

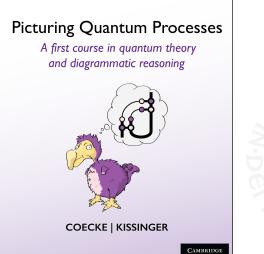
Process Theories and Graphical Language

Aleks Kissinger

Institute for Computing and Information Sciences Radboud University Nijmegen

28th June 2016

Radboud University Nijmegen



Picturing Quantum Processes

When two systems [...] enter into temporary physical interaction due to known forces between them, [...] then they can no longer be described in the same way as before, viz. by endowing each of them with a representative of its own. I would not call that one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought.

- Erwin Schrödinger, 1935.

In quantum theory, *interaction* of systems is everything. **Diagrams** are the language of interaction.

Radboud University Nijmegen

Picturing Quantum Processes

Q: How much of quantum theory can be understood just using diagrams and diagram transformation?

A: Pretty much everything!

Outline

Process theories and diagrams

Quantum processes

Classical and quantum interaction

Application: Non-locality

Radboud University Nijmegen

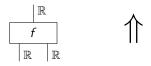
Processes

- A process is anything with zero or more *inputs* and zero or more *outputs*
- For example, this function:

$$f(x,y) = x^2 + y$$

...is a process when takes two real numbers as input, and produces a real number as output.

• We could also write it like this:



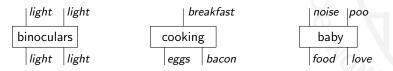
• The labels on wires are called system-types or just types

Aleks Kissinger

More processes

- Similarly, a computer programs are processes
- For example, a program that sorts lists might look like this:

• These are also perfectly good processes:



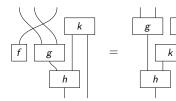
- We always think of a process as something that happens
- E.g. 'binoculars' represents one use of binoculars

Aleks Kissinger

Radboud University Nijmegen

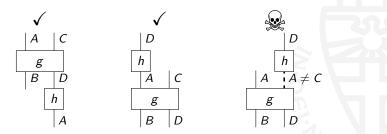
• We can combine simple processes to make more complicted ones, described by diagrams:

• The golden rule: only connectivity matters!



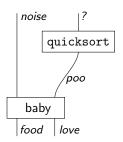
Radboud University Nijmegen

• Connections are only allowed where the types match, e.g.:



Types and Process Theories

- Types tell us when it makes sense to plug processes together
- Ill-typed diagrams are undefined:



- In fact, these processes don't ever sense to plug together
- A family of processes which *do* make sense together is called a process theory

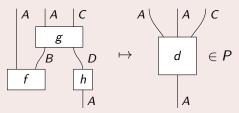
Aleks Kissinger

Radboud University Nijmegen

Process Theory: Definition

Definition

- A process theory consists of:
 - (i) a collection T of system-types represented by wires,
 - a collection P of processes represented by boxes, with inputs/outputs in T, and
- (iii) a means of interpreting diagrams of processes as processes:



Special processes: states and effects

• Processes with no inputs are called states:

Interpret as: preparing a system in a particular configuration, where we don't care what came before.

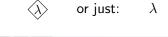
• Processes with no outputs are called effects:

Interpret as: testing for a property π , where we don't care what happens after.

Radboud University Nijmegen

Special processes: numbers

• A number is a process with no inputs or outputs, written as:



Why are "numbers" called numbers?

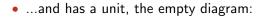
• "Numbers" can be multiplied by parallel composition:

$$\langle \! \rangle \cdot \langle \! \rangle := \langle \! \rangle \langle \! \rangle$$

This is associative:

$$(\langle \widehat{\langle} \cdot \langle \widehat{\psi} \rangle) \cdot \langle \widehat{\psi} \rangle = \langle \widehat{\langle} \cdot \langle \widehat{\psi} \rangle \langle \widehat{\psi} \rangle = \langle \widehat{\langle} \cdot \langle \widehat{\psi} \rangle \cdot \langle \widehat{\psi} \rangle$$

…commutative:



Numbers form a commutative monoid

...so numbers always form a *commutative monoid*, just like most numbers we know about:

- real numbers ${\mathbb R}$
- complex numbers C
- probabilities $[0,1] \subset \mathbb{R}$
- booleans $\mathbb{B}=\{0,1\}$, "·" is AND

16 / 106

When a state meets and effect

- We have seen that we can to treat processes with no inputs/outputs as numbers. But why do we want to?
- Answer:

- state + effect = number. A probability!
- This is called the (generalised) Born rule

Radboud University Nijmegen

Process theories in general

Q: What kinds of behaviour can we study using just diagrams, and nothing else?

