Simplification by Rotation for Frobenius/Hopf algebras

Aleks Kissinger

September 9, 2017

The goal

Simplification for special commutative Frobenius algebras:

$$
\stackrel{\hat{O}}{\hat{O}}=\uparrow=\widehat{O}
$$

$\bigcirc=\uparrow=O_{\uparrow}^{0}$

The goal

Simplification for commutative Hopf algebras:

$$
\underset{\widehat{O}}{\hat{\jmath}}=\uparrow=\widehat{\imath}
$$

$$
\widehat{\uparrow}^{0}=\uparrow=\widehat{\uparrow}_{\uparrow}
$$

$$
\ddot{\gamma}=b \downarrow
$$

$$
\dot{贝}=99
$$

$$
\hat{Q}_{\uparrow}^{\hat{\uparrow}}=\begin{aligned}
& \hat{\varrho} \\
& \hat{\uparrow}
\end{aligned}
$$

The goal

Simplification for the system IIB:

The goal

Simplification for the system IIB:

The goal

Simplification for the system IIB:

(a.k.a. the phase-free fragment of the ZX-calculus)

The (first) problem

- (Biased) AC rules are not terminating:

The (first) problem

- (Biased) AC rules are not terminating:

- Solution: use unbiased simplifications:

The (first) problem

- (Biased) AC rules are not terminating:

- Solution: use unbiased simplifications:

- \Longrightarrow need infinitely many rules, or rule schemas

!-boxes: simple diagram schemas

$$
\begin{gathered}
\stackrel{d}{\cdots} \Rightarrow \stackrel{1}{b} \\
{\left[\begin{array}{c}
1 \\
\cdots
\end{array}\right]=\{\hat{0}, \hat{q}, \hat{R}, \hat{R}, \cdots\}}
\end{gathered}
$$

!-boxes: simple diagram rule schemas

!-boxes

!-boxes

Unbiased Frobenius algebras

Unbiased bialgebras

To quanto!

Interacting bialgebras are linear relations

$\mathbb{I B} \cong \operatorname{LinRel}_{\mathbb{Z}_{2}}$

Interacting bialgebras are linear relations

$\mathbb{I I B} \cong \operatorname{LinRel}_{\mathbb{Z}_{2}}$

- $\operatorname{LinRel}_{\mathbb{Z}_{2}}$ has:
- objects: \mathbb{N}
- morphisms: $R: m \rightarrow n$ is a subspace $R \subseteq \mathbb{Z}_{2}^{m} \times \mathbb{Z}_{2}^{n}$
- tensor is \oplus, composition is relation-style

Interacting bialgebras are linear relations

$\mathbb{I I B} \cong \operatorname{LinRel}_{\mathbb{Z}_{2}}$

- $\operatorname{LinRel}_{\mathbb{Z}_{2}}$ has:
- objects: \mathbb{N}
- morphisms: $R: m \rightarrow n$ is a subspace $R \subseteq \mathbb{Z}_{2}^{m} \times \mathbb{Z}_{2}^{n}$
- tensor is \oplus, composition is relation-style
- Pseudo-normal forms can be interpreted as:
- white spiders := place-holders
- grey spiders := vectors spanning the subspace

Lets see how this works...

- Subspaces can be represented as:

- The 1's indicate where edges appear for each vector.

Lets see how this works...

- Subspaces can be represented as:

- The 1's indicate where edges appear for each vector.

Lets see how this works...

- Subspaces can be represented as:

- The 1's indicate where edges appear for each vector.

Lets see how this works...

- Not unique! We can always add or remove a vector that is the sum of two other spanning vectors and get the same space:

$$
\leftrightarrow \quad\left\langle\left(\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0 \\
1 \\
0
\end{array}\right)\right\rangle
$$

Addition is a !-box rule

- 'Addition' operation can be written as a !-box rule:

Addition is a !-box rule

- 'Addition' operation can be written as a !-box rule:

- We can also apply this forward then backward to get a 'rotation' rule:

Addition is a !-box rule

- 'Addition' operation can be written as a !-box rule:

- We can also apply this forward then backward to get a 'rotation' rule:

- Note this rule decreases the arity of the white dot on the left by 1 .

Thanks!

- Joint work with Lucas Dixon, Alex Merry, Ross Duncan, Vladimir Zamdzhiev, David Quick, Hector Miller-Bakewell and others
- See: quantomatic.github.io

