Matrix Calculations: Solutions of Systems of Linear Equations

A. Kissinger

Institute for Computing and Information Sciences Radboud University Nijmegen

Version: spring 2017

Outline

Review: pivots and Echelon form

Vectors and linear combinations

Homogeneous systems

Non-homogeneous systems

Pivots

- A pivot is the first non-zero entry of a row:

$$
\left(\begin{array}{ccc|c}
0 & \boxed{2} & 1 & -2 \\
\boxed{3} & 5 & -5 & 1 \\
0 & 0 & -2 & 2
\end{array}\right)
$$

- If a row is all zeros, it has no pivot:

$$
\left(\begin{array}{ccc|c}
0 & 2 & 1 & -2 \\
\boxed{3} & 5 & -5 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

We call this a zero row.

Echelon form

A matrix is in Echelon form if:

(1) All of the rows with pivots occur before zero rows, and
(2) Pivots always occur to the right of previous pivots

$$
\left(\begin{array}{cccc|c}
\boxed{3} & 2 & 5 & -5 & 1 \\
0 & 0 & 2 & 1 & -2 \\
0 & 0 & 0 & \boxed{-2} & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\left(\begin{array}{cccc|c}
3 & 2 & 5 & -5 & 1 \\
0 & 0 & 2 & 1 & -2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 2
\end{array}\right)\left(\begin{array}{cccc|c}
\hline 3 & 2 & 5 & -5 & 1 \\
0 & 0 & 4 & -2 & 2 \\
0 & 2 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{cccc|c}
\hline 3 & 2 & 5 & -5 & 1 \\
0 & 0 & 4 & -2 & 2 \\
0 & 0 & 2 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Points and polynomials

Here's a really useful thing about polynomials:

Theorem

For any n points in a plane, there exists a unique polynomial of degree $n-1$ which hits them all.
That is: given points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, there is precisely one polynomial function of the form:

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n-1} x^{n-1}
$$

with $f\left(x_{i}\right)=y_{i}$ for all $i \leq n$.
NB. No two points should be on the same vertical line!

- The data fitting problem is: given the points $\left(x_{i}, y_{i}\right)$ obtained from some experiment, find the a_{0}, \ldots, a_{n-1}
- This can be done with what we have seen so far!

Data fitting example

- Suppose we have 3 points $(1,6),(2,3)$ and $(3,2)$
- we wish to find $f(x)=a_{0}+a_{1} x+a_{2} x^{2}$ that hits them all
- The requirements $f(1)=6, f(2)=3$ and $f(3)=2$ yield:

$$
\begin{aligned}
& a_{0}+a_{1} \cdot 1+a_{2} \cdot 1^{2}=6 \\
& a_{0}+a_{1} \cdot 2+a_{2} \cdot 2^{2}=3 \\
& a_{0}+a_{1} \cdot 3+a_{2} \cdot 3^{2}=2
\end{aligned}
$$

- The augmented matrix and its Echelon form are:

$$
\left(\begin{array}{lll|l}
1 & 1 & 1 & 6 \\
1 & 2 & 4 & 3 \\
1 & 3 & 9 & 2
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccc|c}
1 & 1 & 1 & 6 \\
0 & 1 & 3 & -3 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

- Its solution is $a_{2}=1, a_{1}=-6$ en $a_{0}=11$, ie. $(11,-6,1)$
- and so the required function if $f(x)=11-6 x+x^{2}$.

Unique solutions

From the first lecture:

Theorem

A system of equations in n variables has a unique solution if and only if its Echelon form has n pivots.

Example (\square denotes a pivot)

$$
\begin{aligned}
& x_{1}+x_{2}=3 \\
& x_{1}-x_{2}=1
\end{aligned} \text { gives }\left(\begin{array}{cc|c}
1 & 1 & 3 \\
1 & -1 & 1
\end{array}\right) \text { and }\left(\begin{array}{cc|c}
\boxed{1} & 1 & 3 \\
0 & 1 & 1
\end{array}\right)
$$

(using transformations $R_{2}:=R_{2}-R_{1}$ and $R_{2}:=-\frac{1}{2} R_{2}$)
Question: What if there are more solutions? Can we describe them in a generic way?

A new tool: vectors

- A vector is a list of numbers.
- We can write it like this: $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- ...or as a matrix with just one column:

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

(which is sometimes called a 'column vector').