A: (Non-)separability

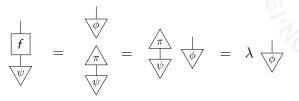
18 / 106

Radboud University Nijmegen

Separability of processes

 A process f o-separates if there exists a state φ and effect π such that:

 If we apply this process to any other state, we always (basically) get φ:



Radboud University Nijmegen

Trivial process theories

Hence:

all processes \circ -separate \implies nothing ever happens!

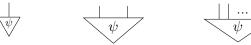
Definition

A process theory is called *trivial* if all processes o-separate.

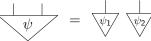
Radboud University Nijmegen

Separable states

• States can be on a single system, two systems, or many systems:



 A state ψ on two systems is ⊗-separable if there exist ψ₁, ψ₂ such that:



- **Intuitively:** the properties of the system on the left are *independent* from those on the right
- Classically, we expect all states to ⊗-separate

Characterising non-separability

- ...which is why non-separable states are way more interesting!
- But, how do we know we've found one?
- i.e. that there do not exist states ψ_1, ψ_2 such that:

$$\psi$$
 = ψ_1 ψ_2

• Problem: Showing that something doesn't exist can be hard.

Radboud University Nijmegen

Characterising non-separability

Solution: Replace a negative property with a postive one:

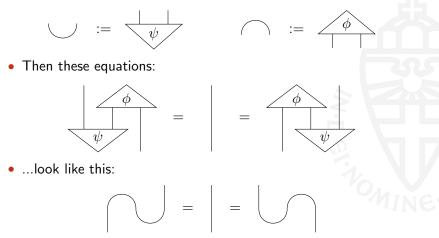
Definition

A state ψ is called *cup-state* if there exists an effect ϕ , called a *cap-effect*, such that:

Radboud University Nijmegen

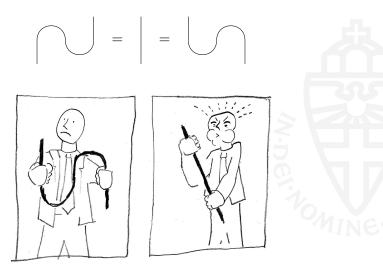
Cup-states

• By introducing some clever notation:



Radboud University Nijmegen

Yank the wire!



A no-go theorem for separability

Theorem

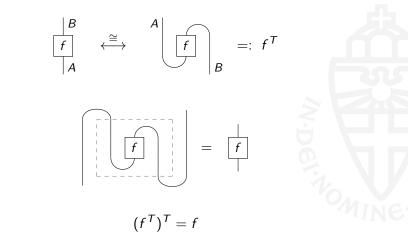
If a process theory (i) has cup-states for every type and (ii) every state separates, then it is trivial.

Proof. Suppose a cup-state separates:

Then for any f:

Radboud University Nijmegen

Transpose



i.e.

Radboud University Nijmegen

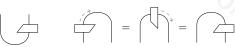
Tranpose = rotation

A bit of a deformation:

allows some clever notation:

 \sim

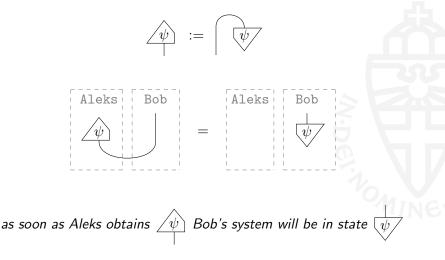
f



Radboud University Nijmegen

Tranpose = rotation

Specialised to states:



Radboud University Nijmegen





Radboud University Nijmegen

Adjoints

state ψ

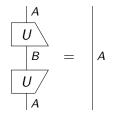
testing for ψ

Extends from states/effects to all processes:

Normalised states and isometries

• Adjoints increase expressiveness, for instance can say when ψ is normalised:

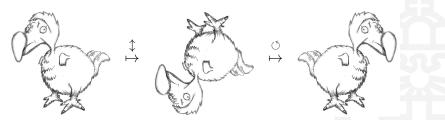
• *U* is an *isometry*:



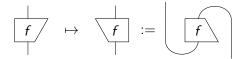
...and unitary, self-adjoint, positive, etc.

