variables is replaced by the notion that the LHS and RHS have a shared boundary

Diagram substitution

- One could apply the rule " $(a \cdot b) \cdot c \rightarrow a \cdot(b \cdot c)$ " using the usual "instantiate, match, replace" style:

$$
w \cdot((x \cdot(y \cdot e)) \cdot z) \quad \rightarrow \quad w \cdot(x \cdot((y \cdot e) \cdot z))
$$

Diagram substitution

- One could apply the rule " $(a \cdot b) \cdot c \rightarrow a \cdot(b \cdot c)$ " using the usual "instantiate, match, replace" style:

$$
w \cdot((x \cdot(y \cdot e)) \cdot z) \quad \rightarrow \quad w \cdot(x \cdot((y \cdot e) \cdot z))
$$

- ...or by cutting the LHS directly out of the tree and gluing in the RHS:

Diagram substitution

- One could apply the rule " $(a \cdot b) \cdot c \rightarrow a \cdot(b \cdot c)$ " using the usual "instantiate, match, replace" style:

$$
w \cdot((x \cdot(y \cdot e)) \cdot z) \quad \rightarrow \quad w \cdot(x \cdot((y \cdot e) \cdot z))
$$

- ...or by cutting the LHS directly out of the tree and gluing in the RHS:

- This treats inputs and outputs symmetrically

Algebra and coalgebra

- Coalgebra: algebraic structures "upside-down"

Algebra and coalgebra

- Coalgebra: algebraic structures "upside-down"
- An example is a comonoid, which has a comultiplication operation "O" and a counit O satisfying:

Algebra and coalgebra

- Coalgebra: algebraic structures "upside-down"
- An example is a comonoid, which has a comultiplication operation "O' and a counit Q satisfying:

- Monoids and comonoids can interact in interesting ways, for instance:

Frobenius algebras:

Bialgebras:

Equational reasoning with diagram substitution

- As before, we can use graphical identities to perform substitutions, but on graphs, rather than trees

$$
\hat{\vartheta}_{\hat{\uparrow}}^{\hat{\imath}}=\begin{aligned}
& \hat{0} \\
& \hat{\uparrow}
\end{aligned}
$$

Equational reasoning with diagram substitution

- As before, we can use graphical identities to perform substitutions, but on graphs, rather than trees

$$
\hat{o}_{\hat{q}}^{\hat{0}}=\begin{aligned}
& \hat{0} \\
& \hat{\uparrow}
\end{aligned}
$$

- For example:

Equational reasoning with diagram substitution

- As before, we can use graphical identities to perform substitutions, but on graphs, rather than trees

- For example:

- This style of rewriting is sound and complete w.r.t. to traced symmetric monoidal categories

Diagrams with repetition

- In practice, many proofs concern infinite families of expressions

Diagrams with repetition

- In practice, many proofs concern infinite families of expressions
- As an example, define the (m, n)-fold multiplication/comultiplication as follows:

Diagrams with repetition

- In practice, many proofs concern infinite families of expressions
- As an example, define the (m, n)-fold multiplication/comultiplication as follows:

- An equivalent axiomitisation of (commutative) Frobenius algebras is:

!-boxes

- We can formalise this "meta" diagram using some graphical syntax:

!-boxes

- We can formalise this "meta" diagram using some graphical syntax:

- The blue boxes are called !-boxes. A graph with !-boxes is called a !-graph. Can be interpreted as a set of concrete graphs:

!-boxes

- The diagrams represented by a !-graph are all those obtained by performing EXPAND and KILL operations on !-boxes

!-boxes

- The diagrams represented by a !-graph are all those obtained by performing EXPAND and KILL operations on !-boxes

- We can also introduce equations involving !-boxes:

!-boxes: matching

- !-boxes on the LHS are in 1-to-1 correspondence with RHS

!-boxes: matching

- !-boxes on the LHS are in 1-to-1 correspondence with RHS

- EXPAND and KILL operations applied to both sides simultaneously

!-boxes: matching

- !-boxes on the LHS are in 1-to-1 correspondence with RHS

- EXPAND and KILL operations applied to both sides simultaneously
- Rewriting concrete graphs: instantiate rule with EXPAND and KILL, then rewriting as usual

!-boxes: matching

- !-boxes on the LHS are in 1-to-1 correspondence with RHS

- EXPAND and KILL operations applied to both sides simultaneously
- Rewriting concrete graphs: instantiate rule with EXPAND and KILL, then rewriting as usual
- Sound and complete, in the absence of "wild" !-boxes

!-boxes: exact matching

- What about using !-graph equations to rewrite other !-graphs?