A new tool: vectors

- Vectors are useful for lots of stuff. In this lecture, we'll use them to hold solutions.
- Since variable names don't matter, we can write this:

$$
x_{1}:=2 \quad x_{2}:=-1 \quad x_{3}:=0
$$

- ...more compactly as this:

$$
\left(\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right)
$$

- ...or even more compactly as this: $(2,-1,0)$.

Linear combinations

- We can multiply a vector by a number to get a new vector:

$$
c \cdot\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right):=\left(\begin{array}{c}
c x_{1} \\
c x_{2} \\
\vdots \\
c x_{n}
\end{array}\right)
$$

This is called scalar multiplication.

- ...and we can add vectors together:

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)+\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right):=\left(\begin{array}{c}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
\vdots \\
x_{n}+y_{n}
\end{array}\right)
$$

as long as the are the same length.

Linear combinations

Mixing these two things together gives us a linear combination of vectors:

$$
c \cdot\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)+d \cdot\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)+\ldots=\left(\begin{array}{c}
c x_{1}+d y_{1}+\ldots \\
c x_{2}+d y_{2}+\ldots \\
\vdots \\
c x_{n}+d y_{n}+\ldots
\end{array}\right)
$$

A set of vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}$ is called linearly independent if no vector can be written as a linear combination of the others.

Linear independence

- These vectors:

$$
\boldsymbol{v}_{1}=\binom{1}{0} \quad \boldsymbol{v}_{2}=\binom{0}{1} \quad \boldsymbol{v}_{3}=\binom{1}{1}
$$

are NOT linearly independent, because $\boldsymbol{v}_{3}=\boldsymbol{v}_{1}+\boldsymbol{v}_{2}$.

- These vectors:

$$
\boldsymbol{v}_{1}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \quad \boldsymbol{v}_{2}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \quad \boldsymbol{v}_{3}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

are NOT linearly independent, because $\boldsymbol{v}_{1}=\boldsymbol{v}_{2}+2 \cdot \boldsymbol{v}_{3}$.

Linear independence

- These vectors:

$$
\boldsymbol{v}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad \boldsymbol{v}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \boldsymbol{v}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

are linearly independent. There is no way to write any of them in terms of each other.

- These vectors:

$$
\boldsymbol{v}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad \boldsymbol{v}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \boldsymbol{v}_{3}=\left(\begin{array}{l}
0 \\
2 \\
2
\end{array}\right)
$$

are linearly independent. There is no way to write any of them in terms of each other.

Linear independence

- These vectors:

$$
\boldsymbol{v}_{1}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \quad \boldsymbol{v}_{2}=\left(\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right) \quad \boldsymbol{v}_{3}=\left(\begin{array}{l}
0 \\
5 \\
2
\end{array}\right)
$$

are...???

- 'Eyeballing' vectors works sometimes, but we need a better way of checking linear independence!

Checking linear independence

Theorem

Vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ are linearly independent if and only if, for all numbers $a_{1}, \ldots, a_{n} \in \mathbb{R}$ one has:

$$
a_{1} \cdot \boldsymbol{v}_{1}+\cdots+a_{n} \cdot \boldsymbol{v}_{n}=\mathbf{0} \text { implies } a_{1}=a_{2}=\cdots=a_{n}=0
$$

Example

The 3 vectors $(1,0,0),(0,1,0),(0,0,1)$ are linearly independent, since if

$$
a_{1} \cdot(1,0,0)+a_{2} \cdot(0,1,0)+a_{3} \cdot(0,0,1)=(0,0,0)
$$

then, using the computation from the previous slide,

$$
\left(a_{1}, a_{2}, a_{3}\right)=(0,0,0), \quad \text { so that } \quad a_{1}=a_{2}=a_{3}=0
$$

Checking linear independence

Theorem

Vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ are linearly independent if and only if, for all numbers $a_{1}, \ldots, a_{n} \in \mathbb{R}$ one has:

$$
a_{1} \cdot \boldsymbol{v}_{1}+\cdots+a_{n} \cdot \boldsymbol{v}_{n}=\mathbf{0} \text { implies } a_{1}=a_{2}=\cdots=a_{n}=0
$$

Proof. Another way to say the theorem is $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ are linearly dependent if and only if:

$$
a_{1} \cdot \boldsymbol{v}_{1}+a_{2} \cdot \boldsymbol{v}_{2}+\cdots+a_{n} \cdot \boldsymbol{v}_{n}=\mathbf{0}
$$

where some a_{j} are non-zero. If this is true and $a_{1} \neq 0$, then:

$$
\boldsymbol{v}_{1}=\left(-a_{2} / a_{1}\right) \cdot \boldsymbol{v}_{2}+\ldots+\left(-a_{n} / a_{1}\right) \cdot \boldsymbol{v}_{n}
$$

The vectors are dependent (also works for any other non-zero a_{j}). Exercise: prove the other direction.