Conjugates

If we:



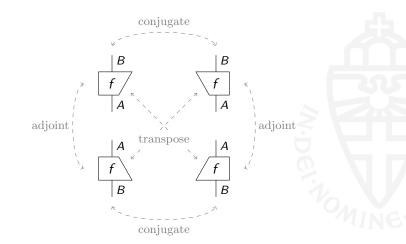
...we get horizontal reflection. The *conjugate*:



Radboud University Nijmegen

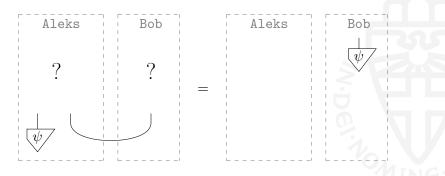
Radboud University Nijmegen

4 kinds of box



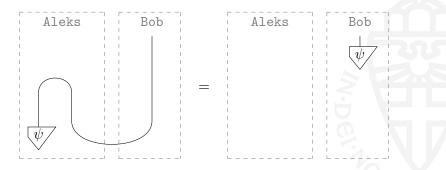
Quantum teleportation: take 1

Can we fill in '?' to get this?



Quantum teleportation: take 1

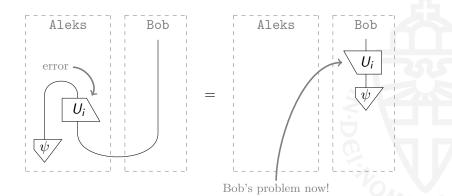
Here's a simple solution:



Problem: 'cap' can't be performed deterministically

Aleks Kissinger

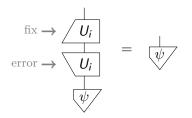
Quantum teleportation: take 1



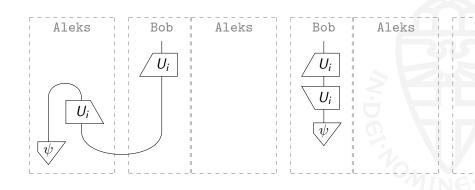
38 / 106

Quantum teleportation: take 1

Solution: Bob fixes the error.



Quantum teleportation: take 1



Hilbert space

Radboud University Nijmegen

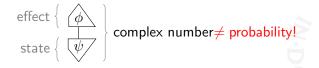
The starting point for quantum theory is the process theory of **linear maps**, which has:

- **1** systems: Hilbert spaces
- Ø processes: complex linear maps
- ...in particular, numbers are complex numbers.

Hilbert space

Radboud University Nijmegen

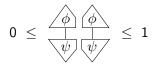
Looking at the 'Born rule' for linear maps, we have a problem:



Doubling

Solution: multiply by the conjugate:

Then, for normalised ψ, ϕ :



(i.e. the 'usual' Born rule: $\overline{\langle \phi | \psi \rangle} \langle \phi | \psi \rangle = |\langle \phi | \psi \rangle|^2$)

Aleks Kissinger

Radboud University Nijmegen

Doubling

New problem: We lost this:

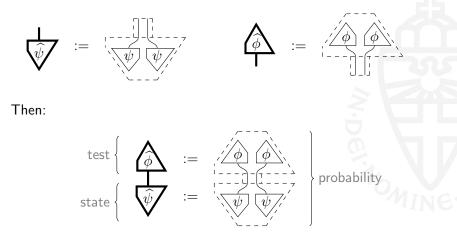
...which was the basis of our interpretation for states, effects, and numbers.

Radboud University Nijmegen

45 / 106

Doubling

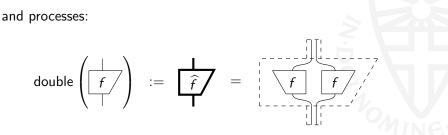
Solution: Make a new process theory with doubling 'baked in':



Radboud University Nijmegen

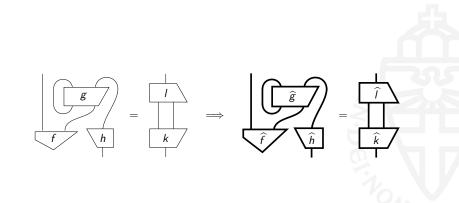
Doubling

The new process theory has doubled systems $\widehat{H} := H \otimes H$:



