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What are numbers?

Suppose I don’t know what numbers are...
...but I passed Wiskundige Structuren.

Tell me: what are numbers?

What is the first thing you would tell me about some numbers,
e.g. the real numbers?
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What are numbers?

The First Thing: numbers form a set

S (←− these are some numbers!)

The Second Thing: numbers can be added together

a ∈ S , b ∈ S =⇒ a + b ∈ S
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Addition? Tell me more!

We have a set S , with a special operation ‘+’ which satisfies:

1. a + b = b + a

2. (a + b) + c = a + (b + c)

...and there’s a special element 0 ∈ Swhere:

3. a + 0 = a

In math-speak, (S ,+, 0) is called a commutative monoid, but we
could also just call it a set with addition.
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Examples: sets with addition

• Every kind of number you know: R,N,Z,Q,C, . . .
• The set of all polynomials:

(x2 + 4x + 1) + (2x2) := 3x2 + 4x + 1 0 := 0

• The set of all finite sets:

{1, 2, 3}+ {3, 4} := {1, 2, 3} ∪ {3, 4} = {1, 2, 3, 4} 0 := {}

• Here’s a small example: {0}
0 + 0 := 0 0 := 0

• ...and (important!) the set Rn of all vectors of size n:

(x1, . . . , xn) + (y1, . . . , yn) := (x1 + y1, . . . , xn + yn) 0 := (0, . . . , 0)
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Linear combinations

• Last time, we talked a lot about linear combinations:

a · v + b ·w = u

• Q: what is the most general kind of set, where we can take
linear combinations of elements?

• A: a set V with addition and...scalar multiplication

a ∈ R, v ∈ V =⇒ a · v ∈ V
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Multiplication?! What does that do?

A vector space is a set with addition (V ,+, 0) with an extra
operation ‘·’, which satisfies:

1 a · (v + w) = a · v + a ·w
2 (a + b) · v = a · v + b · v
3 a · (b · v) = ab · v
4 1 · v = v
5 0 · v = 0

Example

Our main example is Rn, where:

a · (v1, . . . , vn) := (av1, . . . , avn)
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Vector spaces: all together

Definition

A vector space (V ,+, ·, 0) is a set V with a special element 0 ∈ V
and operations ‘+’ and ‘·’ satisfying:

1 (u + v) + w = u + (v + w)

2 v + w = w + v
3 v + 0 = v
4 a · (v + w) = a · v + a ·w
5 (a + b) · v = a · v + b · v
6 a · (b · v) = ab · v
7 1 · v = v
8 0 · v = 0

for all u, v ,w ∈ V and a, b ∈ R.
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Vector spaces: Main Example

Our main example:

Rn = {(v1, . . . , vn) | v1, . . . , vn ∈ R}

= {

v1
...
vn

 | v1, . . . , vn ∈ R}

The operations:v1
...
vn

+

w1

...
wn

 =

v1 + w1

...
vn + wn

 a ·

v1
...
vn

 =

av1
...

avn


have a clear geometric interpretation.
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Vector spaces: geometric interpretation

a · v makes a vector shorter or longer:

v := 2 · v =

v + w stacks vectors together:

v := w := v + w :=
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Example: subspaces

Certain subsets V ⊆ Rn are also vector spaces, e.g.

V = {(v1, v2, 0) | v1, v2 ∈ R} ⊆ R3

W = {(x , 2x) | x ∈ R} ⊆ R2

as long as they have 0, and they are closed under ‘+’ and ‘·’:

v ,w ∈ V =⇒ v + w ∈ V

v ∈ V , a ∈ R =⇒ a · v ∈ V

These are called subspaces of Rn.
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Vector space example

We’ve seen this example before!

Example

The set of solutions of a homogeneous system of equations is a
vector space.

Let S be the set of solutions of a homogeneous system of
equations, with n variables. Then S ⊆ Rn, and as we learned last
week:

s, t ∈ S =⇒ s + t ∈ S

s ∈ S , a ∈ R =⇒ a · s ∈ S
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Vector spaces: ‘weirder’ examples

Rn and V ⊆ Rn are the only things we’ll use in this course...but
there are other examples:

• {0} is still an example

• Polynomials are still an example: 5 · (2x2 + 1) = 10x2 + 5

• ...but finite sets are not!

5 · {sandwich,Tuesday} = ???

