Matrix Calculations: Linear maps, bases, and matrix multiplication

A. Kissinger

Institute for Computing and Information Sciences Radboud University Nijmegen

Version: spring 2017

Basis of a vector space

From linear maps to matrices

Composing linear maps using matrices

Radboud University Nijmegen

From last time

- Vector spaces V, W,... are special kinds of sets whose elements are called *vectors*.
- Vectors can be added together, or multiplied by a real number, For *v*, *w* ∈ *V*, *a* ∈ ℝ:

$$oldsymbol{v}+oldsymbol{w}\in V \qquad a\cdotoldsymbol{v}\in V$$

• The simplest examples are:

$$\mathbb{R}^n := \{(a_1, \ldots, a_n) \mid a_i \in \mathbb{R}\}$$

 Linear maps are special kinds of functions which satisfy two properties:

$$f(\mathbf{v} + \mathbf{w}) = f(\mathbf{v}) + f(\mathbf{w})$$
 $f(\mathbf{a} \cdot \mathbf{v}) = \mathbf{a} \cdot f(\mathbf{v})$

From last time

• Linear maps describe *transformations in space*, such as rotation:

$$\operatorname{rx}\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} x\\ y\cos\theta - z\sin\theta\\ y\sin\theta + z\cos\theta \end{pmatrix}$$

• reflection and scaling:

$$\operatorname{sy}\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} x\\ (1/2)y\\ z \end{pmatrix}$$

Getting back to matrices

Q: So what is the relationship between this (cool) linear map stuff, and the (lets face it, kindof boring) stuff about matrices and linear equations from before?

A: Matrices are a convenient way to represent linear maps!

To get there, we need a new concept: basis of a vector space

Basis in space

• In \mathbb{R}^3 we can distinguish three special vectors:

$$(1,0,0)\in \mathbb{R}^3$$
 $(0,1,0)\in \mathbb{R}^3$ $(0,0,1)\in \mathbb{R}^3$

- These vectors form a basis for \mathbb{R}^3 , which means:
 - **1** These vectors span \mathbb{R}^3 , which means each vector $(x, y, z) \in \mathbb{R}^3$ can be expressed as a linear combination of these three vectors:

$$\begin{aligned} (x, y, z) &= (x, 0, 0) + (0, y, 0) + (0, 0, z) \\ &= x \cdot (1, 0, 0) + y \cdot (0, 1, 0) + z \cdot (0, 0, 1) \end{aligned}$$

- 2 Moreover, this set is as small as possible: no vectors are can be removed and still span \mathbb{R}^3 .
- Note: condition (2) is equivalent to saying these vectors are linearly independent

Basis

Definition

Vectors $v_1, \ldots, v_n \in V$ form a basis for a vector space V if these v_1, \ldots, v_n

- are linearly independent, and
- span V in the sense that each w ∈ V can be written as linear combination of v₁,..., v_n, namely as:

 $\boldsymbol{w} = a_1 \boldsymbol{v}_1 + \dots + a_n \boldsymbol{v}_n$ for some $a_1, \dots, a_n \in \mathbb{R}$

- These scalars a_i are uniquely determined by $\boldsymbol{w} \in V$ (see below)
- A space V may have several bases, but the number of elements of a basis for V is always the same; it is called the dimension of V, usually written as dim(V) ∈ N.

The standard basis for \mathbb{R}^n

For the space ℝⁿ = {(x₁,...,x_n) | x_i ∈ ℝ} there is a standard choice of basis vectors:

$$m{e}_1 := (1, 0, 0 \dots, 0), \ m{e}_2 := (0, 1, 0, \dots, 0), \ \cdots, \ m{e}_n := (0, \dots, 0, 1)$$

- e_i has a 1 in the *i*-th position, and 0 everywhere else.
- We can easily check that these vectors are independent and span ℝⁿ.
- This enables us to state precisely that \mathbb{R}^n is *n*-dimensional.