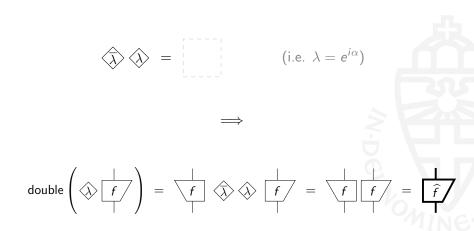
Radboud University Nijmegen

Doubling preserves diagrams



Radboud University Nijmegen

...but kills global phases



Discarding

Radboud University Nijmegen

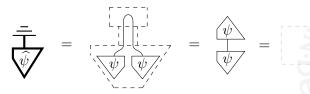
49 / 106

Doubling also lets us do something we couldn't do before: throw stuff away!

How? Like this:

Discarding

For normalised ψ , the two copies annihilate:



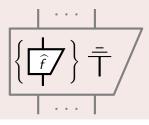
50 / 106

Radboud University Nijmegen

Quantum maps

Definition

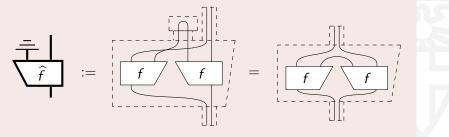
The process theory of **quantum maps** has as types (doubled) Hilbert spaces \hat{H} and as processes:



Purification

Theorem

All quantum maps are of the form:



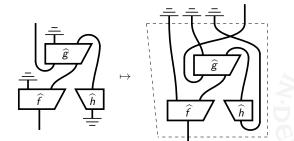
for some linear map f.

Radboud University Nijmegen

53 / 106

Purification

Proof. Pretty much by construction:



then note that:

$$\widehat{H}_1 \otimes \ldots \otimes \widehat{H}_n \stackrel{-}{\boxed{}} := \stackrel{-}{\boxed{}} \widehat{H}_1 \stackrel{-}{\boxed{}} \widehat{H}_2 \cdots \stackrel{-}{\boxed{}} \widehat{H}_n$$

Radboud University Nijmegen

A quantum map is called *causal* if:

$$\begin{bmatrix} \bar{\underline{-}} \\ \Phi \\ T \end{bmatrix} = \bar{\underline{-}}$$

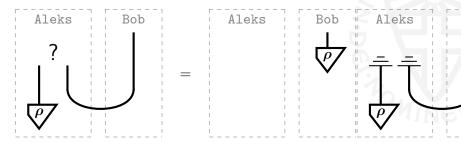
If we discard the output of a process, it doesn't matter which process happened.

causal \iff deterministically physically realisable

Consequence: no cap effect 🛞

Consequence: there is a unique causal effect, discarding:

Hence 'deterministic quantum teleportation' must fail:

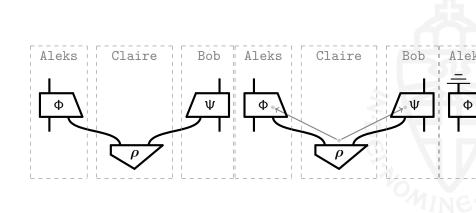


56 / 106

Radboud University Nijmegen

Process theories and diagrams Quantum processes Classical and quantum interaction Application: Non-locality

Consequence: no signalling 🙂



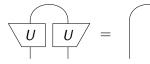
Radboud University Nijmegen

Stinespring's theorem ③

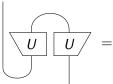
Lemma

Pure quantum maps \widehat{U} are causal if and only if they are isometries.

Proof. Unfold the causality equation:



and bend the wire:



Radboud University Nijmegen

Stinespring's theorem ③

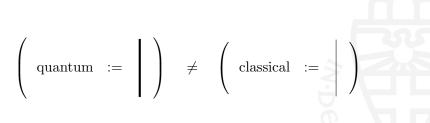
Theorem (Stinespring)

For any causal quantum map Φ , there exists an isometry \hat{f} such that:

Proof. Purify Φ , then apply the lemma to \hat{f} .