Proving (in)dependence via equation solving I

- Investigate (in)dependence of $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{c}2 \\ -1 \\ 4\end{array}\right)$, and $\left(\begin{array}{l}0 \\ 5 \\ 2\end{array}\right)$
- Thus we ask: are there any non-zero $a_{1}, a_{2}, a_{3} \in \mathbb{R}$ with:

$$
a_{1}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)+a_{2}\left(\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right)+a_{3}\left(\begin{array}{l}
0 \\
5 \\
2
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

- If there is a non-zero solution, the vectors are dependent, and if $a_{1}=a_{2}=a_{3}=0$ is the only solution, they are independent

Proving (in)dependence via equation solving II

- Our question involves the systems of equations / matrix:

$$
\left\{\begin{aligned}
a_{1}+2 a_{2} & =0 \\
2 a_{1}-a_{2}+5 a_{3} & =0 \\
3 a_{1}+4 a_{2}+2 a_{3} & =0
\end{aligned} \quad \text { corresponding to } \quad\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right)\right.
$$

(in Echelon form)

- This has only 2 pivots, so multiple solutions. In particular, it has non-zero solutions, for example: $a_{1}=2, a_{2}=-1, a_{3}=-1$ (compute and check for yourself!)
- Thus the original vectors are dependent. Explicitly:

$$
2\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)+(-1)\left(\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right)+(-1)\left(\begin{array}{l}
0 \\
5 \\
2
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Proving (in)dependence via equation solving III

- Same (in)dependence question for: $\left(\begin{array}{c}1 \\ 2 \\ -3\end{array}\right),\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ -2\end{array}\right)$
- With corresponding matrix:

$$
\left(\begin{array}{ccc}
1 & -2 & 1 \\
2 & 1 & -1 \\
-3 & 1 & -2
\end{array}\right) \text { reducing to }\left(\begin{array}{ccc}
5 & 0 & -1 \\
0 & 5 & -3 \\
0 & 0 & -4
\end{array}\right)
$$

- Thus the only solution is $a_{1}=a_{2}=a_{3}=0$. The vectors are independent!

Linear independence: summary

To check linear independence of $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$:
(1) Write the vectors as the columns of a matrix
(2) Convert to Echelon form
(3) Count the pivots

- $(\#$ pivots $)=(\#$ columns $)$ means independent
- (\# pivots) $<$ (\# columns) means dependent
(4) Non-zero solutions show linear dependence explicitly, e.g.

$$
\boldsymbol{v}_{1}-2 \boldsymbol{v}_{2}+\boldsymbol{v}_{3}=\mathbf{0} \quad \Longrightarrow \quad \boldsymbol{v}_{1}=2 \boldsymbol{v}_{2}-\boldsymbol{v}_{3}
$$

General solutions

The Goal:

- Describe the space of solutions of a system of equations.
- In general, there can be infinitely many solutions, but only a few are actually 'different enough' to matter. These are called basic solutions.
- Using the basic solutions, we can write down a formula which gives us any solution: the general solution.

Example (General solution for one equation)

$$
2 x_{1}-x_{2}=3 \text { gives } x_{2}=2 x_{1}-3
$$

So a general solution (for any c) is:

$$
x_{1}:=c \quad x_{2}:=2 c-3
$$

Linear combinations of solutions

- It is not the case in general that linear combinations of solutions give solutions. For example, consider:

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}+x_{3}=0 \\
x_{2}+x_{4}=2
\end{array} \quad \leftrightarrow\left(\begin{array}{llll|l}
1 & 2 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 2
\end{array}\right)\right.
$$

- This has as solutions:

$$
\boldsymbol{v}_{1}=\left(\begin{array}{c}
-2 \\
2 \\
-2 \\
0
\end{array}\right), \boldsymbol{v}_{2}=\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right) \text { but not } \boldsymbol{v}_{1}+\boldsymbol{v}_{2}=\left(\begin{array}{c}
-3 \\
3 \\
-3 \\
1
\end{array}\right), 3 \cdot \boldsymbol{v}_{1}, \ldots
$$

- The problem is this system of equations is not homogeneous, because the the 2 on the right-hand-side (RHS) of the second equation.