An alternative basis for \mathbb{R}^2

- The standard basis for \mathbb{R}^2 is (1,0), (0,1).
- But many other choices are possible, eg. (1,1), (1,-1)
 - independence: if $a \cdot (1,1) + b \cdot (1,-1) = (0,0)$, then:

$\int a+b = 0$	and thuc	∫ a = 0
$\int a - b = 0$		b = 0

spanning: each point (x, y) can written in terms of (1, 1), (1, -1), namely:

$$(x,y) = \frac{x+y}{2}(1,1) + \frac{x-y}{2}(1,-1)$$

Uniqueness of representations

Theorem

- Suppose V is a vector space, with basis v_1, \ldots, v_n
- assume $\mathbf{x} \in V$ can be represented in two ways:

 $\mathbf{x} = a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n$ and also $x = b_1 \mathbf{v}_1 + \dots + b_n \mathbf{v}_n$ Then: $a_1 = b_1$ and \dots and $a_n = b_n$.

Proof: This follows from independence of v_1, \ldots, v_n since:

$$\mathbf{0} = \mathbf{x} - \mathbf{x} = (a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n) - (b_1 \mathbf{v}_1 + \dots + b_n \mathbf{v}_n) \\ = (a_1 - b_1) \mathbf{v}_1 + \dots + (a_n - b_n) \mathbf{v}_n.$$

Hence $a_i - b_i = 0$, by independence, and thus $a_i = b_i$.

\$

Representing vectors

Fixing a basis B = {v₁,..., v_n} therefore gives us a *unique* way to represent a vector v ∈ V as a list of numbers called *coordinates*:

$$\mathbf{v} = a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n$$

New notation: $\mathbf{v} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}_{\mathcal{B}}$

• If $V = \mathbb{R}^n$, and \mathcal{B} is the standard basis, this is just the vector itself:

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}_{\mathcal{B}} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$

- ...but if ${\mathcal B}$ is not the standard basis, this can be different
- ...and if $V \neq \mathbb{R}^n$, a list of numbers is meaningless without fixing a basis.

Radboud University Nijmegen

What does it mean?

"The introduction of numbers as coordinates is an act of violence." – Hermann Weyl

What does it mean?

- Space is (probably) real
- ...but coordinates (and hence bases) only exist in our head
- Choosing a basis amounts to fixing some directions in space we decide to call "up", "right", "forward", etc.
- Then a linear combination like:

$$v = 5 \cdot up + 3 \cdot right - 2 \cdot forward$$

describes a point in space, mathematically.

• ...and it makes working with *linear maps* a *lot* easier

Linear maps and bases, example I

- Take the linear map $f((x_1, x_2, x_3)) = (x_1 x_2, x_2 + x_3)$
- Claim: this map is entirely determined by what it does on the basis vectors (1,0,0), (0,1,0), (0,0,1) ∈ ℝ³, namely:

f((1,0,0)) = (1,0) f((0,1,0)) = (-1,1) f((0,0,1)) = (0,1).

• Indeed, using linearity:

$$f((x_1, x_2, x_3)) = f((x_1, 0, 0) + (0, x_2, 0) + (0, 0, x_3))$$

= $f(x_1 \cdot (1, 0, 0) + x_2 \cdot (0, 1, 0) + x_3 \cdot (0, 0, 1))$
= $f(x_1 \cdot (1, 0, 0)) + f(x_2 \cdot (0, 1, 0)) + f(x_3 \cdot (0, 0, 1))$
= $x_1 \cdot f((1, 0, 0)) + x_2 \cdot f((0, 1, 0)) + x_3 \cdot f((0, 0, 1))$
= $x_1 \cdot (1, 0) + x_2 \cdot (-1, 1) + x_3 \cdot (0, 1)$
= $(x_1 - x_2, x_2 + x_3)$

Linear maps and bases, geometrically

"If we know how to transform any set of axes for a space, we know how to transform everything."

