Matrix Calculations: Linear maps, bases, and matrix multiplication

A. Kissinger
Institute for Computing and Information Sciences Radboud University Nijmegen

Version: spring 2017

Outline

Basis of a vector space

From linear maps to matrices

Composing linear maps using matrices

From last time

- Vector spaces V, W, \ldots are special kinds of sets whose elements are called vectors.
- Vectors can be added together, or multiplied by a real number, For $\boldsymbol{v}, \boldsymbol{w} \in V, a \in \mathbb{R}$:

$$
\boldsymbol{v}+\boldsymbol{w} \in V \quad a \cdot \boldsymbol{v} \in V
$$

- The simplest examples are:

$$
\mathbb{R}^{n}:=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in \mathbb{R}\right\}
$$

- Linear maps are special kinds of functions which satisfy two properties:

$$
f(\boldsymbol{v}+\boldsymbol{w})=f(\boldsymbol{v})+f(\boldsymbol{w}) \quad f(a \cdot \boldsymbol{v})=a \cdot f(\boldsymbol{v})
$$

From last time

- Linear maps describe transformations in space, such as rotation:

$$
\operatorname{rx}\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right)=\left(\begin{array}{c}
x \\
y \cos \theta-z \sin \theta \\
y \sin \theta+z \cos \theta
\end{array}\right)
$$

- reflection and scaling:

$$
\operatorname{sy}\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right)=\left(\begin{array}{c}
x \\
(1 / 2) y \\
z
\end{array}\right)
$$

Getting back to matrices

Q: So what is the relationship between this (cool) linear map stuff, and the (lets face it, kindof boring) stuff about matrices and linear equations from before?

A: Matrices are a convenient way to represent linear maps!
To get there, we need a new concept: basis of a vector space

Basis in space

- $\operatorname{In} \mathbb{R}^{3}$ we can distinguish three special vectors:
$(1,0,0) \in \mathbb{R}^{3}$
$(0,1,0) \in \mathbb{R}^{3}$
$(0,0,1) \in \mathbb{R}^{3}$
- These vectors form a basis for \mathbb{R}^{3}, which means:
(1) These vectors span \mathbb{R}^{3}, which means each vector $(x, y, z) \in \mathbb{R}^{3}$ can be expressed as a linear combination of these three vectors:

$$
\begin{aligned}
(x, y, z) & =(x, 0,0)+(0, y, 0)+(0,0, z) \\
& =x \cdot(1,0,0)+y \cdot(0,1,0)+z \cdot(0,0,1)
\end{aligned}
$$

(2) Moreover, this set is as small as possible: no vectors are can be removed and still span \mathbb{R}^{3}.

- Note: condition (2) is equivalent to saying these vectors are linearly independent

Basis

Definition

Vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n} \in V$ form a basis for a vector space V if these $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$

- are linearly independent, and
- span V in the sense that each $\boldsymbol{w} \in V$ can be written as linear combination of $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$, namely as:

$$
\boldsymbol{w}=a_{1} \boldsymbol{v}_{1}+\cdots+a_{n} \boldsymbol{v}_{n} \quad \text { for some } \quad a_{1}, \ldots, a_{n} \in \mathbb{R}
$$

- These scalars a_{i} are uniquely determined by $\boldsymbol{w} \in V$ (see below)
- A space V may have several bases, but the number of elements of a basis for V is always the same; it is called the dimension of V, usually written as $\operatorname{dim}(V) \in \mathbb{N}$.

The standard basis for \mathbb{R}^{n}

- For the space $\mathbb{R}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R}\right\}$ there is a standard choice of basis vectors:
$\boldsymbol{e}_{1}:=(1,0,0 \ldots, 0), \boldsymbol{e}_{2}:=(0,1,0, \ldots, 0), \cdots, \boldsymbol{e}_{n}:=(0, \ldots, 0,1)$
- \boldsymbol{e}_{i} has a 1 in the i-th position, and 0 everywhere else.
- We can easily check that these vectors are independent and span \mathbb{R}^{n}.
- This enables us to state precisely that \mathbb{R}^{n} is n-dimensional.