Homogeneous systems of equations

Definition

A system of equations is called homogeneous if it has zeros on the RHS of every equation. Otherwise it is called non-homogeneous.

- We can always squash a non-homogeneous system to a homogeneous one:

$$
\left(\begin{array}{ccc|c}
0 & 2 & 1 & -2 \\
3 & 5 & -5 & 1 \\
0 & 0 & -2 & 2
\end{array}\right) \leadsto\left(\begin{array}{ccc}
0 & 2 & 1 \\
3 & 5 & -5 \\
0 & 0 & -2
\end{array}\right)
$$

- The solutions will change!
- ...but they are still related. We'll see how that works soon.

Zero solution, in homogeneous case

Lemma

Each homogeneous equation has $(0, \ldots, 0)$ as solution.

Proof: A homogeneous system looks like this

$$
\begin{aligned}
& a_{11} x_{1}+\cdots+a_{1 n} x_{n}=0 \\
& \vdots \\
& a_{m 1} x_{1}+\cdots+a_{m n} x_{n}=0
\end{aligned}
$$

Consider the equation at row i :

$$
a_{i 1} x_{1}+\cdots+a_{i n} x_{n}=0
$$

Clearly it has as solution $x_{1}=x_{2}=\cdots=x_{n}=0$.
This holds for each row i.

Linear combinations of solutions

Theorem

The set of solutions of a homogeneous system is closed under linear combinations (i.e. addition and scalar multiplication of vectors).
...which means:

- if $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ and $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ are solutions, then so is: $\left(s_{1}+t_{1}, s_{2}+t_{2}, \ldots, s_{n}+t_{n}\right)$, and
- if $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is a solution, then so is $\left(c \cdot s_{1}, c \cdot s_{2}, \ldots, c \cdot s_{n}\right)$

Example

- Consider the homogeneous system $\left\{\begin{array}{r}3 x_{1}+2 x_{2}-x_{3}=0 \\ x_{1}-x_{2}=0\end{array}\right.$
- A solution is $x_{1}=1, x_{2}=1, x_{3}=5$, written as vector

$$
\left(x_{1}, x_{2}, x_{3}\right)=(1,1,5)
$$

- Another solution is $(2,2,10)$
- Addition yields another solution:

$$
(1,1,5)+(2,2,10)=(1+2,1+2,10+5)=(3,3,15)
$$

- Scalar multiplication also gives solutions:

$$
\begin{aligned}
-1 \cdot(1,1,5) & =(-1 \cdot 1,-1 \cdot 1,-1 \cdot 5)=(-1,-1,-5) \\
100 \cdot(2,2,10) & =(100 \cdot 2,100 \cdot 2,100 \cdot 10)=(200,200,1000) \\
c \cdot(1,1,5) & =(c \cdot 1, c \cdot 1, c \cdot 5)=(c, c, 5 c)
\end{aligned}
$$

(is a solution for every c)

Proof of closure under addition

- Consider an equation $a_{1} x_{1}+\cdots+a_{n} x_{n}=0$
- Assume two solutions $\left(s_{1}, \ldots, s_{n}\right)$ and $\left(t_{1}, \ldots, t_{n}\right)$
- Then $\left(s_{1}+t_{1}, \ldots, s_{n}+t_{n}\right)$ is also a solution since:

$$
\begin{aligned}
& a_{1}\left(s_{1}+t_{1}\right)+\cdots+a_{n}\left(s_{n}+t_{n}\right) \\
& =\left(a_{1} s_{1}+a_{1} t_{1}\right)+\cdots+\left(a_{n} s_{n}+a_{n} t_{n}\right) \\
& =\left(a_{1} s_{1}+\cdots+a_{n} s_{n}\right)+\left(a_{1} t_{1}+\cdots+a_{n} t_{n}\right) \\
& =0+0 \quad \text { since the } s_{i} \text { and } t_{i} \text { are solutions } \\
& =0 .
\end{aligned}
$$