Linear maps and bases, example I (cntd)

•
$$f((x_1, x_2, x_3)) = (x_1 - x_2, x_2 + x_3)$$
 is totally determined by:

 $f((1,0,0)) = (1,0) \qquad f((0,1,0)) = (-1,1) \qquad f((0,0,1)) = (0,1)$

• We can organise this data into a 2×3 matrix:

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

The vector $f(\mathbf{v}_i)$, for basis vector \mathbf{v}_i , appears as the *i*-the column.

• Applying *f* can be done by a new kind of multiplication:

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \cdot x_1 + -1 \cdot x_2 + 0 \cdot x_3 \\ 0 \cdot x_1 + 1 \cdot x_2 + 1 \cdot x_3 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 \\ x_2 + x_3 \end{pmatrix}$$

Matrix-vector multiplication: Definition

Definition

For vectors $\mathbf{v} = (x_1, \dots, x_n)$, $\mathbf{w} = (y_1, \dots, y_n) \in \mathbb{R}^n$ define their inner product (or dot product) as the real number:

$$\langle \mathbf{v}, \mathbf{w} \rangle = x_1 y_1 + \dots + x_n y_n = \sum_{i=1}^n x_i y_i$$

Definition

If
$$\mathbf{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$, then $\mathbf{w} := \mathbf{A} \cdot \mathbf{v}$

is the vector whose *i*-th element is the dot product of the *i*-th row of matrix \boldsymbol{A} with the (input) vector \boldsymbol{v} .

Matrix-vector multiplication, explicitly

For **A** an $m \times n$ matrix, **B** a column vector of length *n*:

 $\mathbf{A} \cdot \mathbf{b} = \mathbf{c}$

is a column vector of length m.

$$\begin{pmatrix} \vdots & \vdots & \vdots \\ a_{i1} & \cdots & a_{in} \\ \vdots & \vdots & \vdots \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} \vdots \\ a_{i1}b_1 + \cdots + a_{in}b_n \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ c_i \\ \vdots \\ \vdots \end{pmatrix}$$

$$c_i = \sum_{k=1}^n a_{ik} b_k$$

Representing linear maps

Theorem

For every linear map $f : \mathbb{R}^n \to \mathbb{R}^m$, there exists an $m \times n$ matrix **A** where:

$$f(\mathbf{v}) = \mathbf{A} \cdot \mathbf{v}$$

(where " \cdot " is the matrix multiplication of **A** and a vector **v**)

Proof. Let $\{e_1, \ldots, e_n\}$ be the standard basis for \mathbb{R}^n . **A** be the matrix whose *i*-th column is $f(e_i)$. Then:

$$\boldsymbol{A} \cdot \boldsymbol{e}_{i} = \begin{pmatrix} a_{11}0 + \ldots + a_{1i}1 + \ldots + a_{1n}0 \\ \vdots \\ a_{m1}0 + \ldots + a_{mi}1 + \ldots + a_{mn}0 \end{pmatrix} = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{mi} \end{pmatrix} = f(\boldsymbol{e}_{i})$$

Since it is enough to check basis vectors and $f(\mathbf{e}_i) = \mathbf{A} \cdot \mathbf{e}_i$, we are done.

A. Kissinger

Matrix-vector multiplication, concretely

• Recall
$$f((x_1, x_2, x_3)) = (x_1 - x_2, x_2 + x_3)$$
 with matrix:
 $\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$

• We can directly calculate
$$f((1,2,-1)) = (1-2,2-1) = (-1,1)$$

 We can also get the same result by matrix-vector multiplication:

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + -1 \cdot 2 + 0 \cdot -1 \\ 0 \cdot 1 + 1 \cdot 2 + 1 \cdot -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

This multiplication can be understood as: putting the argument values x₁ = 1, x₂ = 2, x₃ = -1 in variables of the underlying equations, and computing the outcome.