An alternative basis for \mathbb{R}^{2}

- The standard basis for \mathbb{R}^{2} is $(1,0),(0,1)$.
- But many other choices are possible, eg. $(1,1),(1,-1)$
- independence: if $a \cdot(1,1)+b \cdot(1,-1)=(0,0)$, then:

$$
\left\{\begin{array} { l }
{ a + b = 0 } \\
{ a - b = 0 }
\end{array} \quad \text { and thus } \quad \left\{\begin{array}{l}
a=0 \\
b=0
\end{array}\right.\right.
$$

- spanning: each point (x, y) can written in terms of $(1,1),(1,-1)$, namely:

$$
(x, y)=\frac{x+y}{2}(1,1)+\frac{x-y}{2}(1,-1)
$$

Uniqueness of representations

Theorem

- Suppose V is a vector space, with basis v_{1}, \ldots, v_{n}
- assume $\boldsymbol{x} \in V$ can be represented in two ways:

$$
\boldsymbol{x}=a_{1} \boldsymbol{v}_{1}+\cdots+a_{n} \boldsymbol{v}_{n} \quad \text { and also } \quad x=b_{1} \boldsymbol{v}_{1}+\cdots+b_{n} \boldsymbol{v}_{n}
$$

Then: $a_{1}=b_{1}$ and \ldots and $a_{n}=b_{n}$.
Proof: This follows from independence of v_{1}, \ldots, v_{n} since:

$$
\begin{aligned}
\mathbf{0}=\boldsymbol{x}-\boldsymbol{x} & =\left(a_{1} \boldsymbol{v}_{1}+\cdots+a_{n} \boldsymbol{v}_{n}\right)-\left(b_{1} \boldsymbol{v}_{1}+\cdots+b_{n} \boldsymbol{v}_{n}\right) \\
& =\left(a_{1}-b_{1}\right) \boldsymbol{v}_{1}+\cdots+\left(a_{n}-b_{n}\right) \boldsymbol{v}_{n} .
\end{aligned}
$$

Hence $a_{i}-b_{i}=0$, by independence, and thus $a_{i}=b_{i}$.

Representing vectors

- Fixing a basis $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ therefore gives us a unique way to represent a vector $\boldsymbol{v} \in V$ as a list of numbers called coordinates:

$$
\begin{gathered}
\boldsymbol{v}=a_{1} \boldsymbol{v}_{1}+\cdots+a_{n} \boldsymbol{v}_{n} \\
\text { New notation: } \quad \boldsymbol{v}=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)_{\mathcal{B}}
\end{gathered}
$$

- If $V=\mathbb{R}^{n}$, and \mathcal{B} is the standard basis, this is just the vector itself:

$$
\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)_{\mathcal{B}}=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)
$$

- ...but if \mathcal{B} is not the standard basis, this can be different
- ...and if $V \neq \mathbb{R}^{n}$, a list of numbers is meaningless without fixing a basis.

What does it mean?

"The introduction of numbers as coordinates is an act of violence."

- Hermann Weyl

What does it mean?

- Space is (probably) real
- ...but coordinates (and hence bases) only exist in our head
- Choosing a basis amounts to fixing some directions in space we decide to call "up", "right", "forward", etc.
- Then a linear combination like:

$$
\boldsymbol{v}=5 \cdot \mathbf{u p}+3 \cdot \text { right }-2 \cdot \text { forward }
$$

describes a point in space, mathematically.