- Exercise: do a similar proof of closure under scalar multiplication

General solution of a homogeneous system

Theorem

Every solution to a homogeneous system arises from a general solution of the form:

$$
\left(s_{1}, \ldots, s_{n}\right)=c_{1}\left(v_{11}, \ldots, v_{1 n}\right)+\cdots+c_{k}\left(v_{k 1}, \ldots, v_{k n}\right)
$$

for some numbers $c_{1}, \ldots, c_{k} \in \mathbb{R}$.
We call this a parametrization of our solution space. It means:
(1) There is a fixed set of vectors (called basic solutions):

$$
\boldsymbol{v}_{1}=\left(v_{11}, \ldots, v_{1 n}\right), \quad \ldots, \quad \boldsymbol{v}_{k}=\left(v_{k 1}, \ldots, v_{k n}\right)
$$

(2) such that every solution \boldsymbol{s} is a linear combination of $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$.
(3) That is, there exist $c_{1}, \ldots, c_{k} \in \mathbb{R}$ such that

$$
\boldsymbol{s}=c_{1} \boldsymbol{v}_{1}+\ldots+c_{k} \boldsymbol{v}_{k}
$$

Basic solutions of a homogeneous system

Theorem

Suppose a homogeneous system of equations in n variables has $p \leq n$ pivots. Then there are $n-p$ basic solutions $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n-p}$.
This means that the general solution \boldsymbol{s} can be written as a parametrization:

$$
\boldsymbol{s}=c_{1} \mathbf{v}_{1}+\cdots c_{n-p} \mathbf{v}_{n-p}
$$

Moreover, for any solution \boldsymbol{s}, the scalars c_{1}, \ldots, c_{n-p} are unique.

$$
(p=n) \Leftrightarrow(\text { no basic solns. }) \Leftrightarrow(\mathbf{0} \text { is the unique soln. })
$$

Finding basic solutions

- We have two kinds of variables, pivot variables and non-pivot, or free variables, depending on whether their column has a pivot:

$$
\left(\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
\hline 1 & 0 & 1 & 4 & 1 \\
\hline 0 & 0 & 1 & 2 & 0
\end{array}\right)
$$

- The Echelon form lets us (easily) write pivot variables in terms of non-pivot variables, e.g.:

$$
\left\{\begin{array} { l }
{ x _ { 1 } = - x _ { 3 } - 4 x _ { 4 } - x _ { 5 } } \\
{ x _ { 3 } = - 2 x _ { 4 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
x_{1}=-2 x_{4}-x_{5} \\
x_{3}=-2 x_{4}
\end{array}\right.\right.
$$

- We can find a (non-zero) basic solution by setting exactly one free variable to 1 and the rest to 0 .

Finding basic solutions

$$
\begin{aligned}
& \begin{array}{l}
x_{1} \\
x_{2}
\end{array} x_{3} \\
& x_{4}
\end{aligned} x_{5}, \begin{aligned}
& x_{1}=-2 x_{4}-x_{5} \\
& \left(\begin{array}{ccccc}
1 & 0 & 1 & 4 & 1 \\
0 & 0 & 11 & 2 & 0
\end{array}\right) \Rightarrow\left\{\begin{array}{l}
x_{3}=-2 x_{4}
\end{array}\right.
\end{aligned}
$$

5 variables and 2 pivots gives us $5-2=3$ basic solutions:

$$
\begin{aligned}
& x_{2}:=1 \quad x_{2}:=0 \quad x_{2}:=0 \\
& x_{4}:=0 \quad x_{4}:=1 \quad x_{4}:=0 \\
& x_{5}:=0 \quad x_{5}:=0 \quad x_{5}:=1 \\
& \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
-2 x_{4}-x_{5} \\
x_{2} \\
-2 x_{4} \\
x_{4} \\
x_{5}
\end{array}\right) \leadsto\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
-2 \\
0 \\
-2 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

General Solution

Now, any solution to the system is obtainable as a linear combination of basic solutions:

$$
x_{2}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
-2 \\
0 \\
-2 \\
1 \\
0
\end{array}\right)+x_{5}\left(\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
-2 x_{4}-x_{5} \\
x_{2} \\
-2 x_{4} \\
x_{4} \\
x_{5}
\end{array}\right)
$$

Picking solutions this way guarantees linear independence.