Radboud University Nijmegen

Double vs. single wires



Classical values

$$i$$
 := 'providing classical value *i*'

$$\frac{1}{1}$$
 := 'testing for classical value *i*'

$$\begin{array}{c} \overbrace{j}\\ \hline \\ \hline \\ i \end{array} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

$$(\Rightarrow \text{ONB})$$

Classical states

Radboud University Nijmegen

62 / 106

General state of a classical system:

 \bigvee_{i}^{p} := $\sum_{i} p_{i} \bigvee_{i}^{l} \leftarrow$ probability distributions

Hence:

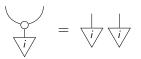
$$\bigvee_{i}^{\perp}$$
 \leftarrow point distributions

Radboud University Nijmegen

63 / 106

Copy and delete

Unlike quantum states, classical values can be copied:

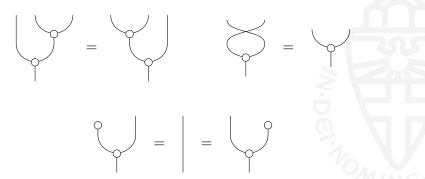


and *deleted*:

Radboud University Nijmegen

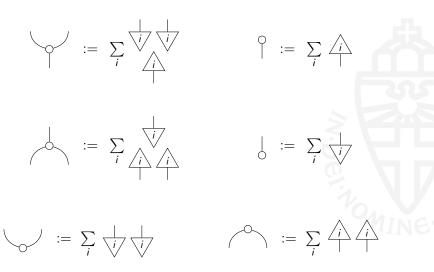
Copy and delete

These satisfy some equations you would expect:



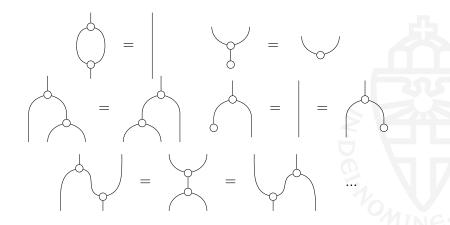
Radboud University Nijmegen

Other classical maps



Radboud University Nijmegen

....satisfying lots of equations



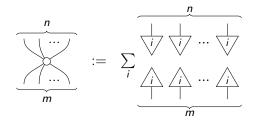
When does it end???

Radboud University Nijmegen

67 / 106

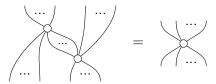
Spiders

All of these are special cases of *spiders*:



Radboud University Nijmegen

The only equation you need to remember is this one:



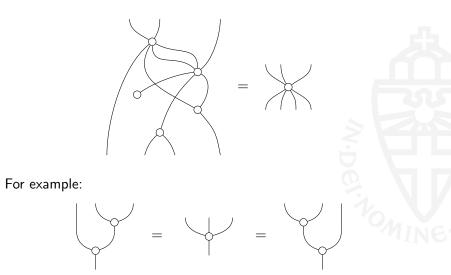
When spiders meet, they fuse together.

Spiders

68 / 106

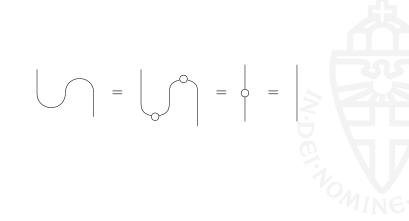
Radboud University Nijmegen

Spider reasoning



Radboud University Nijmegen

Spider reasoning \Rightarrow string diagram reasoning



How do we recognise spiders?

Suppose we have something that 'behaves like' a spider:

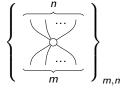
Do we know it is one?

Aleks Kissinger

Radboud University Nijmegen

Spiders = 'diagrammatic ONBs'

Yes!



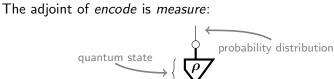
Classical and quantum interaction

Classical values can be encoded as quantum states, via doubling:

This is our first classical-quantum map, *encode*. It's a copy-spider in disguise:

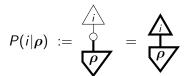
Radboud University Nijmegen

Measuring quantum states



This represents measuring w.r.t.

...where probabilities come from the Born rule:

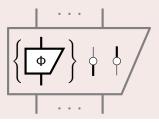


Radboud University Nijmegen

Classical-quantum maps

Definition

The process theory of **cq-maps** has as processes diagrams of quantum maps and encode/decode:



Radboud University Nijmegen

Quantum processes

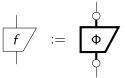
Causality generalises to cq-maps:

$$\begin{bmatrix} \phi & -\frac{1}{2} \\ \phi \\ \phi \end{bmatrix} = \begin{pmatrix} \phi & -\frac{1}{2} \\ \phi \\ \phi \end{bmatrix}$$

quantum processes := causal cq-maps

Special case: classical processes

Classical processes are **quantum processes** with no quantum inputs/outputs:



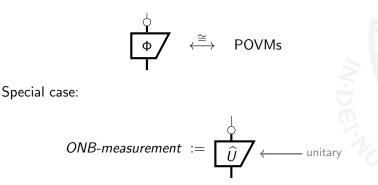
These correspond exactly to stochastic maps. Positivity comes from doubling, and normalisation from causality:

$$\begin{array}{c} & & & \\ &$$

78 / 106

Special case: quantum measurements

A *measurement* is any **quantum process** from a quantum system to a classical one:



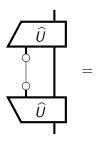
Radboud University Nijmegen

Special case: controlled-operations

A **quantum process** with a classical input is a *controlled operation*:

Special case: controlled-operations

A controlled isometry furthermore satisfies:

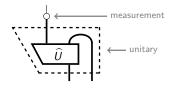


80 / 106

Special case: controlled-operations

Suppose we can use a single \hat{U} to build a *controlled isometry*:

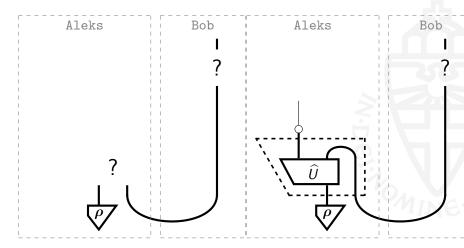
...and an ONB measurement:



Radboud University Nijmegen

Quantum teleportation: take 2

... then teleportation is a snap!

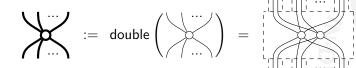


Radboud University Nijmegen

83 / 106

Quantum spiders

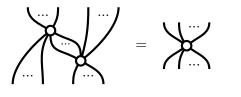
Doubling a classical spider gives a quantum spider:



Quantum spiders

Radboud University Nijmegen

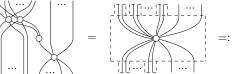
Since doubling preserves diagrams, these fuse when they meet:



Quantum meets classical

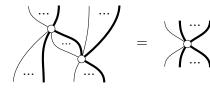
Q: What happens if a quantum spider meets a classical spider, via measure or encode?

A: Bastard spiders!

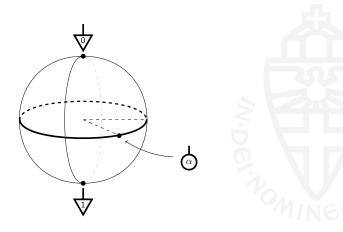


Radboud University Nijmegen

Bastard spider fusion

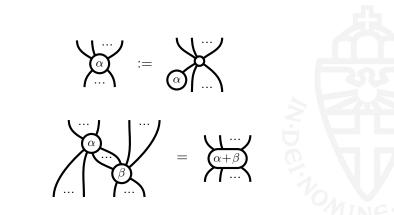


Phase states



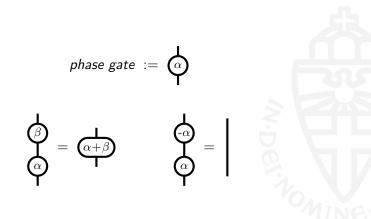
Phase spiders

Radboud University Nijmegen



Radboud University Nijmegen

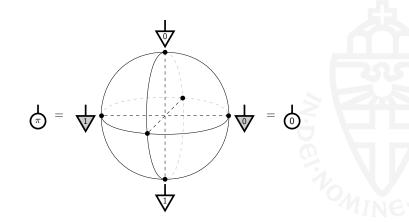
Example: phase gates



89 / 106

Radboud University Nijmegen

Complementary bases

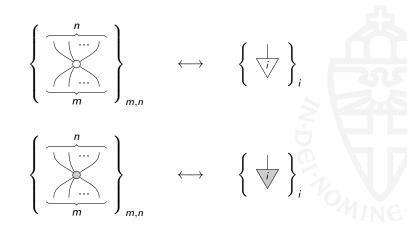


90 / 106

Radboud University Nijmegen

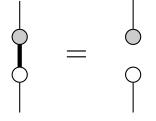
91 / 106

Complementary bases



Radboud University Nijmegen

Complementarity

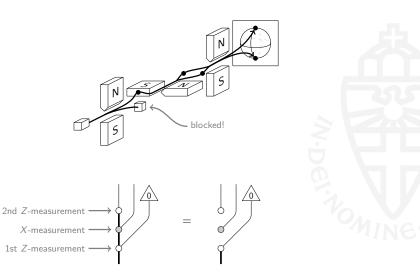


Interpretation:

(encode in \bigcirc) THEN (measure in \bigcirc) = (no data flow)

Radboud University Nijmegen

Consequence: Stern-Gerlach

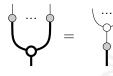


Radboud University Nijmegen

94 / 106

Strong complementarity





Interpretation:

Mathematically: Fourier transform. Operationally: ???