- ...and it makes working with linear maps a lot easier

Linear maps and bases, example I

- Take the linear map $f\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(x_{1}-x_{2}, x_{2}+x_{3}\right)$
- Claim: this map is entirely determined by what it does on the basis vectors $(1,0,0),(0,1,0),(0,0,1) \in \mathbb{R}^{3}$, namely:

$$
f((1,0,0))=(1,0) \quad f((0,1,0))=(-1,1) \quad f((0,0,1))=(0,1)
$$

- Indeed, using linearity:

$$
\begin{aligned}
& f\left(\left(x_{1}, x_{2}, x_{3}\right)\right) \\
& =f\left(\left(x_{1}, 0,0\right)+\left(0, x_{2}, 0\right)+\left(0,0, x_{3}\right)\right) \\
& =f\left(x_{1} \cdot(1,0,0)+x_{2} \cdot(0,1,0)+x_{3} \cdot(0,0,1)\right) \\
& =f\left(x_{1} \cdot(1,0,0)\right)+f\left(x_{2} \cdot(0,1,0)\right)+f\left(x_{3} \cdot(0,0,1)\right) \\
& =x_{1} \cdot f((1,0,0))+x_{2} \cdot f((0,1,0))+x_{3} \cdot f((0,0,1)) \\
& =x_{1} \cdot(1,0)+x_{2} \cdot(-1,1)+x_{3} \cdot(0,1) \\
& =\left(x_{1}-x_{2}, x_{2}+x_{3}\right)
\end{aligned}
$$

Linear maps and bases, geometrically

"If we know how to transform any set of axes for a space, we know how to transform everything."

Linear maps and bases, example I (cntd)

- $f\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(x_{1}-x_{2}, x_{2}+x_{3}\right)$ is totally determined by:

$$
f((1,0,0))=(1,0) \quad f((0,1,0))=(-1,1) \quad f((0,0,1))=(0,1)
$$

- We can organise this data into a 2×3 matrix:

$$
\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

The vector $f\left(\boldsymbol{v}_{\boldsymbol{i}}\right)$, for basis vector \boldsymbol{v}_{i}, appears as the i-the column.

- Applying f can be done by a new kind of multiplication:

$$
\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\binom{1 \cdot x_{1}+-1 \cdot x_{2}+0 \cdot x_{3}}{0 \cdot x_{1}+1 \cdot x_{2}+1 \cdot x_{3}}=\binom{x_{1}-x_{2}}{x_{2}+x_{3}}
$$

Matrix-vector multiplication: Definition

Definition

For vectors $\boldsymbol{v}=\left(x_{1}, \ldots, x_{n}\right), \boldsymbol{w}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ define their inner product (or dot product) as the real number:

$$
\langle\boldsymbol{v}, \boldsymbol{w}\rangle=x_{1} y_{1}+\cdots+x_{n} y_{n}=\sum_{i=1}^{n} x_{i} y_{i}
$$

Definition

If $\boldsymbol{A}=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{m 1} & \cdots & a_{m n}\end{array}\right)$ and $\boldsymbol{v}=\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right)$, then $\boldsymbol{w}:=\boldsymbol{A} \cdot \boldsymbol{v}$
is the vector whose i-th element is the dot product of the i-th row of matrix \boldsymbol{A} with the (input) vector \boldsymbol{v}.

Matrix-vector multiplication, explicitly

For \boldsymbol{A} an $m \times n$ matrix, \boldsymbol{B} a column vector of length n :

$$
A \cdot b=c
$$

is a column vector of length m.

$$
\begin{aligned}
&\left(\begin{array}{ccc}
\vdots & \vdots & \vdots \\
a_{i 1} & \cdots & a_{i n} \\
\vdots & \vdots & \vdots
\end{array}\right) \cdot\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
a_{i 1} b_{1}+\cdots+a_{i n} b_{n} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
c_{i} \\
\vdots
\end{array}\right) \\
& c_{i}=\sum_{k=1}^{n} a_{i k} b_{k}
\end{aligned}
$$

Representing linear maps

Theorem

For every linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, there exists an $m \times n$ matrix \boldsymbol{A} where:

$$
f(\boldsymbol{v})=\boldsymbol{A} \cdot \boldsymbol{v}
$$

(where "." is the matrix multiplication of \boldsymbol{A} and a vector \boldsymbol{v})
Proof. Let $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\}$ be the standard basis for \mathbb{R}^{n}. \boldsymbol{A} be the matrix whose i-th column is $f\left(\boldsymbol{e}_{i}\right)$. Then:

$$
\boldsymbol{A} \cdot \boldsymbol{e}_{i}=\left(\begin{array}{c}
a_{11} 0+\ldots+a_{1 i} 1+\ldots+a_{1 n} 0 \\
\vdots \\
a_{m 1} 0+\ldots+a_{m i} 1+\ldots+a_{m n} 0
\end{array}\right)=\left(\begin{array}{c}
a_{1 i} \\
\vdots \\
a_{m i}
\end{array}\right)=f\left(\boldsymbol{e}_{i}\right)
$$