Finding basic solutions: technique 2

- Keep all columns with a pivot,
- One-by-one, keep only the i-th non-pivot columns (while removing the others), and find a (non-zero) solution
- (this is like setting all the other free variables to zero)
- Add 0's to each solution to account for the columns (i.e. free variables) we removed

General solution and basic solutions, example

- For the matrix: $\left(\begin{array}{cccc}\boxed{1} & 1 & 0 & 4 \\ 0 & 0 & 2 & 2\end{array}\right)$
- There are 4 columns (variables) and 2 pivots, so $4-2=2$ basic solutions
- First keep only the first non-pivot column:

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 2
\end{array}\right) \text { with chosen solution }\left(x_{1}, x_{2}, x_{3}\right)=(1,-1,0)
$$

- Next keep only the second non-pivot column:

$$
\left(\begin{array}{lll}
1 & 0 & 4 \\
0 & 2 & 2
\end{array}\right) \text { with chosen solution }\left(x_{1}, x_{3}, x_{4}\right)=(4,1,-1)
$$

- The general 4-variable solution is now obtained as:

$$
c_{1} \cdot(1,-1,0,0)+c_{2} \cdot(4,0,1,-1)
$$

General solutions example, check

We double-check that any vector:

$$
\begin{aligned}
& c_{1} \cdot(4,0,1,-1)+c_{2} \cdot(1,-1,0,0) \\
& =\left(4 \cdot c_{1}, 0,1 \cdot c_{1},-1 \cdot c_{1}\right)+\left(1 \cdot c_{2},-1 \cdot c_{2}, 0,0\right) \\
& =\left(4 c_{1}+c_{2},-c_{2}, c_{1},-c_{1}\right)
\end{aligned}
$$

gives a solution of:

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 4 \\
0 & 0 & 2 & 2
\end{array}\right) \text { i.e. of } \quad\left\{\begin{array}{r}
x_{1}+x_{2}+4 x_{4}=0 \\
2 x_{3}+2 x_{4}=0
\end{array}\right.
$$

Just fill in $x_{1}=4 c_{1}+c_{2}, x_{2}=-c_{2}, x_{3}=c_{1}, x_{4}=-c_{1}$

$$
\begin{aligned}
\left(4 c_{1}+c_{2}\right)-c_{2}+4 \cdot-c_{1} & =0 \\
2 c_{1}-2 c_{1} & =0
\end{aligned}
$$

Summary of homogeneous systems

Given a homogeneous system in n variables:

- A basic solution is a non-zero solution of the system.
- If there are n pivots in its echelon form, there is no basic solution, so only $\mathbf{0}=(0, \ldots, 0)$ is a solution.
- Basic solutions are not unique. For instance, if \boldsymbol{v}_{1} and \boldsymbol{v}_{2} give basic solutions, so do $\boldsymbol{v}_{1}+\boldsymbol{v}_{2}, \boldsymbol{v}_{1}-\boldsymbol{v}_{2}$, and any other linear combination.
- If there are $p<n$ pivots in its Echelon form, it has $n-p$ linearly independent basic solutions.

Non-homogeneous case: subtracting solutions

Theorem

The difference of two solutions of a non-homogeneous system is a solution for the associated homogeneous system.
More explicitly: given two solutions $\left(s_{1}, \ldots, s_{n}\right)$ and $\left(t_{1}, \ldots, t_{n}\right)$ of a non-homogeneous system, the difference $\left(s_{1}-t_{1}, \ldots, s_{n}-t_{n}\right)$ is a solution of the associated homogeneous system.

Proof: Let $a_{1} x_{1}+\cdots+a_{n} x_{n}=b$ be the equation. Then:

$$
\begin{aligned}
& a_{1}\left(s_{1}-t_{1}\right)+\cdots+a_{n}\left(s_{n}-t_{n}\right) \\
& =\left(a_{1} s_{1}-a_{1} t_{1}\right)+\cdots+\left(a_{n} s_{n}-a_{n} t_{n}\right) \\
& =\left(a_{1} s_{1}+\cdots+a_{n} s_{n}\right)-\left(a_{1} t_{1}+\cdots+a_{n} t_{n}\right)
\end{aligned}
$$

$=b-b \quad$ since the s_{i} and t_{i} are solutions
$=0$.
©

General solution for non-homogeneous systems

Theorem

Assume a non-homogeneous system has a solution given by the vector \boldsymbol{p}, which we call a particular solution.
Then any other solution s of the non-homogeneous system can be written as

$$
\boldsymbol{s}=\boldsymbol{p}+\boldsymbol{h}
$$

where \boldsymbol{h} is a solution of the associated homogeneous system.