Radboud University Nijmegen 🕅

Another example, to learn the mechanics

$$\begin{pmatrix} 9 & 3 & 2 & 9 & 7 \\ 8 & 5 & 6 & 6 & 3 \\ 4 & 5 & 8 & 9 & 3 \\ 3 & 4 & 3 & 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 9 \\ 5 \\ 2 \\ 5 \\ 7 \end{pmatrix}$$

$$= \begin{pmatrix} 9 \cdot 9 + 3 \cdot 5 + 2 \cdot 2 + 9 \cdot 5 + 7 \cdot 7 \\ 8 \cdot 9 + 5 \cdot 5 + 6 \cdot 2 + 6 \cdot 5 + 3 \cdot 7 \\ 4 \cdot 9 + 5 \cdot 5 + 8 \cdot 2 + 9 \cdot 5 + 3 \cdot 7 \\ 3 \cdot 9 + 4 \cdot 5 + 3 \cdot 2 + 3 \cdot 5 + 4 \cdot 7 \end{pmatrix}$$

$$= \begin{pmatrix} 81 + 15 + 4 + 45 + 49 \\ 72 + 25 + 12 + 30 + 21 \\ 36 + 25 + 16 + 45 + 21 \\ 27 + 20 + 6 + 15 + 28 \end{pmatrix} = \begin{pmatrix} 194 \\ 160 \\ 143 \\ 96 \end{pmatrix}$$

Linear map from matrix

- We have seen how a linear map can be described via a matrix
- One can also read each matrix as a linear map

Example

• Consider the matrix
$$\begin{pmatrix} 2 & 0 & -1 \\ 5 & 1 & -3 \end{pmatrix}$$

- It has 3 columns/inputs and two rows/outputs. Hence it describes a map f: ℝ³ → ℝ²
- Namely: $f((x_1, x_2, x_3)) = (2x_1 x_3, 5x_1 + x_2 3x_3).$

Examples of linear maps and matrices I

Projections are linear maps that send higher-dimensional vectors to lower ones. Consider $f : \mathbb{R}^3 \to \mathbb{R}^2$

$$f\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} x\\ y \end{pmatrix}.$$

f maps 3d space to the the 2d plane. The matrix of f is the following 2×3 matrix:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Examples of linear maps and matrices II

We have already seen: Rotation over an angle φ is a linear map

This rotation is described by $f: \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$f((x,y)) = (x\cos(\varphi) - y\sin(\varphi), x\sin(\varphi) + y\cos(\varphi))$$

The matrix that describes f is

$$egin{pmatrix} \cos(arphi) & -\sin(arphi) \ \sin(arphi) & \cos(arphi) \end{pmatrix}$$

Radboud University Nijmegen 🖤

Example: systems of equations

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1$$

$$\vdots \qquad \Rightarrow \qquad \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

$$\begin{aligned} \mathbf{A} \cdot \mathbf{x} &= \mathbf{0} \\ \vdots &\vdots &\vdots \\ \mathbf{a}_{m1} x_1 + \dots + \mathbf{a}_{mn} x_n &= \mathbf{0} \\ \vdots &\vdots &\vdots \\ \mathbf{a}_{m1} x_1 + \dots + \mathbf{a}_{mn} x_n &= \mathbf{0} \end{aligned} \qquad \qquad \begin{aligned} \mathbf{A} \cdot \mathbf{x} &= \mathbf{0} \\ \vdots &\vdots &\vdots \\ \mathbf{a}_{m1} &\cdots &\mathbf{a}_{mn} \\ \vdots &\vdots &\vdots \\ \mathbf{a}_{m1} &\cdots &\mathbf{a}_{mn} \\ \end{aligned} \right) \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \\ \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \vdots \\ \mathbf{0} \\ \end{pmatrix}$$