!-boxes: exact matching

- What about using !-graph equations to rewrite other !-graphs?
- Define an exact matching between !-graphs as an embedding that respects the !-boxes:

!-boxes: exact matching

- What about using !-graph equations to rewrite other !-graphs?
- Define an exact matching between !-graphs as an embedding that respects the !-boxes:
- However, there are other situations where one !-graph generalises another

!-boxes: inference rules

- Inference rules make new equations from old. Two obvious ones:

$$
\frac{G=H}{\operatorname{EXPAND}_{b}(G=H)} \exp \quad \frac{G=H}{\operatorname{KILL}_{b}(G=H)} \text { kill }
$$

!-boxes: inference rules

- Inference rules make new equations from old. Two obvious ones:

$$
\frac{G=H}{\operatorname{EXPAND}_{b}(G=H)} \exp \quad \frac{G=H}{\operatorname{KILL}_{b}(G=H)} \text { kill }
$$

- ...and some less obvious ones:

$$
\frac{G=H}{\operatorname{COPY}_{b}(G=H)} c p \quad \frac{G=H}{\operatorname{MERGE}_{b, b^{\prime}}(G=H)} m r g
$$

Induction Principle for !-Graphs

- Let $\operatorname{FIX}_{b}(G=H)$ be the same as $G=H$, but !-box b cannot be expanded

$$
\begin{array}{cc}
\operatorname{KILL}_{b}(G=H) \quad \operatorname{FIX}_{b}(G=H) \Longrightarrow \operatorname{EXPAND}_{b}(G=H) \\
G=H & \text { ind }
\end{array}
$$

Induction Principle for !-Graphs

- Let $\operatorname{FIX}_{b}(G=H)$ be the same as $G=H$, but !-box b cannot be expanded
- Using FIX, we can define induction

$$
\frac{\operatorname{KILL}_{b}(G=H) \quad \operatorname{FIX}_{b}(G=H) \Longrightarrow \operatorname{EXPAND}_{b}(G=H)}{G=H} \text { ind }
$$

Induction example

- Suppose we have these three equations:

$$
\wp_{0}^{\pi}=\uparrow \uparrow
$$

$$
\frac{\mathrm{O}}{\mathrm{O}}=(\text { empty })
$$

Induction example

- Suppose we have these three equations:

$$
\wp_{0}^{\uparrow}=\uparrow \uparrow
$$

$$
\frac{\mathrm{O}}{\mathrm{O}}=(\text { empty) }
$$

- ...then we can prove this using induction:

$$
\text { 㝘 }=0
$$

Induction example

- First (reverse) apply induction to get two sub-goals:

Induction example

- First (reverse) apply induction to get two sub-goals:

$$
\frac{Q_{0}=(\text { empty })}{\substack{0 \\ 0}}=
$$

- The base case is an assumption, step case by rewriting:

Constructing a diagrammatic proof assistant

- Why?

Constructing a diagrammatic proof assistant

- Why?
- Diagrams are easier to understand, but easier to make mistakes

Constructing a diagrammatic proof assistant

- Why?
- Diagrams are easier to understand, but easier to make mistakes
- Want several layers of definition/abstraction (ex: quantum circuits and error-correcting encodings)

Constructing a diagrammatic proof assistant

- Why?
- Diagrams are easier to understand, but easier to make mistakes
- Want several layers of definition/abstraction (ex: quantum circuits and error-correcting encodings)
- More expressive types of graphical languages \Rightarrow new proof styles and techniques.

Constructing a diagrammatic proof assistant

- Why?
- Diagrams are easier to understand, but easier to make mistakes
- Want several layers of definition/abstraction (ex: quantum circuits and error-correcting encodings)
- More expressive types of graphical languages \Rightarrow new proof styles and techniques.
- Unique from an HCI perspective. Possibly unexpected results.

Constructing a diagrammatic proof assistant

- Why?
- Diagrams are easier to understand, but easier to make mistakes
- Want several layers of definition/abstraction (ex: quantum circuits and error-correcting encodings)
- More expressive types of graphical languages \Rightarrow new proof styles and techniques.
- Unique from an HCI perspective. Possibly unexpected results.
- Why not use terms?