Consequences

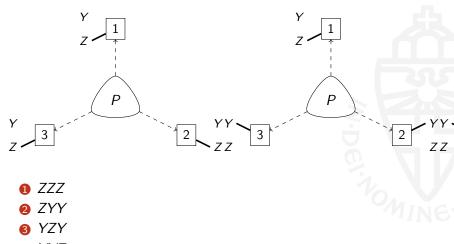
- strong complementarity \implies complementarity
- ONB of \bigcirc forms a **subgroup** of phase states, e.g.

$$\left\{ \begin{array}{ccc} \downarrow \\ \hline 0 \end{array} \right| = \begin{array}{c} \downarrow \\ \hline 0 \end{array} \right|, \begin{array}{c} \downarrow \\ \hline 1 \end{array} \right| = \begin{array}{c} \downarrow \\ \hline m \end{array} \right\} \subseteq \left\{ \begin{array}{c} \downarrow \\ \alpha \end{array} \right\}_{\alpha \in [0, 2\pi]}$$

• GHZ/Mermin non-locality

Radboud University Nijmegen

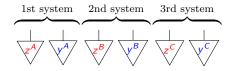
The setup



4 YYZ

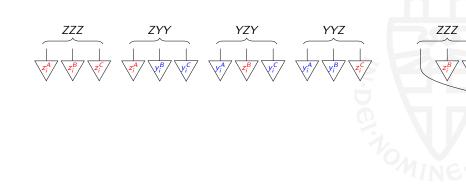
Radboud University Nijmegen

A locally realistic model



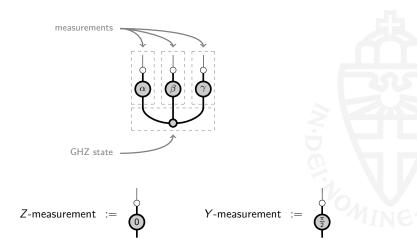
Radboud University Nijmegen

A locally realistic model



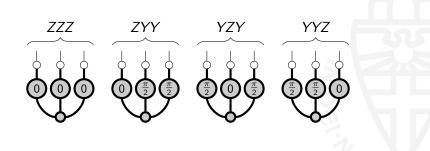
Radboud University Nijmegen

A quantum model



Radboud University Nijmegen

A quantum model



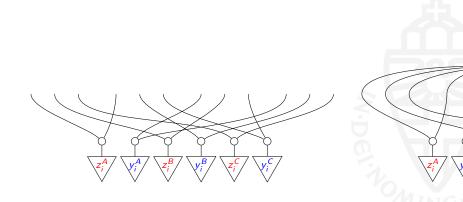
Radboud University Nijmegen

Deriving the contradiction

We prove the correlations from the quantum model are **inconsistent** with any locally realistic one, by computing:

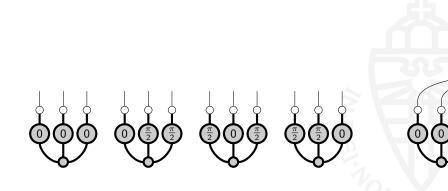
Radboud University Nijmegen

Deriving the contradiction



Radboud University Nijmegen

Deriving the contradiction



Radboud University Nijmegen

Deriving the contradiction

Applications: the expanded menu

• foundations

- strong complementarity \Rightarrow GHZ/Mermin non-locality
- phase groups distinguish Spekkens' toy theory and stabilizer QM

quantum computation

- graphical calculus \Rightarrow circuit/MBQC transformation
- complementarity \Leftrightarrow quantum oracles
- strong complementarity \Rightarrow graphical HSP
- quantum resource theories
 - resource theories := 're-branded' process theories
 - graphical characterisations for convertibility relations (purity, entanglement)
 - 3 qubit SLOCC-classification \Rightarrow two kinds of 'spider-like arachnids'