General vector spaces

- We can also represent linear maps f : V → W between general vector spaces (not just ℝⁿ)
- But we must fix bases for both spaces:

$$\mathcal{B} := \{\mathbf{v}_1, \dots, \mathbf{v}_n\} \subset V$$
$$\mathcal{C} := \{\mathbf{w}_1, \dots, \mathbf{w}_m\} \subset W$$

Then:

$$f(\mathbf{x}) = \mathbf{A} \cdot \mathbf{x}$$

where **A** is the matrix whose *i*-th column is $f(\mathbf{v}_i)$, written in terms of basis C:

$$f(\mathbf{v}_i) = a_{1i}\mathbf{w}_1 + \ldots + a_{mi}\mathbf{w}_m = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{mi} \end{pmatrix}_{\mathcal{C}}$$

Matrix summary

- Fix bases $\{ \textit{v}_1, \ldots, \textit{v}_n \} \subset V$ and $\{ \textit{w}_1, \ldots, \textit{w}_m \} \subset W$
- Every linear map f: V → W can be represented by a matrix, and every matrix represents a linear map:

$$f(\mathbf{v}) = \mathbf{A} \cdot \mathbf{v}$$

- The *i*-th column of **A** is $f(\mathbf{v}_i)$, wrt. the basis $\mathbf{w}_1, \ldots, \mathbf{w}_m$ of W
- This matrix of *f* depends on the choice of basis: for different bases of *V* and *W* a different matrix is obtained
- For V = ℝⁿ and W = ℝ^m, we often use the standard basis, in which case the *i*-th column of A is just f(e_i).

Matrix multiplication

• Consider linear maps g, f represented by matrices A, B:

$$g(\mathbf{v}) = \mathbf{A} \cdot \mathbf{v}$$
 $f(\mathbf{w}) = \mathbf{B} \cdot \mathbf{w}$

• Can we find a matrix **C** that represents their composition?

$$g(f(\mathbf{v})) = \mathbf{C} \cdot \mathbf{v}$$

• Let's try:

$$g(f(\mathbf{v})) = g(\mathbf{B} \cdot \mathbf{v}) = \mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{v}) \stackrel{(*)}{=} (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{v}$$

(where step (*) is currently 'wishful thinking')

- Great! Let $\boldsymbol{C} := \boldsymbol{A} \cdot \boldsymbol{B}$.
- But we don't know what "." means for two matrices yet...

Matrix multiplication

- Solution: generalise from $\mathbf{A} \cdot \mathbf{v}$
- A vector is a matrix with one column:

The number in the *i*-th row and the first column of $\mathbf{A} \cdot \mathbf{v}$ is the dot product of the *i*-th row of \mathbf{A} with the first column of \mathbf{v} .

• So for matrices **A**, **B**:

The number in the *i*-th row and the *j*-th column of $\mathbf{A} \cdot \mathbf{B}$ is the dot product of the *i*-th row of \mathbf{A} with the *j*-th column of \mathbf{B} .

Matrix multiplication

For **A** an $m \times n$ matrix, **B** an $n \times p$ matrix:

 $\mathbf{A} \cdot \mathbf{B} = \mathbf{C}$

is an $m \times p$ matrix.

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Special case: vectors

For **A** an $m \times n$ matrix, **B** an $n \times 1$ matrix:

 $\mathbf{A} \cdot \mathbf{b} = \mathbf{c}$

is an $m \times 1$ matrix.

Matrix composition

Theorem

Matrix composition is associative:

$$(\boldsymbol{A}\cdot\boldsymbol{B})\cdot\boldsymbol{C}=\boldsymbol{A}\cdot(\boldsymbol{B}\cdot\boldsymbol{C})$$

Proof. Let $X := (A \cdot B) \cdot C$. This is a matrix with entries:

$$x_{ip} = \sum_k a_{ik} b_{kp}$$

Then, the matrix entries of $\boldsymbol{X} \cdot \boldsymbol{C}$ are:

$$\sum_{p} x_{ip} c_{pj} = \sum_{p} \left(\sum_{k} a_{ik} b_{kp} \right) c_{pk} = \sum_{kp} a_{ik} b_{kp} c_{pk}$$