Constructing a diagrammatic proof assistant

- Why?
- Diagrams are easier to understand, but easier to make mistakes
- Want several layers of definition/abstraction (ex: quantum circuits and error-correcting encodings)
- More expressive types of graphical languages \Rightarrow new proof styles and techniques.
- Unique from an HCI perspective. Possibly unexpected results.
- Why not use terms?
- There is a term language, using $0, \otimes$, swap maps, etc.

Constructing a diagrammatic proof assistant

- Why?
- Diagrams are easier to understand, but easier to make mistakes
- Want several layers of definition/abstraction (ex: quantum circuits and error-correcting encodings)
- More expressive types of graphical languages \Rightarrow new proof styles and techniques.
- Unique from an HCI perspective. Possibly unexpected results.
- Why not use terms?
- There is a term language, using $0, \otimes$, swap maps, etc.
- Many congruences

Constructing a diagrammatic proof assistant

- Why?
- Diagrams are easier to understand, but easier to make mistakes
- Want several layers of definition/abstraction (ex: quantum circuits and error-correcting encodings)
- More expressive types of graphical languages \Rightarrow new proof styles and techniques.
- Unique from an HCI perspective. Possibly unexpected results.
- Why not use terms?
- There is a term language, using $0, \otimes$, swap maps, etc.
- Many congruences
- Simplest decision procedure: "draw the diagrams and compare"

Quantomatic: the good stuff

- Create, load, and save diagrams and rewrite rules

Quantomatic: the good stuff

- Create, load, and save diagrams and rewrite rules
- Apply rewrite rules manually, or normalise w.r.t. subsets of rewrite rules

Quantomatic: the good stuff

- Create, load, and save diagrams and rewrite rules
- Apply rewrite rules manually, or normalise w.r.t. subsets of rewrite rules
- Rewrites happen live, so proofs are easy to show off

Quantomatic: the good stuff

- Create, load, and save diagrams and rewrite rules
- Apply rewrite rules manually, or normalise w.r.t. subsets of rewrite rules
- Rewrites happen live, so proofs are easy to show off
- Education: Quantomatic-based labs for two years in conjunction with Categorical Quantum Mechanics course at Oxford

Quantomatic: limitations

- Once a proof is done, it's gone. Only the result is left.

Quantomatic: limitations

- Once a proof is done, it's gone. Only the result is left.
- Only does rewriting, i.e. the purely equational part.

Quantomatic: limitations

- Once a proof is done, it's gone. Only the result is left.
- Only does rewriting, i.e. the purely equational part.
- Rewrite rules are used naively. No search/normalisation strategies or Knuth-Bendix.

The Quanto2013 Projects

- Quantomatic is a (fairly) thin GUI built on QuantoCore, an ML based rewriting engine
- Starting this year, we are working on new projects based on QuantoCore:
- QuantoDerive - graphical derivation editor, essentially the successor to Quantomatic GUI
- QuantoCosy - conjecture synthesis for diagrams
- QuantoTactic - Quantomatic/Isabelle integration

QuantoCosy

- Often, we have a concrete set of generators (e.g. a particular example of some algebraic structure), and we would like to derive the axioms
- Take a set of generators:

QuantoCosy

- Often, we have a concrete set of generators (e.g. a particular example of some algebraic structure), and we would like to derive the axioms
- Take a set of generators:
- For each disconnected graph, enumerate all of the ways it can be "plugged together":

QuantoCosy

- Often, we have a concrete set of generators (e.g. a particular example of some algebraic structure), and we would like to derive the axioms
- Take a set of generators:

$$
\left\{\hat{\uparrow}, \hat{O}, \hat{\imath}, \hat{\uparrow}, \hat{\imath}, \hat{O}, \hat{\imath}, \hat{\imath}, \frac{\hat{\imath}}{\hat{\imath}}, \hat{0}, \hat{\hat{0}}, \hat{\uparrow}\right\}
$$

- For each disconnected graph, enumerate all of the ways it can be "plugged together":

QuantoCosy

- Often, we have a concrete set of generators (e.g. a particular example of some algebraic structure), and we would like to derive the axioms
- Take a set of generators:
- For each disconnected graph, enumerate all of the ways it can be "plugged together":

