# Matrix Calculations: Vector Spaces 

A. Kissinger<br>Institute for Computing and Information Sciences<br>Radboud University Nijmegen

Version: spring 2017

## Outline

## Vector spaces

Linear maps

## What are numbers?

Suppose I don't know what numbers are... ...but I passed Wiskundige Structuren.


Tell me: what are numbers?
What is the first thing you would tell me about some numbers, e.g. the real numbers?

## What are numbers?

The First Thing: numbers form a set

$$
S \quad(\longleftarrow \text { these are some numbers! })
$$

The Second Thing: numbers can be added together

$$
a \in S, b \in S \quad \Longrightarrow \quad a+b \in S
$$

## Addition? Tell me more!

We have a set $S$, with a special operation ' + ' which satisfies:

1. $a+b=b+a$
2. $(a+b)+c=a+(b+c)$
...and there's a special element $\mathbf{0} \in$ Swhere:
3. $a+\mathbf{0}=a$

In math-speak, $(S,+, \mathbf{0})$ is called a commutative monoid, but we could also just call it a set with addition.

## Examples: sets with addition

- Every kind of number you know: $\mathbb{R}, \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{C}, \ldots$
- The set of all polynomials:

$$
\left(x^{2}+4 x+1\right)+\left(2 x^{2}\right):=3 x^{2}+4 x+1 \quad \mathbf{0}:=0
$$

- The set of all finite sets:

$$
\{1,2,3\}+\{3,4\}:=\{1,2,3\} \cup\{3,4\}=\{1,2,3,4\} \quad \mathbf{0}:=\{ \}
$$

- Here's a small example: $\{0\}$

$$
0+0:=0 \quad 0:=0
$$

- ...and (important!) the set $\mathbb{R}^{n}$ of all vectors of size $n$ :

$$
\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right):=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) \quad \mathbf{0}:=(0, \ldots, 0)
$$

## Linear combinations

- Last time, we talked a lot about linear combinations:

$$
a \cdot \boldsymbol{v}+b \cdot \boldsymbol{w}=\boldsymbol{u}
$$

- Q: what is the most general kind of set, where we can take linear combinations of elements?
- A: a set $V$ with addition and...scalar multiplication

$$
a \in \mathbb{R}, \boldsymbol{v} \in V \quad \Longrightarrow \quad a \cdot v \in V
$$

## Multiplication?! What does that do?

A vector space is a set with addition $(V,+, \mathbf{0})$ with an extra operation ' $\because$ ', which satisfies:
(1) $a \cdot(\boldsymbol{v}+\boldsymbol{w})=a \cdot \boldsymbol{v}+a \cdot \boldsymbol{w}$
(2) $(a+b) \cdot v=a \cdot v+b \cdot v$
(3) $a \cdot(b \cdot v)=a b \cdot v$
(4) $1 \cdot v=v$
(5) $0 \cdot v=0$

## Example

Our main example is $\mathbb{R}^{n}$, where:

$$
a \cdot\left(v_{1}, \ldots, v_{n}\right):=\left(a v_{1}, \ldots, a v_{n}\right)
$$

## Vector spaces: all together

## Definition

A vector space $(V,+, \cdot, \mathbf{0})$ is a set $V$ with a special element $\mathbf{0} \in V$ and operations ' + ' and ' $\because$ ' satisfying:
(1) $(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$
(2) $\boldsymbol{v}+\boldsymbol{w}=\boldsymbol{w}+\boldsymbol{v}$
(3) $v+0=v$
(4) $a \cdot(\boldsymbol{v}+\boldsymbol{w})=a \cdot v+a \cdot w$
(5) $(a+b) \cdot \boldsymbol{v}=a \cdot \boldsymbol{v}+b \cdot \boldsymbol{v}$
(6) $a \cdot(b \cdot v)=a b \cdot v$
(7) $1 \cdot v=v$
(8) $0 \cdot v=0$
for all $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in V$ and $a, b \in \mathbb{R}$.

## Vector spaces: Main Example

Our main example:

$$
\begin{aligned}
\mathbb{R}^{n} & =\left\{\left(v_{1}, \ldots, v_{n}\right) \mid v_{1}, \ldots, v_{n} \in \mathbb{R}\right\} \\
& =\left\{\left.\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right) \right\rvert\, v_{1}, \ldots, v_{n} \in \mathbb{R}\right\}
\end{aligned}
$$

The operations:

$$
\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)+\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right)=\left(\begin{array}{c}
v_{1}+w_{1} \\
\vdots \\
v_{n}+w_{n}
\end{array}\right) \quad a \cdot\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)=\left(\begin{array}{c}
a v_{1} \\
\vdots \\
a v_{n}
\end{array}\right)
$$

have a clear geometric interpretation.