(because sums can always be pulled outside, and combined)

A. Kissinger

Matrix Calculations

Associativity of matrix composition

Proof (cont'd). Now, let $Y := B \cdot C$. This has matrix entries:

$$y_{kj} = \sum_{p} b_{kp} c_{pj}$$

Then, the matrix entries of $\boldsymbol{A}\cdot\boldsymbol{Y}$ are:

$$\sum_{k} a_{ik} y_{kj} = \sum_{k} a_{ik} \left(\sum_{p} b_{kp} c_{pj} \right) = \sum_{kp} a_{ik} b_{kp} c_{pk}$$

...which is the same as before! So:

$$(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C} = \mathbf{X} \cdot \mathbf{C} = \mathbf{A} \cdot \mathbf{Y} = \mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C})$$

So we can drop those pesky parentheses:

$$\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C} := (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C} = \mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C})$$

Matrix product and composition

Corollary

The composition of linear maps is given by matrix product.

Proof. Let $g(w) = \mathbf{A} \cdot w$ and $f(v) = \mathbf{B} \cdot v$. Then:

$$g(f(\mathbf{v})) = g(\mathbf{B} \cdot \mathbf{v}) = \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{v}$$

No wishful thinking necessary!

Example 1

Consider the following two linear maps, and their associated matrices:

$$\mathbb{R}^{3} \xrightarrow{f} \mathbb{R}^{2} \qquad \mathbb{R}^{2} \xrightarrow{g} \mathbb{R}^{2}$$

$$f((x_{1}, x_{2}, x_{3})) = (x_{1} - x_{2}, x_{2} + x_{3}) \qquad g((y_{1}, y_{2})) = (2y_{1} - y_{2}, 3y_{2})$$

$$M_{f} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \qquad M_{g} = \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix}$$
We can compute the composition directly:
$$(g \circ f)((x_{1}, x_{2}, x_{3})) = g(f((x_{1}, x_{2}, x_{3})))$$

$$= g((x_{1} - x_{2}, x_{2} + x_{3}))$$

$$= (2(x_{1} - x_{2}) - (x_{2} + x_{3}), 3(x_{2} + x_{3}))$$

$$= (2x_{1} - 3x_{2} - x_{3}, 3x_{2} + 3x_{3})$$

So:

$$\boldsymbol{M}_{g\circ f} = \begin{pmatrix} 2 & -3 & -1 \\ 0 & 3 & 3 \end{pmatrix}$$

...which is just the product of the matrices: $M_{g\circ f} = M_g \cdot M_f$

Note: matrix composition is not commutative

In general, $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$

For instance: Take
$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Then:
 $\mathbf{A} \cdot \mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$
 $= \begin{pmatrix} 1 \cdot 0 + 0 \cdot -1 & 1 \cdot 1 + 0 \cdot 0 \\ 0 \cdot 0 + -1 \cdot -1 & 0 \cdot 1 + -1 \cdot 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
 $\mathbf{B} \cdot \mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
 $= \begin{pmatrix} 0 \cdot 1 + 1 \cdot 0 & 0 \cdot 0 + 1 \cdot -1 \\ -1 \cdot 1 + 0 \cdot 0 & -1 \cdot 0 + 0 \cdot -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$

F

But it is...

...associative, as we've already seen:

$$\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C} := (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C} = \mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C})$$

It also has a *unit* given by the *identity matrix* **I**:

 $\mathbf{A} \cdot \mathbf{I} = \mathbf{I} \cdot \mathbf{A} = \mathbf{A}$

where:

$$\boldsymbol{I} := \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Example: political swingers, part I

- We take an extremely crude view on politics and distinguish only left and right wing political supporters
- We study changes in political views, per year
- Suppose we observe, for each year:
 - 80% of lefties remain lefties and 20% become righties
 - 90% of righties remain righties, and 10% become lefties

Questions ...