QuantoCosy

- If we have concrete values for generators (e.g. as matrices), we can define an evaluation function $\llbracket-\rrbracket$ on diagrams

QuantoCosy

- If we have concrete values for generators (e.g. as matrices), we can define an evaluation function $\llbracket-\rrbracket$ on diagrams
- We can organise diagrams into equivalence classes $G \equiv H \Leftrightarrow \llbracket G \rrbracket=\llbracket H \rrbracket$

QuantoCosy

- If we have concrete values for generators (e.g. as matrices), we can define an evaluation function $\llbracket-\rrbracket$ on diagrams
- We can organise diagrams into equivalence classes $G \equiv H \Leftrightarrow \llbracket G \rrbracket=\llbracket H \rrbracket$
- If we define a metric on graphs, some equivalences $G \equiv H$ will become redexes $G \longrightarrow H$

QuantoCosy

- If we have concrete values for generators (e.g. as matrices), we can define an evaluation function $\llbracket-\rrbracket$ on diagrams
- We can organise diagrams into equivalence classes $G \equiv H \Leftrightarrow \llbracket G \rrbracket=\llbracket H \rrbracket$
- If we define a metric on graphs, some equivalences $G \equiv H$ will become redexes $G \longrightarrow H$
- In the 'Cosy style, we can use these redexes to cut down the search space by only enumerating irreducible expressions

QuantoCosy

LCF-style Theorem Provers

- Theorem provers are large and complex. How can we be (fairly) confident they fit our mathematical models?

LCF-style Theorem Provers

- Theorem provers are large and complex. How can we be (fairly) confident they fit our mathematical models?
- In 1972, Milner came up with the LCF approach to automated theorem proving.

LCF-style Theorem Provers

- Theorem provers are large and complex. How can we be (fairly) confident they fit our mathematical models?
- In 1972, Milner came up with the LCF approach to automated theorem proving.
- The idea: write a kernel that is dumb (simple logic + a few inference rules) but sound

LCF-style Theorem Provers

- Theorem provers are large and complex. How can we be (fairly) confident they fit our mathematical models?
- In 1972, Milner came up with the LCF approach to automated theorem proving.
- The idea: write a kernel that is dumb (simple logic + a few inference rules) but sound
- Don't touch it! But tell it what to do with tactics, which are smart. The kernel is the "gatekeeper" of soundness.

QuantoTactic

- The idea: formalise equivalence up to diagrammatic equations in Isabelle:

$$
\begin{aligned}
\exists R, R^{\prime} & R \in \text { axioms } \wedge \\
& \text { instance-of }\left(R, R^{\prime}\right) \wedge \\
& \text { valid-rewrite }\left(R^{\prime}, G, H\right) \Longrightarrow(G \equiv H)
\end{aligned}
$$

QuantoTactic

- The idea: formalise equivalence up to diagrammatic equations in Isabelle:

$$
\begin{aligned}
\exists R, R^{\prime} & R \in \text { axioms } \wedge \\
& \text { instance-of }\left(R, R^{\prime}\right) \wedge \\
& \text { valid-rewrite }\left(R^{\prime}, G, H\right) \Longrightarrow(G \equiv H)
\end{aligned}
$$

- Wrap QuantoCore matching and rewriting capabilities in tactics, which do the hard stuff (e.g. finding witnesses R, R^{\prime} for the implication above)

QuantoTactic

QuantoTactic is (or rather, will be...) three things:

1. A theory of diagrams and rewriting formalised in Isabelle

QuantoTactic

QuantoTactic is (or rather, will be...) three things:

1. A theory of diagrams and rewriting formalised in Isabelle
2. A tactic invoked by the prover, hooking the (powerful) Quantomatic core up to the (sound) Isabelle kernel

QuantoTactic

QuantoTactic is (or rather, will be...) three things:

1. A theory of diagrams and rewriting formalised in Isabelle
2. A tactic invoked by the prover, hooking the (powerful) Quantomatic core up to the (sound) Isabelle kernel
3. Language extensions and GUI support for inline graphical notation in proof documents

Thanks!

- Joint work with Lucas Dixon, Alex Merry, Ross Duncan, Vladimir Zamdzhiev, David Quick, and others
- See: sites.google.com/site/quantomatic

