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The (first) problem
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To quanto!



Interacting bialgebras are linear relations

IB ∼= LinRelZ2

• LinRelZ2 has:
• objects: N

• morphisms: R : m→ n is a subspace R ⊆ Zm
2 ×Zn

2
• tensor is ⊕, composition is relation-style

• Pseudo-normal forms can be interpreted as:
• white spiders := place-holders
• grey spiders := vectors spanning the subspace
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Lets see how this works...
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• The 1’s indicate where edges appear for each vector.
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Lets see how this works...

• Not unique! We can always add or remove a vector that is the sum of
two other spanning vectors and get the same space:
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Addition is a !-box rule

• ‘Addition’ operation can be written as a !-box rule:
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• We can also apply this forward then backward to get a ‘rotation’ rule:

=

• Note this rule decreases the arity of the white dot on the left by 1.
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Thanks!

• Joint work with Lucas Dixon, Alex Merry, Ross Duncan, Vladimir
Zamdzhiev, David Quick, Hector Miller-Bakewell and others

• See: quantomatic.github.io