Proof: Let \boldsymbol{s} be a solution of the non-homogeneous system.
Then $\boldsymbol{h}=\boldsymbol{s}-\boldsymbol{p}$ is a solution of the associated homogeneous system. Hence we can write \boldsymbol{s} as $\boldsymbol{p}+\boldsymbol{h}$, for \boldsymbol{h} some solution of the associated homogeneous system.

Example: solutions of a non-homogeneous system

- Consider the non-homogeneous system $\left\{\begin{aligned} x+y+2 z & =9 \\ y-3 z & =4\end{aligned}\right.$
- with solutions: $(0,7,1)$ and $(5,4,0)$
- We can write $(0,7,1)$ as: $(5,4,0)+(-5,3,1)$
- where:
- $\boldsymbol{p}=(5,4,0)$ is a particular solution (of the original system)
- $(-5,3,1)$ is a solution of the associated homogeneous system:

$$
\left\{\begin{array}{r}
x+y+2 z=0 \\
y-3 z=0
\end{array}\right.
$$

- Similarly, $(10,1,-1)$ is a solution of the non-homogeneous system and

$$
(10,1,-1)=(5,4,0)+(5,-3,-1)
$$

- where:
- $(5,-3,-1)$ is a solution of the associated homogeneous system.

General solution for non-homogeneous systems, concretely

Theorem

The general solution of a non-homogeneous system of equations in n variables is given by a parametrization as follows:
$\left(s_{1}, \ldots, s_{n}\right)=\left(p_{1}, \ldots, p_{n}\right)+c_{1}\left(v_{11}, \ldots, v_{1 n}\right)+\cdots c_{k}\left(v_{k 1}, \ldots, v_{k n}\right)$
for $c_{1}, \ldots, c_{k} \in \mathbb{R}$,
where

- $\left(p_{1}, \ldots, p_{n}\right)$ is a particular solution
- $\left(v_{11}, \ldots, v_{1 n}\right), \ldots,\left(v_{k 1}, \ldots, v_{k n}\right)$ are basic solutions of the associated homogeneous system.
- So $c_{1}\left(v_{11}, \ldots, v_{1 n}\right)+\cdots+c_{k}\left(v_{k 1}, \ldots, v_{k n}\right)$ is a general solution for the associated homogeneous system.

Elaborated example, part I

- Consider the non-homogeneous system of equations given by the augmented matrix in echelon form:

$$
\left(\begin{array}{ccccc|c}
\boxed{1} & 1 & 1 & 1 & 1 & 3 \\
0 & 0 & 1 & 2 & 3 & 1 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right)
$$

- It has 5 variables, 3 pivots, and thus $5-3=2$ basic solutions
- To find a particular solution, remove the non-pivot columns, and (uniquely!) solve the resulting system:

$$
\left(\begin{array}{ccc|c}
\boxed{1} & 1 & 1 & 3 \\
0 & \boxed{1} & 3 & 1 \\
0 & 0 & 1 & 4
\end{array}\right)
$$

- This has $(10,-11,4)$ as solution; the orginal 5 -variable system then has particular solution $(10,0,-11,0,4)$.

Elaborated example, part II

- Consider the associated homogeneous system of equations:

$$
\begin{aligned}
& x_{1} \\
& x_{2} \\
& x_{3}
\end{aligned} x_{4} \quad x_{5},
$$

- The two basic solutions are found by removing each of the two non-pivot columns separately, and finding solutions:

$$
\begin{gathered}
x_{1} \\
x_{3} \\
x_{4}
\end{gathered} x_{5} \quad\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
x_{5} \\
\hline 1 & 1 & 1 \\
1 \\
0 & 1 & 2 \\
0 & 0 & 0 \\
\hline & 1
\end{array}\right) \text { and }\left(\begin{array}{|cccc}
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

-We find: $(1,-2,1,0)$ and $(-1,1,0,0)$. Adding zeros for missing columns gives: $(1,0,-2,1,0)$ and $(-1,1,0,0,0)$.

Elaborated example, part III

Wrapping up: all solutions of the system

$$
\left(\begin{array}{ccccc|c}
\boxed{1} & 1 & 1 & 1 & 1 & 3 \\
0 & 0 & 1 & 2 & 3 & 1 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right)
$$

are of the form:

$$
\underbrace{(10,0,-11,0,4)}_{\text {particular sol. }}+\underbrace{c_{1}(1,0,-2,1,0)+c_{2}(-1,1,0,0,0)}_{\text {two basic solutions }} .
$$

This is the general solution of the non-homogeneous system.