Since it is enough to check basis vectors and $f\left(\boldsymbol{e}_{i}\right)=\boldsymbol{A} \cdot \boldsymbol{e}_{i}$, we are done.

Matrix-vector multiplication, concretely

- Recall $f\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(x_{1}-x_{2}, x_{2}+x_{3}\right)$ with matrix:

$$
\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

- We can directly calculate

$$
f((1,2,-1))=(1-2,2-1)=(-1,1)
$$

- We can also get the same result by matrix-vector multiplication:

$$
\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)=\binom{1 \cdot 1+-1 \cdot 2+0 \cdot-1}{0 \cdot 1+1 \cdot 2+1 \cdot-1}=\binom{-1}{1}
$$

- This multiplication can be understood as: putting the argument values $x_{1}=1, x_{2}=2, x_{3}=-1$ in variables of the underlying equations, and computing the outcome.

Another example, to learn the mechanics

$$
\begin{aligned}
& \left(\begin{array}{lllll}
9 & 3 & 2 & 9 & 7 \\
8 & 5 & 6 & 6 & 3 \\
4 & 5 & 8 & 9 & 3 \\
3 & 4 & 3 & 3 & 4
\end{array}\right) \cdot\left(\begin{array}{l}
9 \\
5 \\
2 \\
5 \\
7
\end{array}\right) \\
& =\left(\begin{array}{l}
9 \cdot 9+3 \cdot 5+2 \cdot 2+9 \cdot 5+7 \cdot 7 \\
8 \cdot 9+5 \cdot 5+6 \cdot 2+6 \cdot 5+3 \cdot 7 \\
4 \cdot 9+5 \cdot 5+8 \cdot 2+9 \cdot 5+3 \cdot 7 \\
3 \cdot 9+4 \cdot 5+3 \cdot 2+3 \cdot 5+4 \cdot 7
\end{array}\right) \\
& =\left(\begin{array}{c}
81+15+4+45+49 \\
72+25+12+30+21 \\
36+25+16+45+21 \\
27+20+6+15+28
\end{array}\right)=\left(\begin{array}{c}
194 \\
160 \\
143 \\
96
\end{array}\right)
\end{aligned}
$$

Linear map from matrix

- We have seen how a linear map can be described via a matrix
- One can also read each matrix as a linear map

Example

- Consider the matrix $\left(\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & -3\end{array}\right)$
- It has 3 columns/inputs and two rows/outputs. Hence it describes a map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$
- Namely: $f\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(2 x_{1}-x_{3}, 5 x_{1}+x_{2}-3 x_{3}\right)$.

Examples of linear maps and matrices I

Projections are linear maps that send higher-dimensional vectors to lower ones. Consider $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$

$$
f\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right)=\binom{x}{y} .
$$

f maps $3 d$ space to the the $2 d$ plane.
The matrix of f is the following 2×3 matrix:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

Examples of linear maps and matrices II

We have already seen: Rotation over an angle φ is a linear map

This rotation is described by $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
f((x, y))=(x \cos (\varphi)-y \sin (\varphi), x \sin (\varphi)+y \cos (\varphi))
$$

The matrix that describes f is

$$
\left(\begin{array}{cc}
\cos (\varphi) & -\sin (\varphi) \\
\sin (\varphi) & \cos (\varphi)
\end{array}\right) .
$$