## Vector spaces: geometric interpretation

a. v makes a vector shorter or longer:

$\boldsymbol{v}+\boldsymbol{w}$ stacks vectors together:


## Example: subspaces

Certain subsets $V \subseteq \mathbb{R}^{n}$ are also vector spaces, e.g.

$$
\begin{aligned}
& V=\left\{\left(v_{1}, v_{2}, 0\right) \mid v_{1}, v_{2} \in \mathbb{R}\right\} \subseteq \mathbb{R}^{3} \\
& W=\{(x, 2 x) \mid x \in \mathbb{R}\} \subseteq \mathbb{R}^{2}
\end{aligned}
$$

as long as they have $\mathbf{0}$, and they are closed under ' + ' and '. ':

$$
\begin{aligned}
& \boldsymbol{v}, \boldsymbol{w} \in V \Longrightarrow \boldsymbol{v}+\boldsymbol{w} \in V \\
& \boldsymbol{v} \in V, a \in \mathbb{R} \Longrightarrow a \cdot \boldsymbol{v} \in V
\end{aligned}
$$

These are called subspaces of $\mathbb{R}^{n}$.

## Vector space example

We've seen this example before!

## Example

The set of solutions of a homogeneous system of equations is a vector space.

Let $S$ be the set of solutions of a homogeneous system of equations, with $n$ variables. Then $S \subseteq \mathbb{R}^{n}$, and as we learned last week:

$$
\begin{gathered}
\boldsymbol{s}, \boldsymbol{t} \in S \Longrightarrow \boldsymbol{s}+\boldsymbol{t} \in S \\
\boldsymbol{s} \in S, a \in \mathbb{R} \Longrightarrow a \cdot \boldsymbol{s} \in S
\end{gathered}
$$

## Vector spaces: 'weirder' examples

$\mathbb{R}^{n}$ and $V \subseteq \mathbb{R}^{n}$ are the only things we'll use in this course...but there are other examples:

- $\{0\}$ is still an example
- Polynomials are still an example: $5 \cdot\left(2 x^{2}+1\right)=10 x^{2}+5$
- ...but finite sets are not!

$$
5 \cdot\{\text { sandwich, Tuesday }\}=? ? ?
$$

- Functions $\mathcal{F}(X):=\{f: X \rightarrow \mathbb{R}\}$ are an example. If $f, g$ are functions, then ' $f+g$ ' and $a \cdot f$ are also functions, defined by:

$$
(f+g)(x):=f(x)+g(x) \quad(a \cdot f)(x)=a f(x)
$$

Exercise: show that, if $X=\{1,2, \ldots, n\}$, then $\mathcal{F}(X)$ is basically the same as $\mathbb{R}^{n}$.

## Our first theorem about vector spaces

We've got a Definition, let's prove a Theorem!

## Theorem

Vector spaces have additive inverses. That is, for all $\mathbf{v} \in V$, there exists a vector $-\boldsymbol{v}$ such that $-\boldsymbol{v}+\boldsymbol{v}=\mathbf{0}$.

Proof. Let $-\boldsymbol{v}:=(-1) \cdot \boldsymbol{v}$. Then, we use rules (1)-(6):

$$
\begin{aligned}
-\boldsymbol{v}+\boldsymbol{v} & =(-1) \cdot \boldsymbol{v}+1 \cdot \boldsymbol{v} \\
& =(-1+1) \cdot \boldsymbol{v} \\
& =0 \cdot \mathbf{v} \\
& =\mathbf{0}
\end{aligned}
$$

${ }^{\oplus}$

## Maps between vector spaces

We can send vectors $\boldsymbol{v} \in V$ in one vector space to other vectors $\boldsymbol{w} \in W$ in another (or possibly the same) vector space?
$V, W$ are vector spaces, so they are sets with extra stuff (namely: $+, \cdot, 0$ ).

A common theme in mathematics: study functions $f: V \rightarrow W$ which preserve the extra stuff.