- start with a population L = 100, R = 150, and compute the number of lefties and righties after one year;
- similarly, after 2 years, and 3 years, ...
- Find a convenient way to represent these computations.

Political swingers, part II

- So if we start with a population L = 100, R = 150, then after one year we have:
 - lefties: $0.8 \cdot 100 + 0.1 \cdot 150 = 80 + 15 = 95$
 - righties: $0.2 \cdot 100 + 0.9 \cdot 150 = 20 + 135 = 155$
- Two observations:
 - this looks like a matrix-vector multiplication
 - long-term developments can be calculated via iterated matrices

Political swingers, part III

• We can write the political transition matrix as

$$\boldsymbol{P} = \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix}$$

• If
$$\binom{L}{R} = \binom{100}{150}$$
, then after one year we have:
 $\mathbf{P} \cdot \binom{100}{150} = \binom{0.8 \ 0.1}{0.2 \ 0.9} \cdot \binom{100}{150}$
 $= \binom{0.8 \cdot 100 + 0.1 \cdot 150}{0.2 \cdot 100 + 0.9 \cdot 150} = \binom{95}{155}$

• After two years we have:

$$\boldsymbol{P} \cdot \begin{pmatrix} 95\\155 \end{pmatrix} = \begin{pmatrix} 0.8 & 0.1\\0.2 & 0.9 \end{pmatrix} \cdot \begin{pmatrix} 95\\155 \end{pmatrix} \\ = \begin{pmatrix} 0.8 \cdot 95 + 0.1 \cdot 155\\0.2 \cdot 95 + 0.9 \cdot 155 \end{pmatrix} = \begin{pmatrix} 91.5\\158.5 \end{pmatrix}$$

Political swingers, part IV

The situation after two years is obtained as:

$$P \cdot P \cdot \begin{pmatrix} L \\ R \end{pmatrix} = \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix} \cdot \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix} \cdot \begin{pmatrix} L \\ R \end{pmatrix}$$

do this multiplication first
$$= \begin{pmatrix} 0.8 \cdot 0.8 + 0.1 \cdot 0.2 & 0.8 \cdot 0.1 + 0.1 \cdot 0.9 \\ 0.2 \cdot 0.8 + 0.9 \cdot 0.2 & 0.2 \cdot 0.1 + 0.9 \cdot 0.9 \end{pmatrix} \cdot \begin{pmatrix} L \\ R \end{pmatrix}$$

$$= \begin{pmatrix} 0.66 & 0.17 \\ 0.34 & 0.83 \end{pmatrix} \cdot \begin{pmatrix} L \\ R \end{pmatrix}$$

The situation after n years is described by the n-fold iterated matrix:

$$P^n = \underbrace{P \cdot P \cdots P}_{P}$$

n times

Political swingers, part V

Interpret the following iterations:

$$P^{2} = P \cdot P = \begin{pmatrix} 0.66 & 0.17 \\ 0.34 & 0.83 \end{pmatrix}$$
$$P^{3} = P \cdot P \cdot P = \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix} \cdot \begin{pmatrix} 0.66 & 0.17 \\ 0.34 & 0.83 \end{pmatrix}$$
$$= \begin{pmatrix} 0.562 & 0.219 \\ 0.438 & 0.781 \end{pmatrix}$$
$$P^{4} = P \cdot P \cdot P \cdot P = \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix} \cdot \begin{pmatrix} 0.562 & 0.219 \\ 0.438 & 0.781 \end{pmatrix}$$
$$= \begin{pmatrix} 0.4934 & 0.2533 \\ 0.5066 & 0.7467 \end{pmatrix}$$

Etc. It looks like P^{100} is going to be hard to calculate. Is there an easier way to do this? (**Spoiler alert:** Yes! But you'll have to wait 2 weeks...)