Example: systems of equations

$$
\boldsymbol{A} \cdot \boldsymbol{x}=\boldsymbol{b}
$$

$$
\begin{gathered}
a_{11} x_{1}+\cdots+a_{1 n} x_{n}= \\
\vdots \\
b_{1} \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n}= \\
b_{m}
\end{gathered} \quad \Rightarrow \quad\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
& \vdots & \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)
$$

$$
A \cdot x=0
$$

$$
\begin{array}{rc}
a_{11} x_{1}+\cdots+a_{1 n} x_{n} & =0 \\
\vdots & \vdots \\
\vdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n} & =
\end{array} \quad 0 \quad \Rightarrow \quad\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \vdots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

General vector spaces

- We can also represent linear maps $f: V \rightarrow W$ between general vector spaces (not just \mathbb{R}^{n})
- But we must fix bases for both spaces:

$$
\begin{aligned}
\mathcal{B} & :=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\} \subset V \\
\mathcal{C} & :=\left\{\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{m}\right\} \subset W
\end{aligned}
$$

- Then:

$$
f(x)=\boldsymbol{A} \cdot \boldsymbol{x}
$$

where \boldsymbol{A} is the matrix whose i-th column is $f\left(\boldsymbol{v}_{\boldsymbol{i}}\right)$, written in terms of basis \mathcal{C} :

$$
f\left(\boldsymbol{v}_{i}\right)=a_{1 i} \boldsymbol{w}_{1}+\ldots+a_{m i} \boldsymbol{w}_{m}=\left(\begin{array}{c}
a_{1 i} \\
\vdots \\
a_{m i}
\end{array}\right)_{\mathcal{C}}
$$

Matrix summary

- Fix bases $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\} \subset V$ and $\left\{\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{m}\right\} \subset W$
- Every linear map $f: V \rightarrow W$ can be represented by a matrix, and every matrix represents a linear map:

$$
f(\boldsymbol{v})=\boldsymbol{A} \cdot \boldsymbol{v}
$$

- The i-th column of \boldsymbol{A} is $f\left(\boldsymbol{v}_{i}\right)$, wrt. the basis $\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{m}$ of W
- This matrix of f depends on the choice of basis: for different bases of V and W a different matrix is obtained
- For $V=\mathbb{R}^{n}$ and $W=\mathbb{R}^{m}$, we often use the standard basis, in which case the i-th column of \boldsymbol{A} is just $f\left(\boldsymbol{e}_{i}\right)$.

Matrix multiplication

- Consider linear maps g, f represented by matrices $\boldsymbol{A}, \boldsymbol{B}$:

$$
g(\boldsymbol{v})=\boldsymbol{A} \cdot \boldsymbol{v} \quad f(\boldsymbol{w})=\boldsymbol{B} \cdot \boldsymbol{w}
$$

- Can we find a matrix \boldsymbol{C} that represents their composition?

$$
g(f(\boldsymbol{v}))=\boldsymbol{C} \cdot \boldsymbol{v}
$$

- Let's try:

$$
g(f(\boldsymbol{v}))=g(\boldsymbol{B} \cdot \boldsymbol{v})=\boldsymbol{A} \cdot(\boldsymbol{B} \cdot \boldsymbol{v}) \stackrel{(*)}{=}(\boldsymbol{A} \cdot \boldsymbol{B}) \cdot \boldsymbol{v}
$$

(where step $(*)$ is currently 'wishful thinking')

- Great! Let $\boldsymbol{C}:=\boldsymbol{A} \cdot \boldsymbol{B}$.
- But we don't know what "." means for two matrices yet...

Matrix multiplication

- Solution: generalise from $\boldsymbol{A} \cdot \boldsymbol{v}$
- A vector is a matrix with one column:

The number in the i-th row and the first column of $\boldsymbol{A} \cdot \boldsymbol{v}$ is the dot product of the i-th row of \boldsymbol{A} with the first column of \boldsymbol{v}.

- So for matrices $\boldsymbol{A}, \boldsymbol{B}$:

The number in the i-th row and the j-th column of $\boldsymbol{A} \cdot \boldsymbol{B}$ is the dot product of the i-th row of \boldsymbol{A} with the j-th column of \boldsymbol{B}.