## Functions

- A function $f$ is an operation that sends elements of one set $X$ to another set $Y$.
- in that case we write $f: X \rightarrow Y$ or sometimes $X \xrightarrow{f} Y$
- this $f$ sends $x \in X$ to $f(x) \in Y$
- $X$ is called the domain and $Y$ the codomain of the function $f$
- Example. $f(n)=\frac{1}{n+1}$ can be seen as function $\mathbb{N} \rightarrow \mathbb{Q}$, that is from the natural numbers $\mathbb{N}$ to the rational numbers $\mathbb{Q}$
- On each set $X$ there is the identity function id: $X \rightarrow X$ that does nothing: $\operatorname{id}(x)=x$.
- Also one can compose 2 functions $X \xrightarrow{f} Y \xrightarrow{g} Z$ to a function:

$$
g \circ f: X \longrightarrow Z \quad \text { given by } \quad(g \circ f)(x)=g(f(x))
$$

## Linear maps

A linear map is a function that preserves the extra stuff in a vector space:

## Definition

Let $V, W$ be two vector spaces, and $f: V \rightarrow W$ a map between them; $f$ is called linear if it preserves both:

- addition: for all $\boldsymbol{v}, \boldsymbol{v}^{\prime} \in V$,

$$
f(\underbrace{\boldsymbol{v}+\boldsymbol{v}^{\prime}}_{\text {in } V})=\underbrace{f(\boldsymbol{v})+f\left(\boldsymbol{v}^{\prime}\right)}_{\text {in } W}
$$

- scalar multiplication: for each $\boldsymbol{v} \in V$ and $a \in \mathbb{R}$,

$$
f(\underbrace{a \cdot v}_{\text {in } V})=\underbrace{a \cdot f(\boldsymbol{v})}_{\text {in } W}
$$

## Linear maps preserve zero and minus

## Theorem

Each linear map $f: V \rightarrow W$ preserves:

- zero: $f(\mathbf{0})=\mathbf{0}$.
- minus: $f(-\boldsymbol{v})=-f(\boldsymbol{v})$


## Proof:

$$
\begin{aligned}
f(\mathbf{0}) & =f(0 \cdot \mathbf{0}) & f(-\boldsymbol{v}) & =f((-1) \cdot \boldsymbol{v}) \\
& =0 \cdot f(\mathbf{0}) & & =(-1) \cdot f(\boldsymbol{v}) \\
& =\mathbf{0} & & =-f(\boldsymbol{v})
\end{aligned}
$$

## Linear map examples I

$\mathbb{R}$ is a vector space. Let's consider maps $f: \mathbb{R} \rightarrow \mathbb{R}$. Most of them are not linear, like, for instance:

- $f(x)=1+x$, since $f(0)=1 \neq 0$
- $f(x)=x^{2}$, since $f(-1)=1=f(1) \neq-f(1)$.

So: linear maps $\mathbb{R} \rightarrow \mathbb{R}$ can only be very simple.

## Theorem

Each linear map $f: \mathbb{R} \rightarrow \mathbb{R}$ is of the form $f(x)=c \cdot x$, for some $c \in \mathbb{R}$.

Proof:

$$
f(x)=f(x \cdot 1)=x \cdot f(1)=f(1) \cdot x=c \cdot x, \quad \text { for } c=f(1)
$$

## Linear map examples II

Linear maps $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ start to get more interesting:

$$
s\left(\binom{v_{1}}{v_{2}}\right)=\binom{a v_{1}}{v_{2}} \quad t\left(\binom{v_{1}}{v_{2}}\right)=\binom{v_{1}}{b v_{2}}
$$

...these scale a vector on the $X$ - and $Y$-axis.
We can show these are linear by checking the two linearity equations:

$$
f(\boldsymbol{v}+\boldsymbol{w})=f(\boldsymbol{v})+f(\boldsymbol{w}) \quad f(a \cdot \boldsymbol{v})=a \cdot f(\boldsymbol{v})
$$

## Linear map examples III

Consider the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
f\left(\binom{v_{1}}{v_{2}}\right)=\binom{v_{1} \cos (\varphi)-v_{2} \sin (\varphi)}{v_{1} \sin (\varphi)+v_{2} \cos (\varphi)}
$$

This map describes rotation in the plane, with angle $\varphi$ :


We can also check linearity equations.

## Linear map examples IV

These extend naturally to 3 D , i.e. linear maps $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ :
$s x\left(\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)\right)=\left(\begin{array}{c}a v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$

$$
\operatorname{sy}\left(\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)\right)=\left(\begin{array}{c}
v_{1} \\
b v_{2} \\
v_{3}
\end{array}\right)
$$

$$
s z\left(\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)\right)=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
c v_{3}
\end{array}\right)
$$

Q: How do we do rotation?
A: Keep one coordinate fixed (axis of rotation), and 2D rotate the other two, e.g.

$$
r z\left(\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)\right)=\left(\begin{array}{c}
v_{1} \cos (\varphi)-v_{2} \sin (\varphi) \\
v_{1} \sin (\varphi)+v_{2} \cos (\varphi) \\
v_{3}
\end{array}\right)
$$

## And it works!

These kinds of linear maps are the basis of all 3D graphics, animation, physics, etc.