• Functions F(X ) := {f : X → R} are an example. If f , g are
functions, then ‘f + g ’ and a · f are also functions, defined by:

(f + g)(x) := f (x) + g(x) (a · f )(x) = af (x)

Exercise: show that, if X = {1, 2, . . . , n}, then F(X ) is
basically the same as Rn.
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Our first theorem about vector spaces

We’ve got a Definition, let’s prove a Theorem!

Theorem

Vector spaces have additive inverses. That is, for all v ∈ V , there
exists a vector −v such that −v + v = 0.

Proof. Let −v := (−1) · v . Then, we use rules (1)-(6):

−v + v = (−1) · v + 1 · v
= (−1 + 1) · v
= 0 · v
= 0

-
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Maps between vector spaces

We can send vectors v ∈ V in one vector space to other vectors
w ∈W in another (or possibly the same) vector space?

V ,W are vector spaces, so they are sets with extra stuff
(namely: +, ·, 0).

A common theme in mathematics: study functions f : V →W
which preserve the extra stuff.
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Functions

• A function f is an operation that sends elements of one set X
to another set Y .

• in that case we write f : X → Y or sometimes X
f→ Y

• this f sends x ∈ X to f (x) ∈ Y
• X is called the domain and Y the codomain of the function f

• Example. f (n) = 1
n+1 can be seen as function N→ Q, that is

from the natural numbers N to the rational numbers Q
• On each set X there is the identity function id : X → X that

does nothing: id(x) = x .

• Also one can compose 2 functions X
f→ Y

g→ Z to a function:

g ◦ f : X −→ Z given by (g ◦ f )(x) = g(f (x))
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Linear maps

A linear map is a function that preserves the extra stuff in a vector
space:

Definition

Let V ,W be two vector spaces, and f : V →W a map between
them; f is called linear if it preserves both:

• addition: for all v , v ′ ∈ V ,

f ( v + v ′︸ ︷︷ ︸
in V

) = f (v) + f (v ′)︸ ︷︷ ︸
in W

• scalar multiplication: for each v ∈ V and a ∈ R,

f ( a · v︸︷︷︸
in V

) = a · f (v)︸ ︷︷ ︸
in W

A. Kissinger Version: spring 2017 Matrix Calculations 20 / 26



Vector spaces
Linear maps Radboud University Nijmegen

Linear maps preserve zero and minus

Theorem

Each linear map f : V →W preserves:

• zero: f (0) = 0.

• minus: f (−v) = −f (v)

Proof:

f (0) = f (0 · 0)
= 0 · f (0)
= 0

f (−v) = f ((−1) · v)
= (−1) · f (v)
= −f (v) -
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Linear map examples I

R is a vector space. Let’s consider maps f : R→ R.
Most of them are not linear, like, for instance:

• f (x) = 1 + x , since f (0) = 1 6= 0

• f (x) = x2, since f (−1) = 1 = f (1) 6= −f (1).

So: linear maps R→ R can only be very simple.

Theorem

Each linear map f : R→ R is of the form f (x) = c · x, for some
c ∈ R.

Proof:

f (x) = f (x · 1) = x · f (1) = f (1) · x = c · x , for c = f (1). -
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Linear map examples II

Linear maps R2 → R2 start to get more interesting:

s(

(
v1
v2

)
) =

(
av1
v2

)
t(

(
v1
v2

)
) =

(
v1
bv2

)
...these scale a vector on the X - and Y -axis.

We can show these are linear by checking the two linearity
equations:

f (v + w) = f (v) + f (w) f (a · v) = a · f (v)
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Linear map examples III

Consider the map f : R2 → R2 given by

f (

(
v1
v2

)
) =

(
v1 cos(ϕ)− v2 sin(ϕ)
v1 sin(ϕ) + v2 cos(ϕ)

)
This map describes rotation in the plane, with angle ϕ:

We can also check linearity equations.
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Linear map examples IV

These extend naturally to 3D, i.e. linear maps R3 → R3:

sx(

(
v1
v2
v3

)
) =

(
av1
v2
v3

)
sy(

(
v1
v2
v3

)
) =

(
v1
bv2
v3

)
sz(

(
v1
v2
v3

)
) =

(
v1
v2
cv3

)

Q: How do we do rotation?
A: Keep one coordinate fixed (axis of rotation), and 2D rotate the
other two, e.g.

rz(

(
v1
v2
v3

)
) =

(
v1 cos(ϕ)− v2 sin(ϕ)
v1 sin(ϕ) + v2 cos(ϕ)

v3

)
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And it works!

These kinds of linear maps are the basis of all 3D graphics,
animation, physics, etc.
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