Matrix multiplication

For \boldsymbol{A} an $m \times n$ matrix, \boldsymbol{B} an $n \times p$ matrix:

$$
A \cdot B=C
$$

is an $m \times p$ matrix.

$$
\begin{gathered}
\left(\begin{array}{ccc}
\vdots & \vdots & \vdots \\
a_{i 1} & \cdots & a_{i n} \\
\vdots & \vdots & \vdots
\end{array}\right) \cdot\left(\begin{array}{ccc}
\cdots & b_{j 1} & \cdots \\
\cdots & \vdots & \cdots \\
\cdots & b_{j n} & \cdots
\end{array}\right)=\left(\begin{array}{ccc}
\ddots & \vdots & . \\
\cdots & c_{i j} & \cdots \\
. \cdot & \vdots & \ddots
\end{array}\right) \\
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
\end{gathered}
$$

Special case: vectors

For \boldsymbol{A} an $m \times n$ matrix, \boldsymbol{B} an $n \times 1$ matrix:

$$
A \cdot b=c
$$

is an $m \times 1$ matrix.

$$
\begin{gathered}
\left(\begin{array}{ccc}
\vdots & \vdots & \vdots \\
a_{i 1} & \cdots & a_{i n} \\
\vdots & \vdots & \vdots
\end{array}\right) \cdot\left(\begin{array}{c}
b_{11} \\
\vdots \\
b_{n 1}
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
c_{i 1} \\
\vdots
\end{array}\right) \\
c_{i 1}=\sum_{k=1}^{n} a_{i k} b_{k 1}
\end{gathered}
$$

Matrix composition

Theorem

Matrix composition is associative:

$$
(\boldsymbol{A} \cdot \boldsymbol{B}) \cdot \boldsymbol{C}=\boldsymbol{A} \cdot(\boldsymbol{B} \cdot \boldsymbol{C})
$$

Proof. Let $\boldsymbol{X}:=(\boldsymbol{A} \cdot \boldsymbol{B}) \cdot \boldsymbol{C}$. This is a matrix with entries:

$$
x_{i p}=\sum_{k} a_{i k} b_{k p}
$$

Then, the matrix entries of $\boldsymbol{X} \cdot \boldsymbol{C}$ are:

$$
\sum_{p} x_{i p} c_{p j}=\sum_{p}\left(\sum_{k} a_{i k} b_{k p}\right) c_{p k}=\sum_{k p} a_{i k} b_{k p} c_{p k}
$$

(because sums can always be pulled outside, and combined)

Associativity of matrix composition

Proof (cont'd). Now, let $\boldsymbol{Y}:=\boldsymbol{B} \cdot \boldsymbol{C}$. This has matrix entries:

$$
y_{k j}=\sum_{p} b_{k p} c_{p j}
$$

Then, the matrix entries of $\boldsymbol{A} \cdot \boldsymbol{Y}$ are:

$$
\sum_{k} a_{i k} y_{k j}=\sum_{k} a_{i k}\left(\sum_{p} b_{k p} c_{p j}\right)=\sum_{k p} a_{i k} b_{k p} c_{p k}
$$

...which is the same as before! So:

$$
(\boldsymbol{A} \cdot \boldsymbol{B}) \cdot \boldsymbol{C}=\boldsymbol{X} \cdot \boldsymbol{C}=\boldsymbol{A} \cdot \boldsymbol{Y}=\boldsymbol{A} \cdot(\boldsymbol{B} \cdot \boldsymbol{C})
$$

So we can drop those pesky parentheses:

$$
\boldsymbol{A} \cdot \boldsymbol{B} \cdot \boldsymbol{C}:=(\boldsymbol{A} \cdot \boldsymbol{B}) \cdot \boldsymbol{C}=\boldsymbol{A} \cdot(\boldsymbol{B} \cdot \boldsymbol{C})
$$

Matrix product and composition

Corollary

The composition of linear maps is given by matrix product.
Proof. Let $g(\boldsymbol{w})=\boldsymbol{A} \cdot \boldsymbol{w}$ and $f(\boldsymbol{v})=\boldsymbol{B} \cdot \boldsymbol{v}$. Then:

$$
g(f(\boldsymbol{v}))=g(\boldsymbol{B} \cdot \boldsymbol{v})=\boldsymbol{A} \cdot \boldsymbol{B} \cdot \boldsymbol{v}
$$

No wishful thinking necessary!

Example 1

Consider the following two linear maps, and their associated matrices:

$$
\begin{array}{cc}
\mathbb{R}^{3} \xrightarrow{f} \mathbb{R}^{2} & \mathbb{R}^{2} \xrightarrow{g} \mathbb{R}^{2} \\
f\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(x_{1}-x_{2}, x_{2}+x_{3}\right) & g\left(\left(y_{1}, y_{2}\right)\right)=\left(2 y_{1}-y_{2}, 3 y_{2}\right) \\
\boldsymbol{M}_{f}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1
\end{array}\right) & \boldsymbol{M}_{g}=\left(\begin{array}{lc}
2 & -1 \\
0 & 3
\end{array}\right)
\end{array}
$$

We can compute the composition directly:

$$
\begin{aligned}
(g \circ f)\left(\left(x_{1}, x_{2}, x_{3}\right)\right) & =g\left(f\left(\left(x_{1}, x_{2}, x_{3}\right)\right)\right) \\
& =g\left(\left(x_{1}-x_{2}, x_{2}+x_{3}\right)\right) \\
& =\left(2\left(x_{1}-x_{2}\right)-\left(x_{2}+x_{3}\right), 3\left(x_{2}+x_{3}\right)\right) \\
& =\left(2 x_{1}-3 x_{2}-x_{3}, 3 x_{2}+3 x_{3}\right)
\end{aligned}
$$

So:

$$
M_{g \circ f}=\left(\begin{array}{ccc}
2 & -3 & -1 \\
0 & 3 & 3
\end{array}\right)
$$

... which is just the product of the matrices: $\boldsymbol{M}_{\text {gof }}=\boldsymbol{M}_{\boldsymbol{g}} \cdot \boldsymbol{M}_{\boldsymbol{f}}$

Note: matrix composition is not commutative

In general, $\boldsymbol{A} \cdot \boldsymbol{B} \neq \boldsymbol{B} \cdot \boldsymbol{A}$
For instance: Take $\boldsymbol{A}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ and $\boldsymbol{B}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. Then:

$$
\begin{aligned}
\boldsymbol{A} \cdot \boldsymbol{B} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 \cdot 0+0 \cdot-1 & 1 \cdot 1+0 \cdot 0 \\
0 \cdot 0+-1 \cdot-1 & 0 \cdot 1+-1 \cdot 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\boldsymbol{B} \cdot \boldsymbol{A} & =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 \cdot 1+1 \cdot 0 & 0 \cdot 0+1 \cdot-1 \\
-1 \cdot 1+0 \cdot 0 & -1 \cdot 0+0 \cdot-1
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
\end{aligned}
$$

But it is...

...associative, as we've already seen:

$$
\boldsymbol{A} \cdot \boldsymbol{B} \cdot \boldsymbol{C}:=(\boldsymbol{A} \cdot \boldsymbol{B}) \cdot \boldsymbol{C}=\boldsymbol{A} \cdot(\boldsymbol{B} \cdot \boldsymbol{C})
$$

It also has a unit given by the identity matrix I:

$$
\boldsymbol{A} \cdot \boldsymbol{I}=\boldsymbol{I} \cdot \boldsymbol{A}=\boldsymbol{A}
$$

where:

$$
\boldsymbol{I}:=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

Example: political swingers, part I

- We take an extremely crude view on politics and distinguish only left and right wing political supporters
- We study changes in political views, per year
- Suppose we observe, for each year:
- 80% of lefties remain lefties and 20% become righties
- 90% of righties remain righties, and 10% become lefties

Questions

- start with a population $L=100, R=150$, and compute the number of lefties and righties after one year;
- similarly, after 2 years, and 3 years, ...
- Find a convenient way to represent these computations.

Political swingers, part II

- So if we start with a population $L=100, R=150$, then after one year we have:
- lefties: $0.8 \cdot 100+0.1 \cdot 150=80+15=95$
- righties: $0.2 \cdot 100+0.9 \cdot 150=20+135=155$
- Two observations:
- this looks like a matrix-vector multiplication
- long-term developments can be calculated via iterated matrices

Political swingers, part III

- We can write the political transition matrix as

$$
\boldsymbol{P}=\left(\begin{array}{ll}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right)
$$

- If $\binom{L}{R}=\binom{100}{150}$, then after one year we have:

$$
\begin{aligned}
\boldsymbol{P} \cdot\binom{100}{150} & =\left(\begin{array}{ll}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right) \cdot\binom{100}{150} \\
& =\binom{0.8 \cdot 100+0.1 \cdot 150}{0.2 \cdot 100+0.9 \cdot 150}=\binom{95}{155}
\end{aligned}
$$

- After two years we have:

$$
\begin{aligned}
\boldsymbol{P} \cdot\binom{95}{155} & =\left(\begin{array}{ll}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right) \cdot\binom{95}{155} \\
& =\binom{0.8 \cdot 95+0.1 \cdot 155}{0.2 \cdot 95+0.9 \cdot 155}=\binom{91.5}{158.5}
\end{aligned}
$$

Political swingers, part IV

The situation after two years is obtained as:

$$
\begin{aligned}
\boldsymbol{P} \cdot \boldsymbol{P} \cdot\binom{L}{R} & =\underbrace{\left(\begin{array}{cc}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right) \cdot\left(\begin{array}{cc}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right)}_{\text {do this multiplication first }} \cdot\binom{L}{R} \\
& =\left(\begin{array}{cc}
0.8 \cdot 0.8+0.1 \cdot 0.2 & 0.8 \cdot 0.1+0.1 \cdot 0.9 \\
0.2 \cdot 0.8+0.9 \cdot 0.2 & 0.2 \cdot 0.1+0.9 \cdot 0.9
\end{array}\right) \cdot\binom{L}{R} \\
& =\left(\begin{array}{ll}
0.66 & 0.17 \\
0.34 & 0.83
\end{array}\right) \cdot\binom{L}{R}
\end{aligned}
$$

The situation after n years is described by the n-fold iterated matrix:

$$
\boldsymbol{P}^{n}=\underbrace{\boldsymbol{P} \cdot \boldsymbol{P} \cdots \boldsymbol{P}}_{n \text { times }}
$$

Political swingers, part V

Interpret the following iterations:

$$
\begin{aligned}
\boldsymbol{P}^{2}=\boldsymbol{P} \cdot \boldsymbol{P} & =\left(\begin{array}{ll}
0.66 & 0.17 \\
0.34 & 0.83
\end{array}\right) \\
\boldsymbol{P}^{3}=\boldsymbol{P} \cdot \boldsymbol{P} \cdot \boldsymbol{P} & =\left(\begin{array}{ll}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right) \cdot\left(\begin{array}{ll}
0.66 & 0.17 \\
0.34 & 0.83
\end{array}\right) \\
& =\left(\begin{array}{ll}
0.562 & 0.219 \\
0.438 & 0.781
\end{array}\right) \\
\boldsymbol{P}^{4}=\boldsymbol{P} \cdot \boldsymbol{P} \cdot \boldsymbol{P} \cdot \boldsymbol{P} & =\left(\begin{array}{ll}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right) \cdot\left(\begin{array}{ll}
0.562 & 0.219 \\
0.438 & 0.781
\end{array}\right) \\
& =\left(\begin{array}{ll}
0.4934 & 0.2533 \\
0.5066 & 0.7467
\end{array}\right)
\end{aligned}
$$

Etc. It looks like P^{100} is going to be hard to calculate. Is there an easier way to do this? (Spoiler alert: Yes! But you'll have to wait 2 weeks...)

